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1 Introduction

The transverse-momentum spectra of electroweak bosons are among the most basic ob-

servables at hadron colliders. At large transverse momentum qT these spectra can be

computed in fixed-order perturbation theory. On the other hand, if the transverse momen-

tum is much smaller than the boson mass, higher-order corrections are enhanced by large

Sudakov logarithms and must be resummed. This resummation was achieved a long time

ago by Collins, Soper, and Sterman (CSS) [1] and has been implemented to high accuracy

in several numerical codes [2–6]. In addition to the resummation at next-to-next-to-leading

logarithmic (NNLL) accuracy, these programs include the matching to the next-to-next-

to-leading (NNLO) fixed-order result [7]. For vector-boson production, we have revisited

the resummation in the context of soft-collinear effective theory (SCET) [8–10] and have

derived an all-order factorization theorem for the cross section at small qT [11]. The fac-

torization theorem for the differential cross section is affected by a collinear factorization

anomaly, which generates an additional dependence on the hard momentum transfer in the

low-energy theory. It was shown that in position space this extra dependence takes the

form of a pure power of the gauge-boson mass. Relating our result to the traditional CSS

formula then allowed us to determine the last missing ingredient needed for resummation

to NNLL accuracy. The presence and all-order structure of these additional anomalous

logarithms in the effective theory was confirmed by [12] and [13], but had been missed

in earlier work on transverse-momentum resummation in SCET [14–16]. The work [12]

derives the anomalous logarithms using a renormalization-group framework, in which the

evolution is performed in rapidity instead of virtuality. Their final result agrees with the

factorization formula derived in [11].

In the recent paper [17], we have used our formalism to analyze the differential cross

section dσ/dqT at very small transverse momentum, where it exhibits quite remarkable

properties. In this region, the spectrum is genuinely non-perturbative but dominated by
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short-distance physics and therefore calculable. For a boson of mass mV , long-distance

effects are suppressed by a dynamically generated scale q∗ ∼ mV e−const/αs(mV ), which is

close to 2GeV for the case of Z-boson production. While the underlying mechanism was

identified a long time time ago [18], our framework has allowed us to systematically com-

pute corrections also in this region. In [17] we have performed a detailed phenomenological

study of Z-production at the Tevatron and the LHC and have investigated the numerical

impact of long-distance effects.

The region of low transverse momentum is also important for the study of the Higgs

boson and its properties, since the background is reduced when additional radiation is

vetoed. In practice, this is done by imposing a jet veto. Several recent papers have consid-

ered resummation for the Higgs-boson cross section in the presence of such a cut [19–23],

and the resummation is now known to NNLL accuracy [20, 22]. In the present paper, we

extend the formalism of [11] to the transverse-momentum spectrum of the Higgs boson

and perform the resummation of the spectrum to NNLL accuracy. The Higgs case was

also considered in [12], where expressions for the spectrum were presented at NLL order.

Much of the extension is straightforward and some of the necessary ingredients were al-

ready given in [11], but there are a few interesting differences to the vector-boson case.

First of all, while there is a single way to combine the spins of the incoming quarks to

produce a vector boson, there are two ways to combine the gluon spins to produce a spin-

zero state. As a consequence, the cross section is not just given by the product of two

collinear functions as in the usual CSS formula, but a sum of two products of collinear

functions describing the two production mechanisms, and the resummation formula must

be modified accordingly [24]. We show that the collinear anomaly is the same for both

structures, and that the dependence on the large scale mH therefore arises as an overall

factor in position space. We then compute the collinear functions at one-loop order. The

other feature, which distinguishes Higgs production from the vector-boson case, is that

the infrared protection mechanism discussed above is much more efficient. The numerical

value of q∗ ≈ 8GeV is significantly higher than in the Z-boson case, and we show that

long-distance hadronic effects have almost no impact on the Higgs-boson spectrum. We

have implemented our resummed results for Drell-Yan, W , Z, and Higgs production in a

public code CuTe [25] and give phenomenological predictions based on this program.

2 Factorization and resummation

We consider the cross section for the production of a Higgs boson with mass mH and trans-

verse momentum qT = |q⊥| in gluon fusion at the LHC. The derivation of the factorization

formula for the cross section proceeds exactly as in the case of the Higgs-production cross

section defined with a jet veto, which we have recently considered in [20]. Our analysis

there has been performed at fixed q⊥ and rapidity y of the Higgs boson, and the integration

over the boson phase-space was carried out at the end. We can thus immediately use the
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result for the factorized cross section obtained in [20], which reads

dσ = σ0(µ)C
2
t (m

2
t , µ)

∣

∣CS(−m2
H , µ)

∣

∣

2 m2
H

τs
dy

d2q⊥
(2π)2

∫

d2x⊥ e
−iq⊥·x⊥

× 2Bµν
c (ξ1, x⊥, µ)Bc̄ µν(ξ2, x⊥, µ)S(x⊥, µ) ,

(2.1)

where ξ1,2 =
√
τ e±y and τ = (m2

H + |q2⊥|)/s. The Born-level cross section is

σ0(µ) =
m2

H α2
s(µ)

72π(N2
c − 1)sv2

, (2.2)

where
√
s denotes the center-of-mass energy of the LHC and v is the Higgs vacuum ex-

pectation value. The Wilson coefficient Ct multiplies the effective ggH operator obtained

after integrating out the heavy top quark, while the hard matching coefficient CS arises

when this operator is matched onto an effective two-gluon operator in SCET. Moreover,

we have defined

Bµν
c (ξ, x⊥, µ) = −ξ n̄ · p

2π

∫

dt e−iξtn̄·p
∑

Xc

〈P (p)| Aµ,a
c⊥ (tn̄+ x⊥) |Xc〉 〈Xc| Aν,a

c⊥ (0) |P (p)〉 ,

S(x⊥, µ) =
1

N2
c − 1

∑

Xs

〈 0 |
(

S†nSn̄

)ab
(x⊥) |Xs〉 〈Xs|

(

S†n̄Sn

)ba
(0) |0〉 . (2.3)

Here Ac⊥ is the gauge-invariant effective gluon field of SCET, and Sn, Sn̄ denote soft Wil-

son lines. The soft function S describes the physics of soft gluons emitted from the colliding

beam particles. The function Bµν
c is the standard transverse parton distribution function,

first introduced in [26]. It describes the structure of the jet of collinear particles inside one

of the colliding protons (the one moving along the light-like direction nµ), which is probed

at small transverse distance x⊥. The corresponding function Bµν
c̄ for the second beam jet,

consisting of anti-collinear particles (moving along n̄), is given by the same formula with the

replacements n̄ → n and c → c̄. In [20], the sum over hadronic intermediate states was re-

stricted by the jet veto, while in the present case the sums in (2.3) are completely inclusive.

In the context of SCET, proton matrix elements of collinear fields off the light cone are

usually referred to as beam functions, a term introduced in [27] for fully unintegrated PDFs,

which also depend on the other light-cone coordinate x− = n̄·x, in contrast to the matrix el-

ements in (2.3). The two-loop renormalization of these functions was studied in [28], and the

one-loop matching onto standard PDFs was calculated in [29]. The results of these two pa-

pers can, however, not be used in the present context, because in the limit x− → 0 light-cone

singularities arise, which make the definition of the transverse PDFs in (2.3) subtle. In the

context of SCET this was first discussed in [11], and we will now explain it in more detail.

2.1 Collinear anomaly

The beam-jet functions Bµν
c , Bµν

c̄ and the soft function S suffer from light-cone divergences,

which are not regularized by the conventional dimensional regularization procedure. These

singularities cancel in the product of the three functions, but in order to make the indi-

vidual objects well-defined an additional regularization is required [11]. At the end of the
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calculation the regulator can be removed, but a non-trivial effect remains: the additional

regularization breaks a rescaling symmetry exhibited at the classical level by the effective

Lagrangian of SCET (i.e., the property that the collinear matrix elements are invariant

under a rescaling of the anti-collinear momenta and vice versa), which is not restored in

the limit where the regulator is removed because it is spoiled by quantum effects. This

“collinear factorization anomaly” manifests itself through a dependence of the product of

soft and beam functions on the Higgs mass — the large scale in the problem. For the

Drell-Yan process, the all-order form of this anomaly was derived in [11], and it was shown

that the dependence on the hard scale (the electroweak gauge-boson mass in this case)

takes the form of a pure power in x⊥ space. We will now extend the derivation to the case

of Higgs production and show that the form of the anomaly as well as the corresponding

anomalous dimensions are spin independent.

The simplest way to introduce the additional regularization in such a way that gauge

invariance and the factorization properties of the cross section are maintained is to regu-

larize the phase-space integrals analytically by replacing [30]

∫

ddk δ(k2) θ(k0) →
∫

ddk δ(k2) θ(k0)

(

ν

k+

)α

(2.4)

in the sum over intermediate states in (2.3). The scale ν is inserted to restore the canonical

dimension of the integrals, in analogy to the scale µ of dimensional regularization. Instead

of using a single light-cone component k+ = k · n in the regulator term, one could also use

the sum k+ + k− = 2k0. This last form is similar to what is used in the “rapidity regular-

ization scheme” proposed in [12]. For pertubative computations, using a single light-cone

component is simplest, since SCET Feynman diagrams typically already contain light-cone

denominators involving k+ or k−. With the form (2.4) of the regularization, one finds

that the soft function is given by scaleless integrals, and thus S(x⊥, µ) = 1 to all orders in

perturbation theory [11]. We will no longer write it explicitly in the rest of the paper. If

one were to use the energy k0 instead of k+ in (2.4), the soft function would be non-trivial,

but can be absorbed into the beam-jet functions without loss of generality.

The light-cone component k+ of the anti-collinear particles moving along the n̄µ direc-

tion is large, k+ ∼ mH . Expanding in the regulator α, the dependence of the anti-collinear

beam-jet function on the regulator scale ν thus takes the form ln(ν/mH). On the other

hand, the k+ component of the collinear partons is small, k+ ∼ q2T /mH ∼ 1/(x2TmH),

where q2T = −q2⊥ and x2T = −x2⊥. In the collinear beam-jet function the dependence on

the scale ν thus arises in the form ln(νx2TmH). The requirement that the physical cross

section (2.1) must be independent of the analytic regulator scale ν can then be expressed as

d

d ln ν
Bµν
c

(

ξ1, x⊥, ln(νx
2
TmH), µ

)

Bρσ
c̄

(

ξ2, x⊥, ln
ν

mH
, µ

)

= 0 . (2.5)

In the factorization theorem (2.1) the Lorentz indices of the beam functions are contracted.

The fact that ν independence also holds without contracting the indices follows by con-

sidering the factorization theorem for the production of a general color-neutral tensor field

hµν . The corresponding factorization theorem has the same structure as (2.1), except that

– 4 –
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the hard matching coefficient |CS |2 would now depend on the Lorentz indices of the tensor

fields in the initial and final states. Since the logarithms in (2.5) have different arguments,

the cancellation of the ν dependence among the different factors imposes a non-trivial con-

straint on the mH dependence of the product. As explained in detail in [11, 31], the above

equation implies that the dependence of the product of the two functions on mH must be

power like. We can thus rewrite the product in the form

Bµν
c

(

ξ1, x⊥, ln(νmHx2T ), µ
)

Bρσ
c̄

(

ξ2, x⊥, ln
ν

mH
, µ

)

=

(

x2Tm
2
H

b20

)−Fgg(x2

T ,µ)

Bµν
g (ξ1, x⊥, µ)B

ρσ
g (ξ2, x⊥, µ) ,

(2.6)

with b0 = 2e−γE . The new beam-jet function Bµν
g (ξ, x⊥, µ) and the anomaly exponent

Fgg(x
2
T , µ) are independent of mH .

Having determined the form of the anomaly, we now derive the scale dependences

of the function Bµν
g (ξ1, x⊥, µ) and the exponent Fgg(x

2
T , µ). Their anomalous dimensions

can be inferred from the requirement that the cross section must be independent of the

renormalization scale µ, which implies that the µ dependence of the product of beam func-

tions must cancel against that of the hard function σ0C
2
t |CS |2 in (2.1). This leads to the

renormalization-group (RG) equations

dFgg(x
2
T , µ)

d lnµ
= 2ΓA

cusp(αs) ,

d

d lnµ
Bµν

g (ξ, x⊥, µ) =

[

ΓA
cusp(αs) ln

x2Tµ
2

b20
− 2γg(αs)

]

Bµν
g (ξ, x⊥, µ) ,

(2.7)

where ΓA
cusp is the cusp anomalous dimension in the adjoint representation, and γg is the

anomalous dimension of the collinear gluon field as defined in [32]. The fact that each com-

ponent of Bµν
g (ξ, x⊥, µ) renormalizes in the same way follows after considering the produc-

tion of a general tensor field hµν and using that the anomalous dimension of the hard func-

tion is spin-independent [33]. Three-loop expressions for ΓA
cusp and γg can be found in [32].

Lorentz invariance implies that the renormalized beam-jet functions can be decom-

posed as

Bµν
g (ξ, x⊥, µ) =

gµν⊥
2

B(1)
g (ξ, x2T , µ) +

(

xµ⊥x
ν
⊥

x2⊥
− gµν⊥

2

)

B(2)
g (ξ, x2T , µ) , (2.8)

where the coefficients only depend on the invariant x2T = −x2⊥. It follows that

2Bµν
g (ξ1, x⊥, µ)Bg µν(ξ2, x⊥, µ) =

∑

n=1,2

B(n)
g (ξ1, x

2
T , µ)B

(n)
g (ξ2, x

2
T , µ) . (2.9)

The presence of the two different tensor structures (2.8) contributing to the Higgs cross

section was first pointed out in [24]. As a result, the Higgs-production cross section does

not simply factor into a product of two beam-jet functions, but instead it involves the

– 5 –
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above sum of products, which arises because the spin-0 state of two gluons is an entangled

state. Rewriting the cross section (2.1) in terms of the new beam-jet functions, we obtain

d2σ

dq2T dy
= σ0(µ)C

2
t (m

2
t , µ)

∣

∣CS(−m2
H , µ)

∣

∣

2 1

4π

∫

d2x⊥ e
−iq⊥·x⊥

(

x2Tm
2
H

b20

)−Fgg(x2

T ,µ)

×
[

B(1)
g (ξ1, x

2
T , µ)B

(1)
g (ξ2, x

2
T , µ) +B(2)

g (ξ1, x
2
T , µ)B

(2)
g (ξ2, x

2
T , µ)

]

,

(2.10)

which is analogous to eq. (18) of our paper [11] on the Drell-Yan cross section for the pro-

duction of electroweak gauge bosons. In the above formula, the three disparate scales mt ≫
mH ≫ x−1T appear in factorized form, and it will be possible to resum logarithms of their

ratios by controlling the µ dependence of the various functions in (2.10) using RG equations.

After performing the Fourier integral the scalesmH and qT get intertwined in a complicated

way. At small qT this gives rise to interesting phenomena, such as a non-perturbative, but

short-distance dominated dependence of the cross section on qT /mH and αs(qT ) [11, 17, 34].

2.2 Refactorization

As long as the transverse displacement xT is much smaller than the scale of long-distance

interactions in QCD (xT ≪ Λ−1QCD), formula (2.10) for the cross section can be simplified

further, by matching the beam functions B
(n)
g onto ordinary parton distribution functions

(PDFs), thereby computing their dependence on x2T in perturbation theory. The relevant

matching relations read [1, 26]

B(n)
g (ξ, x2T , µ) =

∑

i=g,q,q̄

∫ 1

ξ

dz

z
I
(n)
g←i(z, x

2
T , µ)φi/P (ξ/z, µ) , (2.11)

which is valid up to hadronic corrections suppressed by powers of Λ2
QCD x2T . The cross

section can then be written in the final form

d2σ

dq2T dy
= σ0(µ)C

2
t (m

2
t , µ)

∣

∣CS(−m2
H , µ)

∣

∣

2 ∑

i,j=g,q,q̄

∫ 1

ξ1

dz1
z1

∫ 1

ξ2

dz2
z2

× C̄gg←ij(z1, z2, q
2
T ,m

2
H , µ)φi/P (ξ1/z1, µ)φj/P (ξ2/z2, µ) ,

(2.12)

where

C̄gg←ij(z1, z2, q
2
T ,m

2
H , µ) =

1

4π

∫

d2x⊥ e
−iq⊥·x⊥

(

x2Tm
2
H

b20

)−Fgg(L⊥,as)

×
∑

n=1,2

I
(n)
g←i(z1, L⊥, as) I

(n)
g←j(z2, L⊥, as) .

(2.13)

With a slight abuse of notation, we have traded the variables x2T and µ in the functions

Fgg and I
(n)
g←i for new variables

L⊥ = ln
x2Tµ

2

b20
, as =

αs(µ)

4π
(2.14)

– 6 –
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without changing the names of these functions. This notation will be convenient for our

discussion below, and it conforms with the notation used in [17]. Integrating the double

differential cross section (2.12) over rapidity, we find

dσ

dq2T
=σ0(µ)C

2
t (m

2
t , µ)

∣

∣CS(−m2
H , µ)

∣

∣

2 ∑

i,j=g,q,q̄

∫ 1

τ

dz

z
C̃gg←ij

(

z, q2T ,m
2
H , µ

)

ffij(τ/z, µ) ,

(2.15)

where the parton luminosities and new kernel functions are defined as

ffij(z, µ) =

∫ 1

z

du

u
φi/N1

(u, µ)φj/N2
(z/u, µ) ,

C̃gg←ij(z, q
2
T ,m

2
H , µ) =

∫ 1

z

du

u
C̄gg←ij(u, z/u, q

2
T ,m

2
H , µ) .

(2.16)

The factorized cross sections (2.12) and (2.15) receive power corrections in the two small

quantities q2T /m
2
H and Λ2

QCD x2T , which will not be indicated explicitly in our equations.

A dependence on the hard scale mH enters formula (2.12) for the double-differential

cross section in two places: via the hard matching coefficient CS and via an xT -dependent

power of mH under the Fourier integral in (2.13). The latter effect is due to the collinear

factorization anomaly [11]. As long as x2T ≪ Λ−2QCD, the anomalous exponent Fgg can be cal-

culated in perturbation theory, and at least up to three-loop order it is related to the corre-

sponding exponent Fqq̄ appearing in the Drell-Yan case by the Casimir-scaling relation [11]

Fgg(L⊥, as)

CA
=

Fqq̄(L⊥, as)

CF
+O(α4

s) . (2.17)

Using the known expression for Fqq̄, we then find

Fgg(L⊥, µ) = ΓA
0

[

as L⊥ + a2s

(

β0
L2
⊥

2
+KL⊥ + d2

)

+ . . .

]

, (2.18)

where ΓA
0 = 4CA and β0 =

11
3 CA− 4

3 TFnf are the one-loop coefficients of the cusp anoma-

lous dimension and β function, and

K =
ΓA
1

ΓA
0

=

(

67

9
− π2

3

)

CA − 20

9
TFnf , d2 =

dg2
ΓA
0

=

(

202

27
− 7ζ3

)

CA − 56

27
TFnf (2.19)

contain the relevant two-loop information. Because of Casimir scaling, these coefficients

take the same values as in the case of Drell-Yan production.

At one-loop order, the kernel functions I
(n)
g←i(z, L⊥, as) are given by

I
(1)
g←i(z, L⊥, as)=δ(1−z) δgi

[

1+as

(

ΓA
0

L2
⊥

4
−γg0L⊥

)]

+as

[

−P(1)
g←i(z)

L⊥
2

+Rg←i(z)

]

,

I
(2)
g←i(z, L⊥, as)=asR′g←i(z) ,

(2.20)

where γg0 = −β0,

P(1)
g←g(z) = 8CA

[

z

(1− z)+
+

1− z

z
+ z(1− z)

]

+ 2β0 δ(1− z) ,

P(1)
g←q(z) = 4CF

1 + (1− z)2

z

(2.21)

– 7 –
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are the one-loop DGLAP splitting functions, and the remainder functions Rg←i(z) and

R′g←i(z) are given by

Rg←g(z) = −CA
π2

6
δ(1− z) , Rg←q(z) = 2CF z ,

R′g←g(z) = −4CA
1− z

z
, R′g←q(z) = −4CF

1− z

z
.

(2.22)

The expression for I
(1)
g←i was calculated in [20], while the result for I

(2)
g←i is new. The one-

loop functions I
(i)
g←g were also computed in appendix C of [12].1 In [11], the SCET matching

coefficients were related to the collinear functions in the traditional CSS formalism. Using

these relations and the NNLO results presented in [7], it would be possible to extract the

matching functions I
(1)
g←i(z, L⊥, as) at two-loop order.

2.3 Resummation of Sudakov logarithms

The resummation of large logarithms in the cross section (2.12) is accomplished by evolving

the hard matching coefficients Ct and CS to a scale µ at which the kernel functions C̄gg←ij

in (2.13) can be calculated using a controlled perturbative expansion. The solutions of the

corresponding RG equations are discussed in detail in [20]. For our numerical work we use

relations (A.2) and (A.4) from this paper. For the Drell-Yan case, the proper choice of the

factorization scale µ has been discussed in [17]. Since the resulting expressions for Higgs

production are completely analogous, we will not repeat details of the derivations here but

rather summarize the main physical insights and quote the final expressions. The most

naive choice would be to set µ ∼ x−1T inside the Fourier integral in (2.13), in which case L⊥
would be a small logarithm for any choice of xT . There are several disadvantages to such

a treatment. First, since xT is integrated over all possible values, there would be no clear

meaning to the scale µ in terms of a characteristic scale of the process. Second, setting

the scale under the integral means that the integration unavoidably hits the Landau pole

of the running coupling, giving rise to ambiguities in the numerical results. In the spirit

of effective field theory, the scale µ should correspond to a physical scale in the underlying

factorization theorem. We will choose it in such a way that on average the xT -dependent

logarithm L⊥ is small, and denote the corresponding value by µ ∼ 〈x−1T 〉.
Naively, one would expect that the transverse momentum qT and average transverse

separation 〈xT 〉 are conjugate variables satisfying qT ∼ 〈x−1T 〉. While this is sometimes

true, the general situation turns out to be more complicated. After integration over x⊥,

the factorized dependence on mH and qT in (2.13) gets intertwined in a complicated way,

and this gives rise to the peculiar effect that the two scales qT and µ ∼ 〈x−1T 〉 decouple for

very small qT [17]. When this happens depends on the value of the coefficient

η ≡ ΓA
0 as ln

m2
H

µ2
=

CAαs(µ)

π
ln

m2
H

µ2
. (2.23)

As long as 0 < η < 1, one indeed finds that µ ∼ 〈x−1T 〉 ∼ qT , because contributions from

large values xT ≫ q−1T are suppressed due to the rapid oscillations of the phase factor

1The expressions given there however contain several misprints [35].
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of the Fourier integral, while contributions from small values xT ≪ q−1T are phase-space

suppressed. The situation changes, however, at very small transverse momentum, where

with the prescription µ ∼ qT the value of η reaches 1. We denote by q∗ the value of µ

where this happens, i.e.

q∗ = mH exp

(

− 2π

ΓA
0 αs(q∗)

)

≈ mH exp

(

− 2π
(

ΓA
0 + β0

)

αs(mH)

)

, (2.24)

where in the last step we have used the one-loop approximation for the running coupling.

As long as q∗ is in the perturbative domain, one finds that at this scale 〈x−1T 〉 decouples from
qT , and it remains a short-distance scale even in the extreme case where qT is taken to 0 [17].

Changing variables from xT to L⊥ in the Fourier integral, one observes that the integrand

exhibits a Gaussian peak with a width proportional to 1/
√
as. The condition that at the

peak the logarithm L⊥ = O(1) implies that 1−η = O(as), indicating that the factorization

scale must be chosen in the vicinity of q∗. We thus conclude that the proper scale choice is

µ ∼ 〈x−1T 〉 ∼ max(qT , q∗) . (2.25)

In our numerical work below, we will use µ = qT + q∗ as the default choice for the factor-

ization scale. Solving the first equation in (2.24) numerically, we obtain q∗ ≈ 7.7GeV for

mH = 125GeV, which is a short-distance scale well inside the perturbative domain. Due

to the difference in color factors, this scale is significantly larger than in the case of the

Drell-Yan production of electroweak gauge bosons, for which q∗ ≈ 1.75GeV [17].

It follows from these arguments that the transverse-momentum distribution of Higgs

bosons is protected from long-distance physics even for arbitrarily small qT — a fact that in

the context of the Drell-Yan process has been pointed out first a very long time ago in [18].

The resummed perturbative series for the cross section generates the scale q∗ dynamically,

and even though this is a short-distance scale, it is related to the boson mass mH in a gen-

uinely non-perturbative way. The scale q∗ also sets the magnitude of hadronic long-distance

corrections, which turn out to be power-suppressed in the ratio ΛQCD/q∗. The dynamical

origin of this suppression was studied in detail in [17]. We expect that these corrections

are significantly smaller for Higgs production than for the Drell-Yan production of Z and

W bosons. This expectation will be confirmed by our numerical studies presented below.

The above discussion shows that we must distinguish two regions of transverse mo-

menta. For qT ≫ q∗, the scale choice µ ∼ qT prevents that the logarithms L⊥ give rise to

large perturbative corrections. It is then consistent to count these logarithms as L⊥ ∼ 1 and

construct the perturbative series as a series in powers of as. A different situation is encoun-

tered for qT ≪ q∗. Even though the scale choice µ ∼ q∗ ensures that L⊥ = O(1) on average,

the Gaussian weight factor allows for significant contributions to the Fourier integral over a

range of larger L⊥ values with a width proportional to 1/
√
as. It is then necessary to reor-

ganize the perturbative expansion by adopting the modified power counting L⊥ ∼ 1/
√
as.

This implies that single-logarithmic terms (asL⊥)
n ∼ a

n/2
s are always suppressed, whereas

double-logarithmic terms
(

asL
2
⊥

)n ∼ 1 are unsuppressed and must be resummed to all

orders. To keep track of this fact, we introduce an auxiliary expansion parameter ǫ (which
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at the end is set to 1) and assign the power counting as ∼ ǫ and L⊥ ∼ ǫ−1/2. The terms

contributing up to O(ǫ) to the cross section have been derived in [17] using recursive solu-

tions of the relevant RG equations. Adapting the resulting expression to the present case,

we find that the hard-scattering kernels defined in (2.13) can be written in the form

C̄gg←ij(z1, z2, q
2
T ,m

2
H , µ) =

1

2

∫ ∞

0
dxT xT J0(xT qT ) exp

[

gA(η, L⊥, as)
]

×
∑

n=1,2

Ī
(n)
g←i(z1, L⊥, as) Ī

(n)
g←j(z2, L⊥, as) ,

(2.26)

where

gA(η, L⊥, as) =−
[

ηL⊥
]

ǫ−1/2 −
[

as
(

ΓA
0 + ηβ0

) L2
⊥

2

]

ǫ0

−
[

as (2γ
g
0 + ηK)L⊥ + a2s

(

ΓA
0 + ηβ0

)

β0
L3
⊥

3

]

ǫ1/2
(2.27)

−
[

as ηd2+a2s

(

KΓA
0 +2γg0β0+η

(

β1+2Kβ0
)

)L2
⊥

2
+a3s

(

ΓA
0 +ηβ0

)

β2
0

L4
⊥

4

]

ǫ

−O(ǫ3/2) .

Note that we treat ln(m2
H/µ2) as a large logarithm and count η defined in (2.23) as an

O(1) variable. The auxiliary parameter ǫ counts the order in as resulting (for qT ≪ q∗)

after the xT integral in (2.26) has been performed. The two terms given in the first line

are unsuppressed and must be kept in the exponent of the integrand in (2.26), whereas the

remaining terms can be expanded in powers of ǫ1/2. It is important that the expansion is

truncated at an integer power of ǫ. The resulting integrals over the Bessel function can

readily be evaluated numerically.

We finally give the expressions for the collinear kernel functions corresponding to our

modified power counting. We find

Ī
(1)
g←i(z, L⊥, as) = δ(1− z) δgi −

[

as P(1)
g←i(z)

L⊥
2

]

ǫ1/2

+

[

asRg←i(z) + a2s

(

Dg←i(z)− 2β0 P(1)
g←i(z)

) L2
⊥

8

]

ǫ

+O(ǫ3/2) ,

(2.28)

while Ī
(2)
g←i coincides with I

(2)
g←i in (2.20) up to higher-order terms in ǫ. The corresponding

contribution to (2.26) is of O(ǫ2) and can be neglected to the order we are working. The

quantities

Dg←i(z) =
∑

j=g,q,q̄

∫ 1

z

du

u
P(1)
g←j(u)P

(1)
j←i(z/u) (2.29)
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Figure 1. Resummed predictions for the transverse-momentum distribution of Higgs bosons

produced at the LHC at NLL (blue bands) and NNLL order (green bands). The factorization scale

µ is varied by a factor 2 about its default value µ = qT + q∗. The thick lines refer to the default

scale choice. The discontinuities at qT = 1.8GeV arise from the change from 5 to 4 light flavors

occurring when µ ≤ 1

2
(qT + q∗) = 4.75GeV.

involve the convolutions of two DGLAP splitting functions. Following [17], we find

Dg←g(z)− 2β0 P(1)
g←g(z)

= 64C2
A

[(

ln (1−z)2

z

1− z

)

+

+
1−2z+z2−z3

z
ln

(1−z)2

z
−2(1+z) ln z+3(1−z)− 11

3

1−z3

z

]

+ 16CAβ0

[

z

(1−z)+
+
1−z

z
+z(1−z)

]

+32CFTFnf

[

2(1+z) ln z+1−z+
4

3

1−z3

z

]

,

Dg←q(z)− 2β0 P(1)
g←q(z)

= 16CACF

[

1 + (1− z)2

z
ln

(1− z)2

z
− 2 + 6z + 3z2

z
ln z − (1− z)

(

31

3z
+

7

3
+

4z

3

)]

+ 16C2
F

[

1 + (1− z)2

z
ln

(1− z)2

z
+

2 ln z

z
+ 2− z

2

]

.

(2.30)

Equations (2.26)–(2.28) are our main results. With the help of these expressions, large

logarithms can be resummed at NNLL order for arbitrarily small transverse momenta. For

larger qT values, the additional terms contained in (2.27) and (2.28) reduce to higher-order

terms proportional to a2s and a3s, which can be kept without doing any harm. Our for-

mula thus provides a smooth interpolation between the regions of small and very small qT .

In fact, it has been shown in [17] that the additional terms needed at very low qT serve

an important purpose also at qT > q∗, as they resum an asymptotically divergent, but

Borel-summable subset of higher-order corrections in as.

In figure 1, we present predictions for the resummed transverse-momentum distribu-

tions of Higgs bosons with mass mH = 125GeV produced in gluon fusion at the LHC. The

blue bands correspond to the results obtained at NLL order, in which case we keep terms up

to O(ǫ0) in (2.27) and (2.28) and use leading-order (LO) expressions for the Wilson coeffi-
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cients Ct and CS in RG-improved perturbation theory. The green bands show results with

NNLL accuracy, which are obtained by retaining all terms shown in (2.27) and (2.28) and

using next-to-leading-order (NLO) expressions for Ct and CS . We use v = 246.675GeV

for the Higgs vacuum expectation value and work with MSTW2008NNLO PDFs with

αs(MZ) = 0.1171 [36]. In our numerical results, we include finite top-quark mass effects by

working with the exact leading-order cross section, which can be found e.g. in [37]. Numer-

ically, using mt = 172.6GeV, this leads to a 6.6% increase in the cross section compared

to the mt → ∞ limit. We do not include the b-quark contribution and electroweak effects,

which are of similar size but opposite sign and tend to cancel each other. The combined

effect of these would be a reduction of the cross section by about 1.5%. The left plot in

the figure shows the spectrum dσ/dqT , while the plot on the right shows the distribution

dσ/dq2T , which tends to a constant at the origin. Note that at NNLL order the value of

the intercept is predicted with very good accuracy. In [17], we have presented an explicit

formula for the intercept for the case of the Drell-Yan process.

To estimate the theoretical uncertainty of our predictions, we vary the factorization

scale by a factor 2 about the default value µ = qT + q∗. Our results also depend on the two

hard matching scales µt and µh. At the scale µt the top quark is integrated out, giving rise

to an effective ggH vertex. The associated matching corrections are small, and varying µt

in the NNLL order cross section by a factor 2 about the default value µt = mt changes

the result by less than 1%. The scale µh is associated with the hard momentum transfer

in the ggH coupling, as described by the time-like gluon form factor. In [37, 38], we have

shown that it is advantageous to evaluate the relevant matching coefficient CS(−m2
H , µh)

with a time-like scale choice µ2
h = −m2

H . This eliminates the large perturbative corrections

arising when the gluon form factor is continued from space-like to time-like kinematics.

When this is done, also the corrections to CS(−m2
H , µh) are of moderate size, and the

effect of a variation of µh by a factor 2 on the cross section is again below 1%. Since the

variation of the factorization scale µ leads to the largest scale uncertainties by far, we use

it to generate the error bands in the plots, keeping the hard matching scales µt and µh

fixed at their default values. The NNLL corrections have a noticable effect and strongly

enhance the cross section in the peak region. From the right plot, we observe that the scale

variation at NLL order is very small in the vicinity of qT = 5GeV, because the predictions

with high and low µ values cross each other. Near such a band crossing, the scale variation

underestimates the theoretical uncertainty, and it is therefore not too surprising that the

NLL and NNLL bands do not overlap in the low-qT region. Since the prediction at NNLL

order does not exhibit a band crossing, we believe that its scale variation provides a more

reliable estimate of the theoretical uncertainty. Since we observe that the one-loop correc-

tion arising at NNLL order is larger than the NLL scale dependence suggests, we will be

conservative when performing the matching to the fixed-order result in section 3 and adopt

a matching scheme which yields larger scale uncertainties for the combined result than for

the resummed result itself (see figure 4).

We proceed to study the impact on long-distance hadronic effects on the transverse-

momentum distribution, which for the case of Drell-Yan production of electroweak bosons

are known to have a non-negligible impact [2, 4, 39]. Following [17], we model these ef-
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Figure 2. Comparison of the importance of long-distance hadronic effects on the differential cross

sections dσ/dqT for Z-boson (left) and Higgs-boson production (right) at the LHC with
√
s = 8TeV.

We adopt the Gaussian model (2.32) and vary ΛNP between 0 and 1GeV. The cross sections for

Z-boson production include a factor of Br(Z → ℓ+ℓ−) = 3.37%.

fects by noting that the beam-jet functions B
(n)
g (ξ, x2T , µ) in (2.10), which are nothing

but transverse-position dependent PDFs, must vanish rapidly when the two gluon fields

are separated by a transverse distance xT larger than the proton size. This motivates an

ansatz of the form

B(n)
g (ξ, x2T , µ) = fhadr(xTΛNP)B

(n) pert
g (ξ, x2T , µ) , (2.31)

where the perturbative functions B
(n) pert
g carry all the scale dependence and are given

by (2.11), whereas the hadronic form factor fhadr(r) with fhadr(0) = 1 describes the fall-off

at large transverse distances and is parameterized in terms of a hadronic scale ΛNP. For

simplicity, we will assume that this form factor is independent of ξ. The above ansatz

inserts a factor [fhadr(xTΛNP)]
2 under the integral over xT in (2.26), which suppresses the

region of very large xT values. We will employ the Gaussian model

fGauss
hadr (xTΛNP) = exp

(

−Λ2
NP x2T

)

(2.32)

for the form factor. For the case of Drell-Yan production, it was shown in [17] that the

functional form of the model function only has a minor impact on the results, which are

mainly sensitive to the value of the parameter ΛNP, and we have confirmed that the same

is true in the present case. Choosing ΛNP ≈ 600MeV shifts the position of the peak of the

qT distribution for Z-boson production at the LHC from 3.2GeV to 3.5GeV and yields to

a significantly better agreement with the data. A similar effect is seen for Tevatron data.

In figure 2, we compare the situation in Drell-Yan production of Z bosons, for which

the characteristic scale q∗ ≈ 1.75GeV is rather low, with that in Higgs production at

the LHC, for which q∗ ≈ 7.7GeV is safely in the perturbative domain. As expected, we

find that the impact of hadronic effects is significantly reduced in the latter case. With

ΛNP ≈ 600MeV, for instance, the peak position shifts by merely 100MeV (from 9.1GeV to
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Figure 3. Comparison of different schemes for performing the matching to fixed-order results at

O(αs). The bands show the resummed and matched results, the line the matching correction itself.

9.2GeV), which is hardly visible on the scale of the plot. Even for ΛNP = 1GeV, the shift

amounts to only 300MeV. We will see in the next section that perturbative uncertainties

are significantly larger than this effect. As long as ΛNP is in the GeV range, it therefore

seems safe to ignore the potential impact of long-distance effects for all practical purposes.

3 Predictions for the LHC

Having discussed the factorization of the cross section and its behavior at very small qT ,

we now present our final results for the transverse-momentum spectrum of Higgs bosons

produced in gluon fusion at the LHC. In order to obtain reliable predictions also at inter-

mediate qT values, we match the resummed differential cross section (2.15) to the O(αs)

fixed-order result. To this end, we add the fixed-order cross section σNLO to the resummed

result and subtract the fixed-order expansion of (2.15) so as to avoid double counting:

dσNNLL+NLO = dσNNLL+ dσmatching = dσNNLL+
(

dσNLO− dσNNLL

∣

∣

expanded to NLO

)

. (3.1)

The expansion of the resummed result to O(αs) can be derived using

q2T C̄gg→ij(z1, z2, q
2
T ,m

2
H , µ) =

as
2

[(

2ΓA
0 ln

q2T
m2

H

+ 4γg0

)

δ(1− z1) δ(1− z2) δgi δgj

+ P(1)
g←i(z1) δ(1−z2) δgj+δ(1−z1) δgi P(1)

g←j(z2)

]

.

(3.2)

Since the hard function H(µ) = C2
t (m

2
t , µ)

∣

∣CS(−m2
H , µ)

∣

∣

2
= 1 + O(αs), the corrections

encoded in H(µ) do not contribute to the O(αs) expansion of the resummed cross section.

Nevertheless, from a physical point of view one may argue that one should factor out these

corrections in (3.2), because they are to a large extent universal. This is obvious for the

prefactor C2
t , but it should also be the case for the large Sudakov logarithms and other

corrections encoded in |CS |2, which also appear in the total cross section [37, 38]. Factoring

out the hard function H(µ) before performing the matching leads to a Sudakov suppression

of the matching correction at low qT and an enhancement at larger transverse momentum.

In figure 3, we compare our results for the resummed and matched differential cross sec-

tion obtained when the hard function is not factored out (“naive matching”) with the those

– 14 –



J
H
E
P
0
5
(
2
0
1
3
)
1
1
0

pp ® H + X

s = 8 TeV
mH = 125 GeV

MSTW2008NNLO

NNLL+NLO

0 10 20 30 40 50 60
0.0

0.1

0.2

0.3

0.4

0.5

0.6
dΣ dq

T

@p
b�

G
eV
D

pp ® H + X

s = 13 TeV
mH = 125 GeV

MSTW2008NNLO

NNLL+NLO

0 10 20 30 40 50 60
0.0

0.2

0.4

0.6

0.8

1.0

1.2

dΣ dq
T

@p
b�

G
eV
D

0 10 20 30 40 50 60
-40

-20

0

20

40

qT @GeVD

de
vi

at
io

n
@%
D

10 20 30 40 50 60
-40

-20

0

20

40

qT @GeVD

de
vi

at
io

n
@%
D

Figure 4. Comparison of the resummed and matched transverse-momentum distributions of Higgs

bosons produced at the LHC, for
√
s = 8TeV (left) and

√
s = 13TeV (right). The default matching

scheme is adopted. Note the different scales in the plots.

found when the right-hand side of (3.2) is multiplied by H(µ) (“alternative matching”). In

the second scheme, we indeed observe the Sudakov suppression of the matching correction

at low qT , but also a drastic reduction of the scale dependence as displayed by the width of

the band. This is due to a cancellation of the µ dependence between the resummed result

and the matching correction. While some reduction may be expected, such a strong effect

is presumably in part accidental. Indeed, instead of using H(µ) with variable µ we may

equally well factor out the hard function at the fixed default scale µ = qT + q∗. Doing so

has the same qualitative effect on the matching correction, but as shown in the third plot

the strong cancellation of scale dependence is not observed. To be conservative, we adopt

this last choice as our “default matching” prescription.

Since the matching correction for Higgs-boson production is several times larger than

that for the Drell-Yan case (see e.g. [17]), it would be preferable to extend the match-

ing to the fixed-order cross section to two-loop order. This requires some effort, but it is

possible since the corresponding fixed-order result is known [40–42] and has been imple-

mented in several public codes, e.g. MCFM [43] and HNNLO [44]. We note that the quark

beam function Iq→q(z, x
2
T , µ) has recently been computed to two-loop accuracy [45]. Once

this result is extended to the gluon channel, all two-loop ingredients for the resummed

expression (2.15) will be known, and the matching should then be extended to O(α2
s).

Our final results for the resummed and matched differential cross sections for Higgs

production at the LHC, for
√
s = 8TeV and 13TeV, are shown in figure 4. The shape of

the two spectra is very similar, the main effect of the higher center-of-mass energy being

an increase in the cross section by about a factor of 2. The scale uncertainty is around

±10% in the peak region and increases for larger qT , as indicated in the panels below the

plots. Our results are fully compatible with the NNLL order predictions of [4] obtained in
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Figure 5. Estimate of PDF uncertainties for Higgs production at the LHC with
√
s = 8TeV.

The bands correspond to one standard deviation variations of the PDF sets as compiled in

MSTW2008 NNLO (green) and NNPDF 2.3 (orange). They do not include the uncertainty

associated with the value of αs. For NNPDF, we choose the PDF set with the MSTW default

value αs(MZ) = 0.1170.

the traditional CSS resummation framework [1]. The uncertainties found in that paper are

slightly smaller in the peak region, but about a factor of 2 smaller at large qT . The reason

for the reduced scale uncertainty is that this work implements matching to O(α2
s) as well

as the hard-collinear two-loop corrections, which were calculated in [7].

We have implemented the results of our calculations into a public numerical code

CuTe [25], which produces resummed and matched NNLL+NLO results not only for Higgs

production, but also for the Drell-Yan process and the production of Z and W bosons at

hadron colliders. The CuTe program computes cross sections with scale uncertainties and

also includes different models for non-perturbative effects. It uses the LHAPDF interface,

so it is straightforward to switch between different PDF sets. As an example, we show in

figure 5 the result obtained with NNPDF 2.3 PDF sets [46] and compare it with our default

choice. The width of the bands now reflects the PDF uncertainties at the level of one stan-

dard deviation. We find good agreement of the distributions obtained with NNPDF 2.3

and MSTW2008 NNLO, the former giving rise to slightly higher cross sections.

4 Conclusions

We have extended our previously developed formalism for the calculation of Drell-Yan cross

sections at low and very low transverse momentum qT [17] to case of Higgs-boson produc-

tion in gluon fusion at a hadron collider. Large Sudakov double logarithms in mH/qT are

resummed in a systematic way using RG and anomaly equations. The leading logarithms

are contained in the hard matching coefficient CS , which arises when the effective ggH
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operator is matched onto a two-gluon current operator in SCET. They are resummed by

evolving this coefficient from a hard matching scale µ2
h ∼ −m2

H down to a characteristic

scale µ ∼ qT . At NLL order, additional large logarithms are generated by the collinear

factorization anomaly [11]. In transverse-position space, they give rise to an extra factor

of the form (x2Tm
2
H)−Fgg(x2

T ,µ). Long-distance hadronic effects are controlled by a dynami-

cally generated scale q∗, which sets an upper limit on the average transverse separation in

the process, 〈xT 〉 . 1/q∗. As long as the value of q∗ lies in the perturbative domain, the

transverse-momentum distribution is short-distance dominated even for very small values

of qT . Due to the difference in color factors (CA vs. CF ), this scale is significantly larger

in the case of Higgs production (q∗ ≈ 7.7GeV) compared with that of Z-boson production

(q∗ ≈ 1.75GeV). As a result, we find that long-distance hadronic corrections to the shape

of the transverse-momentum distribution of Higgs bosons produced at the LHC have a

negligible effect, see figure 2.

From a technical point of view, a novel feature of the case of Higgs production is that

the tensor structure of the beam-jet functions Bµν
g in (2.8) implies that the factorized cross

sections (2.10) and (2.12) cannot be expressed as a simple product of two beam functions,

but rather as a sum over products, reflecting the entanglement of the spin-0 state of two

gluons [24]. However, we have shown that one can find a basis in which this effect arises

first at NNLO in αs.

Our numerical analysis of the transverse-momentum distribution of Higgs bosons pro-

duced in gluon fusion at the LHC (with
√
s = 8 and 13TeV) presented in section 3 gives

rise to robust predictions, which hopefully will soon be confronted with first data from

the LHC. We have explored different schemes for performing the matching to fixed-order

perturbation theory and found that the various results agree within the estimated theoret-

ical uncertainties. Our final predictions are presented in figure 4, with PDF uncertainties

estimated in figure 5. They suggest that at NNLL+NLO our predictions for the differential

cross section dσ/dqT have uncertainties of order ±10% in the peak region, which seems

reasonable given what is known about the behavior of the perturbative series for the total

cross section. In order to reduce these uncertainties further, it would be necessary and

desirable to extend our analysis to N3LL+NNLO, or at least to perform the matching to

fixed-order theory at two-loop order.
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