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1 Introduction

With the discovery of the Higgs boson [1, 2] at the Large Hadron Collider (LHC) at CERN

we have entered a new era of particle physics phenomenology. With conclusive evidence for

the existence of the Higgs boson the Standard Model (SM) of particle physics has become

a self consistent theory. It explains the mechanism of electro-weak symmetry breaking,

the origin of elementary particle masses and it allows to derive concise predictions to en-

ergies far beyond current experimental reach. The SM is however a phenomenologically

incomplete theory and needs to be extended to obtain a satisfying description of all known

physics. Higgs boson measurements will provide a unique window to deepen our under-

standing of fundamental interactions and to stringently test possible extensions of our

current knowledge.

The inclusive cross section for the production of a Higgs boson represents a prototypical

example of experimental and theoretical synergy. Its role in the extraction of fundamental

coupling constants is key and it provides an invaluable tool to discover potential deviations

from the SM. Experimentally it can be determined at the LHC to astounding precision. In

order to exploit the full potential of LHC phenomenology experimental precision must be

matched by equally precise theoretical prediction.
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The dominant production mechanism of a Higgs boson at the LHC is gluon fusion. In

comparison with other processes perturbative QCD corrections to the gluon fusion cross

section are large. In order to match current and future experimental precision this simple

fact demands computation of this process to very high order in perturbation theory. Next-

to-leading oder (NLO) [3–6] corrections to this process are available since more than two

decades. Corrections at next-to-next-to leading order (NNLO) were computed in refs [7–9]

in an effective theory (EFT) of QCD where the top quark is considered to have infinite

mass and all other quarks are massless [10–13]. In ref. [14] next-to-next-to-next-to leading

order (N3LO) corrections were computed in terms of an expansion around the production

threshold of the Higgs boson. This result marked the first computation of a Hadron col-

lider observable to this order in perturbation theory. At the desired level of precision the

inclusion of many sub-dominant effects, such as electro-weak corrections and quark mass

effects, in a prediction for the hadron collider observable are essential. Furthermore, a crit-

ical assessment of all sources of uncertainties is required. A comprehensive study achieving

this goal was performed in ref. [15] and resulted in the state of the art prediction for LHC

measurements (see also refs. [16, 17]).

In this article we go beyond the previous approximation of the N3LO corrections to

the Higgs boson gluon fusion cross section in the EFT in terms of a threshold expansion

and compute it exactly. Our calculation strongly relies on various ingredients already

entering the computation of ref. [14]. Specifically, we require matrix elements integrated

over phase space for the production of the Higgs boson in association with up to three

partons and involving up to three loops. Purely virtual corrections were computed in

refs. [18, 19]. Contributions with one parton in the final state and two loops were calculated

in refs. [20–24]. Matrix elements involving two final state partons and one loop (RRV)

or tree level matrix elements with three final state partons (RRR) were computed for

the purposes of refs. [14, 25–27] in terms of a threshold expansion. Furthermore, our

result relies on infrared subtraction terms formed out of convolutions [28, 29] of splitting

functions [30, 31] and an ultraviolet counter term based on lower loop amplitudes [32].

Both were already computed for the purpose of ref. [14].

In order to obtain our result we compute N3LO corrections to the partonic cross

section due to RRV and RRR matrix elements. The integration over the loop and final

state momenta involves complicated, high-dimensional integrals. In order to facilitate

our computation we employ the framework of reverse unitarity [7, 33–36] that allows to

relate phase space integrals to cuts of loop integrals. Subsequently, we employ powerful

loop integration techniques to actually compute our phase space integrals. In particular,

we make use of integration-by-part identities [37, 38] in order to express our integrated

matrix elements in terms of a limited set of master integrals. We then proceed to compute

these master integrals using the framework of differential equations [39–41]. The solution

of differential equations requires the calculation of one boundary condition per master

integral. To obtain these boundary conditions we perform an expansion of every master

integral in terms of a threshold expansion. We then match the individual terms in the

expansion to so-called soft master integrals that were explicitly computed in refs. [42, 43].
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When solving differential equations for RRR master integrals we encounter an ob-

struction in the form of 2 × 2 systems of differential equations that cannot be solved by

conventional means. The solution to these systems is given in terms of elliptic integrals.

The appearance of elliptic integrals in the computation of Feynman integrals is well es-

tablished [44–52] but still poses a considerable challenge. The majority of known analytic

results for Feynman integrals can be expressed in terms of iterated integrals referred to

as generalised poly logarithms [53]. A profound understanding of their analytic proper-

ties [53–57] has been key to the success of higher order perturbation theory. The quest

for a similar understanding of iterated integrals involving elliptic functions is subject of

ongoing research and has already produced vast literature [58–78]. In particular, methods

to find solutions for differential equations, the understanding of functional relations among

such integrals and their analytic continuation from one kinematic regime to another are

of importance. In this article we present our pragmatic solution to the problem at hand

and produce a hadron collider cross section that involves the analytic treatment of an

elliptic integral.

Having obtained analytic results for all required matrix elements with different parton

multiplicity in the final states we combine them to form the exact correction to the partonic

Higgs boson production cross section at N3LO. We then convolute our newly obtained result

and all required lower order cross section with parton distribution function in order to derive

physical predictions for hadron collider cross sections. We study in detail the deviations

of our results from the previous approximation of the N3LO cross section [14, 15]. Our

computation allows us to remove one source of uncertainty due to the truncation of the

threshold expansion from the state of the art prediction for the Higgs boson production

cross section [15] and we update the previous result.

This article is structured as follows: in section 2 we setup the notation for our compu-

tation of the inclusive Higgs boson production cross section. Next, we discuss in detail the

analytic computation of the missing RRV and RRR coefficient functions in section 3. We

outline the general computational framework in section 3.1. We discuss the treatment of

elliptic integrals found when solving differential equations in section 3.2. In section 3.3 we

introduce a class of iterated integrals that serve as the main building blocks for our final

result. Next, we describe the structure of our analytic results in section 3.4. In section 4

we present numerical results for the EFT Higgs boson cross section through N3LO in QCD

perturbation theory. We compare our new results to previous predictions obtained with a

threshold expansion in section 5. Finally, we draw our conclusions in section 6.

2 Set-Up

In this article we consider scattering processes of two protons that produce at least a

Higgs boson.

Proton(P1) + Proton(P2)→ H(ph) +X, (2.1)

P1 and P2 are the momenta of the colliding protons and ph the momentum of the Higgs
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boson. The master formula for the inclusive Higgs boson production cross section is given by

σPP→H+X = τ
∑
i,j

∫ 1

τ

dz

z

∫ 1

τ
z

dx1

x1
fi(x1)fj

(
τ

x1z

)
1

z
σ̂ij(z,m

2
h). (2.2)

Here, we employed the parton model and factorization of long and short range interactions

into parton distribution functions fi(x) and partonic cross sections. The momenta of the

colliding partons are related to the proton momenta by p1 = x1P1 and p2 = x2P2 = τ
x1z

P2.

We define

τ =
m2
h

S
, S = (P1 + P2)2.

z =
m2
h

s
, s = (p1 + p2)2. (2.3)

The sum over i and j ranges over all contributing partons. Furthermore, we define the

variable z̄ = 1− z. The partonic Higgs cross section is given by σ̂ij(z,m
2
h).

In this article we compute the partonic cross section through N3LO in perturbative

QCD in an effective theory where the top quark is infinitely heavy and has been integrated

out [10–13]. In this theory the Higgs boson is coupled directly to gluons via an effective

operator of dimension five [79–82],

Leff = LSM,5 −
1

4
C0HGaµνG

µν
a . (2.4)

where H is the Higgs field, Gaµν is the gluon field strength tensor and LSM,5 denotes the

SM Lagrangian with nf = 5 massless quark flavours. The Wilson coefficient C0 is ob-

tained by matching the effective theory to the full SM in the limit where the top quark is

infinitely heavy.

Within the effective theory, we can write the partonic cross section as

1

z
σ̂ij(z,m

2
h) = (C0)2 σ̂0 ηij(z) = (C0)2 σ̂0

∞∑
n=0

(
α0
S

π

)n
η

(n)
ij (z). (2.5)

Dividing out the Born cross section,

σ̂0 =
π

8(n2
c − 1)

, (2.6)

we can write the bare partonic coefficient functions as,

η̃
(n)
ij (z) =

Nij

2m2
hσ̂0

n∑
m=0

∫
dΦH+mM(n)

ij→H+m. (2.7)

The initial state dependent prefactors Nij are given by

Ngg =
1

4(1− ε)2(n2
c − 1)2

,

Ngq = Nqg =
1

4(1− ε)(n2
c − 1)nc

, (2.8)

Nqq̄ = Nqq = NqQ =
1

4n2
c

.
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Here, g, q, q̄ and Q indicate that the initial state parton is a gluon, quark, anti-quark

or quark of different flavour than q respectively. dΦH+m is the phase space measure for

the production of a Higgs boson and m partons and is explained in more detail below.

M(n)
ij→H+m is the coefficient of αnS in the coupling constant expansion of the modulus

squared of all amplitudes for partons i and j producing a final state Higgs boson and

m partons summed over polarizations and colors. To compute the nth order partonic

coefficient functions we require all combinations l-loop matrix elements with m external

particles such that m+ l = n.

The occurring loop amplitudes are plagued by ultraviolet divergencies which we reg-

ulate using dimensional regularisation and work in d = 4− 2ε space-time dimensions. We

renormalise the Wilson coefficient and strong coupling constant in the MS scheme. Squared

matrix elements with fixed parton multiplicity in the final state are separately infrared di-

vergent. These infrared divergences are canceled by summing over all contributing squared

matrix elements and performing a suitable redefinition of the parton distribution functions.

The resulting partonic cross section is free of divergencies and we refer to the correspond-

ing partonic coefficient function as ηij(z). Various definitions regarding renormalisation

and mass factorisation can be found in appendix B. The cross section, eq. (2.2), can be

written in terms of finite partonic coefficient functions and physical parton distribution

functions fRi as

σPP→H+X = τC2σ̂0
∑
i,j

∫ 1

τ

dz

z

∫ 1

τ
z

dx1

x1
fRi (x1)fRj

(
τ

x1z

)
ηij(z). (2.9)

The partonic coefficient functions can be split into two contributions

η
(n)
ij (z) = η

(n), SV
ij (z) + η

(n), reg.
ij (z). (2.10)

The term η
(n), SV
ij (z) is comprised of distributions that act on parton distribution functions.

The super-script SV signifies that this term represents so-called soft-virtual contributions

that arise from kinematic configurations where any parton produced in conjunction with

Higgs boson is soft. The coefficient η
(3), SV
ij (z) was computed in ref. [26] and confirmed by

ref. [27]. The coefficient functions η
(3), reg.
ij (z) represent the so-called regular contributions.

Their functional form was approximated with a power series in 1 − z in refs. [14, 25, 36].

The main result of this article is the complete computation of the coefficient functions

η
(3), reg.
ij (z). We supply this result in a machine readable format in an ancillary file together

with the arXiv submission of this article.

3 Calculation of coefficient functions

In order to obtain the partonic coefficient functions η
(3)
ij (z) we require contributions arising

from matrix elements with up to three loops (l ≤ 3) and up to three partons (m ≤ 3) in

the final state such that 3 = l + m. The purely virtual matrix elements were computed

in refs. [18, 19]. Matrix elements with two loops and one emission were computed in

refs. [20–24]. Matrix elements with two real emissions and one loop (RRV) and three

– 5 –
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real emissions (RRR) are so-far publicly only available in terms of the first two expansion

terms in the expansion around the production threshold of the Higgs bosons [42, 43]. In

this article we complete the computation of the N3LO coefficient functions. We start by

outlining the strategy involved in this computation. Next, we explain the treatment of

an ellitpic integral that is part of the RRR coefficient functions. We introduce a class of

iterated integrals that serve as building blocks of our partonic coefficient functions. Finally,

we obtain the N3LO coefficient functions and describe their structure.

3.1 Computation of matrix elements

In order to obtain RRV and RRR coefficient functions we start by generating all required

Feynman diagrams with QGRAF [83]. Next, we perform spinor and colour algebra in a

private c++ code based on GiNaC [84]. With this we obtain the loop and phase space

integrand for our partonic coefficient functions.

Next, we want to perform the inclusive integral of our integrands over all loop momenta

and final state parton momenta. The phase space measure for producing a Higgs boson

and m partons is given by

dΦH+m =
ddph
(2π)d

(2π)δ+(p2
h −m2

h)(2π)dδd

(
p1 + p2 + ph +

m+2∑
i=3

pi

)
m+2∏
i=3

ddpi
(2π)d

(2π)δ+(p2
i ),

(3.1)

where

δ+(p2 −m2) = θ(−p0 −m)δ(p2 −m2). (3.2)

All final state momenta are chosen in-going such that the energy component in the above

equation appears with a minus sign. In order to perform the loop and phase space integra-

tion we employ the framework of reverse unitarity [7, 33–36] that allows to treat phase space

and loop integrals on equal footing. In particular, we represent the on-shell constraints in

terms of cut propagators.

δ+(p2 −m2)→
[

1

p2 −m2

]
c

(3.3)

The subscript c serves as a reminder that this propagator is cut. Cut propagators can be

differentiated just like normal propagators.

d

dx

[
1

f(x)

]a
c

= −a
[

1

f(x)

]a+1

c

df(x)

dx
. (3.4)

They satisfy the condition[
1

f(x)

]a
c

f(x)b =


[

1
f(x)

]a−b
c

, if a > b

0 , if b ≥ a
. (3.5)

We can now apply integration-by-part (IBP) identities [37, 38] on our combined loop and

phase-space integrands. A private c++ implementation of the Laporta algorithm [85]

allows us to express our partonic coefficient functions in terms of a limited set of master

integrals. To compute these master integrals we work with the method of differential

– 6 –
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equations [39–41]. This method allows to derive a system of partial differential equations

for a vector of our master integrals ~I(z) of the form

∂

∂z
~I(z) = A(z, ε)~I(z). (3.6)

Here, ~I(z) is a vector of n master integrals and A(z, ε) is a n × n matrix with ratios

of polynomials in z and ε as entries. In order to have a complete system of differential

equations we define 550 and 362 master integrals for RRR and RRV respectively.

The commonly used strategy to solve such differential equations is to find a n × n

transformation matrix T such that

~I(z) = T ~I ′(z).

εA′(z, ε) = T−1A(z, ε)T − T−1 ∂

∂z
T.

∂

∂z
~I ′(z) = εA′(z, ε)~I ′(z). (3.7)

Here, A′(z, ε) is holomorphic in ε as ε → 0. Having obtained such a form the solution for

our master integrals can be easily expressed in terms of a Laurent series in ε by

~I ′(z) =

[
I + ε

∫ z

dz′A′(z′, ε) + ε2
∫ z

dz′
∫ z′

dz′′A′(z′, ε)A′(z′′, ε) + . . .

]
~I ′0. (3.8)

Here, ~I ′0 represents a vector of boundary conditions that has to be determined by other

means. For the RRV and RRR master integrals such a boundary condition is easily obtained

by matching the full solution obtained in eq. (3.8) to an expansion of the required integrals
~I(z) around the point z = 1 that can be performed by means presented in refs. [42, 43].

The art in solving differential equations rests in finding an adequate transformation

matrix T . For certain differential equations in a single parameter an algorithmic solution

exists [86–89] and was nicely formulated in ref. [89]. This method applies if a transformation

matrix can be found that is comprised of ratios of polynomials in the parameters z and

ε. For a large subset of integrals in our vector of master integrals ~I such transformations

can be found and we rely on a private implementation of the algorithm outlined in ref. [89]

to do so.

For another large class of master integrals it is necessary to find a transformation

matrix that contains square roots of polynomials of our parameter z. For these cases we

can find the desired transformation by finding suitable algebraic variable transformations

that rationalises the square roots involved. Once the roots are rationalised we can again

employ the aforementioned algorithm. We point out that this procedure is not particularly

algorithmic but leads to a desired solution fairly easily.

We encounter a further obstruction when solving differential equations for the system

of RRR master integrals. This obstruction involves the presence of elliptic integrals and

we elaborate on our solution in the following section.
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p2

p1p1

p2

(a)

p1

p2

p1

p2

(b)

Figure 1. Phase space integrals contributing to triple real corrections to Higgs boson production at

N3LO. The computation of these integrals involves elliptic integrals. Solid lines represent Feynman

propagators. Solid lines crossed by the dashed line correspond to cut-propagators. The doubled

line represents the on-shell constraint of the Higgs boson.

3.2 An elliptic integral in Higgs production

When solving differential equations for master integrals contributing to the triple real co-

efficient functions of Higgs boson production at N3LO we encounter two coupled 4 × 4

systems of differential equations that we could not decouple order by order in the dimen-

sional regulator by conventional means. In this section we discuss the differential equations

in question and present our solution.

In figure 1 we display two scalar phase space integrals. Let us choose four master

integrals with the same propagators as the scalar integral in figure 1(b).

Ei =

∫
dΦH+3

ni
p2

145p
2
235p

2
1245p

2
1235

, pi1...in = pi1 + · · ·+ pin . (3.9)

We choose

n1 =
zs3

ε(p2
12345 − sz)

.

n2 = − s

16
(p2

14 + p2
23 + p2

35).

n3 = − s

16
(p2

23 + p2
35).

n4 =
s2

ε
.

(3.10)

These four integrals satisfy a system of differential equations of the form

∂

∂z
~E = A0(z) ~E + εA1(z, ε) ~E + ~y(z). (3.11)

The vector ~y(z) represents the inhomogeneous part of the differential equation. The matrix

A1(z, ε) in the homogeneous part of the differential equation is holomorphic in ε as ε→ 0.

The homogeneous part of the differential equation that does not decouple as ε→ 0 is given

– 8 –
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by the matrix

A0(z) =


11−2z

z2−11z−1
0 0 3−z

z2−11z−1

0 0 0 0

0 0 0 0
1
z 0 0 0

 . (3.12)

As we can see, for ε = 0 two of the master integrals decouple and we are left with a 2 × 2

system for the homogeneous solution of the differential equation.

∂

∂z

(
E0

4

E0
1

)
= AT .

(
E0

4

E0
1

)
=

(
0 1

z
3−z

z2−11z−1
11−2z

z2−11z−1

)
.

(
E0

4

E0
1

)
. (3.13)

In order to decouple our original system of eq. (3.11) we want to find a transformation

matrix TE such that(
E0

4

E0
1

)
= TE .

(
E′04
E′01

)
=

(
t11(z) t12(z)

t21(z) t22(z)

)
.

(
E′04
E′01

)
.

∂

∂z

(
E′04
E′01

)
= 0.

∂

∂z
TE = AT .TE . (3.14)

We show in appendix A that the functions tij(z) can be written in terms of complete

elliptic integrals and pre-factors. However, this solution is quite unwieldy and we choose

another approach here. For all practical purposes it is sufficient to simply define the

functions tij(z) to be the solution to the differential equation eq. (3.14). The homogeneous

differential equations for the master integrals E′1 and E′4, defined by

E1 = t22E
′
1 + t21E

′
4,

E4 = t11E
′
4 + t12E

′
1, (3.15)

are decoupled as we send ε → 0. The inhomogeneity can then be decoupled order by

order by in ε by standard techniques. A general solution for the differential equations can

subsequently be found as illustrated by eq. (3.8).

The second set of master integrals that have the same propagators as the scalar in-

tegral depicted in figure 1(a) can be chosen in such a way that the homogeneous part of

their differential equations takes identically the same form as the one already discussed.

Therefor we can apply the same transformation matrix to decouple the system order by

order in ε. With this we found a transformation matrix T that allows us to express the

differential equations for all master integrals required for RRV and RRR contributions to

Higgs production at N3LO in the desired form, eq. (3.7).

In order to derive numerical results for the functions tij we can solve the differential

equations eq. (3.14) in terms of a generalised power series ansatz using the Frobenius

method. Consider for example an ansatz for the solution of the system of differential

– 9 –
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equations as an expansion around z = 0 and z = 1.

tij(z) =
∞∑
n=0

z̄nb
(n)
ij .

tij(z) =

∞∑
n=0

znc
(n)
ij + log(z)

∞∑
n=0

d
(n)
ij z

n. (3.16)

We derived the required structure of our ansatz by regarding the asymptotic solution of

the differential equations around the considered expansion points.

TE = e
− log(z̄) lim

z→1
z̄AT

.

(
t111 t

1
12

t121 t
1
22

)
=

(
t111 t

1
12

t121 t
1
22

)
+O(z̄1).

TE = e
log(z) lim

z→0
zAT

.

(
t011 t

0
12

t021 t
0
22

)
=

(
t011 t

0
12

t021 t
0
22

)
+ log(z)

(
t021 t

0
22

0 0

)
+O(z1). (3.17)

Here, t0ij and t1ij are some numerical boundary constants.

Inserting the ansaetze into the system of differential equations we find the following

recurrence relations.

b
(n+2)
11 =

(n+ 1)b
(n+1)
11

n+ 2
− b

(n+1)
21

n+ 2
.

b
(n+2)
21 =

b
(n)
11

11(n+ 2)
+

2b
(n+1)
11

11(n+ 2)
+

1

11
b
(n)
21 +

9

11
b
(n+1)
21 . (3.18)

and

c
(n+2)
11 =

c
(n)
11

(n+ 2)2
− 3c

(n+1)
11

(n+ 2)2
+

c
(n)
21

n+ 2
− 11c

(n+1)
21

n+ 2
− 2d

(n)
11

(n+ 2)3

+
6d

(n+1)
11

(n+ 2)3
− d

(n)
21

(n+ 2)2
+

11d
(n+1)
21

(n+ 2)2
.

c
(n+2)
21 =

c
(n)
11

n+ 2
− 3c

(n+1)
11

n+ 2
+ c

(n)
21 − 11c

(n+1)
21 − d

(n)
11

(n+ 2)2
+

3d
(n+1)
11

(n+ 2)2
.

d
(n+2)
11 =

d
(n)
11

(n+ 2)2
− 3d

(n+1)
11

(n+ 2)2
+

d
(n)
21

n+ 2
− 11d

(n+1)
21

n+ 2
.

d
(n+2)
21 =

d
(n)
11

n+ 2
− 3d

(n+1)
11

n+ 2
+ d

(n)
21 − 11d

(n+1)
21 . (3.19)

By comparison to the asymptotic solution given in eq. (3.17) we find all starting conditions

for the solution to the recurrence relations. Specifically, we find the conditions b
(n)
ij = c

(n)
ij =

d
(n)
ij = 0 if n < 0 and d

(0)
21 = 0 and d

(0)
11 = c

(0)
21 . Furthermore, the general solution for t22 is

identical to the solution for t21 and the one for t12 is identical to the solution for t11 up to

the choice of boundary constants.

Any choice of boundary conditions will lead to a transformation matrix that satisfies

the differential equations eq. (3.14). The only restriction we impose is that the transforma-

tion has to be invertible, i.e. that det(TE) 6= 0. In accordance with this criterium we make
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the following choice for the asymptotic solution of the differential equation: t111 = t122 = 0

and t112 = t121 = 1. We find that with this choice the determinant of the transformation

matrix is given to all orders in z by

t11t22 − t12t21 = − 11

z2 − 11z − 1
. (3.20)

Fixing the asymptotic behaviour of the functions tij(z) in one limit automatically de-

termines their behaviour at any other point. Computing the explicit values for t0ij explicitly

given the choice we made for t1ij is however a non-trivial task. At this point it is useful to

reflect on the practical aim of our computation. We desire a solution that is numerically

sufficiently precise to determine the complete N3LO coefficient functions for values of z in

the interval [0, 1] as required for cross section predictions. In this light our solution for the

tij(z) should allow for the desired precision and should be improvable if necessary. This

can be achieved by computing an approximation based on a truncated power series.

The regular singular points of our 2 × 2 system of differential equations (3.14) are

located at the following values.

z = 0.

z =
1

2

(
11− 5

√
5
)
∼ −0.09.

z =
1

2

(
11 + 5

√
5
)
∼ 11.09. (3.21)

Consequently, the power series of the functions tij(z) around the point z = 1 has a radius

of convergence r1 = 1. Similarly, the power series around the point z = 0 has radius of con-

vergence r0 = |12
(
11− 5

√
5
)
|. The domains of convergence for the two power series overlap

on the interval z ∈ (0, |12
(
11− 5

√
5
)
|). In order to determine the boundary constants t0ij

in terms of the t1ij we first compute the truncated power series around both limits under

consideration for each tij(z). Next, we evaluate both series for each tij(z) at a point within

the interval z ∈ (0, |12
(
11− 5

√
5
)
|). Equating the results allows us to establish a relation

among the constants t0ij and t1ij up to a small, numerical remainder. The remainder can be

systematically improved upon by increasing the truncation order of the power series.

Let us briefly introduce a simple method of estimating the size of the remainder of the

truncated series. Suppose a function f(x) is given by the convergent series

f(x) =
∞∑
i=0

aix
i. (3.22)

If we truncate the series before order N its remainder would be given by

R(f(x), x,N) =

∞∑
i=N

aix
i. (3.23)

Suppose that asymptotically the ratio of to consecutive coefficients remains constant.

|ai+1| = |ai|ri
|ai+m| = rmi |ai|. (3.24)
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Under this assumption we can estimate the modulus of the remainder to be bounded by

|R(f(x), x,N)| ≤ |aN |xN
∞∑
i=0

(rNx)i =
aNx

N

1− rNx
= Rest(f(x), x,N). (3.25)

Note, that the series converges for |rNx| < 1.

In order to obtain sufficiently high precision for our coefficient functions we perform

an expansion of the functions tij around the expansion points z = 0, z = 1 and z = 1
2 .

For each expansion we compute several hundred terms and match the boundary conditions

within the overlaps of the domains of convergence. Estimating the remainder of the power

series expansion at our matching points suggests that we can easily determine the boundary

values with a relative accuracy of 10−42 or better if needed. In addition to estimating the

remainder as described above we evaluate the different power series for the same tij for

several points in the intervals where all series converge and only observe relative deviations

at levels smaller than 10−42.

In order to further study the convergence of our power series approximation we may

regard the asymptotic behaviour of the recurrence relations given in eq. (3.18) and eq. (3.19)

as n→∞.

b
(n+2)
11 = b

(n+1)
11 +O

(
1

n

)
.

b
(n+2)
21 =

1

11
b
(n)
21 +

9

11
b
(n+1)
21 +O

(
1

n

)
.

c
(n+2)
11 = 0 +O

(
1

n

)
.

c
(n+2)
21 = c

(n)
21 − 11c

(n+1)
21 +O

(
1

n

)
.

d
(n+2)
11 = 0 +O

(
1

n

)
.

d
(n+2)
21 = d

(n)
21 − 11d

(n+1)
21 +O

(
1

n

)
.

(3.26)

We see that asymptotically b
(n)
11 approaches a constant and c

(n)
11 and d

(n)
11 tend towards zero.

For the other coefficients we find the asymptotic solutions

b
(n)
21 =

(
9

22
− 5
√

5

22

)n
c1 +

(
9

22
+

5
√

5

22

)n
c2 +O

(
1

n

)
.

c
(n)
21 =

(
−11

2
− 5
√

5

2

)n
c3 +

(
−11

2
+

5
√

5

2

)n
c4 +O

(
1

n

)
.

d
(n)
21 =

(
−11

2
− 5
√

5

2

)n
c5 +

(
−11

2
+

5
√

5

2

)n
c6 +O

(
1

n

)
. (3.27)

Here, the ci are some numerical constants. The numbers
∣∣∣ 9

22 ±
5
√

5
22

∣∣∣ and
∣∣∣−11

2 + 5
√

5
2

∣∣∣
are smaller than one. The number

∣∣∣−11
2 −

5
√

5
2

∣∣∣ is larger than one. From this we again
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draw the conclusion that the power series around the expansion point z = 1 is convergent

everywhere within the unit interval. The power series around z = 0 is convergent if

z < 1/
∣∣∣−11

2 −
5
√

5
2

∣∣∣ =
∣∣1

2

(
11− 5

√
5
)∣∣. This asymptotic analysis also supports the validity

of the procedure to estimate the remainder of the power series truncated at order N defined

in eq. (3.25).

3.3 Iterated integrals

In this section we briefly introduce a class of iterated integrals [90] that is particularly

convenient to express the solution of differential equations as in eq. (3.8). We define

J(~ω, z) = J(ωn(z), . . . , ω1(z), z) =

∫ z

0
dz′ωn(z′)J(ωn−1(z′), . . . , ω1(z′), z′), (3.28)

with J(z) = 1. We refer to one ωi(z) as a letter and to an ordered set of letters, {ωn(z), . . . ,

ω1(z)} that defines an iterated integral as a word.

Many well known classes of iterated integrals, such as harmonic poly logarithms

(HPLs) [91] or generalised poly logarithms (GPLs) [53], that are widely used in parti-

cle physics, are sub-classes of this type of iterated integrals. For example the GPLs are

given by

G(an, . . . , a1, z) = J

(
1

z − an
, . . . ,

1

z − a1
, z

)
, ai ∈ C. (3.29)

The presence of the elliptic integrals tij(z) in the solution of our differential equations does

not allow for a solution purely in terms of GPLs. For this reason it becomes necessary to

define an extension of GPLs in this article. Already several generalisations of GPLs to ac-

commodate elliptic functions exist in the literature (see for example [62, 73, 74, 92–94]). In

the following we review several properties of iterated integrals (see for example [55–57, 95]).

Iterated integrals form a so-called shuffle algebra.

J(ωn(z), . . . , ω1(z); z) J(ωn+m(z), . . . , ωn+1(z), z) =
∑

σ∈Σ(n,m)

J(ωσ(n+m)(z), . . . , ωσ(1)(z), z),

(3.30)

where Σ(n,m) denotes the set of all shuffles of n + m elements, i.e., the subset of the

symmetric group Sn+m defined by

Σ(n,m) = {σ ∈ Sn+m|σ−1(n) < . . . < σ−1(1) and σ−1(n+m) < . . . < σ−1(n+ 1)} .
(3.31)

For example, consider the product of two iterated integrals with two integrations each.

J(a, b, z)J(c, d, z) = J(a, b, c, d, z) + J(a, c, b, d, z) + J(a, c, d, b, z)

+J(c, a, b, d, z) + J(c, a, d, b, z) + J(c, d, a, b, z). (3.32)

Here the letters a, b, c and d may be generic functions of z.

Special care needs to be taken if the integrand of our iterated integrals diverges at the

value of the lower integration bound. In this article we only consider simple poles of the
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integrand at the end points since they simply are the only type of divergence that appears

in the computation we are interested in. Specifically, we define the case where all letters

of a word of lenght n are given by ω(z) = 1
z then

J

(
1

z
, . . . ,

1

z
, z

)
=

1

n!
logn(z). (3.33)

If the letter 1
z appears in the right-most entry of the word of an iterated integral we define

it in a way that is consistent with the shuffle algebra. Consider the shuffle relation

J

(
1

z
, z

)
J (ωn(z), . . . , ω1(z), z) = J

(
ωn(z), . . . , ω1(z),

1

z
, z

)
+ J

(
ωn(z), . . . ,

1

z
, ω1(z), z

)
+ . . . . (3.34)

Here, the ellipsis indicates all other terms arising from the shuffle product. Assuming that

all ωi(z) in the above equation are holomorphic as z → 0 the only iterated integral with

an end-point divergence is the first on the right hand side of the equation. We define our

iterated integrals to be regulated in such cases such that the above equation holds true.

Solving for the iterated integral in question we find

J

(
ωn(z), . . . , ω1(z),

1

z
, z

)
= log(z)J (ωn(z), . . . , ω1(z), z)− J

(
ωn(z), . . . ,

1

z
, ω1(z), z

)
+ . . .

(3.35)

If the right-most letter is divergent as z → 0 but has the form f(z)
z , with f(z) being

holomorphic around z = 0, then we may regularise our function by writing it as

J

(
ωn(z), . . . , ω1(z),

f(z)

z
, z

)
= J

(
ωn(z), . . . , ω1(z),

f(z)− f(0)

z
, z

)
+J

(
ωn(z), . . . , ω1(z),

1

z
, z

)
f(0). (3.36)

The last line of the above equation is then regulated as discussed above. If several right-

most letters have poles at the lower end point of the integration we simply iterate the above

procedure.

We want to be able to rewrite an elliptic integral with argument z in terms of iterated

integrals with argument z̄ = 1− z or w = 1
2 − z. Let us illustrate how this can be achieved

by regarding a transformation from z to z̄.

J(ωn(z), . . . , ω1(z), z) =

∫ 1−z̄

0
dz′ωn(z′)J(ωn−1(z′), . . . , ω1(z′), z)

= −
∫ z̄

1
dz̄′ωn(1− z̄′)J(ωn−1(1− z̄′), . . . , ω1(1− z̄′), 1− z̄′)

= −
∫ z̄

0
dz̄′ωn(1− z̄′)J(ωn−1(1− z̄′), . . . , ω1(1− z̄′), 1− z̄′)

+

∫ 1

0
dz̄′ωn(1− z̄′)J(ωn−1(1− z̄′), . . . , ω1(1− z̄′), 1− z̄′). (3.37)
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The last line in the above equation is a numerical constant. In order to write the integral

in the penultimate line in terms of an iterated integral with upper integration bound z̄ we

have to first rewrite the iterated integral in the integrand with an upper integration bound

z̄′. To do this we simply apply the above equation iteratively to the integrand. Notice,

that the above procedure may be ill defined if the integrand we are considering is divergent

at any of the end points. This case is easily avoided by shuffle regulating both end points

prior to applying eq. (3.37). Let us demonstrate this step with a well known example.

Consider the iterated integral

J

(
1

z
,

1

1− z
, z

)
= J

(
1

z
, z

)
J

(
1

1− z
, z

)
− J

(
1

1− z
,

1

z
, z

)
= − log(z) log(1− z)− J

(
1

1− z
,

1

z
, z

)
(3.38)

In the above equation we employed a shuffle identity such that right most letter of the

function is regular at the new lower integration point z = 1 and that the left most letter is

regular at the new end point z = 0. We now may write

J

(
1

1− z
,

1

z
, z

)
=

∫ z

0
dz′

1

1− z′
J

(
1

z′
, z′
)

=

∫ z

0
dz′

log(z′)

1− z′

=

∫ z̄

0
dz̄′

1

z̄′
J

(
1

1− z̄′
, z̄′
)
−
∫ 1

0
dz̄′

1

z̄′
J

(
1

1− z̄′
, z̄′
)

= J

(
1

z̄
,

1

1− z̄
, z̄

)
− π2

6
. (3.39)

Combining the the results of eq. (3.38) and eq. (3.39) we find the famous di-Logarithm

identity.

J

(
1

z
,

1

1− z
, z

)
= −J

(
1

z̄
,

1

1− z̄
, z̄

)
− log(z̄) log(1− z̄) +

π2

6
. (3.40)

In this example it was possible to determine the integration constant to be π2

6 analyti-

cally. If this is not possible the constant can also be determined numerically with finite

precision by simply evaluating the function under consideration before and after variable

transformation numerically for any value of z.

The iterated integral representation of eq. (3.28) allows to easily compute truncated

power series expansions for the iterated integrals. For example

J

(
1

1− z̄
, z̄

)
=

∫ z̄

0

dz̄′

1− z̄
=

∫ z̄

0
dz̄′

∞∑
i=0

(z̄′)i =

∞∑
i=0

z̄i+1

i+ 1
. (3.41)

By proceeding iteratively we can easily compute the power series in z̄ for any iterated

integral to arbitrary power.

In order to obtain compact expressions for our analytic results it is of importance to be

able to derive functional relations among our iterated integrals. One of the big advantages

of GPLs is that their functional relations are well studied (see for example [53, 55–57, 96]).

The case of generic iterated integrals is not understood at the same level. In ref. [62] it was
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outlined how relations among iterated integrals involving elliptic functions can be found

using IBP identities. Here, we proceed differently.

First, note that our final analytic result will be a linear combination of iterated integrals

and pre-factors ai(z̄), ∑
i

ai(z̄)J(~ωi, z̄). (3.42)

If there are relations among different iterated integrals appearing in this linear combination

then the equation ∑
i

ciai(z̄)J(~ωi, z̄) = 0, , ci ∈ Q, (3.43)

can be satisfied for some ci 6= 0 for arbitrary values of z̄. The coefficients ai(z̄) and

corresponding iterated integrals J(~ωi, z̄) are understood to be identical to those appearing

in our final result. In order to determine the unknown coefficients ci we expand eq. (3.43)

in z̄. Every coefficient of every power in z̄ has to vanish separately in order for the equation

to be satisfied. This allows us to build a system of equations that is large enough to solve

for the unknown coefficients ci. If we find a certain linear combination of iterated integrals

and coefficients that cannot be constrained with this procedure we found a relation of

functions.

Let us illustrate the procedure with a trivial example. Consider the simple shuffle

relation

c1J

(
1

1− z̄
,

1

1 + z̄
, z̄

)
+ c2J

(
1

1 + z̄
,

1

1− z̄
, z̄

)
+ c3J

(
1

1− z̄
, z̄

)
J

(
1

1 + z̄
, z̄

)
= 0, (3.44)

and let us pretend we do not know already know the coefficients ci. After expanding in z̄

we find

7

60
(c1 − c2) z̄5 +

5

24
(c1 + c2 + 2c3) z̄4 +

1

6
(c1 − c2) z̄3 +

1

2
(c1 + c2 + 2c3) z̄2 +O(z̄6) = 0

(3.45)

We can now create a system of equations by regarding each coefficient in z̄ separately.
1
2

1
2 1

1
6 −

1
6 0

5
24

5
24

5
12

7
60 −

7
60 0

 .

 c1

c2

c3

 = 0. (3.46)

Technically, we want to find the kernel of the system of equations. We find that the kernel

for our example is spanned by the vector {c1, c1,−c1}T . This means we found the shuffle

identity

J

(
1

1− z̄
,

1

z̄ + 1
, z̄

)
+ J

(
1

z̄ + 1
,

1

1− z̄
, z̄

)
− J

(
1

1− z̄
, z̄

)
J

(
1

z̄ + 1
, z̄

)
= 0. (3.47)

Of course this procedure only guarantees that the so-found relations are satisfied up to the

order in z̄ at which we truncate our power series. However, we may convince ourselves that
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the relations are correct by computing as many higher order terms as are to our liking. A

more involved example of such an identity is given by

J

(
t11,

t12

1− z̄
,

1

1− z̄

)
= J

(
t12,

t11

1− z̄
,

1

1− z̄

)
− J

(
t21,

t12

1− z̄
,

1

1− z̄

)
−11

5
J

(
t21

1− z̄
,
t12

1− z̄
,

1

1− z̄

)
+ J

(
t22,

t11

1− z̄
,

1

1− z̄

)
+

11

5
J

(
t22

1− z̄
,
t11

1− z̄
,

1

1− z̄

)
+

1

5
(5z̄ − 16) t11J

(
t12

1− z̄
,

1

1− z̄

)
−1

5
(5z̄ − 16) t12J

(
t11

1− z̄
,

1

1− z̄

)
. (3.48)

3.4 Analytic solution for partonic coefficient functions

In the previous sections we described how we derive differential equations for all mas-

ter integrals required for RRR and RRV partonic coefficient functions. Furthermore, we

outlined how we find a suitable transformation matrix that transforms the differential equa-

tions into the form of eq. (3.7). Once, this form is obtained the solution to the differential

equations can be conveniently written as in equation eq. (3.8). Iterated integrals as given in

eq. (3.28) are particularly suited to represent this solution. Once we calculated all master

integrals and computed all boundary conditions we simply insert the master integrals into

our IBP reduced matrix elements and obtain the desired result for the partonic coefficient

functions. In this section we describe the structure of our final result for the partonic

coefficient functions.

The set of all letters, the so-called alphabet, that appear in the iterated integrals that

constitute the Higgs boson cross section at N3LO is given by{
1,

1

1− z
,

1

z
,

1

z + 1
,

1√
z
,

1√
4− z

√
z
,

√
z

1− z
,

1
√
z
√
z + 4

,

√
z√

z + 4
,

1√
4z + 1

,

√
4z + 1

z
,

t11, t12, t21, t22,
t11

1− z
,
t11

z
,
t11

z + 1
,
t12

1− z
,
t12

z
,
t12

z + 1
,
t21

z
,
t22

z

}
. (3.49)

Note, that the alphabet required to describe all our master integrals individually contains

additional letters that drop out in the final expression.

The partonic coefficient functions are comprised of iterated integrals with up to five

letters. Typically we find that there are several thousand different iterated integrals in each

partonic coefficient function. Applying the procedure outlined in the previous section to

find functional identities among these integrals we find that we can express them in terms

of only 365 different iterated integrals that cannot be re-written as GPLs in a straight

forward fashion. Out of those 188 have letters containing elliptic integrals tij . For the

remaining ones a representation in terms of GPLs may exist.

Having derived moderately compact expressions for our coefficient functions we want to

find a method to evaluate them numerically. The conceptually simplest way to evaluate the

iterated integrals is to perform every integral numerically. The fact that all our integrals are

real valued and are finite renders this approach straight forward. Integrating 5 dimensional
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integrals numerically is however not particularly fast if a certain level of precision is desired.

As an alternative, we want to represent the entire partonic coefficient functions in terms

of power series expansions.

Let us first investigate for which values of z we can perform a convergent series ex-

pansion. In order to extract this information we regard all singularities and branch points

that occur in our alphabet and the algebraic factors of our coefficient functions. We find

that they are located at values of z of

{
1

2

(
11 + 5

√
5
)
, 4, 1, 0,

1

2

(
11− 5

√
5
)
,−1

4
,−1,−4

}
∼
{

11.0902, 4, 1, 0,−0.0901699,−1

4
,−1,−4

}
. (3.50)

Here, we included the regular singular points of the differential equations of the elliptic

sector, eq. (3.13). In order to evaluate our functions to high precision within the physical

interval, z ∈ [0, 1], we decide to perform a power series expansion around the points z = 1,

z = 1
2 and z = 0. The associated radii of convergence are then r1 = 1, r 1

2
= 1

2 and

r0 =
∣∣1

2

(
11− 5

√
5
)∣∣.

To obtain a series expansion around our three different expansion points we perform

an expansion of all iterated integrals as outlined in the previous section. As the default

upper bound for our iterated integrals is the parameter z̄ the expansion around the point

z = 1 can be carried out simply by expanding the iterated integrals at the integrand

level and integrating subsequently as demonstrated in eq. (3.41). In order to obtain an

expansion around z = 0 and z = 1
2 we first re-express our iterated integrals in terms of

iterated integrals with upper integration bound z and 1/2− z respectively. As outlined in

section 3.3 this procedure requires us to determine certain integration constants which we

obtain numerically by matching series expansions around different expansion points. To

ensure that the numerical error introduced by truncating series expansions is sufficiently

small we estimate it as explained in eq. (3.25).

We expand the coefficient of every iterated integral in the partonic coefficient function

separately around each of our three expansion points and combine the result with the ex-

pansion for the iterated integrals. In order to obtain numerical values for the coefficient

functions within the unit interval of z we evaluate the expansion around z = 1 in the

interval z ∈ [0.75, 1], the expansion around z = 1
2 in the interval z ∈

[
1
13 , 0.75

)
and the

expansion around z = 0 in the interval z ∈
[
0, 1

13

)
. We truncate the expansion around

z = 1 at O((1 − z)50), the expansion around z = 1
2 at O

(
(1

2 − z)200
)

and the expansion

around z = 0 at O
(
z100

)
. Using the estimator introduced in eq. (3.25) we find that this

approximates the coefficient functions at any point in the unit interval to a relative numer-

ical precision of 10−10 or better. This is supported by evaluating the different expansions

for several points within the overlaps of their respective domains of convergence and calcu-

lating their difference. The numerical precision may of course be improved arbitrarily by

simply including more terms in the respective series expansions.
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Figure 2. The figure displays the regular N3LO coefficient function for the Higgs boson production

cross section for the gg (red), qg (green), qq̄ (orange), qq(blue) and qQ(purple) initial state as a

function of the parameter z. The gg coefficient function was rescaled uniformly by a factor of 10−2.

4 Results

In the previous sections we calculated analytic results for the partonic coefficient functions

η
(3)
ij (z). Our analytic results agree with the power series around z = 1 for the same functions

obtained in refs. [14, 15]. The leading behaviour of the coefficient functions as z → 0 was

correctly predicted in ref. [97]. The coefficient function η
(3)
qQ was calculated already in

ref. [98] and agrees with our result. We derived a representation of the coefficient functions

in terms of power series expansions that is particularly useful for numerical evaluation.

In this section we present numerical results for the Higgs boson production cross section

through N3LO.

Let us start by regarding the functional dependence of our coefficient functions. In

figure 2 we display the shape of the regular coefficient functions for each distinct partonic

initial state. The quark - gluon and and gluon-gluon initial state coefficient functions

behave as ∼ log5(1 − z) as we approach the value z = 1. The coefficient functions with

two quarks in the initial state are tending towards zero in this limit. The limit z → 0 is

characterised by a power divergence and all coefficient functions behave as ∼ log5(z)
z .

In order to derive physical predictions for hadron collider phenomenology we need

to convolute our partonic coefficient functions with parton distribution functions (PDF).

Throughout this article we will use the PDF sets PDF4LHC15 [99]. We choose a Higgs

boson mass of 125 GeV and a top quark mass of mt(mt) = 162.7 GeV. We choose a value for

the strong coupling constant of αS(mZ = 91.1876 GeV) = 0.118. If not stated otherwise

we derive numerical predictions for proton-proton collider with a center of mass energy of
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Figure 3. The figure displays the contribution of N3LO coefficient function to the Higgs boson

production cross section for the gg (red), qg (green), qq̄ (orange), qq(blue) and qQ(purple) initial

state as a function of the perturbative scale µ. The gg and qg coefficient function were rescaled

uniformly by a factor of 10−2.

13 TeV. We use a private c++ code to perform the numerical convolutions of PDFs and

partonic coefficient functions.

In figure 3 we display the impact of the N3LO corrections on the hadronic cross section

for different initial states as a function of the perturbative scale µ. The gluon-gluon (red)

and quark-gluon (blue) initial state contributions were rescaled by a factor of 10−2 in

order to fit nicely. We observe that the numerical impact of these two channels is clearly

dominant over all other initial state configurations. The nominally smallest corrections for

each channel can be found in an interval of µ ∈ [40, 90] GeV.

In figure 4 we combine the contribution from all partonic coefficient functions and eval-

uate their contribution to the hadronic cross section including lower orders in perturbation

theory as a function of the perturbative scale µ. We show LO, NLO, NNLO and N3LO

predictions in green, orange, blue and red respectively. We observe that the dependence on

the perturbative scale is greatly reduced at N3LO compared to lower orders. Furthermore,

NNLO and N3LO predictions overlap within the interval of µ ∈
[
mh
4 ,mh

]
.

To derive a concrete numerical prediction we choose the value of the cross section at

µ = mh
2 . We vary the perturbative scale in the interval

[
mh
4 ,mh

]
in order to estimate the

effect of missing higher order corrections at N4LO and beyond. As can be seen from figure 4

this procedure is not conservative enough at leading and next-to-leading order. Regarding

the progression of the series from NLO onward we observe convergent behaviour. The

nominal size of the corrections is greatly reduced at each successive order. Uncertainty

estimates based on scale variation overlap at NNLO and N3LO.
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Figure 4. The figure displays the dependence of the Higgs boson production cross section on the

perturbative scale µ. The green, orange, blue and red lines correspond to a prediction made by

truncating the perturbative series at LO, NLO, NNLO and N3LO respectively.

Our prediction for the Higgs boson production cross section at the LHC based on a

computation in perturbative QCD in the large top quark mass limit through N3LO of

σPP→H+X = 45.18± 0.31
−1.48 pb = 45.18 pb± 0.69

−3.34%. (4.1)

5 Comparison with results based on a threshold expansion

In ref. [14] N3LO corrections to the Higgs boson production cross section were computed

using an approximation based on a power series around the point z = 1 truncated at

O((1− z)30). The expansion around z = 1 exploits a kinematic enhancement of the gluon

luminosity in the collision of protons for lower values of partonic center of mass energy to

yield reliable predictions. The point z = 1 represents the production threshold for a Higgs

boson, i.e. the lowest possible amount of energy required to produce a Higgs boson. In

ref. [15] seven additional terms in the power series were added. The quality of a threshold

expansion for N3LO corrections was furthermore studied in refs. [25, 26, 100]. Having now

the complete coefficient functions at our disposal we want to reflect on previous estimates

and compare our exact analytical findings to the approximate results.

Using the same set-up as in the previous section to derive numerical predictions we

find that the hadronic cross section through N3LO in perturbative QCD in the infinite top

quark mass limit based on thirty terms in the threshold limit is given by

σThreshold-30
PP→H+X = 45.07± 0.26

−1.43 pb = 45.07 pb± 0.58
−3.23%. (5.1)
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We observe a difference of 0.11 pb with respect to our new prediction, eq. (4.1). The scale

variation interval in eq. (4.1) is slightly larger. In ref. [15] it was estimated the effect of

missing higher order terms in the threshold expansion are less than 0.18 pb. We now see

that this estimate was sufficiently conservative.

In the remainder of this section we want to study the behaviour of N3LO corrections as

a function of the order where the threshold expansion is truncated. In particular we want

to investigate its performance for contributions arising from different partonic initial states.

In figure 5 we show the N3LO correction due to different initial sate partons based on a

threshold expansion (red) as a function of the order at which the expansion is truncated. In

blue we also display our new result to all orders in the threshold expansion as a reference.

We observe that the first four terms show particularly large changes in the derived predic-

tion. Starting from the fifth term we observe slow asymptotic improvement towards the

full result. The nominally largest gluon-gluon and quark-gluon channels are approximated

better than their purely quark initiated counter parts. The sum of all channels can be seen

in figure 5(f).

In order to see more clearly the quality of the threshold expansion for each channel

we show in figure 6 the impact of N3LO corrections on the hadronic cross section due to

different partonic initial states. The predictions in red are now based on a threshold ex-

pansion normalised to the respective all order result. The x-axis shows the order at which

the threshold expansion is truncated. The line in blue at one serves as a reference. We ob-

serve that contributions originating from the gluon-gluon channel are approximated within

several per-mille including only a few terms in the expansion. Similarly the quark-gluon

initiated contributions are approximated reasonably well below a level of ten percent. All

other contributions are considerably different from the exact result and receive corrections

of the order of 100% even with thirty terms in the expansion. Their nominal effect on

the inclusive cross section is however negligible. The fact that the threshold expansion

works best for gluonic initial states can be explained by the fact that the probability to

extract gluons from a proton is peaked towards lower momentum fractions, i.e. closer to

the production threshold. For quarks this enhancement is not as large. The relatively

slow improvement towards the exact result of the predictions as more and more terms in

the threshold expansion are included can be understood from the high energy behaviour

of the partonic coefficient functions. As we displayed in figure 2 the coefficient functions

have a power like divergence ∼ log5(z)
z as z → 0. While the threshold expansion is formerly

convergent within the entire physical interval a relatively slow convergence to capture the

high energy behaviour can be expected.

6 Conclusions

In this article we present an exact computation of the Higgs boson production cross section

at hadron colliders through N3LO in perturbative QCD in the infinite top quark mass limit.

The main result of this article are analytic formulae for N3LO corrections to the regular

partonic coefficient functions. We provide these functions in an ancillary file together with

the arXiv submission of this article.

– 22 –



J
H
E
P
0
5
(
2
0
1
8
)
0
2
8

●

●

● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

● Expansion

■ Full

0 10 20 30 40

0

1

2

3

Truncation Order

σ
g
g
N
3
L
O
[p
b
]

LHC 13 TeV

PDF4LHC15.0

μ=125 GeV

(a)

●

●

●

●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

● Expansion

■ Full

0 10 20 30 40

-0.8

-0.6

-0.4

-0.2

0.

Truncation Order

σ
q
g
N
3
L
O
[p
b
]

LHC 13 TeV

PDF4LHC15.0

μ=125 GeV

(b)

●●

●

●

●

●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

● Expansion

■ Full

0 10 20 30 40

0.

0.002

0.004

0.006

0.008

0.01

Truncation Order

σ
q
q_
N
3
L
O
[p
b
]

LHC 13 TeV

PDF4LHC15.0

μ=125 GeV

(c)

●●

●

●

●

●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

● Expansion

■ Full

0 10 20 30 40

0.

0.002

0.004

0.006

0.008

Truncation Order

σ
q
q
N
3
L
O
[p
b
]

LHC 13 TeV

PDF4LHC15.0

μ=125 GeV

(d)

●●

●

●

●

●

●
●
●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

● Expansion

■ Full

0 10 20 30 40

0.

0.01

0.02

0.03

0.04

Truncation Order

σ
q
Q
N
3
L
O
[p
b
]

LHC 13 TeV

PDF4LHC15.0

μ=125 GeV

(e)

●

●
●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

● Expansion

■ Full

0 10 20 30 40

0

1

2

3

Truncation Order

σ
N
3
L
O
[p
b
]

LHC 13 TeV

PDF4LHC15.0

μ=125 GeV

(f)

Figure 5. The figure shows in red the contribution of the partonic coefficient function to the N3LO

correction of the Higgs boson cross section approximated by a threshold expansion. The x-axis labels

the order at which the expansion is truncated. The line in blue represents the contribution to all

orders in the threshold expansion and is displayed as a reference. Figures (a), (b), (c), (d), (e) and

(f) show the contribution due to the gg, qg, qq̄, qq, qQ initial state and the sum of all channels

respectively.

To obtain our result we compute matrix elements for the production of a Higgs boson in

association with three partons at tree level and with two partons at the one-loop level. In or-

der to perform required phase space integrals we employ the framework of reverse unitarity

and make use of loop integration techniques such as IBP identities and master integrals.

We compute all required master integrals using the framework of differential equations.
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Figure 6. The figure shows in red the contribution of the partonic coefficient function to the N3LO

correction of the Higgs boson cross section approximated by a threshold expansion normalised to

the all order result. The x-axis labels the order at which the expansion is truncated. The line

in blue represents the contribution to all orders in the threshold expansion and is displayed as a

reference. Figures (a), (b), (c), (d), (e) and (f) show the contribution due to the gg, qg, qq̄, qq, qQ

initial state and the sum of all channels respectively.

When solving differential equations we encounter elliptic integrals in the solution for triple

real radiation master integrals. We find that an analytic solution for our master integrals

can be easily found by embedding the solution of our differential equations in a fairly gen-

eral class of iterated integrals. We discuss in detail how we find relations among iterated

integrals involving elliptic functions and how we evaluate them efficiently numerically.
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ECM σ δ(theory) δ(PDF) δ(αs)

2 TeV 1.10 pb +0.05pb
−0.09pb

(
+4.17%
−8.02%

)
± 0.03 pb (± 3.17%) +0.04pb

−0.04pb

(
+3.69%
−3.36%

)
7 TeV 16.87 pb +0.70pb

−1.14pb

(
+4.17%
−6.76%

)
± 0.31 pb (± 1.89%) +0.44pb

−0.45pb

(
+2.66%
−2.68%

)
8 TeV 21.45 pb +0.90pb

−1.43pb

(
+4.18%
−6.69%

)
± 0.40 pb (± 1.87%) +0.56pb

−0.56pb

(
+2.63%
−2.66%

)
13 TeV 48.68 pb +2.07pb

−3.16pb

(
+4.26%
−6.48%

)
± 0.89 pb (± 1.85%) +1.25pb

−1.26pb

(
+2.59%
−2.62%

)
14 TeV 54.80 pb +2.34pb

−3.54pb

(
+4.28%
−6.46%

)
± 1.00 pb (± 1.86%) +1.40pb

−1.42pb

(
+2.60%
−2.62%

)
28 TeV 154.63 pb +7.02pb

−9.93pb

(
+4.54%
−6.42%

)
± 2.98 pb (± 1.96%) +4.10pb

−4.03pb

(
+2.70%
−2.65%

)
100 TeV 808.23 pb +44.53pb

−56.95pb

(
+5.51%
−7.05%

)
± 19.98 pb (± 2.51%) +24.89pb

−21.71pb

(
+3.12%
−2.72%

)
Table 1. Cross sections and uncertainties as function of the collider center of mass energy.

Having obtained analytic expressions for all required partonic cross sections we embed

them in a numerical code and derive predictions for hadron collider cross sections. We find

that N3LO corrections are small compared to corrections at previous orders and that the

dependence on the perturbative scale is greatly reduced. We perform a detailed compari-

son with a previous approximation of N3LO corrections based on an expansion around the

production threshold of the Higgs boson including 37 terms [14, 15]. We observe that our

new results are in excellent agreement with this approximation. Dominant contributions

due to gluon initiated partonic cross sections are approximated rather well by the thresh-

old expansion. Quark initiated contributions on the other hand are approximated rather

poorly. The estimate of missing higher orders in the threshold expansion in refs. [14, 15]

was sufficiently conservative to cover the difference to the exact result.

To derive precise predictions for hadron collider phenomenology many effects beyond

the effective theory cross section considered in this article have to be take into account.

The finiteness of quark masses and neglected electro-weak effects play an important role.

It is particularly important to critically asses all non-negligible sources of uncertainty. A

detailed study of the inclusive production cross section for the Higgs boson considering all

such effects was conducted in ref. [15]. Repeating this analysis is beyond the scope of this

article. However, it easily possible to modify the final predictions for hadron collider cross

sections of ref. [15] such that the results of this article are taken into account. Specifically,

we include the exact contributions to the cross section at N3LO in the EFT and remove

uncertainties due to the truncation of the threshold expansion. Otherwise, we can simply

use the results of ref. [15] that are neatly combined in a new numerical code iHixs 2 [101].

In table 1 we show updated predictions for the gluon fusion Higgs boson production cross

section at the LHC as in ref. [101].
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A The elliptic integral

In section 3.2 we discuss a coupled system of two differential equations that describes the

homogeneous solution to master integrals appearing in triple real radiation matrix elements

when integrated over phase space. The particular system is given by

∂

∂z

(
E0

4

E0
1

)
=

(
0 1

z
3−z

z2−11z−1
11−2z

z2−11z−1

)
.

(
E0

4

E0
1

)
. (A.1)

Equivalently, we can say that E0
4 satisfies a second order differential equation.

∂2

∂z2
E0

4 +

(
3z2 − 22z − 1

)
z (z2 − 11z − 1)

∂

∂z
E0

4 +
(z − 3)

z (z2 − 11z − 1)
E0

4 = 0.

E0
1 = z

∂

∂z
E0

4 . (A.2)

First, a solution to this differential equation was found by Stefan Weinzierl in terms of an

elliptic integral.

The homogeneous part of a differential equation for a Feynman integral has to be

satisfied by the maximum cut of the corresponding Feynman integral. In refs. [75, 76] it

was demonstrated how one can find a solution for a coupled homogeneous part of a system

differential equations for Feynman integrals. In ref. [41] it was even proposed that it is

sufficient to normalise the leading singularities of Feynman integrals to constants in order

to decouple their differential equations order by order in the dimensional regulator. For

this to hold true the physical linear combinations of leading singularities themselves must

satisfy the homogeneous differential equation for ε = 0. Computing the leading singularity

of E4 we find

Leading Singularity (E4) ∼
∫
dx
θ
(
(x− z)

(
x3 − x2z + 2x2 + 2xz + x− z

))√
(x− z) (x3 − x2z + 2x2 + 2xz + x− z)

. (A.3)

We can rewrite the quartic polynomial under the square root as

(x− z)
(
x3 − x2z + 2x2 + 2xz + x− z

)
= (x− r1)(x− r2)(x− r3)(x− r4). (A.4)
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Following the prescription of ref. [59] we define two integrals

I1 =

∫ r3

r2

dx
1√

(x− r1)(x− r2)(x− r3)(x− r4)

=
2√

(r4 − r2)(r3 − r1)
K(1−m).

I2 =

∫ r4

r3

dx
1√

(x− r1)(x− r2)(x− r3)(x− r4)

=
2√

(r4 − r2)(r3 − r1)
K(m).

Here, K(m) is the complete elliptic integral of the first kind. We find that both integrals

I1 and I2 are solutions to our second order differential equation eq. (A.2). In principle

we could now follow a procedure outlined in ref. [59] to construct a transformation matrix

TE that allows us to decouple the system of differential equations order by order in ε.

Specifically, we find that the functions tij(z) defined in section 3.2 are given by linear

combinations

tij(z) = c1I1 + c2I2 + c3z
∂

∂z
I1 + c4z

∂

∂z
I2, ci ∈ C. (A.5)

The derivatives of the functions I1 and I2 with respect to z yield a sum of elliptic integrals

of first and second kind with algebraic pre-factors. We can determine the coefficients ci
analytically by equating the power series expansions of the above equation with the results

obtained in section 3.2. However, any of these analytic expressions is quite unwieldy.

B Various ingredients for Higgs boson production

In this appendix we summarise various standard ingredients for the perturbative calculation

of the inclusive Higgs boson production cross section.

In order to perform renormalisation in the MS scheme we substitute the bare coupling

and Wilson coefficient as

α0
S = αS(µ2)

(
µ2

4π

)ε
eεγEZα.

C0 = CZC . (B.1)

The renormalisation factors for the strong coupling constant and Wilson coefficient required

for a computation through N3LO [19] are given by

Zα = 1 +
αS
π

(
−β0

ε

)
+
(αS
π

)2
(
β2

0

ε2
− β1

2ε

)
+
(αS
π

)3
(
−β

3
0

ε3
+

7β1β0

6ε2
− β2

3ε

)
+O(α4

S).

ZC = 1− αS
π

(
β0

ε

)
+
(αS
π

)2
(
β2

0

ε2
− β1

ε

)
−
(αS
π

)3
(
β3

0

ε3
− 2β0β1

ε2
+
β2

ε

)
+O(α4

S).

(B.2)

The coefficients at the various orders in the coupling constant βi are given by the QCD

beta function [102–105].
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In order to obtain infrared finite cross sections we are required to perform a suitable

redefinition of our parton distribution functions.

fi(x) = fRi ◦ Γ, (f ◦ g)(z) =

∫ 1

0
dxdyf(x)g(y)δ(xy − z). (B.3)

The infrared counter term Γ consists of convolutions [29] of splitting functions P
(n)
ij [30, 31]

and can be derived from the DGLAP equation. Its perturbative expansion required for

an N3LO accurate calculation of the differential Higgs boson production cross section is

given by

Γij = δijδ(1− x)

+
(αS
π

) P (0)
ij

ε

+
(αS
π

)2
[

1

2ε2

(
P

(0)
ik ◦ P

(0)
kj − β0P

(0)
ij

)
+

1

2ε
P

(1)
kj

]
(B.4)

+
(αS
π

)3
[

1

6ε3

(
P

(0)
ik ◦ P

(0)
kl ◦ P

(0)
lj − 3β0P

(0)
ik ◦ P

(0)
kj + 2β2

0P
(0)
ij

)
+

1

6ε2

(
P

(1)
ik ◦ P

(0)
kj + 2P

(0)
ik ◦ P

(1)
kj − 2β0P

(1)
ij − 2β1P

(0)
ij

)
+

1

3ε
P

(2)
ij

]
.

In the effective theory with nf light flavours and the top quark decoupled from the

running of the strong coupling constant, the MS-scheme Wilson coefficient reads [79–82]

C(µ2) =− αS
3πv

{
1+
(αS
π

) 11

4
+
(αS
π

)2
[

2777

288
− 19

16
log

(
m2
t

µ2

)
− nf

(
67

96
+

1

3
log

(
m2
t

µ2

))]

+
(αS
π

)3
[
−
(

6865

31104
+

77

1728
log

(
m2
t

µ2

)
+

1

18
log2

(
m2
t

µ2

))
n2
f (B.5)

+

(
23

32
log2

(
m2
t

µ2

)
− 55

54
log

(
m2
t

µ2

)
+

40291

20736
− 110779

13824
ζ3

)
nf

−2892659

41472
+

897943

9216
ζ3 +

209

64
log2

(
m2
t

µ2

)
− 1733

288
log

(
m2
t

µ2

)]
+O(α4

S)

}
.
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[86] M.A. Barkatou and E. Pflügel, Computing super-irreducible forms of systems of linear

differential equations via moser-reduction: A new approach, in Proceedings of the 2007

International Symposium on Symbolic and Algebraic Computation (ISSAC ’07), New York

U.S.A. (2007).
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