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1 Introduction and outlook

The application of localization techniques [1, 2] to the computation of the partition function

of supersymmetric gauge theories on compact Euclidean manifolds and to the evaluation of

expectation values of supersymmetric observables in the same class of theories, pioneered

in [3], has led to an impressive number of exact results in various dimensions, see for

example [4–25] for a non-exhaustive list in dimensions two to five.

Most of these exact results are obtained using the so-called Coulomb branch localiza-

tion, and the result then takes the form of a matrix integral over the classical Coulomb

branch, i.e. the localization locus consists of constant vector multiplet scalars or holonomies

around circles. The integrand is given by the product of a classical action, a one-loop

piece describing the quadratic fluctuations around the localization locus and possibly some

non-perturbative contributions. Recently, an alternative localization method has been de-

veloped in two dimensions [4, 5], called Higgs branch localization, where the localization

locus is a finite number of Higgs vacua each supporting an infinite tower of vortex and

anti-vortex configurations. Technically, it can be achieved by considering an alternative
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deformation term or equivalently by modifying the integration contour in complexified

field space in the path integral. The result now takes the schematic form of a sum over

the aforementioned Higgs vacua, with as its summand the product of a classical action,

a one-loop piece evaluated on the Higgs vacua and the product of a vortex and an anti-

vortex partition function. Such a factorized expression was actually first observed in three

dimensions in [26] by manipulating the matrix integral computing the partition function

on the squashed three-sphere, and subsequently understood in terms of holomorphic blocks

in [27] and by deforming the geometry in [17], and generalized to larger gauge groups and

S2 × S1 in [28–30]. These three-dimensional factorization results were explained from the

point of view of Higgs branch localization in [31, 32].

It is now a natural question to ask if Higgs branch localization can be applied to

four-dimensional theories as well. This would imply that the partition function can be

factorized. In this note, we address this question — and answer it positively — for N = 1

supersymmetric gauge theories on S3×S1.1 At an RG fixed point, the partition function on

this geometry is known to describe the superconformal index [34], which encodes informa-

tion about the protected spectrum of the corresponding flat space theory. A prescription

to write down the Coulomb branch expression computing the index of the IR fixed point

to which a given Lagrangian UV theory flows, was first given by Römelsberger in [35, 36]

and it takes the form of a matrix integral over the holonomy along the temporal circle

S1 of the one-loop determinants, which are typically expressed in terms of the plethystic

exponential of the single letter partition functions of the fields in the UV theory, but can

also be written in terms of elliptic hypergeometric functions [37]. Our main result shows

that the index can alternatively be written as

I =
∑

Higgs vacua

Zcl Z
′
1-loop Zv Zav , (1.1)

which has the typical form of a Higgs branch localized result. Here Zv and Zav are the

contributions from vortex-membranes wrapping a torus at two distinct points in the ge-

ometry. As such they are given in terms of the elliptic uplift of the usual vortex partition

function in the Ω background [38].

The superconformal index is a powerful tool in checking various dualities, see for ex-

ample [37, 39, 40]. It would be very interesting to study the effects of such dualities on the

vortex-membrane partition function. Moreover, the elliptic vortex partition functions we

encounter are naturally expected to have nice modular properties. It would be interesting

to study these alongside the modular properties of the index itself [41]. The factorization

results obtained in this paper are expected to be just one instance of a rich structure involv-

ing the four-dimensional uplift of the holomorphic blocks of [27]. Unraveling this structure

is an outstanding problem. Finally, the N = 1 index can be further decorated with surface

operators. Three possible approaches can be used to introduce them, namely to construct

them as the IR limit of vortex configurations as in [42], to perform a localization compu-

tation as in [43] for vortex-loops, or to consider a coupled 2d-4d system as in [6]. Their

connections among each other and with the vortex factorization should be study-worthy.

1Recently the gravity dual of these theories has been studied in [33].
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On the other hand, we expect the techniques used in this paper to be applicable to

N = 1 supersymmetric theories on different geometries as well, most obviously L(r, 1) ×

S1 [44, 45], but also more generally in theories with more supersymmetry. For example,

the N = 2 superconformal index for theories of class S is computed by a TQFT correla-

tor [46, 47] and it would be very interesting to study its interplay with a possible vortex

anti-vortex factorization. We leave this for future work.

The outline of this note is as follows. In section 2 we introduce the index we want to

compute and construct the deformed background on which the computation of the partition

function achieves that goal. Next, we derive the BPS equations in section 3 and find various

classes of solutions to them in section 4. We compute the index on the various solutions

in section 5. In section 6 we match our Higgs branch expression with the Coulomb branch

expression in some examples by manipulating the matrix integral. Here we also explain

how our results apply in the absence of an abelian factor in the gauge group. Finally,

the appendices contain the spinor conventions we use, the N = 1 algebra and some useful

identities satisfied by the elliptic gamma function.

Note added. When this work was under completion, we became aware of [48] which has

some overlap with our paper.

2 Killing spinors on S
3 ×S

1, supersymmetric index and deformed back-

ground

N = 1 supersymmetric theories on S3 × R were explicitly constructed in [49] and later

also in [35]. A systematic study of supersymmetric theories on Euclidean four-manifolds,

among which S3×S1, with four or less supercharges was performed in [50–52] by consider-

ing the rigid limit of supergravity. Their method constructs supersymmetric backgrounds

as solutions to the Killing spinor equation, which in turn is obtained by setting to zero

the gravitino variations, as well as — in the presence of flavor symmetries — to the equa-

tions that set to zero the gaugino variations, while treating the bosonic auxiliary fields as

arbitrary background fields.2

For the particular case of the index, it is illustrative to construct the sought-after

supersymmetric background differently, namely by turning on background gauge fields

associated to the charges appearing in the supersymmetric index such that in a path

integral formulation they have the effect of precisely implementing the twisted boundary

conditions along the temporal circle imposed by the index. As a preliminary step, we first

construct the solutions to the conformal Killing spinor equations on S3 × R and select

the Killing spinor associated to the supercharge with respect to which we will compute

the index. Its lack of periodicity along R is remedied by the twisted boundary conditions

imposed by the associated index.

2The parameter dependence of partition functions on these four-dimensional backgrounds was studied

in [53].
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Killing spinors on S
3 × R. We would like to solve the Killing spinor equation3

Dµε =

(

∂µ +
1

4
ω mn
µ γmn − iVµγ5

)

ε = γµε̃ (2.1)

on S3 × R with metric

ds2 = ds2S3 + dτ2 = ℓ2
(

dθ2 + cos2 θ dϕ2 + sin2 θ dχ2
)

+ dτ2 . (2.2)

Upon choosing the vielbeins e1 = ℓ cos θ dϕ, e2 = ℓ sin θ dχ, e3 = ℓdθ, e4 = dτ, one finds

the non-zero components of the spin connection to be ω13 = − sin θ dϕ and ω23 = cos θdχ.

At this point we also set the U(1)R background field Vµ to zero.

Our first step in solving (2.1) is to write ε̃ = γ4ε̂ and decompose ε and ε̂ into their

right and left-handed components, which we denote as ε =
( η
ζ

)

and similarly ε̂ =
(

η̂

ζ̂

)

.

The equation (2.1) then splits as
(

∂µ +
1

4
ω mn
µ σmn

)

η = −iσµη̂ (2.3)

(

∂µ +
1

4
ω mn
µ σ̄mn

)

ζ = iσ̄µζ̂ . (2.4)

Next, making a factorized Ansatz η = f(τ) ηS3 and η̂ = f(τ) η̂S3 , where ηS3 and η̂S3 only

depend on the coordinates on the three-sphere, one immediately recognizes that the spatial

part of the Killing spinor equation simplifies to the Killing spinor equation on S3

(

∂µ̂ +
1

4
ω m̂n̂
µ̂ σm̂n̂

)

η
(s1,t1)
S3 = −iσµ̂η̂

(s1,t1)
S3 , (2.5)

where µ̂ = ϕ, χ, θ. Its solutions are given by [14]

η
(s1,t1)
S3 =

(

e
i
2
(s1χ+t1ϕ−s1t1θ)

−s1 e
i
2
(s1χ+t1ϕ+s1t1θ)

)

, (s1, t1 = ±) (2.6)

if η̂
(s1,t1)
S3 = s1t1

2ℓ η
(s1,t1)
S3 . The time dependence is then determined by ∂τf(τ) = s1t1

2ℓ f(τ)

which implies that f(τ) = e
s1t1
2ℓ

τ . In total one thus finds that

η(s1,t1) = e
s1t1
2ℓ

τη
(s1,t1)
S3 , η̂(s1,t1) =

s1t1
2ℓ

η(s1,t1) . (2.7)

Similarly, one finds that

ζ(s2,t2) = e−
s2t2
2ℓ

τζ
(s2,t2)
S3 , ζ̂(s2,t2) = −

s2t2
2ℓ

ζ(s2,t2) , (2.8)

and the most general four-component solution is thus

ε =
∑

s1,t1=±

as1,t1

(

η(s1,t1)

0

)

+
∑

s2,t2=±

bs2,t2

(

0

ζ(s2,t2)

)

(2.9)

We found eight independent supercharges as expected for a superconformal N = 1 theory.

Note that the Killing spinors are not periodic along the time circle which signals the need

of twisted boundary conditions.

3Our spinor conventions are summarized in appendix A.
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Killing spinors for supersymmetric index. We choose the combination of super-

charges described by the four-component spinor ε in (2.9) with as only non-zero coefficients

a++ = 1 and b−− = 1,

ε1 =

(

η(+,+)

ζ(−,−)

)

. (2.10)

It satisfies Dµε1 =
1
2ℓγµγ4γ5ε1 . The bilinears appearing in the algebra (see formula (B.12)

in appendix B) are then given by

vµ1 ∂µ =
2

ℓ
(−i(∂ϕ + ∂χ) + ℓ∂τ ) , ρ1 = 0 , α1 =

3i

ℓ
, (2.11)

which upon plugging in (B.9) result in

δ2ε1 = −
2

ℓ

(

−ℓLA
∂τ + iLA

∂ϕ+∂χ +
3

2
R

)

. (2.12)

Introducing the operators

∆ = −ℓLA
∂τ , j1 = −

i

2
LA
∂χ+∂ϕ , j2 = −

i

2
LA
∂χ−∂ϕ , (2.13)

one can also write

δ2ε1 = −
2

ℓ

(

∆− 2j1 +
3

2
R

)

. (2.14)

The action of the operators ∆, j1, j2, and R on ε1 is given by

∆ǫ1 = −
1

2
γ5ε1 , j1ǫ1 =

1

2
γ5ε1 , j2ǫ1 = 0 , Rǫ1 = γ5ε1 . (2.15)

Note that as expected
(

∆− 2j1 +
3
2R
)

ε1 = 0. We can find two more linearly independent

charges that vanish on the Killing spinor, namely 2j1 −R and j2.

Alternatively, we could choose the combination of supercharges described by the four-

component spinor with as only non-zero coefficients a−+ = 1 and b+− = 1

ε2 =

(

η(−,+)

ζ(+,−)

)

, (2.16)

which satisfies Dµε2 = − 1
2ℓγµγ4γ5ε2 . Then we find

δ2ε2 =
2

ℓ

(

−ℓLA
∂τ + iLA

∂χ−∂ϕ −
3

2
R

)

=
2

ℓ

(

∆− 2j2 −
3

2
R

)

. (2.17)

Now one has ∆ǫ2 =
1
2γ5ε2, j1ǫ2 = 0, j2ǫ2 = −1

2γ5ε2, and Rǫ2 = γ5ε2.We find three linearly

independent charges that vanish on the Killing spinor, ∆− 2j2 −
3
2R, 2j2 +R and j1.
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Supersymmetric index and deformed background. One can introduce two inequiv-

alent superconformal indices in N = 1 theories, a left-handed one and a right-handed

one, namely

I1(t, y, ζj) = Tr(−)F e−β(∆−2j1+
3

2
R) t3(2j1−R) y2j2

∏

j

ζ
Fj

j

I2(t, y, ζj) = Tr(−)F e−β(∆−2j2−
3

2
R) t3(2j2+R) y2j1

∏

j

ζ
Fj

j

where t = e−ξ, y = eiη and ζj = eizj , (2.18)

where βℓ is the circumference of the temporal circle and Fj are the Cartan generators of

the flavor symmetry group. Convergence requires that |t| < 1. These indices are precisely

computed with respect to the charges described by the Killing spinors ε1 and ε2 respectively.

It is very important to remark that all charges appearing in the index need to be non-

anomalous — we will always assume this to be the case. From here onward, we will focus

on the index I1, knowing that I2 can be dealt with completely similarly.

In the path integral formulation, the insertion of the chemical potentials in the trace

leads to twisted boundary conditions on all fields

Φ(τ + βℓ) = eβ(−2j1+
3

2
R) t−3(2j1−R) y−2j2

∏

j

ζ
−Fj

j Φ(τ) , (2.19)

which are indeed also the boundary conditions satisfied by the Killing spinor ε1. Alterna-

tively, one can turn on flat background gauge connections along the temporal circle

Vµ =

(

0, 0, 0, i

(

3β − 6ξ

2βℓ

))

, Ṽ (j)
µ =

(

0, 0, 0,
zj

βℓ

)

, (2.20)

for the R-symmetry and the flavor symmetry respectively. The twists by the rotational

charges j1 and j2 furthermore impose the identification

(ϕ, χ, θ, τ) ∼

(

ϕ+
i

2
(−2β + 6ξ + 2iη), χ+

i

2
(−2β + 6ξ − 2iη), θ, τ + βℓ

)

. (2.21)

Introducing the coordinates

ϕ̂ = ϕ−
i

2
(−2β+6ξ+2iη)

τ

βℓ
, χ̂ = χ−

i

2
(−2β+6ξ−2iη)

τ

βℓ
, θ̂ = θ , τ̂ = τ , (2.22)

the identification simplifies to (ϕ̂, χ̂, θ̂, τ̂) ∼ (ϕ̂, χ̂, θ̂, τ̂ + βℓ) . The metric in these hatted

coordinates reads

ds2 = ℓ2 cos2 θ̂

(

dϕ̂+
i

2βℓ
(−2β + 6ξ + 2iη) dτ̂

)2

+

+ℓ2 sin2 θ̂

(

dχ̂+
i

2βℓ
(−2β + 6ξ − 2iη) dτ̂

)2

+ ℓ2dθ̂2 + dτ̂2 , (2.23)

and is complexified. Its vielbeins are

e1 = ℓ cos θ̂
(

dϕ̂+ i
2βℓ(−2β + 6ξ + 2iη) dτ̂

)

, e3 = ℓdθ̂ , (2.24)

e2 = ℓ sin θ̂
(

dχ̂+ i
2βℓ(−2β + 6ξ − 2iη) dτ̂

)

, e4 = dτ̂ , (2.25)

– 6 –
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while the dual frame vectors are given by

e1 =
(

ℓ cos θ̂
)−1

∂ϕ̂ , e2 =
(

ℓ sin θ̂
)−1

∂χ̂ , e3 = ℓ−1∂θ̂ , (2.26)

e4 = ∂τ̂ −
i

2βℓ
(−2β + 6ξ + 2iη) ∂ϕ̂ −

i

2βℓ
(−2β + 6ξ − 2iη) ∂χ̂ , (2.27)

and the non-zero components of the spin connection read

ω13 = − sin θ̂

(

dϕ̂+
i

2βℓ
(−2β + 6ξ + 2iη) dτ̂

)

(2.28)

ω23 = cos θ̂

(

dχ̂+
i

2βℓ
(−2β + 6ξ − 2iη) dτ̂

)

. (2.29)

The solution to the Killing spinor equation Dµε = γµε̃ on the deformed background,

corresponding to ε1 in (2.10), is given by

ε1 =

(

η
(+,+)
S3

ζ
(−,−)
S3

)

, (2.30)

and satisfies Dµε1 =
1
2ℓγµγ4γ5ε1 . The square of the supersymmetry variation equals

δ2ε1 = −
2

ℓ

[

− ℓ LA
∂τ̂

+
6iξ

2β
LA
∂ϕ̂+∂χ̂

+
η

β
LA
∂χ̂−∂ϕ̂

+
3ξ

β
R+

i

β

∑

j

zjFj

]

. (2.31)

Thanks to pairwise cancellation, the index only receives contributions from states

satisfying δ2ε1 = 0. It is thus independent of the parameter β, and it will be convenient to

choose it such that the metric (2.23) is real, namely β = 3ξ. From now on, we make this

choice for β and further omit the hats.

Fayet-Iliopoulos term. It is well known that both the gauge and the matter Lagrangian

are Q-exact.4 However, if the gauge group contains an abelian factor,5 we can write down a

Fayet-Iliopoulos term [35]. Indeed, if the Killing spinor satisfies Dµε1 =
1
2ℓγµγ4γ5ε1, then it

is easy to convince oneself that δε1
(

D + 2
ℓA4

)

= Dµ (ε̄1γ5γ
µλ) . When integrated over the

compact space, the variation of D + 2
ℓA4 vanishes and thus results in an invariant action.

Note however, that in order for the action to be invariant under large gauge transformations

along the 4-direction the properly normalized FI parameter needs to be an integer. Due to

its discrete nature it avoids the common lore that the index does not depend on continuous

parameters.

4We use δǫ1 and Q interchangeably.
5In the presence of an abelian factor, the theory develops a Landau pole. However, as was also argued

in [42], one can exploit the independence of the index on the gauge coupling to suppress the Landau pole

arbitrarily by making the gauge coupling smaller and smaller.

– 7 –
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3 The BPS equations

The BPS equations for the vectormultiplet of gauge group G are obtained by setting to

zero the gaugino variation

0 = δε1λ = −
1

2
γµνFµν ε1 − γ5 D ε1 . (3.1)

Upon solving the resulting four equations for F14, F24, F34, D one obtains

F14 = i sin θ F12 , F34 = −i (cos θ F13 + sin θ F23) , (3.2)

F24 = −i cos θ F12 , D = i cos θ F23 − i sin θ F13 . (3.3)

Declaring that all fields are real, immediately leads to the localization locus Fµν = D = 0.

Flat connections on S3 × S1 are given by A = a
3ξℓdτ , for arbitrary holonomy a. Alterna-

tively, we can obtain the localization equations as the zero-locus of the bosonic part of the

deformation action

Ldef
YM =

1

4
Q Tr (Qλ)‡λ, (3.4)

where the action of the formal hermitian conjugate ‡ operator on Qλ is

(Qλ)‡ =
1

2
ε†1 γ

µνFµν − ε†1 γ5 D . (3.5)

One then obtains for the bosonic piece

1

4
Tr (Qλ)‡ Qλ =

1

2
Tr

(

D2 +
1

2

∑

m,n

(Fmn)
2

)

, (3.6)

whose zero-locus is indeed D = Fmn = 0.

Higgs branch localization requires the addition of an extra Q−exact deformation term

Ldef
H =

i

2
Q Tr ε†1γ5λ H(φ) , (3.7)

whose bosonic part is

Ldef
H

∣

∣

∣

bos
= −Tr (iD + cos θ F23 − sin θ F13) H(φ) . (3.8)

Upon adding Ldef
YM and Ldef

H , the auxiliary field D can be integrated out exactly by perform-

ing the Gaussian path integral. Correspondingly, one imposes its field equation D = iH(φ).

The auxiliary field D is thus taken out of its real contour. The bosonic part of the total

deformation Lagrangian can then be written as a sum of squares once again:

Ldef
YM

∣

∣

∣

bos
+ Ldef

H

∣

∣

∣

bos
=

1

2
Tr
(

(F12)
2 + (F14)

2 + (F24)
2 + (F34)

2+

+(−H(φ)− sin θ F13 + cos θ F23)
2 + (cos θ F13 + sin θ F23)

2
)

, (3.9)

from which we read off the BPS equations

F12 = F14 = F24 = F34 = −H(φ)−sin θ F13+cos θ F23 = cos θ F13+sin θ F23 = 0 . (3.10)

– 8 –
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Note that these equations could have been obtained equivalently from (3.2)–(3.3) by im-

posing the D-term equation. More explicitly, these equations read in the coordinate frame

0 = Fϕχ = Fϕτ = Fχτ

Fθτ =
2η

3ξℓ
Fϕθ = −

2η

3ξℓ
Fχθ

−ℓ2H(φ) =
Fϕθ

sin θ cos θ
= −

Fχθ

sin θ cos θ
.

(3.11)

Let us next turn our attention to chiral multiplets. We take them to transform under

some generic representation R of the flavor and gauge group. Let us denote its decompo-

sition in irreducible gauge representations as R =
∑

iRi. The BPS equations for a single

chiral multiplet transforming in representation R are found by setting to zero each com-

ponent of the variation of the fermion χ under the supersymmetry transformation by ε1.

Subsequently imposing the reality property φ† = φ̄ and F† = F̄ and taking appropriate

linear combinations, one obtains

0 = (D4 −D†
4)φ 0 = cos θ D2φ− sin θ D1φ+ iD3φ

0 = F 0 = 3rφ+ ℓ
(

2i(cos θ D1φ+ sin θ D2φ)− (D4 +D†
4)φ
)

,
(3.12)

Using that

D4φ =

(

Dτ −
η

3ξℓ
(Dχ −Dϕ) +

r

2ℓ
−

i

3ξℓ
z

)

φ , (3.13)

these equations can be written explicitly as (assuming the gauge field is real)

0 =

(

Dτ −
η

3ξℓ
(Dχ −Dϕ)−

i

3ξℓ
z

)

φ , (3.14)

0 = F , (3.15)

0 = rφ+ i(Dϕφ+Dχφ) , (3.16)

0 = cot θ Dχφ− tan θ Dϕφ+ iDθφ . (3.17)

4 BPS solutions: Coulomb, Higgs and vortices

In this section we set out to solve the BPS equations. Let us first recall the Coulomb

branch solutions.

Coulomb branch. The Coulomb branch solution was already mentioned above:

D = 0 , A =
a

3ξℓ
dτ . (4.1)

As usual a can be taken to lie in the Cartan algebra. Let us verify that there are no

solutions to the chiral multiplet equations for positive R-charges. Fourier expanding the

chiral field as

φ =
∑

p,m,n

e2πipτ/3ξℓ einϕ eimχ cpmn(θ) , (4.2)

– 9 –
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one finds from (3.14) that only modes for which

(a+ z)φ = 2πp− η(m− n) (4.3)

can exist. Via a large gauge transformation, we can set p = 0 . Next, equation (3.16) further

imposes that r = n+m. Finally, equation (3.17) reduces to the differential equation

∂θcpmn = −(m cot θ − n tan θ)cpmn , (4.4)

which solves to cpmn(θ) = φ0(cos θ)
−n(sin θ)−m , for some constant φ0 . Smoothness at

θ = 0 and θ = π
2 demands that m ≤ 0 and n ≤ 0 respectively. Therefore, for positive

R-charges, no solutions exist. For zero R-charge (then m = n = 0), we find the constant

Higgs like solution φ = φ0, if (a+ z)φ = 0.

Next, we study the new solutions which become available upon choosing a non-trivial

H(φ), i.e. we want to solve (3.10) and (3.12). We set the R-charges to zero, r = 0: the

exact non-anomalous R-charge should be restored by giving an imaginary part to the flavor

fugacities. We make the standard choice for H(φ):

H(φ) = ζ −
∑

i,a

T a
adj φ

†
iT

a
Ri
φi , (4.5)

where the sum runs over the matter representations Ri and its generators T a
Ri.

Here, ζ is

adjoint-valued and defined as a real linear combination of the Cartan generators ha of the

Abelian factors in the gauge group

ζ =
∑

a: U(1)

ζaha . (4.6)

We find the following classes of solutions.

Deformed Coulomb branch. The deformed Coulomb branch is characterized by φ = 0.

A solution to the vector multiplet BPS equations (3.10) is then given by

F = ζℓ2 sin θ cos θ dθ ∧

(

dϕ− dχ−
2η

3ξℓ
dτ

)

, (4.7)

which can be integrated to

A = −ζℓ2
(

1

2
cos2 θ

(

dϕ− η
dτ

3ξℓ

)

+
1

2
sin2 θ

(

dχ+ η
dτ

3ξℓ

))

+
a

3ξℓ
dτ . (4.8)

Higgs-like solutions. Higgs-like solutions are defined by setting H(φ) = 0. Then it

follows that also Fµν = 0. From above, we know that φ = φ0 is a constant constrained by

the condition (a+ z)φ0 = 0 .

Solutions to the D-term equations

H(φ) = 0 , (a+ z)φ = 0 , (4.9)

depend both on the gauge group and on the matter representations. Here we will re-

strict ourselves to cases where the vacuum expectation values of φ completely break the

gauge group.
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Vortices. Each Higgs-like solution is the root of a tower of vortex solutions at the north

and south torus. Indeed, using the other BPS equations, the BPS equations (3.17) and the

last equation in (3.11) become for θ → 0, and introducing R ≡ ℓθ,

0 =

(

DR −
i

R
Dχ

)

φ , H(φ) = −
1

R
FRχ , (4.10)

which we recognize as the standard (anti)vortex equations on R
2. Once the solutions to

these equations are found, the other BPS equations will complete it to solutions on R
2×T 2.

The vortex equations cannot be solved analytically, so we shall content ourselves with

qualitatively analyzing the behavior of the solutions. We consider the case of a U(1)

theory with a single chiral multiplet of (gauge) charge +1. Up to rescalings of the latter,

this is the generic case once the gauge group is broken to its maximal torus. Let us start

by making the Ansatz

φ = e−inϕe−imχφ0(R) , A = Aτ (R)dτ +Aϕ(R)dϕ+Aχ(R)dχ , (4.11)

where we didn’t include a time dependence since it can be removed by the same large gauge

transformation we employed earlier. When φ0 6= 0 one finds from (3.14) and (3.17) the

exact relations

Aτ =
1

3ξℓ

(

η ((Aχ +m)− (Aϕ + n))− z
)

, Aϕ +Aχ = −(n+m) . (4.12)

Given these exact relations, all BPS equations are satisfied except for the vortex equa-

tions (4.10) themselves:

∂Rφ0 −
1

R
(m+Aχ)φ0 = 0 , ζ − φ20 = −

1

R
∂RAχ , (4.13)

and moreover it is sufficient to outline the behavior of Aχ and φ. When R → 0 (more

precisely, for R≪
√

m
ζ ), in order to have a smooth connection, one necessarily has Aχ → 0 .

The first equation then further implies that φ0 = BRm . In particular we deduce that

m > 0. From the second equation to leading order in R we deduce that ∂RAχ = −Rζ

and thus Aχ = − ζR2

2 . For R → ∞ (R ≫
√

m
ζ ), φ sits in its Higgs vacuum φ0 → ζ. Then

one finds that Aχ → −m. Integrating the field strength over R
2, one finds that m can

be interpreted as the vortex number 1
2π

∫

F = −m. When approximating R−1FRχ by a

step function of height −ζ, we immediately find a measure for the size of the vortex to

be
√

m
ζ . For sufficiently large values of ζ the vortex shrinks to zero size and the first

order approximations we took are justified. Momentarily, we will give an interpretation

to n as well.

It is noteworthy that Aτ only asymptotically sits in its Higgs vacuum: for R → 0 one

finds Aτ = 1
3ξℓ(2mη − z)− η

3ξℓζR
2 .

One can similarly analyze the behavior for θ → π
2 . Introducing ρ = ℓ

(

π
2 − θ

)

, one

again finds the vortex equations among the BPS equations

0 =

(

Dρ −
i

ρ
Dϕ

)

φ , H(φ) = −
1

ρ
Fρϕ . (4.14)
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Let us also here analyze the qualitative behavior for the case of a U(1) theory with a single

chiral of charge +1. Starting by making the Ansatz

φ = e−inϕe−imχφ0(ρ) , A = Aτ (ρ)dτ +Aϕ(ρ)dϕ+Aχ(ρ)dχ . (4.15)

we rediscover the exact relations (4.12) which solve all BPS equations but

∂ρφ0 −
1

ρ
(n+Aϕ)φ0 = 0 , ζ − φ20 = −

1

ρ
∂ρAϕ . (4.16)

For ρ ≪
√

n
ζ , smoothness demands that Aϕ → 0 . In this region we then find from the

first equation that φ0 = B′ρn, implying that n > 0. To leading order in ρ the second

equations teaches that ∂ρAϕ = −ρζ and thus Aϕ = − ζρ2

2 . For ρ ≫
√

n
ζ , we have φ0 → ζ

and Aϕ → −n. Since integrating over R2 gives 1
2π

∫

F = −n, we interpret n as the vortex

number at the south torus.

Also here Aτ sits only asymptotically in its Higgs vacuum. Note also that in the

intermediate region both solutions glue together appropriately.

For smaller values of ζ both the presence of curvature in and the finite volume of space

will start affecting the solutions. However, we can derive an exact bound by integrating

H(φ) over spacetime and using the last BPS equation in (3.11)

ζvol(S3 × S1) ≥

∫

S3×S1

H(φ) dvol(S3 × S1)

= 4π2ℓvol(S1)

∫ π
2

0
dθ∂θAϕ = −4π2ℓvol(S1)

∫ π
2

0
dθ∂θAχ (4.17)

Here we used that on vortex solutions 0 ≤ H(φ) ≤ ζ and that the gauge field only has θ

dependence. Defining the vorticities as the winding numbers of φ around χ, ϕ respectively

and employing the analysis at the core of the vortex, we then find that

4π2ℓ(n+m) ≤ ζvol(S3) ⇒ n+m ≤ ζ
ℓ2

2
. (4.18)

One observes that for finite values of ζ only a finite number of vortices are supported on

S3 × S1. The bound is saturated precisely when φ vanishes; the solution is then described

by the deformed Coulomb branch solution.

We thus find essentially the same interpretation as in [32]. Upon increasing ζ from 0 to

+∞ the original Coulomb branch solution is deformed into the deformed Coulomb branch

and each time ζ crosses a bound (4.18), a collection of new vortices branches out.

5 Computation of the index

In the previous section, we found various classes of BPS solutions. The final steps in the

computation of the index using localization, are then to first evaluate the classical action

on and the one-loop determinants of quadratic fluctuations around these solutions, and

next integrate and/or sum over the space of BPS configurations.
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5.1 One-loop determinants from an index theorem

Although the computation of the one-loop determinants can be straightforwardly performed

on the Coulomb branch (in a Lagrangian theory like the ones at hand) by enumerating

letters, constructing the single letter partition function, subsequently plethystically expo-

nentiating these and finally imposing the Gauss law constraint by projecting onto gauge

singlets, the computation on non-constant configurations is most easily performed using

an equivariant index theorem for transversally elliptic operators [54]. The idea is to bring

the problem in cohomological form, and make use of the fact that, via the equivariant

index theorem, only the fixed points of the equivariant spatial rotations contribute to the

one-loop determinants. A detailed discussion can be found in [3].

Recall from (2.31) that the supercharge squares to

δ2ε1 = −
2

3ξℓ

[

− 3ξℓ LA
∂τ̂

+ 6ξi LA
1

2
(∂ϕ̂+∂χ̂)

+ 2η LA
1

2
(∂χ̂−∂ϕ̂)

+ 3ξR+ i
∑

j

zjFj

]

(5.1)

= −
2

3ξℓ

[

− 3ξℓ LA
∂τ̂

+ (3ξi− η) LA
∂ϕ̂

+ (3ξi+ η) LA
∂χ̂

+ 3ξR+ i
∑

j

zjFj

]

. (5.2)

where we used the value β = 3ξ. An important observation is that δ2ε1 precisely equals (upon

properly identifying the equivariant parameters6) the square of the supercharge used in the

localization on S3
b in [43] (see also [32]) with an additional free motion along the temporal

circle generated by −3ξℓ LA
∂τ̂
. Thus, taking into account the Kaluza-Klein modes along the

temporal circle, the computation of the equivariant index on S3 × S1 can be effectively

reduced to that on a squashed three-sphere. This latter computation was performed in [43]

(see also appendix C of [32]) and involves a further reduction along the Hopf fiber. The

base space of the double reduction, which is topologically a two-sphere, has two fixed points

(one at θ = 0 which we call North and one at θ = π
2 (South)) under the reduction of the

spatial rotations appearing in δ2ε1 . The equivariant index only receives contributions from

these two points.

Introducing the equivariant parameter for gauge transformations

iâ = −3ξℓ(−iAτ ) + 3ξi(−i(Aϕ +Aχ)) + η(−i(Aχ −Aϕ)) , (5.3)

we can now immediately write the one-loop determinant for the vector multiplet

Zvector
1-loop “ = ”

∏

n,m∈Z
α∈g

(

πin−
i

2
(3ξi− η)m−

i

2
α(âN )

)1/2(

πin−
i

2
(3ξi+ η)m−

i

2
α(âS)

)1/2

,

(5.4)

where α ∈ g denotes the roots of the gauge algebra g. Compared to the unregularized

vector multiplet one-loop determinant on the squashed three-sphere an extra product over

the integer n appears, which precisely captures the contribution of the Kaluza-Klein modes

6The precise identifications between the equivariant parameters here and those on the squashed three-

sphere (see for example expression C.3 in [32]) are b = 3ξi− η, b−1 = 3ξi+ η up to a constant rescaling.
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along the temporal circle. Regularizing the infinite products results in

Zvector
1-loop =

[(

t3y−1 ; t3y−1
)

∞

(

t3y ; t3y
)

∞

]rank g ∏

α 6=0

(

1− eiα(âN )
)1/2 (

1− eiα(âS)
)1/2

×
∏

α 6=0

(

t3y−1 eiα(âN ) ; t3y−1
)

∞

(

t3y eiα(âS) ; t3y
)

∞
, (5.5)

in terms of the infinite q-Pochhammer symbol (z, q)∞ =
∏∞

j=0(1−zq
j). Using the standard

plethystic exponential, it can be written as

Zvector
1-loop =

∏

α 6=0

(

1− eiα(âN )
)1/2 (

1− eiα(âS)
)1/2

(5.6)

× P.E.



−
t3y−1

1− t3y−1



rank g+
∑

α 6=0

eiα(âN )



−
t3y

1− t3y



rank g+
∑

α 6=0

eiα(âS)







 ,

For all BPS configurations we will consider âN = âS = â. The vector multiplet one-loop

determinant simplifies then further to

Zvector
1-loop =

∏

α 6=0

(

1− eiα(â)
)

P.E.



−

(

t3y−1

1− t3y−1
+

t3y

1− t3y

)



rank g+
∑

α 6=0

eiα(â)







 . (5.7)

Observing that −
(

t3y−1

1−t3y−1 + t3y
1−t3y

)

= 2t6−t3(y+y−1)
(1−t3y−1)(1−t3y)

, one recognizes the single letter

partition function of the vector multiplet [36]. Using that −
(

t3y−1

1−t3y−1 + t3y
1−t3y

)

= 1 −

1−t6

(1−t3y−1)(1−t3y)
it can be written alternatively as [37]

Zvector
1-loop =

(

(t3y ; t3y)∞(t3y−1 ; t3y−1)∞
)rank g ∏

n,m≥0
α 6=0

1− eiα(â)(t3y)n(t3y−1)m

(1− eiα(â)(t3y)n+1(t3y−1)m+1)

=
(

(t3y ; t3y)∞(t3y−1 ; t3y−1)∞
)rank g ∏

α 6=0

1

Γ(eiα(â), t3y, t3y−1)
, (5.8)

in terms of the standard elliptic gamma function

Γ(z, p, q) =
∏

j,k≥0

1− pj+1qk+1/z

1− pjqkz
. (5.9)

For the one-loop determinant of a chiral multiplet of R-charge r transforming in gauge

representation R we find the unregularized expression

Zchiral
1-loop“ = ”

∏

w∈R

∏

n,m∈Z
p≥0

−πin+ i
2(3ξi+ η)m+ i

2(3ξi− η)(p+ 1) + 3
2ξr +

i
2w(âS) +

i
2z

−πin+ i
2(3ξi− η)m− i

2(3ξi+ η)p+ 3
2ξr +

i
2w(âN ) + i

2z
,

(5.10)
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where w ∈ R denotes the weights of the representation R. Also here the extra contribution

of the Kaluza-Klein modes along the temporal circle is given by the infinite product over

the integer n.

When âN = âS = â, it can be regularized to

Zchiral
1-loop =

∏

w∈R

Γ
(

t3re−iw(â)−iz, t3y, t3y−1
)

=
∏

w∈R

P.E.

[

t3re−iz e−iw(â) − t3(2−r)eiz eiw(â)

(1− t3y−1)(1− t3y)

]

,

(5.11)

where again one recognizes the correct single letter partition function [36].

5.2 Coulomb branch

Let us first briefly recall the Coulomb branch expression [36, 37]. As was mentioned before,

both the gauge and matter Lagrangians are Q-exact, and we only have to evaluate the

Fayet-Iliopoulos term:

SFI =
−iℓ

2vol(S3)
TrFI

∫

S3×S1

(

D +
2

ℓ
Aτ

)

dvol(S3 × S1) = −iTrFI a . (5.12)

The equivariant parameter for the gauge transformation iâ = 3ξiℓAτ + 3ξ(Aϕ + Aχ) −

iη(Aχ − Aϕ) simply gives âN = âS = a. The one-loop determinants (5.8) and (5.11)

are thus

Zvector
1-loop =

(

(t3y; t3y)∞(t3y−1; t3y−1)∞
)rank g

∏

α 6=0 Γ(e
iα(a), t3y, t3y−1)

, Zchiral
1-loop =

∏

w∈R

Γ
(

t3re−iw(a)−iz, t3y, t3y−1
)

,

(5.13)

and the index can be computed by

I =
1

|W|

∮





rankG
∏

j=1

dzj
2πizj



 eiTrFI a Z1-loop , (5.14)

where |W| denotes the dimension of the Weyl group of the gauge group G, zj = eiaj and

the integration contour is along the unit circle. Note that the quantized nature of the FI

parameter can now be seen to ensure that the integrand remains meromorphic. We should

also mention that the usual Vandermonde determinant cancels against the contribution of

the gauge-fixing ghosts.

5.3 Deformed Coulomb branch

Next, we study the situation on the deformed Coulomb branch. Using D = iH(φ) which

equals iζ on this solution, we obtain for the classical action

SFI = −iTrFI

(

a+ i
3

2
ξℓ2ζ

)

, (5.15)

where we also used that Aτ = 1
3ξℓ

(

a+ ηℓ2

2 ζ cos 2θ
)

. For the equivariant parameter â we find

â = âN = âS = a+ i
3

2
ξℓ2ζ . (5.16)
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Both in the classical action and the one-loop determinants, the effect of the deformation

is seen to be given by an imaginary shift of the holonomy variable a→ a+ i32ξℓ
2ζ or thus

z = eia → z t
3

2
ℓ2ζ . When used in the matrix integral (5.14), one effectively changes the

radius of the integration contour. Indeed, since t < 1, one finds that the contour shrinks

(grows) for ζ → +∞ (ζ → −∞). When turning on the deformation parameter ζ, the

integral remains constant as long as no poles of the integrand are crossed. Moreover, one

can understand by looking at the bound (4.18), that the jumps in the integral, which are

equal to the residues of the crossed poles, are precisely the contributions of the newly

available vortex configurations. We thus recover the same picture as was found in [32] in

three dimensions.

Of particular interest is the situation where the index is expressed only in terms of

vortices. This can be achieved if there exists a certain limit for the parameters ζa → ±∞

such that the deformed Coulomb branch is suppressed. In view of the shrinking/growing

contour, such suppression can be obtained heuristically if the residue at the origin or infinity

vanishes.

5.4 Higgs branch and vortices

For finite values of the deformation parameters ζa, the deformed Coulomb branch con-

tribution of the previous subsection is complemented by finite size vortex configurations

satisfying the bound (4.18). Evaluation of their classical action can be done exactly in a

gauge Aθ = 0, using the BPS equation (3.11), the behavior of the vortices in their core and

the exact relations (4.12). We then find

SFI = −iTrFI (3ξi(n+m)− z+ η(m− n)) , (5.17)

where the vortex numbers m,n are GNO quantized elements of the coweight lattice. For

the evaluation of the one-loop determinants, we first consider the contribution from the off-

diagonal W-bosons and those chiral multiplets that do not acquire a vacuum expectation

value. Their one-loop determinant is simply found by inserting the equivariant parameter

evaluated on the vortex background

â = âN = âS = −z+ 3ξi(m+ n) + η(m− n) , (5.18)

in the expressions for the one-loop determinants (5.8), with the contribution of the diago-

nal vector multiplets, i.e.
(

(t3y ; t3y)∞(t3y−1 ; t3y−1)∞
)rank g

, removed, and (5.11). The

rank g chiral multiplets that do get a VEV are eaten by the diagonal vector multiplets,

which in turn become massive, via the Higgs mechanism. As was explained in [5], the

one-loop determinant of this paired system is found as the residue of the product of their

one-loop determinants. In total one thus finds

Zvector
1-loop =

1
∏

α 6=0 Γ
(

eiα(aH) (t3y)α(m) (t3y−1)α(n) , t3y, t3y−1
) , (5.19)

– 16 –



J
H
E
P
0
8
(
2
0
1
4
)
0
6
0

and

Zchiral
1-loop =

(

(t3y ; t3y)∞(t3y−1 ; t3y−1)∞
)rank g

× Res
a→aH

∏

w∈R

Γ
(

t3re−iw(a)−iz
(

t3y
)−w(m) (

t3y−1
)−w(n)

, t3y , t3y−1
)

, (5.20)

where aH is the holonomy evaluated in its Higgs vacuum.

It is clear from (5.17), (5.19) and in particular (5.20), that when adding the contribution

of the vortices satisfying the bound (4.18) to the deformed Coulomb branch integral, we

precisely recover the original Coulomb branch expression, since they precisely contribute

the residues of the crossed poles. Since the deformation parameters enter our analysis via

a Q-exact piece, such picture was expected.

Elliptic vortex partition function. Let us now send the deformation parameters ζa to

infinity in such a way that the contribution of the deformed Coulomb branch vanishes. The

index is then described purely in terms of point-like vortices which wrap the torus and have

arbitrary vortex numbers. The elliptic uplift of the standard vortex partition function [38]

describes their total contribution and can be independently computed by considering the

theory on R
2
ǫ × T 2

τ in the Ω-background. The plane R
2 is effectively compactified, since it

is rotated as we go around either cycle of the torus. The resulting elliptic vortex partition

function Zvortex can depend on the rotational parameter ǫ, the complex structure of the

torus τ, flavor fugacities g and a fugacity coupling to leftmoving fermion number. This

is all the two dimensional analog of the elliptic instanton partition function obtained by

studying the theory on R
4
ǫ1,ǫ2 × T 2

τ , see for example [55].

In the computation of the partition function in this limit, there are three contributions

to be considered. First, there is the classical action evaluated on the vortex configura-

tion (5.17) which splits into an overall classical action

SFI = −iTrFI (aH) , (5.21)

and a weighting factor for the vortex partition functions

e−Sv = (t3y)TrFI m, e−Sav = (t3y−1)TrFI n . (5.22)

Second, the contribution of the off-diagonal vectormultiplets and the chiral multiplets not

taking on a vacuum expectation value is as in the Coulomb branch (5.13), but evaluated

on the Higgs branch location, i.e. a→ aH , and with the contribution of the diagonal vector

multiplets removed. The contributions of the rank g chiral multiplets acquiring a vacuum

expectation value and the diagonal vector multiplets cancel each other. Third, there is the

vortex partition function itself. Its parameters can be read off from (5.1):

ǫN = 3ξi+ η , τN =
3ξi− η

2π
+ i(−i) , gN = aH +

∑

j

zjFj , (5.23)

ǫS = 3ξi− η , τS =
3ξi+ η

2π
+ i(−i) , gS = aH +

∑

j

zjFj . (5.24)
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The extra factor of i in the modular parameter is explained by the fact that in our setup

∆ ∼ ∂τ while the momenta are Pϕ, Pχ ∼ i∂ϕ, i∂χ. The final expression for the index as

obtained by Higgs branch localization is thus

I =
∑

Higgs vacua

eiTrFI(aH) Z ′
1-loop Zv Zav , (5.25)

where the sum runs over solutions to the D-term equations (4.9) and the one-loop deter-

minant excludes the chiral multiplets acquiring a VEV and the diagonal vector multiplets.

Finally,

Zv = Zvortex

(

(t3y)TrFI · ; t3y, t3y−1, ei(aH+
∑

j zjFj)
)

(5.26)

Zav = Zvortex

(

(t3y−1)TrFI · ; t3y−1, t3y, ei(aH+
∑

j zjFj)
)

. (5.27)

Here the first argument encodes the weight of the vortex sum and is given as an expo-

nentiated linear function on the gauge algebra, the second and third argument are the

exponentiated rotational parameter, eiǫ, and complex structure, q = e2πiτ , respectively,

and the last argument is the exponentiated flavor equivariant parameter.

6 Matching the Coulomb branch expression

In this section we give some examples of how manipulating the Coulomb branch integral

gives rise to our Higgs branch result (5.25).

Free chiral multiplet. For completeness, let us first mention the factorization of the

simplest theory, namely the free chiral. Its index was given in (5.11) and can be factorized

as [45]

I = Γ
(

t3rζ , t3y , t3y−1
)

= Γ
(

t3rζ, t3y−1, t6
)

Γ
(

t3r+3yζ, t3y, t6
)

(6.1)

= Γ
(

t3r+3y−1ζ, t3y−1, t6
)

Γ
(

t3rζ, t3y, t6
)

. (6.2)

U(1) gauge theory. Next, we consider the example of a U(1) gauge theory with an

equal number N of fundamental and antifundamental chiral multiplets, which is necessary

to cancel the U(1)gauge U(1)gauge U(1)gauge anomaly. The U(1)R U(1)R U(1)gauge anomaly

then also cancels. The non-anomalous R-charge assignment is determined by requiring

the U(1)R U(1)gauge U(1)gauge anomaly to vanish. This anomaly is obviously proportional

to the R-charge of the chiral fermion, namely r − 1, which implies that one should take

r = 1. Note that these are not the superconformal R-charges of the free IR theory, which

equal r = 2
3 .

The matrix integral (5.14) reads explicitly

I = (p, p)∞ (q, q)∞

∮

dz

2πiz
zξFI

N
∏

α=1

Γ(z−1ζα(pq)
r/2, p, q)

N
∏

β=1

Γ(zζ̃−1
β (pq)r/2, p, q) , (6.3)

where we introduced the notation that p = t3y and q = t3y−1. We introduced fugacities ζα
and ζ̃β for the SU(N) × SU(N) flavor symmetry. For notational simplicity, let us absorb

the R-charges in the flavor fugacities as Zα = ζα(pq)
r/2 and Z̃−1

β = ζ̃−1
β (pq)r/2.
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The fundamentals contribute zeros at z = p−κ−1q−λ−1Zγ and poles at z = pκqλZγ .

The antifundamentals have zeros at z = pκ+1qλ+1Z̃δ and poles at z = p−κq−λZ̃δ. Picking

up the poles inside the unit circle,7 i.e. the poles arising from the fundamentals, we obtain

using the formulas in appendix C

I =
N
∑

γ=1

ZξFI

γ

N
∏

α=1
α 6=γ

Γ(Z−1
γ Zα, p, q)

N
∏

β=1

Γ(ZγZ̃
−1
β , p, q) (6.4)

×
∑

κ,λ≥0

(pκqλ)ξFI (pq)κλN
N
∏

α=1

(Z̃−1Zα)
−κλ

∏N
β=1

∏λ−1
j=0 θ(q

jZγZ̃
−1
β , p)

∏κ−1
i=0 θ(p

iZγZ̃
−1
β , q)

∏N
α=1

∏λ
j=1 θ(q

−jZ−1
γ Zα, p)

∏κ
i=1 θ(p

−iZ−1
γ Zα, q)

.

The intertwining factor vanishes as expected when reinstating the non-anomalous R-

charges,

(pq)N
N
∏

α=1

(Z̃−1Zα)
−1 =

(

(pq)1−r
)N

= 1, (6.5)

where we used that
∏

α ζα =
∏

α ζ̃α = 1. We then find

I =
∑

γ

Z
(γ)
cl Z

′(γ)
1-loop Z

(γ)
v Z(γ)

av , (6.6)

where the classical and one-loop contribution are given by

Z
(γ)
cl = ZξFI

γ (6.7)

Z
′(γ)
1-loop =

N
∏

α=1
α 6=γ

Γ(Z−1
γ Zα, p, q)

N
∏

β=1

Γ(ZγZ̃
−1
β , p, q) . (6.8)

The vortex contributions can be written as

Z(γ)
v = Z

(γ)
vortex

(

pξFI ; p, q, ζα, ζ̃β

)

, Z(γ)
av = Z

(γ)
vortex

(

qξFI ; q, p, ζα, ζ̃β

)

, (6.9)

in terms of the vortex membrane partition function

Z
(γ)
vortex

(

L ; eiǫ, q = e2πiτ , aα, bβ
)

=
∑

κ≥0

Lκ

∏κ−1
j=0

∏N
β=1 θ((e

iǫ)j AγB
−1
β , q)

∏κ
j=1 θ((e

iǫ)−j , q)
∏N

α=1
α 6=γ

θ((eiǫ)−j A−1
γ Aα, q)

,

(6.10)

where Aα = aα
(

eiǫq
) 1

2 and Bβ = bβ
(

eiǫq
)− 1

2 .

U(N) gauge theory. For a U(Nc) = U(1) × SU(Nc) gauge theory with Nf = Na = N

fundamentals and antifundamentals, we should check cancellation of two potential anoma-

lies, namely the U(1)gauge U(1)gauge U(1)R anomaly and the SU(Nc) SU(Nc) U(1)R
anomaly. The U(1)R U(1)R U(1)gauge anomaly cancels thanks to Nf = Na. While the

first anomaly is again proportional to r − 1, and thus imposes that r = 1, the second one

7Here and in the next examples we are not careful about the pole at the origin. If it has a non-zero

residue, it would give rise to a not completely suppressed deformed Coulomb branch contribution.
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leads to the usual R-charge assignment r =
Nf−Nc

Nf
. These are not compatible for Nc 6= 0.

One should thus not hope to achieve factorization in a U(Nc) theory with only fundamen-

tals and antifundamentals. One resolution, also used in two dimensions [6, 8], might be to

add extra matter to cancel the anomaly. We will not pursue this resolution here.

Associated Cartan theory. At first sight, Higgs branch localization breaks down in

the absence of an abelian factor in the gauge group since one cannot introduce the Fayet-

Iliopoulos parameter ζ of (4.6), which played such an essential role. However, we will now

argue that one can associate to any theory with gauge group G a theory with gauge group

U(1)rank g with equal index up to numerical and other holonomy independent factors. A

similar observation was made in [56] for the two-sphere partition function. This associated

Cartan theory can be subjected to Higgs branch localization.

First, one remarks that the integration measure of the matrix integral (5.14) for gauge

group G is naturally equal to that of U(1)rank g up to the numerical prefactor |W|−1. Next,

the one-loop determinant of a chiral field in gauge representationR of G can be equivalently

thought of as the product of one-loop determinants of chiral fields with U(1)rank g charges

determined by the weights w ∈ R. Finally, using the simple observation that the one-loop

determinant of the vector multiplet can be rewritten as

Zvector
1-loop =

(

(t3y ; t3y)∞(t3y−1 ; t3y−1)∞
)rank g

∏

α 6=0 Γ(e
iα(â), t3y, t3y−1)

(6.11)

=
(

(t3y ; t3y)∞(t3y−1 ; t3y−1)∞
)rank g ∏

α 6=0

Γ(t6e−iα(â), t3y, t3y−1) , (6.12)

where we used the elliptic gamma function identity Γ(z, p, q) Γ(pq/z, p, q) = 1, one can

equivalently think of the vector one-loop determinant (up to a holonomy independent

prefactor) as the product of one-loop determinants of chiral fields with U(1)R charge equal

to two and with U(1)rank g charges determined by the non-zero roots α 6= 0.

SU(2) gauge theory. Let us finally then consider the simplest physically relevant ex-

ample, namely an SU(2) gauge theory with Nf = Na = N fundamental and antifunda-

mental chiral multiplets. The argument presented above, indicates that factorization can

be achieved provided that the R-symmetry is not anomalous, i.e. if we use the well-known

non-anomalous R-charge assignment r =
Nf−Nc

Nf
= N−2

N .

The index is computed by

I =
1

2
(p, p)∞(q, q)∞

∮

dz

2πiz

1

Γ(z2, p, q)Γ(z−2, p, q)

N
∏

α=1

Γ(z−1ζα(pq)
r/2, p, q) Γ(zζα(pq)

r/2, p, q)

×
N
∏

β=1

Γ(zζ̃−1
β (pq)r/2, p, q) Γ(z−1ζ̃−1

β (pq)r/2, p, q)

=
1

2
(p, p)∞ (q, q)∞

∮

dz

2πiz

1

Γ(z2, p, q)Γ(z−2, p, q)

2N
∏

A=1

Γ(z−1YA, p, q) Γ(zYA, p, q) ,
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where we introduced fugacities ζα, ζ̃β for the SU(N) × SU(N) flavor symmetry. Since the

fundamental representation of SU(2) is pseudoreal, we get an enhanced flavor symmetry,

with fugacities ZA = (ζα, ζ̃
−1
β ) . Finally, we introduced YA = ZA(pq)

r/2.

The poles from the one factor of the vectormultiplet cancel against the zeros of the

other factor and vice versa. The integrand further has zeros at z = p−κ−1q−λ−1YB and

z = pκ+1qλ+1Y −1
C and poles at z = pκqλYB and z = p−κq−λY −1

C . Picking up the poles inside

the unit circle, i.e. the poles at z = pκqλYB, we obtain using the formulas in appendix C

I =
1

2

2N
∑

B=1

∏2N
A=1 Γ(YBYA; p, q)

∏2N
A=1
A 6=B

Γ(Y −1
B YA ; p, q)

Γ(Y 2
B ; p, q)Γ(Y −2

B ; p, q)

×
∑

κ,λ≥0

(pq)−2κλ(2−N)
2N
∏

A=1

(YA)
−2κλ

×

∏2λ
j=1 θ(q

−jY −2
B , p)

∏2κ
i=1 θ(p

−iY −2
B , q)

∏2λ−1
j=0 θ(qjY 2

B, p)
∏2κ−1

i=0 θ(piY 2
B, q)

2N
∏

A=1

∏λ−1
j=0 θ(q

jYAYB, p)
∏κ−1

i=0 θ(p
iYAYB, q)

∏λ
j=1 θ(q

−jY −1
B YA, p)

∏κ
i=1 θ(p

−iY −1
B YA, q)

.

Note now that the intertwining factor as expected disappears for the correct non-anomalous

R-charges: (pq)−2(2−N)
∏

A(YA)
−2 = (pq)−2(2−N+RN) = 1 where we used that

∏

A ZA = 1.

We thus find complete factorization

I =
1

2

2N
∑

B=1

Z
′(B)
1-loop Z

(B)
v Z(B)

av , (6.13)

where the one-loop contribution is

Z
′(B)
1-loop =

∏2N
A=1
A 6=B

Γ(YBYA, p, q)Γ(Y
−1
B YA, p, q)

Γ(Y −2
B , p, q)

(6.14)

and the vortex partition functions are given by

Z(B)
v = Z

(B)
vortex(p, q, ZA) , Z(B)

av = Z
(B)
vortex(q, p, ZA) . (6.15)

Here the vortex membrane partition function is given by

Z
(B)
vortex(p, q, ZA) =

∑

κ≥0

∏2κ
i=1 θ(p

−iY −2
B , q)

∏2κ−1
i=κ θ(piY 2

B, q)

1
∏κ

i=1 θ(p
−i, q)

2N
∏

A=1
A 6=B

∏κ−1
i=0 θ(p

iYAYB, q)
∏κ

i=1 θ(p
−iY −1

B YA, q)
, (6.16)

where YA = ZA(pq)
N−2

2N .

The generalization of this result to SU(N) gauge group is technically more involved,

but is expected to take on a factorized form as well.
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A Spinor conventions

We choose to use four-component spinors. Bars on spinors are taken to be the Majorana

conjugate, i.e. ψ̄ = ψtC where C is the antisymmetric charge conjugation matrix satisfying

(γµ)
tC = −Cγµ. Since we are in Euclidean signature, it is impossible to impose the Majo-

rana conjugate to be equal to the Dirac conjugate, but rather we work ‘holomorphically’,

i.e. the hermitian conjugate spinor does not make an appearance.

We take the Euclidean gamma matrices to be

γm =

(

0 −iσm

iσ̄m 0

)

, (A.1)

where σm = (~σ, i12) and σ̄m = (~σ,−i12), where ~σ are the three Pauli matrices. We also

introduce γ5 = γ1γ2γ3γ4 =
(

12 0
0 −12

)

which squares to one. The charge conjugation matrix

is given explicitly by C = γ4γ2 =
(

iσ2 0
0 −iσ2

)

.

We also introduce σmn = 1
2 (σ

mσ̄n − σnσ̄m) and σ̄mn = 1
2 (σ̄

mσn − σ̄nσm) , in terms of

which one can write

γmn =
1

2
(γmγn − γnγm) =

(

σmn 0

0 σ̄mn

)

. (A.2)

Finally, for any four-component spinor ψ, we denote its right and left-handed piece as

ψR = 14+γ5
2 ψ and ψL = 14−γ5

2 ψ respectively.

B N = 1 supersymmetry algebra on Euclidean four-manifolds

In this section we present the N = 1 supersymmetry transformation rules on any four-

dimensional Euclidean manifold allowing for a solution to the conformal Killing spinor

equation Dµε = γµε̃. A more general and systematic analysis of supersymmetry on four-

dimensional Euclidean backgrounds has been performed in [50–52].

The transformation rules on the vectormultiplet are

δAµ = ε̄γµλ (B.1)

δλ = −
1

2
γµνFµν ε− γ5 D ε (B.2)

δD = ε̄ γ5 /Dλ , (B.3)

and those on the chiral multiplet are

δA = ε̄χ (B.4)

δB = ε̄iγ5χ (B.5)

δχ = (γµDµ(A+ iγ5B)) ε− i(F + iγ5G)ε+
3r

4
(A− iγ5B) /Dε (B.6)

δF = iε̄ /Dχ+ i

(

3r

4
−

1

2

)

χ̄ /Dε+ ε̄(A+ iγ5B)λ (B.7)

δG = −ε̄γ5 /Dχ+

(

3r

4
−

1

2

)

χ̄γ5 /Dε+ ε̄iγ5(A+ iγ5B)λ , (B.8)
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for commuting ε. Here Dµ is the covariant derivative Dµ = ∂µ− iAµ− iVµ, where Aµ is the

gauge connection and Vµ is a background field for the R-symmetry. In the chiral multiplet

we decomposed φ = A−iB
2 , φ̄ = A+iB

2 and F = F+iG
2 , F̄ = F−iG

2 . The spinor ε needs

to satisfy the Killing spinor equation Dµε = γµε̃. One can check that the supersymmetry

variations then square to

δ2 = LA+V
v + ρ∆+ iαR , (B.9)

where LA+V
v is the gauge and background R-symmetry covariant Lie derivative along the

vector field v, ∆ is the scaling weight8 and R is the U(1)R generator.9 The parameters

themselves are given by

vµ = ε̄γµε , ρ =
1

4
Dµv

µ , α = 3i¯̃εγ5ε . (B.12)

C Elliptic gamma function

The elliptic gamma function is defined as

Γ(z, p, q) =
∏

j,k≥0

1− pj+1qk+1/z

1− pjqkz
. (C.1)

It satisfies the shift formulas

Γ(pz, p, q) = θ(z, q)Γ(z, p, q) , Γ(qz, p, q) = θ(z, p)Γ(z, p, q) , (C.2)

where θ(z, q) = (z, q)∞(q/z, q)∞ in terms of the infinite q-Pochhammer symbol (z, q)∞ =
∏

j≥0(1− zqj) . Furthermore, one has

Γ(z, p, q) Γ(pq/z, p, q) = 1 . (C.3)

The θ-function satisfies

θ(z, q) = θ(q/z, q) = −z θ(z−1, q) , (C.4)

which when iterated gives for positive κ

θ(qκz, q) = θ (z, q) (−zq(κ−1)/2)−κ, θ(q−κz, q) = θ (z, q) (−z−1q(κ+1)/2)−κ (C.5)

8The scaling weights are

∆ (Aµ, λR, λL, D) =

(

1,
3

2
,
3

2
, 2

)

, ∆(εR, εL) =

(

1

2
,
1

2

)

,

∆(φ, φ̄, χR, χL,F , F̄) =

(

3r

2
,
3r

2
,
3r + 1

2
,
3r + 1

2
,
3r + 2

2
,
3r + 2

2

)

. (B.10)

9The R-charge assignments are

R (Aµ, λR, λL, D) = (0, 1,−1, 0) , R(εR, εL) = (1,−1) ,

R(φ, φ̄, χR, χL,F , F̄) = (r,−r, r − 1, 1− r, r − 2, 2− r) . (B.11)
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Given the above formulae, we can derive for positive κ, λ

Γ(pκqλz, p, q) =
(

−zq(λ−1)/2p(κ−1)/2
)−κλ

Γ(z, p, q)
λ−1
∏

j=0

θ(qjz, p)
κ−1
∏

i=0

θ(piz, q) , (C.6)

and

Γ(p−κq−λz, p, q) =
Γ(z, p, q)

(

−z−1q(λ+1)/2p(κ+1)/2
)−κλ ∏λ

j=1 θ(q
−jz, p)

∏κ
i=1 θ(p

−iz, q)
. (C.7)

Finally, in order to compute residues, we have the following limit

lim
z→1

(1− z)Γ(z, p, q) =
1

(p, p)∞ (q, q)∞
. (C.8)
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