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Higgs boson mass in the standard model at two-loop order and beyond

Stephen P. Martin1,2 and David G. Robertson3
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2Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, Illinois 60510, USA
3Department of Physics, Otterbein University, Westerville, Ohio 43081, USA
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We calculate the mass of the Higgs boson in the standard model in terms of the underlying Lagrangian
parameters at complete 2-loop order with leading 3-loop corrections. A computer program implementing
the results is provided. The program also computes and minimizes the standard model effective potential in
Landau gauge at 2-loop order with leading 3-loop corrections.

DOI: 10.1103/PhysRevD.90.073010 PACS numbers: 14.80.Bn

I. INTRODUCTION

The Large Hadron Collider (LHC) has discovered [1] a
Higgs scalar boson hwith massMh near 125.5 GeV [2] and
properties consistent with the predictions of the minimal
standard model. At the present time, there are no signals
or hints of other new elementary particles. In the case of
supersymmetry, the limits on strongly interacting super-
partners are model dependent, but typically extend to over
an order of magnitude above Mh. It is therefore quite
possible, if not likely, that the standard model with a
minimal Higgs sector exists as an effective theory below
1 TeV, with all other fundamental physics decoupled from it
to a very good approximation. Within this model, precision
calculations can help to relate observable quantities to the
underlying Lagrangian parameters, as well as help to
constrain new physics models, including those for which
decoupling may not hold.
One such observable quantity is the physical mass Mh

itself. At tree level, Mh is directly proportional to the
square root of the Higgs field self-interaction coupling, λ.
One important question has to do with the stability of
the standard model vacuum [3–14]. The observed value
of Mh is in the range that would apparently correspond to
metastability of the vacuum [15–19], assuming that there
is no new physics between the electroweak scale and the
Planck scale. It is therefore important to pin down the
relationship between λ and Mh as accurately as possible.
Parametric uncertainties, notably the dependences on the
top-quark mass and the QCD coupling, are not insignifi-
cant, and will likely remain so for some time. However, our
attitude is that theoretical calculations should, to the extent
possible, be pushed to the point that all limitations of our
understanding can be reliably and unambiguously blamed
on experimental error.
The purpose of this paper is to present a full 2-loop

calculation of the minimal standard model Higgs boson pole
mass Mh, in terms of the MS Lagrangian parameters v; λ;
yt; g; g0; g3, with the leading 3-loop corrections in the limit
g3; yt ≫ λ; g; g0. The relations between these parameters and

other observables, such as the physical masses of the top
quark and the Z and W bosons, are left to separate calcu-
lations. The result forMh is probably too long to present as an
analytical formula in print without forfeiting the goodwill of
the reader, and in any case evaluation of it will necessarily
rely on numerical work done by computer. We therefore
present most of our results in the form of an electronic file,
and as a public computer code. The computer code also
performs the related task of minimizing the 2-loop effective
potential [20] of the standard model with leading 3-loop
corrections [21], implementing the form of the minimization
condition given recently in [22,23], which resummed
Goldstone contributions to eliminate spurious imaginary
parts and potentially infrared singular contributions.
Our calculation is restricted to Landau gauge, but in

general the complex pole mass [24–28] in quantum field
theory is a physical observable and is therefore expected to
be both renormalization group invariant and independent
of the gauge fixing parameters. The latter property has been
shown to all orders in perturbation theory for the particles
of the standard model in Ref. [29]. Because our calculation
is restricted to Landau gauge, the gauge invariance cannot
serve as a check of its correctness, but numerous other
checks will be described below.
Previous work on the 2-loop contributions to the relation

between λ and Mh includes the QCD corrections [17,18],
which can be obtained from the 2-loop QCD correction
[30,31] to the Higgs self-energy function. The non-QCD
corrections have been obtained by [18] and [19] but were
given there only in the formof simple interpolating formulas.

II. HIGGS POLE MASS AT 2-LOOP ORDER

To fix our conventions and notation, we write the Higgs
kinetic and self-interaction Lagrangian as

L ¼ −∂μΦ†∂μΦ − Λ −m2Φ†Φ − λðΦ†ΦÞ2; ð2:1Þ

where we use the metric with signature (−,þ, þ, þ), and
m2 < 0, and the complex doublet Higgs field is
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ΦðxÞ ¼
� 1ffiffi

2
p ½vþ hðxÞ þ iG0ðxÞ�

GþðxÞ

�
: ð2:2Þ

Here v is the Higgs vacuum expectation value (VEV),
which we take to be evaluated at the minimum of the
effective potential evaluated at 2-loop order with leading
3-loop corrections. This means that the sum of tadpole
diagrams (including the tree-level one) vanishes at that
same order, and so need not be included. Because the
Landau gauge is used for the evaluation of the effective
potential in [20–23], our calculation also is restricted to that
gauge-fixing scheme.
The other relevant couplings in the theory are the top-

quark Yukawa coupling yt and the SUð3Þc × SUð2ÞL ×
Uð1ÞY gauge couplings g3, g, g0. In principle, the bottom
quark and other fermion Yukawa couplings can also be
included, but they make only a very tiny difference even
at 1-loop order, where their inclusion is straightforward
(see below). All of the couplings λ, m2, yt, g3, g, g0, and the
VEV v, are running parameters in the MS scheme.
In order to obtain the Higgs boson physical massMh, we

calculate the self-energy function

ΠðsÞ ¼ 1

16π2
Πð1ÞðsÞ þ 1

ð16π2Þ2Π
ð2ÞðsÞ þ � � � ð2:3Þ

consisting of the sum of all 1-particle-irreducible 2-point
Feynman diagrams, in the regulated theory in d ¼ 4 − 2ϵ
dimensions. In this paper, factors of 1=ð16π2Þl are
extracted as a way of signifying the loop order l. Rather
than including counterterm diagrams separately, we found
it more efficient to do the calculation in terms of the bare
quantities λB, m2

B, ytB, g3B, gB, g
0
B, and VEV vB, and then

reexpress the results in terms of the MS quantities. The
complex pole squared mass is the solution of

M2
h − iΓhMh ≡ spole ¼ m2

B þ 3λBv2B þ 1

16π2
Πð1ÞðspoleÞ

þ 1

ð16π2Þ2Π
ð2ÞðspoleÞ; ð2:4Þ

where 3-loop order effects are consistently neglected in this
section. We then apply the MS relations between bare and
renormalized parameters:

v2B ¼ μ−2ϵv2
�
1þ 1

16π2
cϕ1;1
ϵ

þ 1

ð16π2Þ2
�
cϕ2;2
ϵ2

þ cϕ2;1
ϵ

�
þ � � �

�
;

ð2:5Þ

λB ¼ μ2ϵ
�
λþ 1

16π2
cλ1;1
ϵ

þ 1

ð16π2Þ2
�
cλ2;2
ϵ2

þ cλ2;1
ϵ

�
þ � � �

�
;

ð2:6Þ

m2
B ¼ m2 þ 1

16π2
cm

2

1;1

ϵ
þ 1

ð16π2Þ2
�
cm

2

2;2

ϵ2
þ cm

2

2;1

ϵ

�
þ � � � ;

ð2:7Þ

ytB ¼ μϵ
�
yt þ

1

16π2
cyt1;1
ϵ

þ � � �
�
; ð2:8Þ

gB ¼ μϵ
�
gþ 1

16π2
cg1;1
ϵ

þ � � �
�
; ð2:9Þ

g0B ¼ μϵ
�
g0 þ 1

16π2
cg

0
1;1

ϵ
þ � � �

�
; ð2:10Þ

g3B ¼ μϵ½g3 þ � � ��; ð2:11Þ

to obtain spole in terms of the renormalized parameters.
Here μ is the regularization scale, related to the MS
renormalization scale Q by

Q2 ¼ 4πe−γEμ2; ð2:12Þ

where γE ¼ 0.5772… is the Euler-Mascheroni constant,
and the counterterm coefficients are, to the orders required
for this paper:

cϕ1;1 ¼ −3y2t þ
9

4
g2 þ 3

4
g02; ð2:13Þ

cϕ2;2 ¼ 12g23y
2
t −

9

4
y4t −

27

8
y2t g2 −

1

8
y2t g02 −

33

32
g4

þ 27

16
g2g02 þ 91

32
g04; ð2:14Þ

cϕ2;1 ¼ −10g23y2t þ
27

8
y4t −

45

16
y2t g2 −

85

48
y2t g02 þ

271

64
g4

−
9

32
g2g02 −

431

192
g04 − 3λ2; ð2:15Þ

cλ1;1 ¼ −3y4t þ 6λy2t þ 12λ2 −
9

2
λg2 −

3

2
λg02 þ 9

16
g4

þ 3

8
g2g02 þ 3

16
g04; ð2:16Þ

cλ2;2 ¼ 24g23y
4
t − 24g23y

2
t λ−

45

2
y6t þ

27

2
y4t g2 þ

13

2
y4t g02

−
9

2
y4t λþ 108y2t λ2 −

135

4
y2t λg2 −

53

4
y2t λg02 þ

27

16
y2t g4

þ 9

8
y2t g2g02 þ

9

16
y2t g04 þ 144λ3 − 81λ2g2 − 27λ2g02

þ 24λg4 þ 45

4
λg2g02 −

7

4
λg04 −

195

64
g6 −

119

64
g4g02

þ 37

64
g2g04 þ 73

64
g06; ð2:17Þ
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cλ2;1 ¼ −8g23y4t þ 20g23y
2
t λþ

15

2
y6t −

2

3
y4t g02 −

3

4
y4t λ− 36y2t λ2

þ 45

8
y2t λg2 þ

85

24
y2t λg02 −

9

16
y2t g4 þ

21

8
y2t g2g02

−
19

16
y2t g04 − 78λ3 þ 27λ2g2 þ 9λ2g02

−
73

32
λg4 þ 39

16
λg2g02 þ 629

96
λg04 þ 305

64
g6 −

289

192
g4g02

−
559

192
g2g04 −

379

192
g06; ð2:18Þ

cm
2

1;1 ¼ m2

�
3y2t þ 6λ −

9

4
g2 −

3

4
g02

�
; ð2:19Þ

cm
2

2;2 ¼m2

�
−12g23y2t þ

9

4
y4t þ 36y2t λ−

81

8
y2t g2 −

35

8
y2t g02

þ 54λ2 − 27λg2 − 9λg02 þ 249

32
g4 þ 45

16
g2g02 −

55

32
g04

�
;

ð2:20Þ

cm
2

2;1 ¼m2

�
10g23y

2
t −

27

8
y4t −18y2t λþ

45

16
y2t g2þ

85

48
y2t g02

−15λ2þ18λg2þ6λg02−
145

64
g4þ15

32
g2g02þ557

192
g04

�
;

ð2:21Þ

cyt1;1 ¼ yt

�
−4g23 þ

9

4
y2t −

9

8
g2 −

17

24
g02

�
; ð2:22Þ

cg1;1 ¼ −19g3=12; ð2:23Þ

cg
0
1;1 ¼ 41g03=12: ð2:24Þ

These counterterm coefficients can be obtained from the
2-loop beta functions and anomalous dimension given in
Refs. [20,32–35]; see for example the discussion in

Eqs. (4.5)–(4.14) of Ref. [21] which uses the same
notations and conventions as the present paper.
The 1-loop and 2-loop integrals are reduced, using the

Tarasov algorithm [36] implemented in the program
TARCER [37], to a set of Euclidean d-dimensional scalar
basis integrals with topologies illustrated in Fig. 1 and
defined in our notation in Refs. [38,39]. The 1-loop
integrals are

AðxÞ; Bðx; yÞ; ð2:25Þ

and the 2-loop integrals are

Iðx;y;zÞ; Sðx;y;zÞ; Tðx;y;zÞ;
Uðx;y;z;uÞ; Mðx;y;z;u;vÞ; ð2:26Þ

where the arguments are bare squared masses. The
integrals B;S;T;U, and M also each have an implicit
dependence on the external momentum invariant
s ¼ −p2. The integrals have invariances under inter-
changes of squared mass arguments that are obvious
from the figures.
In terms of bare quantities, the propagators in the self-

energy integrals depend on the squared masses of the
neutral and charged Goldstone bosons, the Higgs boson,
the top quark, and the W and Z bosons:

GB ¼ m2
B þ λBv2B; ð2:27Þ

HB ¼ m2
B þ 3λBv2B; ð2:28Þ

tB ¼ y2tBv
2
B=2; ð2:29Þ

WB ¼ g2Bv
2
B=4; ð2:30Þ

ZB ¼ ðg2B þ g02B Þv2B=4; ð2:31Þ

with a massless photon and ghosts. We then perform an
expansion using Eqs. (2.5)–(2.24), to write these quan-
tities in terms of the corresponding MS squared masses.

FIG. 1. Topologies for the one- and two-loop vacuum and self-energy scalar basis integrals used in this paper and defined in
Refs. [38,39]. The dot in the T topology stands for a derivative with respect to the squared mass x.
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For the 2-loop integrals, this merely requires replacing
the bare squared mass arguments by their MS counter-
parts, because the difference is of 3-loop order. For the
1-loop integrals, the functions A and B are expanded to
first order around the MS squared-mass arguments

G ¼ m2 þ λv2; ð2:32Þ

H ¼ m2 þ 3λv2; ð2:33Þ

t ¼ y2t v2=2; ð2:34Þ

W ¼ g2v2=4; ð2:35Þ

Z ¼ ðg2 þ g02Þv2=4; ð2:36Þ

using

AðXÞ ¼ AðxÞ þ ðX − xÞ ∂
∂xAðxÞ þ � � � ; ð2:37Þ

BðX; YÞ ¼ Bðx; yÞ þ ðX − xÞ ∂
∂xBðx; yÞ

þ ðY − yÞ ∂
∂yBðx; yÞ þ � � � ; ð2:38Þ

where the derivatives are given in the Appendix. As a
further refinement, the parameter m2 is eliminated using
the minimization condition of the Landau gauge effec-
tive potential, which takes the form

G ¼ m2 þ λv2 ¼ −
1

16π2
Δ̂1 −

1

ð16π2Þ2 Δ̂2 − � � � ; ð2:39Þ

given in Eqs. (4.18)–(4.21) of Ref. [22] (with equivalent
results in [23]). Here the quantities Δ̂1 and Δ̂2 depend
on t, W, Z, and

h ¼ 2λv2; ð2:40Þ

but not on G or H or m2. The 1-loop integrals
involving G as an argument are expanded using
Eqs. (A7)–(A14) of the Appendix, while those involv-
ing H as an argument are expanded using Eqs. (2.37)
and (2.38) again.
The loop integrals are then rewritten in terms of the basis

of ϵ-independent integrals

AðxÞ; Bðx;yÞ; Iðx;y;zÞ; Sðx;y;zÞ;
Tðx;y;zÞ; T̄ð0;x;yÞ;Uðx;y;z;uÞ; Mðx;y;z;u;vÞ ð2:41Þ

which are obtained from the corresponding integrals in
Eqs. (2.25) and (2.26) by subtracting appropriate subdi-
vergences and taking the limit ϵ → 0. Here T̄ðx; y; zÞ≡
Tðx; y; zÞ þ Bðy; zÞlnðxÞ with

lnðxÞ≡ lnðx=Q2Þ: ð2:42Þ

The reason for the definition of the function T̄ðx; y; zÞ is
that it is well defined as x → 0, while Tðx; y; zÞ diverges
in that limit. For the precise definitions of the integrals in
Eq. (2.41), see Sec. 2 of [39]. These integrals also have an
implicit dependence on the common external momentum
invariant s and on the MS renormalization scale Q. In the
resulting expression on the right-hand side of Eq. (2.4),
there are terms proportional to spole=ϵ and spole=ϵ2, corre-
sponding to the Higgs wave function renormalization.
These are moved to the left-hand side to allow spole to
be solved for. Finally, the regulator is removed by taking
the limit ϵ → 0.
The result for the Higgs squared pole mass is thus

obtained in the form:

M2
h − iΓhMh ¼ 2λv2 þ 1

16π2
Δð1Þ

M2
h

þ 1

ð16π2Þ2 ½Δ
ð2Þ;QCD
M2

h
þΔð2Þ;non-QCD

M2
h

�; ð2:43Þ

where the right-hand side is a function of v; λ; yt; g; g0;
g3; Q, with propagator masses expressed as the combina-
tions h; t;W; Z, and 0. Working to 2-loop order with
bottom, tau, and charm Yukawa couplings neglected, we
can treat spole as real where it appears as the (implicit)
argument of the basis integral functions, and so replace it
byM2

h. This is because the imaginary part of spole is already
of 2-loop order, and so the effect of including it would
make a difference of 3-loop electroweak order in the
pole mass. If the lighter fermions are included in the
1-loop self-energy (see below), then there is a 1-loop
imaginary part to the complex pole squared mass, but it
is numerically smaller than a typical 3-loop order contri-
bution due to the small Yukawa couplings of b, τ, c, so
that it can still be safely and consistently neglected. This
feature is of course related to the very narrow Higgs width
in the standard model. For simplicity, we will therefore
write s ¼ M2

h below.
The complete lists of 1-loop and 2-loop basis integrals

appearing on the right-hand side are

Ið1Þ ¼ fBðt; tÞ; Bðh; hÞ; BðW;WÞ; BðZ; ZÞ; AðtÞ; AðhÞ; AðWÞ; AðZÞg ð2:44Þ

and
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Ið2Þ ¼ fMðh; h; h; h; hÞ; Uðh; h; h; hÞ; Sðh; h; hÞ;Mðh; Z; h; Z; ZÞ; Uðh; h; Z; ZÞ;
MðW;W;W;W; hÞ; UðW;W;W; hÞ; Sðh;W;WÞ; TðW;W; hÞ;
MðZ; Z; Z; Z; hÞ; UðZ; Z; Z; hÞ; Sðh; Z; ZÞ; TðZ; Z; hÞ;
MðW;W;W;W; ZÞ; UðW;W;W; ZÞ; SðW;W; ZÞ; TðW;W; ZÞ; TðZ;W;WÞ;
MðW;Z;W; Z;WÞ; UðZ; Z;W;WÞ;Mðh;W; h;W;WÞ; Uðh; h;W;WÞ;
Mðt; t; t; t; ZÞ; Uðt; t; t; ZÞ; Sðt; t; ZÞ; Tðt; t; ZÞ; TðZ; t; tÞ;
Mðt; t; t; t; hÞ; Uðt; t; t; hÞ; Sðh; t; tÞ; Tðt; t; hÞ;
Mðt; Z; t; Z; tÞ; UðZ; Z; t; tÞ;Mðt; h; t; h; tÞ; Uðh; h; t; tÞ;
Mðt;W; t;W; 0Þ; UðW;W; 0; tÞ; Uðt; t; 0;WÞ; Sð0; t;WÞ; TðW; 0; tÞ; Tðt; 0;WÞ;
Mðt; t; t; t; 0Þ; Tðt; 0; tÞ; T̄ð0; t; tÞ;
MðW;W;W;W; 0Þ; TðW; 0;WÞ; T̄ð0;W;WÞ; UðW;W; 0; 0Þ; Sð0; 0;WÞ;
TðW; 0; 0Þ; UðZ; Z; 0; 0Þ; Sð0; 0; ZÞ; TðZ; 0; 0Þ; Iðh; h; hÞ; Iðt; t; ZÞ;
Iðh; t; tÞ; IðW;W; ZÞ; Iðh;W;WÞ; Iðh; Z; ZÞ; Ið0; t;WÞ; Ið0; h;WÞ;
Ið0; h; ZÞ; Ið0;W; ZÞ; Ið0; 0;WÞ; Ið0; 0; ZÞ; Ið0; 0; hÞ; Ið0; 0; tÞg: ð2:45Þ

In each of the B, S, T, T̄, U, and M integrals, the external
momentum invariant is taken to be the real pole squared
mass, s ¼ M2

h, as discussed above. Then Eq. (2.43) can be
solved numerically, by iteration.
The explicit results for the 1-loop part and the 2-loop

QCD part of the Higgs pole squared mass corrections are

Δð1Þ
M2

h
¼ 3y2t ð4t − sÞBðt; tÞ − 18λ2v2Bðh; hÞ

þ 1

2
ðg2 þ g02Þ½ðs − 3Z − s2=4ZÞBðZ; ZÞ

− sAðZÞ=2Z þ 2Z�
þ g2½ðs − 3W − s2=4WÞBðW;WÞ
− sAðWÞ=2W þ 2W�; ð2:46Þ

Δð2Þ;QCD
M2

h
¼ g23y

2
t ½8ð4t − sÞðs − 2tÞMðt; t; t; t; 0Þ

þ ð36s − 168tÞTðt; 0; tÞ þ 16ðs − 4tÞT̄ð0; t; tÞ
þ 14sBðt; tÞ2 þ ð−176þ 36s=tÞAðtÞBðt; tÞ
þ ð80t − 36sÞBðt; tÞ − 28AðtÞ2=tþ 80t − 17s�:

ð2:47Þ

In Eq. (2.46), a term 3λðs2 − h2ÞBð0; 0Þ=h coming from
loops involving Goldstone bosons and the unphysical
modes of the vector bosons has been moved into the
2-loop order non-QCD part discussed below, by iterating

using s ¼ hþ Δð1Þ
M2

h
=16π2. There, it cancels against other

terms, and the full 2-loop result does not depend on Bð0; 0Þ.
This is as expected, because a term with Bð0; 0Þ coming
from loops involving Goldstone bosons and the unphysical

modes of the vector bosons would imply an imaginary part
to the pole squared mass that does not correspond to any
physical decay of the Higgs boson. One-loop contributions
Bð0; ZÞ and Bð0;WÞ from individual Feynman diagrams
involving Goldstone bosons and the unphysical modes of
the vector bosons also cancel as expected, even without
iteration in s.
For the remaining, non-QCD, 2-loop contributions, there

are a large number of terms, and some of them are a bit
complicated, so that the length of the result may exceed the
threshold of impoliteness, and we decline to present them
explicitly in print. The result has the form:

Δð2Þ;non-QCD
M2

h
¼

X
i

cð2Þi Ið2Þi þ
X
j≤k

cð1;1Þj;k Ið1Þj Ið1Þk

þ
X
j

cð1Þj Ið1Þj þ cð0Þ: ð2:48Þ

The coefficients cð2Þi and cð1;1Þj;k and cð1Þj and cð0Þ are avai-
lable in electronic form in a file called COEFFICIENTS.TXT.
They are also implemented in a public computer code
written in C, described below. These electronic files are
available from the authors’ web pages [40], and
COEFFICIENTS.TXT is also included as an ancillary file with
the arXiv source for this article. In these coefficients, we
replaced s by its tree-level approximation 2λv2 wherever it
appears explicitly (but not where it appears as the implicit
argument of the basis functions). This enforces the can-
cellations between Goldstone and unphysical vector boson
contributions, avoiding spurious imaginary contributions to
the pole squared mass that do not correspond to physical
decay modes of the Higgs boson. Therefore each coef-
ficient is a sum of ratios of polynomials in λ; yt; g; g0,
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multiplied by the appropriate power of v. The impact
incurred by doing these substitutions for s is of 3-loop order
without involving QCD, and so is beyond the order of our
calculations in this paper, including the QCD part of the
leading 3-loop corrections discussed in the next section.
The expression of the result in terms of the basis integrals

is not unique, because there are identities between different
basis integrals that hold when the squared mass arguments
are not generic. These identities include Eqs. (A.14), (A.15),
and (A.17)–(A.20) in Ref. [41], and Eqs. (A17)–(A21) in the
Appendix of the present paper. We also used the threshold
integral relations (A15) and (A16) in the Appendix to
simplify the 2-loop order non-QCD part.
There are several quite nontrivial checks on the calcu-

lation. First, we checked that all single and double poles
in ϵ cancel in M2

h. This relies on agreement between
the counterterm poles cXl;n (for X ¼ v; λ; m2; yt; g; g0) as
extracted from the Higgs anomalous dimension and the
beta functions in the literature, and the divergent parts of the
loop integrations performed independently here. Second,we
checked that logarithms of G cancel, avoiding any spurious
imaginary parts thatwould occur if the renormalization scale
were chosen so that G < 0, or spurious divergences that
would occur if G ¼ 0. Third, we observed cancellation
between the parts of loop integral functions involving
Landau gauge vector propagators with poles at squared
mass equal to 0 and the corresponding Goldstone propa-
gators, once the latter were expanded using Eq. (2.39). This
is important in verifying the absence of spurious absorptive
(imaginary) parts of the self-energy evaluated on shell.
Fourth, we noted that the imaginary part −iΓhMh of
Eq. (2.43) comes entirely from the contributions of the
six basis integrals UðW;W; 0; 0Þ; Sð0; 0;WÞ; TðW; 0; 0Þ
and UðZ; Z; 0; 0Þ; Sð0; 0; ZÞ; TðZ; 0; 0Þ, corresponding
to the 3-body decays Γðh → Wff̄0Þ and Γðh → Zff̄Þ. We
checked numerically to very high precision that these
imaginary contributions, when computed with s ¼ h, agree
with the tree-level prediction for the 3-body widths found in
Eqs. (8a)–(10) of Ref. [42]. Fifth, we checked that although
some of the individual 2-loop coefficients in Eq. (2.48)
are singular in the formal limits g; g0 → 0 or λ → 0, the
whole expression is well behaved in those limits, thanks to
relations between different basis integrals when squared
mass arguments are small. Finally, we checked that the result
for M2

h is renormalization group scale invariant through
terms of 2-loop order. This is in principle equivalent to the
first check mentioned, but in practice it tests the validity of
various intermediate steps. It takes the form:

0 ¼ Q
d
dQ

M2
h ¼

�
Q

∂
∂Q − γϕv

∂
∂vþ

X
X

βX
∂
∂X

�
M2

h;

ð2:49Þ

whereX ¼ fλ; yt; g; g0; g3g, and γϕ is the anomalous dimen-
sion of the Higgs field. This check makes use of the

derivatives of basis integrals with respect to the implicit
argumentQ, provided in Eqs. (4.7)–(4.13) of Ref. [38], and
on Eqs. (A5) and (A6) in the Appendix of the present paper.
It also makes use of the MS beta functions and Higgs
anomalous dimension given in Refs. [20,32–35,43,44].
Although the lighter quarks and leptons have been neg-

lected above due to their very small Yukawa couplings, it is
easy enough to include them in the leading approximation:

Δð1Þ;b;τ;c;…
M2

h
¼ −½3y2b þ y2τ þ 3y2c þ � � ��Bð0; 0ÞM2

h: ð2:50Þ

Here we have taken s ¼ M2
h and dropped the y4f contribu-

tions and replaced the masses in light fermion propagators
by 0. In that limit, we can also take

Bð0; 0Þ ¼ 2 − lnðM2
h=Q

2Þ þ iπ: ð2:51Þ
The numerical impact on the real pole mass Mh from
Eq. (2.50) is seen to be of order 1 MeV. By comparing
the imaginary part of the pole squared mass, M2

h − iΓhMh,
to the contribution of Eq. (2.50), multiplied by the loop
factor 1=16π2, we also obtain the well-known result

Γðh → ff̄Þ ¼ Ncy2f
16π

Mh: ð2:52Þ

However, there are certainly better ways of obtaining the
precise Higgs decay widths in the standard model; see for
example Ref. [45] and references therein.

III. LEADING THREE-LOOP CORRECTIONS
TO THE HIGGS MASS

In this section, we find the leading 3-loop contributions
to the Higgs pole squared mass in the effective potential
approximation, based on the formal limit in which the
top-quark squared mass is taken to be much larger than the
squared masses of h, Z, andW. In that limit, the Higgs self-
energy function at leading order in yt and g3 can be appro-
ximated by taking s ¼ 0, and is proportional to the second
derivative of the renormalized effective potential with respect
to the Higgs field. Taking into account also the change in
the minimization condition of the effective potential, we
have a contribution (see for example Sec. VI of Ref. [21]):

δM2
h ¼

� ∂2

∂v2 −
1

v
∂
∂v

�
δVeff: ð3:1Þ

Using the leading 3-loop effective potential of Ref. [21],
with resummed Goldstone boson contributions to eliminate
spurious imaginary parts and infrared singular contribu-
tions [22,23], we obtain the 3-loop contribution to be added
to Eq. (2.43):

ΔM2
h ¼

1

ð16π2Þ3
h
Δð3Þ;leadingQCD

M2
h

þΔð3Þ;leadingnon-QCD
M2

h

i
ð3:2Þ
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where

Δð3Þ;leadingQCD
M2

h
¼ g43y

2
t t½248.122þ 839.197lnðtÞ

þ 160ln2ðtÞ − 736ln3ðtÞ�
þ g23y

4
t t½2764.365þ 1283.716lnðtÞ

− 360ln2ðtÞ þ 240ln3ðtÞ�; ð3:3Þ

Δð3Þ;leadingnon-QCD
M2

h
¼y6t t½−3199.017þ36lnðhÞ
−2653.511lnðtÞþ756lnðhÞlnðtÞ

þ27

2
ln2ðtÞþ324lnðhÞln2ðtÞ−225ln3ðtÞ�:

ð3:4Þ
The analytical forms of the decimal coefficients are

248.122≈−
3776

9
þ320ζð3Þþ704π4

135

þ256

9
ln2ð2Þ½π2− ln2ð2Þ�−2048

3
Li4ð1=2Þ; ð3:5Þ

839.197 ≈ 128ζð3Þ þ 2056=3; ð3:6Þ

2764.365 ≈
760

3
−
16π2

3
þ 576ζð3Þ þ 496π4

15

þ 512

3
ln2ð2Þ½π2 − ln2ð2Þ� − 4096Li4ð1=2Þ;

ð3:7Þ

1283.716 ≈ −344þ 48π2 þ 960ζð3Þ; ð3:8Þ

−3199.017≈−727−
17π2

2
−1962ζð3Þ−88π4

15

þ32ln2ð2Þ½π2− ln2ð2Þ�þ768Li4ð1=2Þ; ð3:9Þ

−2653.511 ≈ −
4191

2
− 39π2 − 144ζð3Þ: ð3:10Þ

The 3-loop approximate formulas just described may be
subject to significant corrections, because s=t ≈ 0.59 is
not a very small expansion parameter. However, experience
shows that in such small-s expansions of loop integrals the
coefficients of s=t are typically also less than 1, so that the
3-loop approximation above might be expected to provide
the bulk of the effect. For example, the small s-expansions
of the 1-loop and 2-loop basis functions involved in the
contributions from the top quark and gluons are [38]

Bðt; tÞ ¼ −lnðtÞ þ s
6t

þ � � � ð3:11Þ

Tðt; 0; tÞ ¼ 1

2
½lnðtÞ − 1�2 þ s

4t
þ � � � ð3:12Þ

T̄ð0; t; tÞ ¼− 1
2
½3þ 2lnðtÞ þ ln2ðtÞ� þ s

36t ½6lnðtÞ þ 1� þ � � �
ð3:13Þ

Mðt; t; t; t; 0Þ ¼ 1

t
þ 13s
72t2

þ � � � ð3:14Þ

As noted in the discussion surrounding Eqs. (6.21)–(6.28) of
Ref. [21], the relatively small coefficient 248.122 of the g43y

2
t t

term independent of lnðtÞ in Eq. (3.3) of the present paper
is the result of a remarkable accidental near-cancellation.
Because of this, the g23y

4
t t and y6t t contributions are actually

numerically more important than the g43y
2
t t contribution.

Because the full s dependence of the 2-loop QCD part
was retained above, the QCD part of the 3-loop contribu-
tion found in the effective potential approximation can
simply be added in. As a check, we have verified the
renormalization group invariance of the combined full
2-loop plus leading 3-loop QCD result from Eqs. (2.43)
and (2.46)–(2.48) and Eqs. (3.2)-(3.3). This check consists
of evaluating Eq. (2.49) including all terms of 2-loop order
and the terms of 3-loop order that involve g3 and are not
suppressed by λ, g, or g0. The check again makes use of the
MS beta functions and Higgs anomalous dimension given
in Refs. [20,32–35,43,44], as well as Eqs. (4.7)–(4.13) of
Ref. [38], and on Eqs. (A5) and (A6) in the Appendix of the
present paper.
For the 3-loop non-QCD part, the situation is more

subtle, because in the 2-loop non-QCD contribution of
Eq. (2.48) we made the substitution s ¼ h, implicitly
dropping 3-loop order corrections of order y6t t, formally
of the same order as in Eq. (3.4). However, the approxi-
mation for the 3-loop contribution above is still justified if
the renormalization scaleQ is chosen within an appropriate
range. To see this, note that if Q is chosen to the particular
value such that s ¼ h, then the numerical error made by
using s ¼ h in the 2-loop part will vanish exactly. More
formally, since we are interested in the 3-loop contributions
in the limits s=t ≪ 1 and yt ≫ λ; g; g0, note that from
Eqs. (2.43) and (2.46) we have

s ¼ h −
1

16π2
12y2t tlnðtÞ þ � � � ð3:15Þ

where the ellipses represent electroweak terms and terms
suppressed by s=t. Thus we see that the neglected 3-loop
order terms that are of order y6t t will vanish when Q is
chosen so that lnðtÞ ¼ 0, and are correspondingly sup-
pressed for small lnðtÞ. In practice, the conditions s ¼ h
and lnðtÞ ¼ 0 imply values of Q that are not very far apart
from each other, and therefore this range of Q is preferred
when including the 3-loop contributions above. As we will
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see below, the numerical renormalization scale dependence
of the computed Mh is mild for a larger range of Q.

IV. COMPUTER CODE IMPLEMENTATION
AND NUMERICAL RESULTS

We have implemented the Higgs pole mass calculations
described above in a computer code library of utilitieswritten
in C, called SMH (for “standard model Higgs”). The code
can be downloaded from the authors’ web pages [40].
The SMH program requires the use of the program

TSIL (two-loop self-energy integral library) [39], which
is used to handle the loop integrations. The 1-loop basis
integrals are evaluated in terms of logarithms, and the last 29
of the 2-loop integrals in the list Eq. (2.45) [starting with
Sð0; t;WÞ] are computed analytically in terms of polylogar-
ithms by TSIL, using formulas obtained in [6,38,46–51].
The other 38 integrals are computed numerically by TSIL;
this requires only 12 calls of the function TSIL_EVALUATE.
The program SMH is distributed with a file README.TXT,
which gives complete instructions for building and using it,
as well as several example and test programs. Most user
applications, like the example programs provided, will
make use of a static archive called LIBSMH.A, which can
be linked to by C or Cþþ programs.
The functionality implemented in SMH includes the

following:
(i) SMH_RGRUN performs the renormalization group

running of λ; yt; g3; g; g0; m2; v at up to 3-loop order,
using the MS beta functions and Higgs anomalous
dimension given in Refs. [20,32–35,43,44]. (At
this writing, the lighter fermion Yukawa couplings
yb; yτ; yc are not included, but they will be in a future
release, as an option.)

(ii) SMH_FIND_VEV and SMH_FIND_M2 implement
the minimization of the Landau gauge effective
potential for the standard model, at up to 2-loop
order [20] with leading 3-loop corrections [21],
using Eqs. (4.18)–(4.21) of Ref. [22]. The function
SMH_FIND_VEV finds v, given m2; λ; yt; g; g0; g3
at a renormalization scale Q, while the function
SMH_FIND_M2 does the inverse task of finding m2,
given v; λ; yt; g; g0; g3 at Q.

(iii) SMH_FIND_MH and SMH_FIND_LAMBDA imple-
ment the 2-loop Higgs pole mass of Eqs. (2.43) and
(2.46)–(2.48), with the leading 3-loop corrections
from Eqs. (3.2)–(3.4). The function SMH_FIND_MH

finds Mh given λ; v; yt; g; g0; g3 at Q, while the
function SMH_FIND_LAMBDA does the inverse,
finding λ given Mh and v; yt; g; g0; g3 at Q.

The user can choose various different loop-order approx-
imations, as illustrated in the examples below, with the
default being to use the complete set of available correc-
tions. Stand-alone command-line programs corresponding
to each of the above library functions are also included in
the SMH package. We also include example programs that

produce the data for the figures below. We plan to maintain
and improve the SMH code indefinitely, and welcome bug
reports or suggestions.
For purposes of illustration, consider as benchmark

inputs [taken from Ref. [19] version 2, Eqs. (55)–(59)]:

m2ðMtÞ ¼ −ð93.36 GeVÞ2; ð4:1Þ

λðMtÞ ¼ 0.12711; ð4:2Þ

ytðMtÞ ¼ 0.93558; ð4:3Þ

g3ðMtÞ ¼ 1.1666; ð4:4Þ

gðMtÞ ¼ 0.64822; ð4:5Þ

g0ðMtÞ ¼ 0.35761; ð4:6Þ

where Q ¼ Mt ¼ 173.10 GeV is the input scale. From
these, we find our benchmark value by minimizing the
effective potential with leading 3-loop corrections:

vðMtÞ ¼ 247.039 GeV: ð4:7Þ

If only the full 2-loop corrections were included, the result
would be vðMtÞ ¼ 247.381 GeV.
The variation of vðQÞwithQ is shown in Fig. 2. To make

the figure, the input parameters m2; λ; yt; g3; g; g0 were run
from the input scale to Q using 3-loop renormalization
group equations. In the left panel of Fig. 2, we show the
results for the 2-loop minimization condition of
Eqs. (4.18)–(4.20) of Ref. [22] as the dashed line, while
the solid line is the 2-loop plus leading 3-loop result
obtained by including also Eq. (4.21) of the same reference.
The right panel shows the ratio of vðQÞ to the value vrunðQÞ
obtained from directly running it using its renormalization
group equation and input value Eq. (4.7). The deviation
of this ratio from unity is due to higher order-effects; it is
seen to be less than 0.1% for the calculation that includes
the leading 3-loop effects.
In Fig. 3, we reverse the roles of m2 and v, by showing

the dependence of the Higgs Lagrangian mass parameter
m2ðQÞ obtained by minimizing the effective potential, this
time with the VEV vðQÞ as an input parameter. To make
the figure, the input parameters v; λ; yt; g3; g; g0 were run
from the input scale to Q using 3-loop renormalization
group equations. In the left panel of Fig. 3, we show

ffiffiffiffiffiffiffiffiffi
−m2

p
obtained from the 2-loop minimization condition of
Eqs. (4.18)–(4.20) of Ref. [22] as the dashed line, while
the solid line is the 2-loop plus leading 3-loop result
obtained by including also Eq. (4.21) of the same reference.
The right panel shows the ratio of m2ðQÞ to the value
m2

runðQÞ obtained from directly running it using its renorm-
alization group equation and input value Eq. (4.1).
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In Fig. 4, we show results for the Higgs pole massMh as
a function of the renormalization scale Q. To make the
figure, the benchmark input parameters λ; yt; g; g0; g3; v
were run from the input scale to Q using 3-loop renorm-
alization group equations. The lower solid (blue) line is
the 2-loop calculation of Eqs. (2.43) and (2.46)–(2.48),
while the upper solid (black) line includes also the leading
3-loop contributions of Eqs. (3.2)–(3.4). The results at the
input scale Q ¼ 173.1 GeV are Mh ¼ 125.789 GeV and
Mh ¼ 125.818, respectively. We also show the tree-level
approximation

ffiffiffiffiffi
2λ

p
v as the dotted line, and the 1-loop

approximation obtained from Eqs. (2.43) and (2.46) as the

short-dashed line, and the 1-loop approximation with the
2-loop QCD corrections from (2.47) included as the
long-dashed line.
Figure 5 is a close-up of the previous figure, to illustrate

the scale dependence more clearly for the full 2-loop and
leading 3-loop approximations. The lower (blue) line is
again the full 2-loopMh as calculated from Eqs. (2.43) and
(2.46)–(2.48). For comparison, we also show the result
for the full 2-loop plus the 3-loop QCD contribution of
Eqs. (3.2)–(3.3), without including the non-QCD 3-loop
corrections, as the upper (magenta) line. This has a much
stronger scale dependence than the 2-loop result, despite
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FIG. 2 (color online). The standard model Higgs VEV, vðQÞ, obtained from minimization of the effective potential is shown in the left
panel as a function of the renormalization scale Q. The dashed line shows the results for the 2-loop minimization condition of
Eqs. (4.18)–(4.20) of Ref. [22], while the solid line is the 2-loop plus leading 3-loop result obtained by including also Eq. (4.21) of the
same reference. The input parameters m2; λ; yt; g3; g; g0 are obtained at the scale Q by 3-loop renormalization group running starting
from Eqs. (4.1)–(4.6). The right panel shows the ratio of vðQÞ to the value vrunðQÞ obtained from directly running it using its
renormalization group equation and input value Eq. (4.7).
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FIG. 3 (color online). The standard model Lagrangian Higgs squared mass parameter, obtained from minimization of the effective
potential is shown in the left panel as

ffiffiffiffiffiffiffiffiffi
−m2

p
as a function of the renormalization scale Q. The dashed line shows the results for the 2-

loop minimization condition of Eqs. (4.18)–(4.20) of Ref. [22], while the solid line is the 2-loop plus leading 3-loop result obtained by
including also Eq. (4.21) of the same reference. The input parameters v; λ; yt; g3; g; g0 are obtained at the scale Q by 3-loop
renormalization group running starting from Eqs. (4.2)–(4.7). The right panel shows the ratio of m2ðQÞ to the value m2

runðQÞ obtained
from directly running it using its renormalization group equation and input value Eq. (4.1).
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the formal independence of Mh with respect to Q through
terms of 3-loop order involving g3. Including the non-QCD
y6t t contributions from Eq. (3.4) yields the middle (black)
line, which again has a mild scale dependence comparable
to the 2-loop result. The residual scale dependence is due to
higher order effects. Note that, as can be seen by comparing
Eqs. (3.3) and (3.4), the 3-loop QCD and 3-loop y6t t

contributions contribute with opposite sign, and have an
opposite scale dependence.
The points with s ¼ h and lnðtÞ ¼ 0 are marked with

dots on the leading 3-loop Mh line in Fig. 5. As argued in
the previous section, the range of Q near these points is
preferred due to the treatment of the 2-loop corrections. In
particular, the choice of Q that makes lnðtÞ ¼ 0 is easy to
implement as a natural standard. Given the value of the
running top-quark mass, and the observed mild scale
dependence in this region, a fixed value of, say, Q ¼
160 GeV would also make sense.
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FIG. 5 (color online). A close-up of the dependence of the
calculated Mh on Q, as in Fig. 4. The lower (blue) line is the full
2-loop Mh as calculated from Eqs. (2.43) and (2.46)–(2.48). The
upper (magenta) line is the full 2-loop plus the 3-loop QCD
contribution of Eqs. (3.2)–(3.3), not shown in Fig. 4. The middle
(black) line is the full 2-loop plus the 3-loop corrections of
Eqs. (3.2)–(3.4), with the left dot marking the case s ¼ h and the
right dot marking the case lnðtÞ ¼ 0.
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FIG. 4 (color online). The calculated Higgs pole mass Mh as a
function of the renormalization scale Q, in various appro-
ximations. The input data at Q are obtained from 3-loop
renormalization group running of λ; yt; g; g0; g3; v starting from
Eqs. (4.2)–(4.7). The dotted (green) line is the tree-level app-
roximation

ffiffiffiffiffi
2λ

p
v. The short-dashed (orange) line is the 1-loop

approximation obtained from Eqs. (2.43) and (2.46). The long-
dashed (red) line is the 1-loop approximation with the 2-loop
QCD corrections from Eq. (2.47). The lower solid (blue) line is
the 2-loop Mh as calculated from Eqs. (2.43) and (2.46)–(2.48),
while the upper solid (black) line also includes the leading 3-loop
corrections of Eqs. (3.2)–(3.4).
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FIG. 6 (color online). The Higgs self-coupling parameter, λMh
ðQÞ as calculated from a fixed pole mass Mh ¼ 125.818 GeV using

Eqs. (2.43) and (2.46)–(2.48) and Eqs. (3.2)–(3.4), with yt; g; g0; g3; v obtained at the scale Q by 3-loop renormalization group running
starting from Eqs. (4.3)–(4.7). The right panel shows the ratio of λMh

ðQÞ to the value λrunðQÞ obtained from directly running it using its
renormalization group equation and input value Eq. (4.2).
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In the left panel of Fig. 6, we show the scale
dependence of λðQÞ obtained from Eqs. (2.43) and
(2.46)–(2.48) and Eqs. (3.2)–(3.4), with the same input
parameters v; yt; g; g0; g3 at Q ¼ 173.1 GeV, but now
using a fixed pole mass Mh ¼ 125.818 GeV as the
input. This value is chosen so that the calculated
Higgs self-coupling at the input scale agrees with
Eq. (4.2). In the right panel, we show the ratio of
λMh

ðQÞ determined in this way to λrunðQÞ obtained by
directly running it from the input value Eq. (4.2) using
its 3-loop renormalization group equation. As expected,
the ratio is very close to 1 for all values of Q; the two
versions of λ would be visually indistinguishable in the
left panel. These results illustrate the renormalization
group scale independence through 2-loop and 3-loop
QCD order that we verified analytically as described
above, with small discrepancies less than 0.1% coming
from 3-loop y6t t and from subleading 3-loop and higher-
order effects.

V. OUTLOOK

In this paper, we have obtained the pole mass of the
Higgs boson,Mh, including full 2-loop and leading 3-loop
corrections, in the MS scheme. The calculation was done
in Landau gauge, in order to match with existing multi-
loop calculations of the effective potential used to elimi-
nate m2 by relating it to the VEV v (defined in this paper
as the minimum of the full effective potential) and the
other Lagrangian parameters. The inputs to the calculation
are the MS running parameters of the theory,
v; λ; yt; g; g0; g3. Other observables, such as the pole
masses of the top quark and the W;Z bosons, are not
inputs to the calculation, and are to be calculated sepa-
rately. A possible advantage to this strategy is that future
refinements in calculations and measurements of those
other observable quantities will not be entangled with the
calculation of the Higgs pole mass. Previous results for the
2-loop corrections [17–19] to the Higgs mass were
organized in a different way, and in the case of the
non-QCD corrections [18,19] were given only in the
form of simple interpolating formulas, making compari-
son with the present paper not practical. Our full analytic
results are contained in an ancillary electronic file, and a
computer code called SMH is provided [40], implement-
ing the results for Mh, the effective potential minimiza-
tion, and renormalization group running.
Because there is no way of directly measuring the Higgs

self-coupling parameter accurately in the immediate future,
the measurement of the Higgs mass is the best way to
determine λ, assuming the validity of the standard model,
with variations related approximately by

Δλ ¼ 0.00205ðΔMh=GeVÞ: ð5:1Þ

From the renormalization scale variation and the magni-
tudes of the leading 3-loop QCD and non-QCD effects, we
make a very rough estimate of the theoretical uncertainty on
Mh of 100 MeV, or about 0.1%, taking MS quantities as the
inputs. This does not include the effects of reducible
parametric error, notably the dependence on the uncertain-
ties in the top-quark Yukawa coupling (or mass) and the
QCD coupling. The future experimental error in Mh has
been estimated [52] to be perhaps 100 MeV (50 MeV) with
300 fb−1 (respectively 3000 fb−1) at the LHC, and of order
30 MeV or less at future eþe− colliders. We conclude that
more refined 3-loop order and quite possibly 4-loop order
corrections to Mh will be necessary in order to make the
theoretical error small compared to the foreseeable exper-
imental error, discounting the parametric uncertainties that
may be reducible by independent calculations and mea-
surements. At the least, a further refinement of the 3-loop
Mh calculation would serve to firm up an estimate of the
theoretical error.
Besides applications within the standard model, the

result may find use in extensions of the standard model,
including supersymmetry. The most straightforward inter-
pretation of the current LHC searches for supersymmetry
is that the superpartners, if they exist, are sufficiently
heavy that the standard model can be treated as an effective
theory with other new physics nearly decoupled. The direct
observation that the Higgs mass is relatively large com-
pared to most pre-LHC expectations within supersymmetry
can be taken as indirect evidence of the same thing. In the
past, many attempts to compute the Higgs mass within
supersymmetry have calculated directly within the full
softly broken supersymmetric theory in the Feynman
diagrammatic [53–61] and effective potential approxima-
tion [62–65] approaches. However, it now seems to us that
with very heavy superpartners, the effective field theory
and renormalization group resummation strategy [66–72]
for calculating the Higgs mass is probably the best one. One
can match the supersymmetric theory onto the standard
model parameters as an effective theory at some scale or
scales comparable to the most important superpartner
masses (probably the top squarks), and then run the
parameters of the theory down to a scale comparable to
Mt, and there compute Mh within the standard model. In
that case, the results obtained here may be a useful
ingredient.
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APPENDIX: SOME LOOP INTEGRAL
IDENTITIES

This Appendix contains some loop integral identities
that are useful for processing and simplifying the
2-loop Higgs pole mass. Other useful identities in
the notation of the present paper can be found in
Refs. [38,39,41].
First, the derivatives of 1-loop basis functions, obtained

by dimensional analysis and integration by parts, are

∂
∂xAðxÞ ¼ ðd=2 − 1ÞAðxÞ=x; ðA1Þ

∂
∂xBðx;yÞ ¼ ½ðd− 3Þðx− y− sÞBðx;yÞ

þ ðd− 2Þfðxþ y− sÞAðxÞ=2x−AðyÞg�=Δsxy;

ðA2Þ
where d ¼ 4 − 2ϵ is the number of spacetime dimensions
and Δabc ≡ a2 þ b2 þ c2 − 2ab − 2ac − 2bc. Using the
expansions for small ϵ,

AðxÞ ¼ −x=ϵþ AðxÞ þ ϵAϵðxÞ þOðϵ2Þ; ðA3Þ

Bðx; yÞ ¼ 1=ϵþ Bðx; yÞ þ ϵBϵðx; yÞ þOðϵ2Þ; ðA4Þ

one then obtains

∂
∂x AðxÞ ¼ AðxÞ=xþ 1 ¼ lnðxÞ; ðA5Þ

∂
∂xBðx; yÞ ¼ fðx − y − sÞ½Bðx; yÞ − 1�

þ ðxþ y − sÞAðxÞ=x − 2AðyÞ�g=Δsxy; ðA6Þ

and the expansions for small G:

AðGÞ ¼ GlnðGÞ −G; ðA7Þ

Bð0; GÞ ¼ Bð0; 0Þ þ G½3 − Bð0; 0Þ − lnðGÞ�=sþOðG2Þ;
ðA8Þ

BðG;GÞ ¼ Bð0; 0Þ þ 2G½3 − Bð0; 0Þ − lnðGÞ�=sþOðG2Þ;
ðA9Þ

BðG; xÞ ¼ Bð0; xÞ
þ G½3s − x − ðsþ xÞBð0; xÞ − 2AðxÞ�=ðx − sÞ2
þ GlnðGÞ=ðx − sÞ þOðG2Þ; ðA10Þ

AϵðGÞ ¼ G

�
−1 − π2=12þ lnðGÞ − 1

2
ln2ðGÞ

�
; ðA11Þ

Bϵð0;GÞ¼Bϵð0;0ÞþG½−AϵðGÞ=Gþ2Bð0;0Þ−Bϵð0;0Þ�=s
þOðG2Þ; ðA12Þ

BϵðG;GÞ ¼ Bϵð0; 0Þ
þ 2G½−AϵðGÞ=Gþ 2Bð0; 0Þ − Bϵð0; 0Þ�=s
þOðG2Þ; ðA13Þ

BϵðG; xÞ ¼ Bϵð0; xÞ þ G½2AðxÞ − 2AϵðxÞ
þ ðsþ xÞf2Bð0; xÞ − Bϵð0; xÞg�=ðx − sÞ2
þ AϵðGÞ=ðx − sÞ þOðG2Þ: ðA14Þ

Some identities between basis integrals that hold for
nongeneric squared mass arguments are the threshold
identities:

lim
s→x

Bð0; xÞ ¼ 1 − AðxÞ=x; ðA15Þ

lim
s→x

½T̄ð0; 0; xÞ þ Tðx; 0; 0Þ� ¼ −1; ðA16Þ

and the general relations

Ið0; 0; xÞ ¼ AðxÞ − AðxÞ2=2x − xð1þ π2=6Þ; ðA17Þ

Ið0; x; xÞ ¼ 2AðxÞ − AðxÞ2=x − 2x; ðA18Þ

T̄ð0; 0; xÞ ¼ −Tðx; 0; 0Þ þ ½−sþ 2AðxÞ − AðxÞ2=x
þ ðsþ xÞBð0; xÞ − ðsþ xÞAðxÞBð0; xÞ=x
− sBð0; xÞ2�=ðs − xÞ; ðA19Þ

T̄ð0; 0; 0Þ ¼ −½Bð0; 0Þ − 1�2=2; ðA20Þ

Uð0; x; 0; 0Þ ¼ ð1 − x=sÞTðx; 0; 0Þ þ Bð0; 0ÞBð0; xÞ
þ AðxÞBð0; 0Þ=xþ ð1 − x=sÞBð0; xÞ
− Ið0; 0; xÞ=sþ 2 − x=s: ðA21Þ

Other identities of similar type that express redundancies
among the basis integrals for nongeneric squared mass
arguments and were used here have appeared as
Eqs. (A.14), (A.15), and (A.17)–(A.20) of Ref. [41].
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