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Higgs scalars may be (pseudo-) Goldstone particles related to a spontaneous breakdown of a global 
symmetry which contains grand unified gauge group as a subgroup. This hypothesis gives severe con· 
straint on possible form of Higgs mass terms in a framework of supersymmetric grand unified theories 
coupled to N = 1 supergravity. 

Remarkably, their tree level mass terms, both supersymmetric and soft-breaking, are definitely given 
by gravitino mass m3/2 and do not depend on a detailed structure of a superpotential of GUT sector. These 
mass terms are best desirable for the relatively light top quark (m,::S 50 Ge V) suggested at CERN to be 
active in the radiative 5U(2) x um breaking scenario. 

§1. 

Higgs scalars, in spite of their indispensable roles, have been mysterious and even 
troublesome existence throughout every stage of the progress of unified gauge theories. 
Although supersymmetry shed important light on them!) and successive attempts gave 
some valuable hints,2),3) we are still "far from the position to clarify their nature. 

In the last couple of years some attempts have been made to assign leptons and quarks 
(and Higgs scalars) to (pseudo-) Goldstone multiplets in the supersymmetric non-linear 
a-model in a context of composite models to get natural explanation of their lightness. 4

) 

Even if we do not rush into composite models, this idea is appealing and suggestive enough 
within the standard scenario of grand unified theories (GUTs) when we recall the 
well-known problem of doublet-triplet Higgs mass splitting and related mess. Surely it 
will be most comfortable if we can attribute lightness of Higgs doublets to the Goldstone 
theorem supplemented by hon-renormalization theorem. That is, Higgs scalars are light 
because they are (p-) Goldstone bosons due to spontaneous breakdown of some global 
symmetry G which is large enough to contain GUT gauge group GGUT as a subgroup. 

Consider, for example, a theory possessing a global symmetry SU(6). The subgroup 
SU(5) is gauged. Suppose the vacuum of the theory breaks SU(6) down to SU(4) 
x SU(2) x U(l) and at th,e same time SU(5) to SU(3) x SU(2) x U(l) (SU(3) is embed
ded in SU(4)).4) The (p-) Goldstone modes due to the spontaneous breakdown of SU(6) 
are 

(4,2)+(4,2)* 

of SU(4) x SU(2). Their SU(3) x SU(2) decomposition is 

(3,2) +(3, 2)*+(1, 2) +(1, 2)* . 

Apparently the first two multiplets are (p-) Goldstone modes due to spontaneous break
down of SU(5) and are absorbed to massive vector multiplets. The remaining two 
multiplets have quantum numbers which precisely coincide with those of Higgs doublets 
HI and H2 which are indispensable building blocks of supersymmetric (SUSY) SU(3) 
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Higgs as (Pseudo) Goldstone Particles 665 

x SU(2) x U(l) theory. 
Though the global symmetry G is explicitly broken by gauge interaction of GGUT, HI 

and H2 remain massless to all orders in perturbation theory, as far as supersymmetry is 
exact, due to the non-renormalization theorem. In order to make the model realistic, we 
must introduce soft SUSY-breaking terms. The best suitable way will be to couple the 
model to spontaneously broken N = 1 supergravity theory in the standard manner. 5) 

Then HI and H2 receive mass terms which are expected to be of order of the gravitino 
mass m3/2. 

In this paper we clarify some consequences of this scenario within the context of N = 1 
SUSY GUTs coupled to N = 1 supergravity, paying special attention to mass terms of 
these Higgs multiplets. In order to avoid unwanted complexities, we neglect D-term 
gauge contribution to the bosonic potential by simply assuming that we are always 
working in the vacuum with <D>=O. 

§ 2. 

In order to see how our hypothesis is restrictive, we first look into the consequence of 
the "standard" SUSY GUT model where the lightness of Higgs scalars is realized by the 
fine tuning. The simplest version of the model has a superpotential 

(1) 

where for simplicity superfields (or their scalar components) I, HI and H2 are assumed to 
be single component and WR contains rest of the terms which are irrelevant for the 
following discussions and is disregarded hereafter. According to the standard scenario 
we concentrate on the vacuum specified by vacuum expectation values (VEV s) 

<I>o=M, (2) 

which are a solution of supersymmetric vacuum equation 

The supersymmetric mass of Higgs scalars HI and H2, which is defined by that of their. 
fermionic partners, is given in general as 

/ 3
2
W ) , m(H -SUSY) = \ 3HI3H2 =<fJ(I- M » . 

Thus in order to get light H's, we have to fine-tune parameters as follows: 

M=M'+ ms 
fJ ' 

(3) 

(4) 

where M and M' are of order of unification mass Mx and ms of order of the weak mass 
scale mw. 

N ow let us couple this model to N = 1 supergravity theory with spontaneous SUSY 
breaking in a hidden sector. According to the standard procedure, the bosonic potential 
in the "fiat" limit is given in general as5

) 
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666 K. Inoue, A. Kakuta and H. Takano 

(5) 

where ml, m2 and m3 are all of order mw and parametrize the effective soft SUSY 
breaking, and also summation over z;=l:, HI, H2 is understood. Due to the existence of 
soft breaking terms, the VEV of l: which minimize this potential shifts from its SUSY 
limit value Eq.(2). The amount of this shift in the leading order O( m) is determined by 
minimizing the first term in Eq.(5) because only this term contains leading order 
(O( m2 M2)) nontrivial terms under variation of l: around M. Thus we get <l:> 
= M - mIl a + O( m2 1M) and this determines the supersymmetric Higgs mass as 

m(H -SUSY) = ms-Jiml. 
a 

(6) 

In order to get SUSY breaking Higgs mass terms to the order O( m2
), we must examine 

the VEV of l: to the order O(m2IM) retaining second and third terms in Eq.(5). The 
result is 

(7) 

By using this result we obtain the full Higgs mass terms: 

(8) 

(9) 

From this result we see that the Higgs mass terms are not only dependent on supergravity 
coupling parameters ml, m2 arid m3, but also deeply dependent on GUT parameters a, fJ 
and ms. They are essentially free parameters even after we fix the values of ml, m2 and 
m3. 

Now imagine what happens if HI and H2 are (p-) Goldstone particles. Because they 
must be massless at global SUSY limit (ml, m2, 1n3-40), ms must vanish or equivalently M 
=M' in Eq. (1). This is plausible because it seems to invoke some global symmetry 
which transforms l: and H's into each other. Now it is not so hard to imagine that this 
symmetry also requires definite relation between cubic coupling constants a and fJ in 
Eq. (1). This relation can be obtained by realizing that the mass terms of HI and H2 

V(H-mass) ={( 1 +1 ! nlmI12+m/}(HI* H I+ H2* H2) 

-{ !(2I mI1
2+ m/)HIH2+h.c.} (10) 

should contain zero-mode irrespective of ml and m2 corresponding to a true Goldstone 
mode because the supergravity coupling effect in Eq.(5) does not disturb the global 
symmetry. This requires 

IfJlal=l. 

Thus we arrive at the conclusion that in a suitable phase convention the supersymmetric 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/75/3/664/1916214 by U

.S. D
epartm

ent of Justice user on 16 August 2022



Higgs as (Pseudo) Goldstone Particles 

Higgs mass is given by the superpotential 

W(H -mass) = mIHIH2 

and the total Higgs mass terms are given as 

V(H-mass) =(2\ml\2+ m22)(HI* HI + H2* H2+ HIH2+ HI* H2*) . 

667 

(11) 

(12) 

Especially in the "minimal" supergravity coupling model, ml, m2 and m3 are given as5) 

m2=0, 

Notice that our results Eqs. (11) and (12) are independent of the parameter A. Though 
the results Eqs. (11) and (12) are derived from the simplest model Eq. (1) by using intuitive 
arguments, we will see in the following that they hold quite generally for wide class of 
models. 

§ 3. 

Our basic assumption is that the theory has a global symmetry G under which chiral 
multiplets Zi are transformed as 

(13) 

where (TA) / is a hermitian representation matrix of a generator of G and cA is a real 
transformation parameter. The invariance of the superpotential W(z) under this trans
formation gives identities 

aw ( A) j _ -a- T iZj-O, 
Zi 

(14· a) 

(14·b) 

The vacuum and particle spectra of the theory are characterized by the following VEV s: 

F*= /~) 
, \ aZi ' 

(15) 

These VEVs break the global symmetry G down to H, and there appear massless 
Goldstone bosons associated with broken generators of G/ H. In the SUSY limit (P ~ 0), 
these Goldstone bosons lie definitely in chiral multiplets. 4

),6) These Goldstone chiral 
multiplets Za are characterized by the matrix 

(16) 

and are given as 

(17) 

with 

(18) 

where N a
A are defined so as to orthonormalize Uai: 
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668 K. Inoue, A. Kakuta and H. Takano 

They are given explicitly as 

N a - 1 va A-R A, (19) 

where J[ a and va A are non-zero eigenvalues and associated normalized eigenvectors of the 
hermitian positive semi-definite matrix 

(20) 

Thus we see that there is one to one correspondence between these eigenvectors VaA and 
Goldstone chiral mUltiplets Za. On the other hand, broken generators, which have one to 
one correspondence to massless Goldstone bosons, are determined by eigenvectors 
(associated with non'zero eigenvalues) of a real symmetric matrix 

(21) 

If these two matrices J[AB and 5 AB coincide, that is, 

(22) 

then we get one to one correspondence between Goldstone bosons and Goldstone chiral 
multiplets. Thus one Goldstone chiral multiplet contains only one Goldstone boson and 
its scalar partner is pseudo-Goldstone boson. This case is called total doubling case. 4

),6),7) 

The necessary and sufficient condition for Eq. (22) is 

(23) 

for all generators TA of G. Remarkably if the unbroken symmetry H contains Cartan 
subgroup of G, this condition is automatically satisfied and the total doubling is 
inevitable.7) If DA is not identically zero, the correspondence between Goldstone bosons 
and Goldstone chiral multiplets becomes incomplete, and in the extreme case where the 
rank of J[AB is smaller than that of 5 AB

, it becomes possible that both of the spinless 
components of a Goldstone chiral multiplet are occupied by two Goldstone bosons. 

In the following we work only on models where Eq. (23) is satisfied for all generators 
TA of G. This condition for generators T a of gauged group GGUT is the usual hypothesis 
of the standard SUSY GUTs scenario to prevent huge SUSY breaking in the observable 
sector. Furthermore, since we neglect D-term gauge contribution to the potential, consis
tency of the following analysis also requires Da=O at least for those which belong to 
gauge group GGUT. Also it should be noticed that any field configuration with non
vanishing DA can always be transformed to that with vanishing DA by a suitable 
complexified global transformation (Eq. (13) with complex transformation parameters .sA) 
which is the symmetry transformation of the superpotential W(Z).8) The proof of this 
statement is given in the Appendix. Since the soft SUSY breaking terms due to N = 1 
SUGRA coupling are not invariant under this complexified transformation, there is, in 
general, a possibility that the D-terms get non-vanishing values due to this SUSY breaking 
effect and may give physically interesting effects. But these are out of our present 
investigation. We will see that this condition gives great simplification to our analysis. 
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Higgs as (Pseudo-) Goldstone Particles 

The VEVs equation (15) are determined to minimize the potential 

V(z) =1 ~~ +mIz/12+m22z/Zi+ [m3 W(z) +h.c.]. 

Thus they satisfy the vacuum equation 

(Fk+ml* Zk)Mki+(F/+mIZ/)ml*+m22Z/+m3F/=O. 

669 

(24) 

(25) 

N ow we make some physically plausible assumptions on the solution of this equation. 
First we demand, according to the standard SUSY GUTs scenario, that VEV s equation 
(15) have smooth limit with respect to (ml, m2, m3--->O), and the vacuum in this limit 
expresses the exact SUSY world, that is, Filmlom2,m3=o=O. Next we demand that those 
chiral multiplets which are neither Goldstone chiral multiplets nor those whose mass 
terms are forbidden by unbroken symmetry H, have masses of order Mx. This is the 
straightforward extension of our hypothesis "Higgs as (pseudo-) Goldstone particles." 

N ow we look at the vacuum equation, Eq. (25). Here we only need to pay attention 
to H -singlet fields because only they have nonvanishing VEV s. At a glance we see that 
the first term of Eq. (25) must vanish in leading order because only this term contains 
O(mM2) quantities.9

) Therefore if Mij is an O(M) regular matrix, we obtain 

(26) 

Unfortunately, Mij contains in general Goldstone modes whose masses are expected to be 
much smaller than Mx, that is, it is not an O(M) regular matrix. From identities Eq. (14), 
however, we get 

(27) 

Therefore in the present case where DA=O, the vector Fk*+mIZk* is orthogonal to the 
Goldstone modes, therefore Goldstone modes in M ij completely decouple in Eq. (25), and 
the naive expectation Eq.(26) holds precisely. 

The SUSY mass terms of Goldstone chiral multiplets are given in general as 

M ab = Mii Uia U/ = - ;-h- VAa VBb F/( TA TB) / Zj , 
1[ 1[ 

(28) 

where the identity Eq.(14·b) has been used in the second equality. The previous result 
Eq. (26) then gives 

M ab = . mi v: a v: b1[AB 
~ A B 

V 1[-1[-

mi bV av b 
~1[ A A. 

V 1[-1[-

Furthermore, DA = 0 implies 1[AB = 5 AB is a real symmetric matrix and so eigenvectors VA a . 
are essentially real vectors. Therefore in this phase conventions, 

and we get 

(29) 

Also it is straightforward to show that the mlxmg mass matrix elements between 
Goldstone modes and massive (O(M) modes are suppressed as O( m2 / M) and completely 
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670 K. Inoue, A. Kakuta and H. Takano 

negligible. 
The mass matrices of (p-) Goldstone bosons 

are also related to the SUSY mass matrix M ab through the relation 

/ a
2v ) =Mki*Mkj+(lm 12 +m 2)0/ 

\ az;*aZj I 2 l 

and the supplemented relation 

:I/*=o 

(30· a) 

(30· b) 

(31) 

(32)' 

which comes from the invariance of the potential . V under the transformation of G, 
Eq. (13). 

Thus we arrive at a conclusion that in the case DA=O, SUSY masses of Goldstone 
chiral multiplets are given by the superpotential 

1 
W(mass) =TmiZaZa 

and total mass terms of Goldstone and P-Goldstone bosons are given as 

(33) 

(34) 

In the case where there are only two Goldstone chiral multiplets ZI and Z2, we define 

and we obtain 

W(mass) = m I H I H 2 , 

V(mass) =(2ImI12 + m22)(HI* HI + Hz* H 2) +(2Imd2+m22) (HIH2+h.c.) 

which precisely coincide with Eqs.(ll) and (12). 

§ 4. 

N ow we briefly discuss the phenomenological implication of the scheme. As was 
stressed earlier, once we assume that Higgs bosons are (pseudo-) Goldstone particles, their 
masses, both supersymmetric and soft breaking ones, are completely fixed by parameters 
mi and m2 irrespective of the detailed structure of the GUT superpotential. If the low 
energy theory is a minimal supersymmetric SU(3) x SU(2) x U(l) theory which contains 
two Higgs doublet HI and H2, their supersymmetric mass term is given by the super
potential 
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Higgs as (Pseudo-) Goldstone Particles 671 

(35) 

and total mass terms in the potential are given as 

where a contraction of SU(2) indices should be properly understood. In the usual 
"minimal" N = 1 supergravity coupling model, m2 vanishes and ml is nothing but a 
gravitino mass mat2. Of course we must take into account the radiative corrections to 
these mass terms. Strictly speaking, there is a correction due to renormalization effect 
between energy range Mx~f1<Mplanck governed by GUT Lagrangian. However, this 
effect is expected to be order alnMx/Mplanck and here we optimistically neglect it in 

m3 / 2 ~ 25 GeV 

. 100 
...........•..... " 

\. 
m(g)/m3 / 2 

_5~--_~4--~_3----_2~--~~1--~OLL--~L-~---3~--~4--~ 

Fig. L(a) Top quark mass as a function of m(fj)/m3/2 in the case of m3/2=25 GeV. The solid line 
corresponds to the case A =3, the dotted line to A= I, the dashed line to A= -1 and the dot·dashed 
line to A= -3. 
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ffi3/2 ~ 50 GeV 

2 4 

(b) The same as (a) for m3/2=50 GeV. (continued) 
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672 K. Inoue, A. Kakuta and H. Takano 

m3 / 2 = 75 GeV 
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(c) The same as (a) for m3l2=75 GeV. 
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(d) The same as (a) for m312=lOO GeV. 

5 

comparison with the radiative correction of order alnMx/mw due to the low energy 
effective theory. Thus we regard Eqs.(35) and (36) as a boundary condition for each 
operator in the low energy effective theory renormalized at J1.=Mx. 

N ow it is customary to work in minimal low energy theory with three generations of 
leptons and quarks where the top quark Yukawa coupling triggers the radiative SU(2) 
x U(l) breaking. Here we notice a remarkable feature of Eq. (36). This potential is flat 
in the direction HI ~ H2 *. This is an automatic consequence of our scheme. It is nothing 
but a Goldstone mode. Therefore even a tiny radiative effect of top quark Yukawa 
coupling can occasionally pull down the potential to a negative value, that is, it admits a 
relatively light top quark (mt<60 GeV) which is suggested by the CERN SPS 
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Higgs as (Pseudo-) Goldstone Particles 

Table 1. Masses of sleptons (ii, e), squarks (it, d, t, b), gluino (if), winos (W±), 
neutralinos (N°), charged Higgs scalar (H±) and neutral Higgs scalars (HO) for 
m312 = 25, 50 and 75 Ge V, in the case A = 1 and A = 3. The suffices i ( = 1, 2, 3) and 
j( = 1, 2) are generation indices. For the mixing effects of scalars, only the top 
quark Y ukawa coupling is taken into account, which is fixed to give the top quark 
mass mt=42 GeV. 

A=3 (GeV) A=1 (GeV) 

m3l2=25 m31Z=50 m3l2=75 m31Z=25 m31Z=50 m3l2=75 

I II I II I II I II I II I II 

iJ L i 23 62 145 75 229 24 55 50 123 75 193 
eLi 26 79 157 76 238 26 69 51 134 76 201 
eRi 26 52 96 76 143 26 46 51 85 76 126 
iiL} 25 292 609 78 942 28 251 57 508 85 778 
dLj 28 296 612 80 944 29 255 58 511 87 780 
URj 26 286 596 78 921 28 246 57 497 85 761 
d/ 27 287 595 79 919 29 247 57 497 85 759 

t L - t R 65 321 631 ll2 957 54 278 74 529 98 794 
16 249 556 17 878 46 214 62 462 85 724 

b-L 26 293 606 74 935 29 252 56 506 84 773 

if 8.8 316 657 26 1020 15 272 30 548 45 837 
Wh ± 100 . 122 186 148 263 99 113 122 162 147 222 
W,± 67 72 89 49 ll8 68 77 59 94 53 122 
N,O III 125 187 158 263 110 117 132 163 157 223 
Nzo 78 89 104 106 129 78 92 71 108 105 133 
.LV3D 35 44 86 58 128 35 38 68 74 61 111 
N,o 1.3 33 64 3.7 98 2 34 4.3 64 6.4 96 
H± 100 119 201 193 296 101 116 145 462 198 272 
H ,o 58 86 184 175 284 60 82 120 188 180 259 
H zo 109 124 201 198 294 llO 123 152 170 202 272 

H 3° 1.3 24 45 5.8 52 0.6 17 1.7 190 2.4 39 

673 

experiment. 10) The detailed method of the analysis is available in the literature. 2
),11) In 

Fig. 1 we give a value of top quark mass which is required to reproduce right Wand Z 
masses in radiative SU(2) x U(1) breaking scenario as a function of mUJ)/m3/2 where 
m([j) is a common gaugino mass at f.1-::::=.Mx for m3/2=25, 50, 75, 100 GeV and A=3, 1, -1, 
-3. All these graphs have the common structure. Especially there are two solutions 
which reproduce experimentally suggested top quark mass mt ~40 GeV. One solution 
(type II) requires m( [j) / m3/2 <- 2, that is, relatively heavy gauginos, on the other hand the 
alternative solution (type I) admits light gauginos Im([j)/m3/2I~1. I~general gaugino 
mass m( [j) feeds masses to squarks and sleptons through radiative correction.2

) There
fore in the former case (heavy gaugino) most of sparticles become considerably massive 
and it is phenomenologically less appealing than the latter case (light gauginos). In 
Table I we give numerical result for particle masses for each value of parameters A and 
m3/2 which reproduce a top quark mass mt=42 GeV. The blank in type I solutions are 
due to the negative mass square of the stop, which makes the usual SU(3)c x U(l)em 
vacuum unstable. 

Finally we mention about a serious difficulty of our scheme which makes it almost 
impossible to construct a realistic model within the standard GUT scenario. As is well 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/75/3/664/1916214 by U

.S. D
epartm

ent of Justice user on 16 August 2022



674 K. Inoue, A. Kakuto and H. Takano 

known, the Goldstone-matter coupling is severely constrained by a symmetry principle. 
Taking a derivative of Eq.(14·b), we get 

a3 w (TA) l + a2 w (TA) j+ a2 w (TA) i-O a a a k Ze a a k a a k - . Zi Zj Zk Zi Zk Zj Zk 

This equation implies that the Goldstone-matter coupling is proportional to matter masses 
(mi, mj): 

On the other hand, leptons and quarks are massless at the unification level. Therefore 
Yukawa couplings of Higgs multiplets to leptons and quarks are "kinematically" forbid
den. One may expect that radiative correction may improve this situation since CGUT· 

gauge interactions explicitly break the global symmetry C. Due to the non-renormaliza
tion theorem, however, these cannot give any nontrivial effect as far as we are working 
on perturbation theories. Therefore only possible way to escape this difficulty will be to 
invoke non-perturbative effects of gauge interactions. Encouragingly enough, recent 
progress in this branch clearly shows that the non-perturbative effects of supersymmetric 
gauge interactions surely generate a superpotential against the non-renormalization 
theorem. 12) 

It will be probable that the theory which governs high energy world (Mx:Sf-t:SMplanck) 
contains a large number of particles, and therefore asymptotic freedom is badly violated. 
If this is a case, we have a chance that the gauge interactions become strong at f-t ~ Mplanck 

and instantons with a scale of Planck length induce superpotential which seems to be 
almost a local operator in the low energy effective theory.13) Since this superpotential is 
generated through gauge interactions, it does not respect global symmetry C, so it may 
escape the difficulty. Of course this time we need some additional mechanism, such as the 
R-invariance,*) in model building which forbids a huge mass correction to Higgs scalars 
from this non-perturbative effect. 

Appendix 

In this appendix we show that any field configuration with non-vanishing DA can 
always be transformed to that with vanishing DA by a suitable complexified global 
transformations, Eq.(13) with complex transformation parameter cA. The ess~ntial in
gredient for the proof has been already given in the textbook by Wess and Bagger.8

) But 
their proof seems to be insufficient. Therefore we give it here for definiteness. 

Let us start from a general configuration of vacuum expectation values ai which gives 
non-vanishing D-term 

DA=a t TAa. 

N ow we prove that by a suitable complex transformation 

e· T == eA TA; eA = real, TA: hermitian 
*) We thank Dr. T. Yanagida for pointing out this possibility. 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/75/3/664/1916214 by U

.S. D
epartm

ent of Justice user on 16 August 2022



_.J 

Higgs as (Pseudo-) Goldstone Particles 675 

all D-terms 

DA(e) = a't TAa' = at ee.TTAee.T a 

can be vanished, that is, there exists a set of parameters {eA
} which solves 

Consider the following positive semidefinite quantity 

X(e) ==a t e2e-Ta=lee'TaI2~0. 

X(e) is a real function of de variables eA
, where de is a dimension of group G. The 

equality of this equation requires ee'T a = 0 and this occurs, if possible, only in the limit 
lel-HXJ (lei == (~AeAeA)1/2). If this is the case, all DA(e) trivially vanish in this limit. The 
non-trivial case is that there is no direction which makes X(e) vanish in the limit lel-HXJ. 
In this case X(e) -HYO in the limit lel-HXJ unless e· T is entirely contained in the algebra 
of unbroken subgroup H of G where X(e) ==a t a identically. It will be easy to convince 
that in this nontrivial case there is a stationary point of X(e) in the range of finite lei. 
That is, there necessarily exists a solution for equation, 

O. 

In the following we will work on this stationary point of X(e). 
The straightforward calculation gives 

where 

= TB ( 
e-2e.F -1 )AB 
.-2e·F 

and (FA)BC is a generator in the adjoint representation. Then for all generators TA, we 
get 

=0, 

because the matrix -2e·F/(e-2H-1) is finite and regular for lel<oo. Thus 

=0. 
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Therefore the stationary point of X(B) gives a solution of DA(B) =0. Q.E.D. 
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