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0. Introduction

Let X be a compact Kahler manifold. In this paper we will study a correspon-

dence between representations of the fundamental group of X, and certain holomorphic

objects on X. A Higgs bundle is a pair consisting of a holomorphic vector bundle E, and

a holomorphic map 6 : E -> E ® 0^ such that 6 A 6 == 0. There is a condition of sta-

bility analogous to the condition for vector bundles, but with reference only to sub-

sheaves preserved by the map 6. There is a one-to-one correspondence between irre-

ducible representations of^(X), and stable Higgs bundles with vanishing Chern classes.

This theorem is a result of several recent extensions of the work of Narasimhan and

Seshadri [39], [5], [16], [17], [18], [30], [37], [49], [52], [47]. The purpose of this

paper is to discuss this correspondence in detail, to obtain some further properties, and
to give some applications.

The correspondence between Higgs bundles and local systems can be viewed as

a Hodge theorem for non-abelian cohomology. To understand this, let us first look at

abelian cohomology: H^X, C) can be thought of as the space of homomorphisms

from 7Ci(X) into C, or equivalently as the space of closed one-forms modulo exact one-

forms. But since X is a compact Kahler manifold, the Hodge theorem gives a

decomposition

H^X, C) = H^X, ̂ ) @ H°(X, i^)-

In other words, a cohomology class can be thought of as a pair (e, ̂ ) with e e H^X, fl^)

and S a holomorphic one-form. The correspondence between Higgs bundles and local

systems is analogous. If 7Ti(X) acts trivially on Gl(^, C) then the non-abelian coho-

mology set H^TT^X), G\(n, C)) is the set of representations 7ri(X) ->GI(TZ,C), up to

conjugacy. Equivalently it is the set of isomorphism classes of G°° vector bundles with

flat connections. The theorem stated above gives a correspondence between the set of

semisimple representations and the set of pairs (E, 6) where E is a holomorphic bundle

(in other words, an element of H^X, G\(n, fl^)) and 6 is an endomorphism valued

one-form, subject to various additional conditions.

There is a natural action of C* on the set of Higgs bundles. A nonzero complex

number t sends (E, 6) to (E, rf)). This preserves the conditions of stability and vanishing

of Ghern classes, so it gives an action on the space of semisimple representations. This

C* action should be thought of as the Hodge structure on the semisimplified non-abelian

cohomology.

Before describing the contents of the paper, let me make a comment about the

length. Several different topics are covered in different sections, and while there are

some interdependencies, they do not build linearly. So the reader might well be interested

in skipping to selected parts and working backwards.

The basic linear algebra of the correspondence between Higgs bundles and local

systems is described in § 1. The main construction is that a metric on a Higgs bundle
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or flat bundle leads to an operator corresponding to a structure of the opposite kind.

This operator may not satisfy the required integrability condition—the obstruction

is a curvature Fg; or pseudocurvature Gg. If the (pseudo-) curvature vanishes then one

has a harmonic bundle, a bundle with both structures of Higgs bundle and flat bundle

related by a metric. The main existence theorem is that if a Higgs bundle is stable, or

a flat bundle is irreducible, then the equations AF^ == XI or AGg = 0 can be solved.

In the Higgs case an extra assumption, that the Ghern classes vanish, is required for

concluding that F^ = 0. In the flat case, the stronger vanishing Gg = 0 is automatic,

which is the statement of the main Lemma 1.1. We get an equivalence between the

category of direct sums of stable Higgs bundles with vanishing Ghern classes, and the

category ofsemisimple local systems, through equivalences with the intermediate category

of harmonic bundles. At the end of § 1 some facts about existence of moduli spaces for

Higgs bundles are stated without proofs, in the case when X is a smooth projective

variety.

The classical Kahler identities for differential forms on X can be extended to

the case of forms with coefficients in a harmonic bundle. The principal consequence

is that the complexes of forms with coefficients in a harmonic bundle are formal. This

provides a natural quasiisomorphism between the de Rham complex of forms with

coefficients in the flat bundle, and the Dolbeault complex with coefficients in the cor-

responding Higgs bundle (with differential including 6). There is a natural duality

statement, and also a Lefschetz decomposition for cohomology with coefficients in a

semisimple local system. The next topic in § 2 is a crucial compactness property: the

set of harmonic bundles with a fixed bound on the eigenvalues of 6 is compact. One

can conclude that the map from Higgs bundles to flat bundles is continuous. The section

is closed with a brief discussion of monodromy groups and real structures. These topics

are treated in greater generality in § 6, so the proofs here are redundant, but it seems

worthwhile to have a straightforward introductory version.

In § 3 we will discuss a way of extending the correspondence between stable Higgs

bundles and irreducible representations, to a correspondence between semistable Higgs

bundles (with vanishing Ghern classes) and possibly reducible representations. The

reason this is possible is the formality of the complexes of forms with coefficients in

harmonic bundles discussed in the previous section. We introduce some machinery, of

differential graded categories., to carry out the argument. It is a generalization of the notion

of differential graded algebra to the case when there are several different underlying

objects. The theory of extensions of semisimple objects is governed by a differential

graded category, and formality of the differential graded category gives a trivialization

of the theory of extensions, as well as an isomorphism between the de Rham and Dol-

beault theories. In order to obtain the best hypotheses, we need to make a digression

and prove the theorems of Mehta and Ramanathan in the case of Higgs bundles. These

say that the restriction of a semistable or stable Higgs bundle to a sufficiently general

hyperplane remains semistable or stable. This allows us to prove that a semistable Higgs
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bundle with vanishing Ghern classes is actually an extension of stable Higgs bundles

(rather than stable Higgs sheaves). Finally, at the end of the section we go back to the

formalism of differential graded categories, and introduce the notion of tensor product

structure. The extended correspondence between semistable Higgs bundles and repre-

sentations is compatible with tensor product.

There is an important class of representations of the fundamental group, the

variations of Hodge structure. This class of representations was first considered by

Griffiths in connection with his study of the monodromy of cohomology in smooth

families of varieties [24]. Griffiths' original notion of a variation of Hodge structure

with integral lattice can be weakened to the notion of complex variation of Hodge

structure [8]. In § 4 we show that the representations which come from complex varia-

tions of Hodge structure can be characterized as the fixed points of the action of C* on

the space of semisimple representations. A consequence is that any rigid representation

of the fundamental group of a compact Kahler manifold must come from a complex

variation of Hodge structure. (In fact it turns out that a rigid representation must be

a complex direct factor of a rational variation of Hodge structure.)

This places restrictions on which groups can occur as fundamental groups of

compact Kahler manifolds. This is because there are restrictions on which groups may

occur as the real Zariski closure of the monodromy group of a complex variation of

Hodge structure. The groups which may occur we say are of Hodge type. The groups

which are not of Hodge type include all complex groups, S1(^,R), and some others

listed in § 4. On the other hand, lattices in semisimple groups often provide examples

of rigid representations f54], [35], [42]. A rigid lattice in a group which is not of Hodge

type cannot be the fundamental group of a compact Kahler manifold. This rules out,

for example, Sl{n, Z) for n ̂  3, or co-compact lattices in complex groups or other groups

which are not of Hodge type. Similar topological restrictions on Kahler manifolds using

harmonic maps have been obtained in many works. The first in this line was Siu [49],

then Sampson [44], and others. Carlson and Toledo prove (among other things) that

a discrete co-compact lattice in S0(^, 1) cannot be the fundamental group of a compact

Kahler manifold [4]. For the groups S0(^, 1), this is better than our statement, which

only applies when n is odd.

If X is a smooth projective variety, then one can construct an algebraic moduli

space for direct sums of stable Higgs bundles with vanishing Chern classes. We will

not give the construction in this paper, but only the statements. Although the moduli

space is not projective, there is a proper map to a vector space. Using this proper map,

the corollary about rigid representations can be extended to the statement that any

representation of ^i(X) can be deformed to a complex variation of Hodge structure.

Using this fact, the nonexistence results for 7Ci(X) can be extended somewhat, to groups

which are semi-direct products with split quotients which are lattices ruled out as above.

It seems reasonable to expect that a moduli space could be constructed in the Kahler

case. These extra results would then hold in that case.
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The theorem about rigid representations shows that they play a special role. It
seems reasonable to make the following

Conjecture. — Rigid representations of the fundamental group of a smooth projective variety

should be motivic.

To be more precise, a rigid irreducible representation should be a direct factor

in the monodromy of a family of varieties. There would be several consequences of a

representation's coming from a family of varieties. The first is that the representation

would underly a complex variation of Hodge structure. We prove that this holds for

rigid representations (Lemma 4.5). Second, a motivic representation would be a direct
factor in a Q^-variation of Hodge structure, and the corresponding A-adic representations

would descend to a model of X over a number field. We also prove these properties for

rigid representations in § 4. Another property would be integrality, because the mono-

dromy representation of a family preserves the integral cohomology. This leads to a
conjecture implied by the previous conjecture,

Any rigid irreducible representation of the fundamental group of a smooth projective variety

should be defined over a ring of integers.

I do not know how to prove this (M. Larsen informs me of a simple example

which demonstrates that it is not true for arbitrary discrete groups). Finally, let me

remark that the properties called absoluteness I and II in [48] are immediate for rigid

representations. So the above conjecture is actually a special case of the conjecture

described in [48]. The results o f § 4 may be viewed as proving the variation of Hodge

structure and Galois type conjectures stated in [48], for the case of rigid representations.

The last two sections, 5 and 6, have been added after the preliminary versions of

this paper were circulated. Some theorems are stated in § 5, the proofs given in § 6.

The purpose is to interpret the results of the previous sections as a way of putting a

Hodge structure on the fundamental group. The action of C* on the space of Higgs

bundles leads, via our correspondences, to an action of C* on the pro-algebraic

completion c5i(X, x) of the fundamental group. We formulate the notion of pure non-

abelian Hodge structure, and show that the action of U(1)CC* on the reductive

quotient ©^(X, x) provides an example of such a structure. We rephrase some of the

results about rigid representations and variations of Hodge structure in this language.

We also treat the nilpotent quotient ^(X, x), which is the nilpotent completion of

the fundamental group. The extended correspondence of § 3 provides an action of C*
here too, and we show that this action serves to define the Hodge filtration known by
work of Morgan and Hain.

The proofs of the results stated in § 5 are given in § 6, using Tannakian categories.

The reader should notice that the discussion is (with the exception of the part about

the Hodge filtration on G^1) simply an application of the results discussed in the pre-

vious sections. We close § 6 with another application of the Tannakian formalism, to

give definitions of principal objects or torsors, and to extend the correspondence to that

2
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case. The final result is a description of reductive representations with values in a real

group, in terms of principal Higgs bundles with a Cartan involution. The rationale for

using the somewhat complicated language of Tannakian categories here is that it demons-

trates the intuitive point that one can prove existence theorems and the like in the

vector (Gl(%)) case, without having to deal with principal bundles in the beginning.

Eventually, the results for principal bundles are obtained in an essentially formal way,

using the information about tensor products.

The main result used in this paper, the correspondence between Higgs bundles and

local systems, has the following origins. The first example of a correspondence between

holomorphic objects and representations of the fundamental group was due to Nara-

simhan and Seshadri [39]. This was generalized to vector bundles and unitary connec-

tions in higher dimensions by Donaldson [16] [17], Mehta and Ramanathan [37],

and Uhlenbeck and Yau [52]. Hitchin originated the definition of Higgs bundle in

the case of objects on a curve [30]. He proved half of the correspondence in the rank

two case, and the other half was provided in that case by Donaldson [18] (see also the

paper by Diederich and Ohsawa [14], which treated the SU(1, 1) case). Hitchin

considered the action of U(l) CC* on the space of Higgs bundles, and also a version

of the compactness statement. Higgs bundles of the type which come from variations

of Hodge structure were treated by Deligne and Beilinson (unpublished) and in [46]. For

the general statement in higher ranks and higher dimensions, Gorlette provides one

half of the correspondence [5]. The other half is provided by [47]. A crucial lemma

in the present treatment was communicated to me by Deligne. It is this lemma which

allows one to apply Gorlette's result and conclude that every semisimple representation

comes from a Higgs bundle. A similar lemma is contained in Corlette's paper. This

lemma is really a version of Siu's Bochner-type formula [49]—see also [44]. It should

be noted that one of our main applications, the theorem that a rigid representation

must come from a variation of Hodge structure, uses only that half of the correspon-

dence which is provided by Corlette's paper (or Donaldson's) and this main lemma.

The Kahler identities for harmonic bundles are based on Deligne's Kahler iden-

tities for variations of Hodge structure [7]. The properties of formality and their appli-

cations discussed in § 3 are inspired by the work of Goldman and Millson [21]. The

compactness result appeared as one of the main steps in Hitchin's paper [30]. The

notion of group of Hodge type was essentially understood by Griffiths and Schmid and

Deligne from the beginning [26] [11] [9] (and it is not clear whether the version dis-

cussed in § 4 is the optimal one). The ideas presented in § 5 were only recently fully

formed. The idea of using the Tannakian formalism to put a Hodge structure on the

fundamental group was partly instigated by an electronic message from K. Corlette.

He contemplated using the Tannakian category of variations of mixed Hodge structure

(which might lead to a theory somewhat distinct from that outlined in § 5).

Earlier versions of this paper have been circulated in preprint form. Some new

material has been added since then, including everything in §§ 5 and 6. Some of the



HIGGS BUNDLES AND LOCAL SYSTEMS 11

results of this paper have been announced in the paper (( The ubiquity of variations
of Hodge structure ".

I would like to thank the many people whose comments have led to improvements

in this paper, ranging from brief comments to existence of large parts. I would like to

thank K. Corlette for discussions about the overall framework into which the various

existence theorems fit, which made it clear that they were two sides to the same coin.

In this regard I would also like to thank W. Goldman for pointing out Hitchin's paper,

and suggesting that it could probably be generalized, as well as for explaining with

J. Millson their theory of deformations. I would like to thank N. Hitchin for helpful

discussions about his correspondence, and about what should be done to take into

account real structures. I am grateful to P. Deligne for the invaluable comments he has

provided on many occasions. Principal among these was his letter stating the main

lemma (1.1 below)—this vastly improved a weaker statement I had by showing that

my hypothesis about vanishing of pseudo Chern classes was always true. Also important

were suggestions that compatibility with tensor product, and the Lefschetz action ofsl(2),

should be considered. His communications have included helpful comments and cor-

rections, as well as provocative ideas contributing to works beyond the present. Some

years ago, W. Schmid asked me what would happen if you multiplied 6 by a number t.

At the time, the objects being considered were systems of Hodge bundles, so the answer

was that you got an isomorphic system; in the later case of Higgs bundles, this question

leads to one of the main concepts in this paper. So I would like to thank him for that

comment in particular, as well as for more general encouragement. In the category

of debts from many years ago, I should also like to thank the people at Harvard who

fostered an environment of interest in the topics of representations of fundamental

groups and harmonic maps. These include Y. Siu and his students, N. Boston and his

fellow students of number theory, and many others. It is remarkable that, unbeknown

to any of us, we were all working on the same things. Finally, back to more recent things,

the discussion of real representations was added in response to encouragement from

G. Kempf and S. Zucker. I would like to thank A. Beilinson for some useful comments

about the analogy with Galois representations. I thank J. Le Potier for pointing out

an error in Theorem 2 (which has been fixed in revision). And I would like to thank

M. Larsen for his helpful explanations about questions of ^-structure and other items
in § 4.

1. Non-abelian Hodge theory

Let X be a compact complex manifold with a Kahler metric <*). Choose a base

point x. We will describe some definitions and constructions, and then state some basic

results. The discussion of the history and references for these definitions and constructions

will be ̂ deferred until the statements of the main results.

We will study the representations of the fundamental group ^(X, x). A repre-

sentation on a complex vector space V^ is the same thing as a C°° complex vector



12 CARLOS T. SIMPSON

bundle V together with a flat connection, where V^ is equal to the fiber over x. The

flat connection is a first order differential operator D which takes sections of the bundle

to one-forms with coefficients in the bundle. Such an operator is a flat connection if

and only if Leibniz's rule T){av) = d{a) v + a D(^) holds, and it is integrable, m other

words D2 = 0. To understand the second condition note that D is extended to an ope-

rator on differential forms with values in the bundle, using the Leibniz formula with

the usual sign which depends on the degree of the form. Another way of thinking of a

flat bundle is by looking at the sheaf V^ of flat sections (those with D(^) == 0). This is

a local system of complex vector $paces, whose monodromy representation is the one

we began with. These objects depend only on the topological or smooth structure of X.

The purpose of this section is to establish a correspondence between flat bundles

and another type of object which depends on the analytic structure of X. A Higgs bundle

is a holomorphic vector bundle E together with a holomorphic map 6 : E -^ E 0 Q^ 5

such that 6 A 6 == 0 in End(E) ®0|:. If z^ ..., ̂  are local holomorphic coordinates,

then 6 == S6^ dz^ where 6^ are holomorphic endormorphisms of E. The condition that

6 A 6 == 0 means that the matrices 6, commute with one another. A Higgs bundle

may also be thought of as a C00 bundle with a first order operator. The holomorphic

structure ofE is determined by an operator 3, which takes sections of E to (0, 1) forms

with coefficients in E, and which annihilates the holomorphic sections. The map 6 is

an operator of order zero taking sections to (1, 0) forms with coefficients in E. Combine

these to form an operator D" = ^ + 6 which determines the structure of the Higgs

bundle E. Conversely, such an operator defines a Higgs bundle if and only if it satisfies

Leibniz's rule D"(^) = 1){d) e + a D"(^), and satisfies the integrability condition

(D")2 = 0. Note that this condition contains the integrability of the holomorphic struc-

ture ~8
2 == 0, the fact that 6 is holomorphic, B(6) = 0, and the condition 6 A 6 = 0.

The fact that an integrable 8 operator is the same thing as a holomorphic structure

is a consequence of the theorem of Newlander-Nirenberg. If X is a projective variety,

then this may be taken one step further, by Serre's GAGA theorem. A holomorphic

bundle E is in fact an algebraic vector bundle; in other words, it can be given by algebraic

transition functions for a Zariski open cover. The holomorphic 6 is then also algebraic.

Thus if X is a projective variety, the notion of Higgs bundle is an algebraic geometric

one.

CONSTRUCTIONS

In order to establish a relationship between the structures of flat bundles and

Higgs bundles, we consider metrics on the underlying G°° vector bundles. A metric K

on V or E is a positive definite hermitian inner product (., . )^ on the fibers, varying

smoothly over the base. Given a frame { ^ } for the bundle, a metric is determined by

the hermitian matrix h^ == (^, v^. It is sometimes helpful to think of a metric as an

isomorphism K : V -> V* between the bundle and the dual of the complex conjugate

bundle, with K == K/. The map is related to the metric by the formula K(«) {v) == («, v)^.
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If (E, D") is a Higgs bundle with a metric K, we will define an operator D^.

Write D" == ^ + 6, and first define D^ = ̂  + 6s; as follows: ̂  ls Ae unique operator

such that ^K + ^ preserves the metric, which means

(SeJ) + (., ̂ f) = a(.,/),

and fig is defined by the condition that (6<?,/) =(^,6K/). In local coordinates,

if 6==S6,^ then Q^==^iQ^dz^ where (^ is the adjoint of the matrix 9^ taken

with respect to the metric. Now set D^ == D^ + D". It satisfies Leibniz's rule

D^(^) = a D^(^) + ̂ ) ^5 so it is a connection.

If (V, D) is a flat bundle with a metric K, then define an operator D^ in the

following way. Decompose D = d ' + d" into operators of type (1, 0) and (0, 1) res-

pectively. Let 8' and 8" be the unique operators of types (1, 0) and (0, 1) such that

the connections 8' + d" and d ' + 8" preserve the metric. Let S == {d' + 8')/2 and

a == [d" + 8")/2, and let 6 === {d' - 8')/2 and 6 == (<T - 8")/2. In terms of a flat frame

for the bundle, the operator 6 may be described as follows. Suppose { »,} is a frame

of flat sections. Let h^ = (^, Vj)-^ be the hermitian matrix for the metric. If

6 = S6^ y,® y^.® rf^, then the coefficients 6^ are determined by the equation

p^-aA,A.

Now set DK == a + 9. It satisfies the Leibniz rule D^(av) == aD^{u) + B(fl) e, so it

is an operator of the type needed to define a Higgs bundle (but it might not satisfy the

integrability condition). Note that D^ = c) + 9 is the operator in the previous paragraph

associated to D '̂ and the metric. It is also helpful to consider the operator

DK == DK - DK == 8" - 8'.

Note that D '̂ == (D + D^/2.

FUNCTORIALITY, TENSOR PRODUCT AND DUAL

These constructions are functorial with respect to morphisms of the space X.

Suppose f\ X —> Y is a morphism of complex manifolds. If E is a Higgs bundle on Y

with metric K, then/* E is a Higgs bundle on X,/* K is a metric, and/* Dg; = Dis-

similarly if V is a flat bundle on Y with metric K, then/* V is a flat bundle on X with

metric /* K, and /* D '̂ == D^.

We can define tensor products and duals of flat or Higgs bundles in an obvious

way. The tensor product is just the usual tensor product of bundles on X. The struc-

tures of flat and Higgs bundles are defined as follows. If E and F are Higgs bundles,

then define an operator D" on E 0 F by

D"(^®/) =D"(,)®/+^®D"(/)

and extend this to differential forms using Leibniz's rule. Note that as always, there

will be an appropriate sign in the formulas. This operator D" will give E ® F a structure
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of Higgs bundle. In algebraic terms, (E, 6) ® (F, cp) == ( E ® F , 6 ® 1 + I ® 9). Simi-

larly, if V and W are flat bundles, then define an operator D by

D(y ® w) == D{v) ® w + v ® D{w) $

it will be a flat connection.

IfJ, K are metrics relating Higgs operators D" and connections D on bundles E

and F, then the metric J ® K on the tensor product E ® F, defined by

(^/ '̂ ®/')j®K = (^ e'), (/,/^,

relates the corresponding Higgs operator and connection defined above. Write

D" = ^ 4- 6, and D^' = = 3 — 6 . The extension of D^ to the tensor product is given by

the same formula. Then Dj^ is characterized by the equation

(D,^®/)^'®/') + (^/.D^'®/')) = c^®/,.'®/-).

However, the operator defined by Djg^®/) = Dj(^) ®/+<?® D^(/) also satisfies

the above equation, so these operators must be the same. On the other hand, it is clear

that D == D" + Dj K. Thus D == D" + Dj^ is the operator associated to D" by the

metric J ® K.
To define the dual, the underlying vector bundle is the dual bundle. If D" is a

Higgs operator on E, define D" on the dual bundle E* by the formula

D"(X) (e) + X(D" e} = 8(^e)

for X and e sections ofE* and E. In algebraic terms, the dual of (E, 6) is the Higgs bundle

(E*, — 6*), so that the morphisms (9^ -> E® E* -> 0-^ are morphisms of Higgs bundles.

Similarly, if (V, D) is a flat bundle, the dual connection is defined by

D(X) (v) + H'Dv) == d(\v),

so the morphisms C -> V ® V* -> C are morphisms of flat bundles.

If K is a metric relating operators D" and D on a bundle V, then as before the

dual metric K* defined by

(X, ̂  = X(4)

relates the operators on the dual bundle V* defined above. Here (JL^ is the element of V

such that pi(<?) = {e, ^K-

FIRST ORDER KAHLER IDENTITIES

Here is some motivation for the above definitions of the operators D^ and D^.

The choice of a Kahler metric <x> results in an operator A in the exterior algebra of forms

on X. It is the adjoint of the operation of wedging with the (1,1) form co. See ([25]

pp. I l l ff) for the description of A in local normal coordinates. Recall [53] that the

operators 9 and 8 on scalar forms satisfy the Kahler identities

(^ = V~~1[A^], (9Y = - V^"T[A, 8].
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In terms of the exterior derivative and the operator d
€
 == ~S — 0, these become

(̂  = _ v^~T[A, o, (dy = V^[A, <!.

If E is a Higgs bundle with metric K, the above defined operator D^ can be charac-

terized as the unique operator satisfying

W = -V^TCA, D"], (D'y = - V=~\ [A, Dy.

The formal adjoint ( )* uses the metric K. Similarly, if V is a flat bundle with metric,

then the operator Dj^ can be characterized as the unique operator satisfying

(D^)* = - V^TCA, D], (D)* - V^~I[A, Dy.

These formulas can be proved by following the technique of [25J.

CURVATURE

If E is a Higgs bundle with metric then the operator D;g is a connection. If V is

a flat bundle with metric, then the operator D^ is an operator of the type needed to

define a Higgs bundle. But the operators do not necessarily satisfy the integrability condi-

tions, (Dg)2 == 0 or (Dg)2 == 0 respectively. The failure to satisfy the integrability is

measured by a tensor.

If E is a Higgs bundle with metric K, the curvature is the End (E) "valued two form

F K = ( D J 2 = ( D K D / / + D ' / D K ) .

It satisfies the Bianchi identities D" Fg: == Dg; F^ == 0, because (D")2 == 0 and (D^)2 == 0.

If V is a flat bundle with metric K, the pseudocurvature is the End (V)-valued two

form
GK^D^^DD^+DKD)/^

It satisfies the Bianchi identities DGg^ == D^ G^ == 0, again because D2 == 0 and

(D^)2 = 0. Note that D2 == 0 implies that (rf')2 == 0, (rf")2 == 0, and d ' d" + d" d ' == 0.

These in turn imply that (8')2 = 0, (8")2 = 0, and 8' 8" + 8" 8' == 0, which give

(D^)2 = 0. Similarly we obtain the formula

GK == d ' 8" + 8" d ' - d" 8' - 8' d" + d " 8" + 8" d" - d ' 8' - 8' rf'.

A metric K such that Fj^ = 0 on a Higgs bundle gives rise to a structure of flat

bundle. A metric K such that Gg == 0 on a flat bundle, gives a structure of Higgs bundle.

These two constructions are inverses of one another.

The equations F^ = 0 and G^ == 0 are over-determined, but there are natural

intermediate equations obtained by considering only the component of the curvature

or pseudocurvature pointing in the direction of the Kahler form. If E is a Higgs bundle,

a metric K is called Hermitian-Y ang-Mills if

AF^ ==\.U

for a scalar constant X which depends on the degree divided by the rank of E.
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If V is a flat bundle, a metric K is called harmonic if

AG^==0.

A metric on V can be thought of as a multivalued map

^:X-^Gl{n)IV{n)

which is equivariant with respect to the monodromy representation of the flat bundle V.

The condition AGy^ == 0 is the same as the condition obtained by Corlette [5] for the

map to be harmonic. To see that this condition is equivalent to finding a critical point

for the energy, proceed as follows. The derivative of the classifying map 0^ is 6 + 6,

so the energy is

||e+e|^=J^(M)+(M).

Changing K infinitesimally by multiplying by 1 + h changes 8' by 8'(A) and 8"

by 8"(A) (to first order in A). Thus 6 changes by 8'(A)/2 and 6 changes by 8"(A)/2. The

energy changes by

J^(M'(A))+(e,r(A)),

which is equal to

^((8r9+(8're,A).

The Euler-Lagrange equation is (8')* 6 + (8")* 6 = 0 . The operators 8' and 8" are

components of metric connections, so they satisfy Kahler identities. In particular, the

equation becomes

v^TA^'^e) - d'fft)) = o.

But <T(6) == - (^'8'+ 8'<n/2 and d ' ( Q ) = - {d' 8" + S" rf')/2 so the equation

becomes

V^~\K[d' 8" + 8" d ' - d" 8' - 8' d") = 0.

This is equivalent to AGg^ = 0 in view of the formula for G^ given above.

We are really interested in solving F^ = 0 or Gg = 0. Suppose a Higgs bundle E

has a Hermitian-Yang-Mills metric K. Then it turns out that F^ = 0 if and only if

the Chern classes of the bundle E vanish, and we will see that one only needs to consider

the first and second Chern numbers. This additional vanishing of the curvature is due

to the Riemann bilinear relations, which assert that

J^Tr(F^A F^) A o"-2 == C, || F^ ||j, - C, || AF^ ||i.

([47] Prop. 3.4). The quantity on the left is equal to the intersection of the second

Ghern character of E with a power of the Kahler class. If the degree

^^.[cor-^j^T^FjA^-1
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is equal to zero, then the Hermitian-Yang-Mills condition simply says AF^ == 0.

Thus if ^(E).^]"-1 =0 and chg(E) .[cop"2 == 0, and if the metric is Hermitian-

Yang-Mills, then F^ = 0. This argument originates, in the case of unitary connections

on vector bundles, with Liibke [34].

One can define pseudo Ghern classes for a flat bundle by integrating invariant

polynomials in the pseudocurvature Gg. Similar Riemann bilinear relations hold,

and one can show by an analogous argument that if j Tr(G^) A o)"""1 =0 and
r Tr(G^A Gg) A co""2 == 0, and if K is a harmonic metric, then Gg: = 0. However,

J JL

there is an important difference in this case, which is that the pseudo Ghern classes

vanish automatically! This was pointed out to me by P. Deligne, the key being the

stronger nature of the Leibniz rule for D. The history of this main lemma begins earlier,

with Siu's Bochner formula for harmonic maps [49]. The conclusion G-g == 0 is essen-

tially contained in Siu's argument, and appears in more explicit forms in the article

of Sampson [44], and in Gorlette's paper ([5] § 5) where it is used in the context ofequi-

variant harmonic maps. The correspondence we are developing here is a further gene-

ralization of Siu's rigidity theorem, and many of our applications will be similar in

spirit to those of Siu, Sampson, Gorlette, and others.

Lemma 1 . 1 (Siu, Sampson, Corlette, Deligne). — Iffiisa harmonic metric, then G^ == 0.

Hence V comes from a Higgs bundle (V,D^).

Proof. — Here is a direct proof not involving the pseudo Chern classes. For any

metric K,

^=^"-^+2(6^-OK).

The conditions (O2 = 0 and (^")2 == 0 and d ' d" + d" i
1 = 0 imply that

D.^'-rf') + (rf"-O.D=0,

so

G^ = DD^ + D^ D = 2D(6^ - e^).

IfK is harmonic then D* Gg: ==• 0, since D* == V— 1 [A, DgJ, and AG^ == 0 by assump-

tion and Dg; G^ = 0 by the Bianchi identities. Now

J^l GK I2 - 2j^(D(6K - OK), G^) = 2^(6^ - OK, D* G^) = 0.

This proves the lemma.

Here is a more conceptual argument for why the pseudo Chern classes must vanish.

If we perturb the operator D" by an operator whose symbol is f), then we get an operator

related to a connection:

V,=D^+^.

This is not a connection, but if we resolve into parts of types (1,0) and (0, 1),

Vg == Vg + Vg', then we can make a connection Bg == e~1 Vg + Vg7. Since Bg

3
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is a connection on the handle V, its curvature Bj calculates the Ghern classes

of V. However, since V has a flat connection D, the Ghern classes vanish. Thus for

example j Tr(BiA B2) (x)"""2 == 0, and similarly for the other numbers. Decomposing

according to type of forms on X, and taking into account the fact that co has type (1, 1),

we get

0 == f Tr(B^A B2) o^-2 = s-2 f Tr^A V2) co"-2.
v A- J JL

On the other hand, Vg approaches D '̂ as s approaches zero, so V2 approaches G^. This

proves that

J^T^G^AG^^-^O.

The same argument works for the other numbers. One could complete a second proof

of the lemma from here by making explicit the argument mentioned above involving

Riemann bilinear relations. D

With this lemma in mind, we will use the terminology harmonic metric to denote

a metric K on a Higgs bundle such that F^ == 0. Note that a Higgs bundle with harmonic

metric is the same thing as a flat bundle with harmonic metric. We will use the term

harmonic bundle to denote a G00 bundle provided with structures of flat bundle and Higgs

bundle which are related by a harmonic metric. A choice of such metric will not be

part of the data.

The notion of harmonic bundle is functorial and compatible with tensor products

and duals. If E is a Higgs or flat bundle on X with metric K, and i f / :Y->X is a

morphism, then the curvature of the pullback metric/* K on the pullback bundle/* E

is equal to the pullback of the curvature ofE (this holds for either the curvature or pseudo

curvature). If K is a harmonic metric for E over X, this implies that the curvature

of/* K vanishes on Y, so/* K is a harmonic metric on/* E over Y. Suppose K andj are

harmonic metrics on harmonic bundles E and F. Then the metric K ®J on E ® F relates

the operators D and D" on the tensor product. If the curvatures of E and F are zero,

then the curvatures of E ® F will be zero, because for example

(D®1 + 1®D)2 =D 2 ® 1 + 1®D2 + D ® D — D 0 D .

The sign comes from passing the operators D of degree one across each other. Thus

if E and F are harmonic bundles, then E ® F is harmonic. Similarly, the curvature of

the dual bundle is minus the transpose of the curvature of the bundle, so the dual of

a harmonic bundle is a harmonic bundle.

NON-ABELIAN HODGE THEOREM

We say that a Higgs bundle E is stable if, for every subsheaf M C E preserved by 6

and with 0 < rk M < rk E,

deg M deg E

rkM rkE '
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The degree (chi(E). [cop"1) divided by the rank of E is called the slope of E. The cor-

responding notion for flat bundles is that V is irreducible. Say that a Higgs bundle E

is polystable if it is a direct sum of stable Higgs bandies of the same slope. The corres-

ponding notion for flat bundles is that V is semisimple, or a direct sum of irreducible

local systems. Say that a Higgs bundle E is semistable if the inequality above holds with <

instead of <• The corresponding notion for flat bundles is vacuous (always satisfied).

Now we can state the theorem of non-linear analysis which we will use.

Theorem 1. — ( 1 ) Aflat bundle V has a harmonic metric if and only if it is semisimple.

(2) A Higgs bundle E has a Hermitian-Y ang- Mills metric if and only if it is polystable. Such a

metric is harmonic if and only if chi(E). [co]^"131-1 = 0 and chg(E). [co]^31-2 == 0. D

The proof of this theorem is already contained in the literature. We can use this

occasion to review the history of the theorem and the preceding definitions and cons-

tructions. The notion of harmonic map which enters into statement (1) originated with

Eells and Sampson [19]. It was generalized to the notion of harmonic metric (or equi-

variant harmonic map) by Gorlette, to whom the proof of statement (1) is due [5].

Gorlette's work was paralleled independently by Donaldson [18] in a note after Hitchin's

paper for the case of rank two bundles, and somewhat earlier for the case ofholomorphic

disc bundles (i.e. SU(1, 1)) by Diederich and Ohsawa [14]. The significance of sta-

tement (1) becomes clearer with the additional vanishing of the full pseudocurvature

provided by Lemma 1.1, which results in the construction of Higgs bundles.

Statement (2) is the result of a succession of generalizations beginning with the

theorem of Narasimhan and Seshadri [39], and continuing with Donaldson [16] [17],

Uhlenbeck and Yau [52], Deligne and Beilinson (unpublished), Hitchin [30], and [47].

Hitchin's paper is an important landmark. Although he restricted his attention to the

case of bundles of rank two on a Riemann surface, Hitchin obtained all of the conceptual

features of the correspondence we are considering, including many of the properties

to be described below.

The terminology (< Higgs bundle " is a slight modification of Hitchin's calling 6

the <c Higgs field55 in reference to the physics paper of P. W. Higgs [29]. My own

motivation (and that of Deligne and Beilinson) for thinking about an additional tensor

such as 6 came from the Kodaira-Spencer map in Griffiths9 theory of variations of Hodge

structure. It is very interesting that the same object independently became manifest in

elementary particle physics and in the complex analytic geometry of motives—this

surely deserves further thought.

If V is a flat bundle, define H^(X; V) to be the space of sections v such that

Dy = 0. If E is a Higgs bundle, define H^i(X; E) to be the space of holomorphic sec-

tions e such that Qe === 0, or equivalently the space of C00 sections such that D" e == 0.

Lemma 1.2. — Suppose E is a harmonic bundle with a harmonic metric. If e is a section^ then

D" e == 0 if and only if De = 0. Thus we get a natural isomorphism H (̂E) ^ H î(E).
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Proof. — Suppose D" e == 0. Then

(D')* D' e == V^7AD" D' e == - V^TAD' D" ^ == 0

since D' D" + D" D' == 0. Therefore

^(D'.,D'.)=^((DrD'^)=0

so D<? = D" e + D' <? == 0. Similarly if D<? == 0 then (D6)* D6 <? == 0 so D0
 e == 0 so

D" e == 0. D

We will generalize this lemma to forms in the next section.

Corollary 1.3. — There is an equivalence of categories between the category of semisimple

flat bundles on X and the category of polystable Higgs bundles with ch^E).^]'111112^"1 = 0

and cl^E).^]1""131"2 = 0, both being equivalent to the category of harmonic bundles.

Proof. — Use Theorem 1 and the above isomorphism between H^E* ® F) and

HS)R(E* ® F) to obtain an equivalence between the morphisms of flat bundles and the
morphisms of Higgs bundles. D

Theorem 1 can be interpreted as a nonabelian Hodge theorem. The first non-

abelian cohomology set of TCi(X) with coefficients in the constant group Gl(^C) is

just the set of representations TCi(X) ->G\(n,C), up to conjugation. We can modify

this set a little bit: define a semisimplified cohomology class to be a representation up

to equivalence of its irreducible subquotients. The set of semisimplified cohomology

classes is the same as the set of semisimple representations. The first part of the theorem

says that any semisimple nonabelian cohomology class has a harmonic representative.

Recall that for abelian cohomology ofX, there is a parallel notion ofDolbeault cohomology,

which is equal to cohomology of coherent sheaves [15]. The first abelian Dolbeault

cohomology of X is H^X, 0^ ®H°(X,t2x). In our interpretation, the nonabelian Dol-

beault cohomology classes are the Higgs bundles (E, 6). Note that to specify E one must

give a cocycle in H^X, G\(n, (P^)), while 6 is an element of H°(X, 0^0 End(E)), sug-

gesting an analogy with the abelian Dolbeault cohomology. The second part of the

main theorem constructs harmonic representatives for Dolbeault classes.

A problem suggested by this interpretation is to describe the Dolbeault cohomology
in the case when 7ri(X) acts nontrivially on Gl(^).

MODULI SPACES

In this subsection, we will state without proof some theorems about moduli of

Higgs bundles. The proofs will appear elsewhere, and will in part depend on results

from this paper. Furthermore, these theorems have been proved only for the case when X

is a smooth projective variety (although one expects that similar statements hold for

compact Kahler manifolds). For these reasons, if a result in the following sections

depends on these theorems, that will be explicitly mentioned.
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Proposition 1.4. — Suppose X is a smooth projective variety. There is o quasiprojective

variety Mpoi whose points parametrize direct sums of stable Higgs bundles on X with vanishing

Chern classes. There is a map from Mp̂  to the space of polynomials with coefficients in symmetric

powers of the cotangent bundle., whose effect on points is to take a Higgs bundle (E, 9) to the cha-

racteristic polynomial of 6. This map is proper. D

This has been proved independently in the case when X is an algebraic curve,

by N. Nitsure [40].

Recall that there is a similar moduli space Mg for representations of the funda-

mental group. Let Rg denote the affine variety ofhomomorphisms from 7i:i(X) into Gl(n, C)

obtained by looking at generators and relations. Then Mg is the affine categorical

quotient ofRg by the action ofGl{n, C). Again, the points ofMg parametrize semisimple

representations. The correspondence of Theorem 1 yields an isomorphism of sets

between Mg and Mj^i.

Proposition 1.5. — This map of sets is a homeomorphism of topological spaces Mg ̂  Mpoi. D

Example. — Suppose X is a curve of genus g^ and suppose we wish to parametrize

representations of rank one. The abelianization of the fundamental group has 2g gene-

rators, so to give a character 7^(X) —^ C* is the same as to give 2g nonzero complex

numbers. Thus

Ms = (C)^.

On the other hand, a Higgs bundle of degree zero and rank one is just a pair consisting

of a line bundle L and a scalar valued one-form 6. Thus

M^=Jac(X) XHW.

There is a decomposition C* == S1 X R^. The homeomorphism between Mg and Mp^

sends (S1)2^ isomorphically to Jac(X), because the Higgs bundles with 6 == 0 are

exactly the unitary representations. The map is just the map sending a unitary local

system to the line bundle with the same transition functions. The homeomorphism

sends H°(ny isomorphically to (R^)
20

. The map is

e^( . . . , exp( -J^e+e) , . . . )

where y» form the basis for the first homology. The homeomorphism between Mg

and Mpoi preserves tensor product, so it preserves the natural group structures of these

varieties. This determines the homeomorphism in the rank one case.
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2. Further properties

In this section we will discuss further properties of the correspondence between
Higgs bundles and local systems.

HIGHER ORDER KAHLER IDENTITIES

In [7] Deligne extended the Kahler identities to coefficients in variations of Hogde

structure, using the operators D' and D". This is part of the motivation for introducing

these operators above. In this section we will extend the Kahler identities to harmonic
bundles.

Suppose E is a harmonic bundle with a harmonic metric K relating the flat and

Higgs structures. The operators D, D", etc., can be extended to operators in the exterior

algebra of G00 differential forms with coefficients in E. As noted above, the first order

Kahler identities hold for the operators D', D", D and D®. Furthermore the squares
of these operators are zero in the exterior algebra, so for example

D' D" + D" D' = 0.

Define the laplacians

A = DD* + D* D

A" == D"(D")* + (D^^D"

and similarly A' and A6. By the same arguments as in [25] [53], the previous identities
imply

A = A0 == 2A" == 2A'.

Therefore the spaces of harmonic forms with coefficients in E are all the same. Denote

this space by J^(E). A form a is harmonic if and only if Da = 0 and D* a == 0, or equi-

valently, if and only if D" a == 0 and (D")* a = 0. Hodge theory gives the following

orthogonal decompositions of the space of E-valued forms with respect to the L2 inner
product:

A-(E) == ̂ (E) ® im(D) ® im(D*)

A-(E) ^J^ein^D^eim^D")*)

and similarly for D' and D°.

Lemma 2.1 (Principle of two types). — If E is a harmonic bundle, then

ker(D') n ker(D") n (im(D") + im(D')) == im(D' D").

Proof [12] [53]. — The name notwithstanding, this does not require a decompo-

sition into Hodge type. Suppose T] == D' a + D" (3 and D' T] == D" T] = 0. Then

D' D" JB = 0. Now apply the above decomposition with respect to D':

(3 = h + D' Yo + (D')* Y
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with h harmonic, and further we may assume D' y == 0. Note that D" h == 0 and

D" D' YO e ™(D' D") as desired. The condition D' D" (3 == 0 gives

D'D"(D7Y==0

and D' Y == 0 so

D" A' Y = D" D'(D7 T = 0-

The identity A' = A" implies that A" D" y = 0. But the above orthogonal decom-

position for D" now implies that D" y == 0. By the Kahler identity,

D"(D')* Y == V^n" (D" AD" Y + D" D" Ay) = 0.

Therefore D" (3 eim(D' D"). Similarly D' a eim(D' D"). D

Remark. — This lemma implies the seemingly stronger statement that the natural

map

ker(D') n ker(D") ker(D' D")

im(D' D") im(D') + im(D")

is bijective (pointed out to me by P. Deligne). The injectivity is simply the statement

of the lemma. For the surjectivity, suppose D' D" u == 0. Then

D' u e ker(D') n ker(D") n (im(D') + im(D")),

so by the lemma we can write D' u == D' D" w. Similarly, we can write D" u == D" D' v.

Set p == u — D" w — D' y. Then D' (3 == D" (B = 0, and [3 is equal to u modulo
im(D') +im(D").

COHOMOLOGY

As an illustration, first consider the case of H°. Suppose E is a harmonic

bundle with a harmonic metric. Then a section e is harmonic if and only if D" e = 0,

or equivalently if and only if De === 0. This again gives Lemma 2.2, the iso-

morphism HUE) ^ HUE).
There are natural cohomology functors for flat bundles and Higgs bundles, which

extend the functors H^ and H^i. Suppose V is a flat bundle. Let V15 be the locally

constant sheaf of flat sections of V. This sheaf is resolved by the de Rham complex of

sheaves of G°° differential forms with coefficients in V:

V0 -> (^°(V) -^ j^(V) ̂  ja^(V) -^ ...)

is a quasi isomorphism of complexes of sheaves. The sheaves of C00 forms are fine, so

the cohomology H'(X; V0) is naturally isomorphic to the cohomology of the complex

of global sections

(A-(V), D) == A°(V) -5- A^V) -^ A^V) ̂  ...
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Gall this the de Rham cohomology Hp^(X; V). Note that ifV is the trivial flat bundle,

then the de Rham cohomology of V is just the usual de Rham cohomology of the diffe-
rential manifold X.

Suppose E is a Higgs bundle. Then we get a complex of locally free sheaves, the
holomorphic Dolbeault complex:

E^E®^E®Q|^...

The condition that 6 A 6 = 0 insures that this is a complex. Define the Dolbeault coho-

mology with coefficients in E to be the hypercohomology

H^-H^E®^...).

The complex of sheaves of C°° sections of E

J^°(E) ̂  J^(E) ̂  ja^(E) ̂  ...

gives a fine resolution of the holomorphic Dolbeault complex, so H^(E) is naturally

isomorphic to the cohomology of the complex of global sections (A'(E, D"),

Remark. — Versions of the holomorphic Dolbeault complex have appeared in

the work of Green and Lazarsfeld [22] [23].

Lemma 2.2 (Formality). — Suppose E is aflat and Higgs bundle with harmonic metric.

There are natural quasi-isomorphisms

(ker(D'), D") -> (A-(E), D)

(ke^DZD^-^A^D")

(ke^D^D-) ->(H^(E),0)

(ke^DZD^^H^E^O).

In particular, there are ratural isomorphisms Hp^(X; E) ^ H^(X$ E).

Proof. — This is due to [12]. See also ([21] section 7). In all cases on the right

the cohomology is represented by the space of harmonic forms. We have to show that

the same is true for (ker(D'), D"). Suppose D' a == D" a == 0. If a = D" p then the

harmonic projection of a is zero. Conversely if the harmonic projection of a is zero then

a = D" p. By the principle of two types we may assume that (B = D' y and, in particular,

D7 (3 = 0. Thus a is a coboundary. D

Corollary 2.3. — Let E be a harmonic bundle with a harmonic metric and let T denote the tensor

algebra o/*E. The differential graded algebras (A'(T),D) and (A"(T), D") are formal, in other

words quasi-isomorphic to the differential graded algebra Hĵ (T) = H^(T) with zero differential.

Proof. — T is a direct sum of harmonic bundles with harmonic metrics so, by the

above, the maps (ker(D'), D") -> (A*(T), D), etc. are quasi-isomorphisms. These are

morphisms of differential graded algebras. D
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Corollary 2.4 (Goldman and Millson). — If V is a semisimple flat bundle then the defor-

mation space of representations of 7Ti(X) is quadratic at V.

Proof. — Goldman and Millson [21] prove that the deformation space is quadratic

if the differential graded Lie algebra of forms with coefficients in End(V) is formal.

Theorem 1 and the above corollary imply that this is the case if V is semisimple. D

The Serre duality theorem and the Riemann-Roch theorem apply also

to the Dolbeault cohomology of Higgs bundles. The dual of a Higgs bundle

E == (E, 6) is E* == (E*, — 6*) where 6* is the image of 6 under the natural isomorphism

End(E) ^ End(E*). The natural pairing

E ® E* -> <?x

is a morphism of Higgs bundles. Let ^(X, E) = S|io(- 1)1 dim Hp^(X, E).

Lemma 2.5 (Duality and Riemann-Roch). — If X has dimension d then H^(X, ̂ ) == ^
and for any Higgs bundle E, the induced map

H^X.E^H^X,^) ^C

is a perfect pairing. If E is a Higgs bundle on X of rank n, then /Doi(^? E) = ̂ Doi(^? ^x)-

Proof. — The Serre duality theorem works for complexes of sheaves. The tensor

product of the dualizing sheaf Q^ with the dual of the Dolbeault complex for E is the

Dolbeault complex for E*. (Note that if one changes the signs of the differentials, the

complexes are still isomorphic, by operating on the ith piece by (— 1)'.) This proves

the duality statement.

The spectral sequence for hypercohomology converges to the Dolbeault coho-

mology ofE, but the Euler characteristic of the Eg term is the same as that of the limit, so

XBoi(X,E) =S(- 1)^H^(E®^) =S(~ l)^h(E®^).

Here the subscript " coh " denotes reference to the usual cohomology of coherent sheaves.

Let ch(F) denote the exponential Chern character. Note that ch(E ® ̂ ) == ch(E) ch(Dx).

Let td(T^) denote the Todd class of the tangent bundle. The Grothendieck-Hirzebruch-

Riemann-Roch formula says

^.(EOO^) = deg(ch(E) ch(^) td(T^)).

Thus XDoi(X, E) == deg(ch(E) (S(- I)1 ch(Qx) td(Tx))). On the other hand, one checks

that

S(- I)1 ch(^) td(T^) == ^CIx) == .(X)

is the Euler class of X; it occurs only in degree 2d. Thus

^(X, E) == deg(cho(E) .(X)) === rk(E) deg(.(X)) - T%^(X, ̂ ).

Surprisingly, the Riemann-Roch formula holds without any reference to (or restriction

on) the Ghern classes of E. D

4
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We next show that the Lefschetz decomposition of cohomology into primitive

pieces works for de Rham cohomology with coefficients in any semisimple local system,

or for Dolbeault cohomology with coefficients in the corresponding Higgs bundle. Let L

denote the operation of wedging with the Kahler form, L(a) == a A co. Note that o

represents a de Rham cohomology class in H^(X, C) as well as a Dolbeault cohomology

class in H^X,^)- Thus the operation L is a cup product.

Lemma 2.6 (Lefschetz decomposition). — Suppose E is a harmonic bundle, on a manifold X

of dimension d. Let I-P(E) denote either de Rham cohomology of the flat bundle, or Dolbeault coho-

mology of the Higgs bundle. Then for any 0 ̂  i ̂  d,

L^-^H^E) —H^-^E)

is an isomorphism. Let P(E) denote the kernel oflf'^1 acting on H^E), the space of primitive

cohomology classes. Then

FP(E) = ©L^-^E).

Proof. — The Kahler identities imply that if a is a harmonic k-form with coeffi-

cients in E, then L(a) and A(a) are also harmonic forms [25]. Consequently there is

an action ofsl(2) on the space of harmonic forms. The Lefschetz decomposition follows

as in the scalar case.

From combining this lemma with the previous duality statement, the pairing

P^E) ® P^E*) -> C

given by

a® (B i--̂  f a A P A (x^"1

is perfect. If <x) represents the cohomology class of a hyperplane section, we obtain a

Lefschetz-type theorem for restriction of cohomology classes. Namely, if Y is a codi-

mension k complete intersection of hyperplane sections, then the restriction map

H^X.E^H^Y.ElY)

is an isomorphism for i < d — k and injective for i = d — k. D

A COMPACTNESS PROPERTY

We will describe a compactness property for harmonic bundles. One of the main

steps from Hitchin's paper [30], it is a generalization of Uhlenbeck's weak compactness

theorem. In order to do this, we generalize the distance derccasing property of variations

of Hodge structure to the case of harmonic bundles where the eigenvalues of 9 are

bounded.

Lemma 2.7. — Given C^, there is a constant C^ such that if V is a harmonic bundle with

harmonic metric such that all of the eigenvalues of 6 have norm less than C^, then | 6 | < Gg.
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Proof. — We proceed along the same lines as the proof of the distance decreasing

property for variations of Hodge structure [26]. For now, assume that X is the unit

disk, and try to find the estimate on a smaller disk. The curvature of the unitary bundle

(EndV)®^1 8

V2-^^,)®! + 100R

where F^^ = {8 + ^)2 is the curvature of the metric connection 8 + ^, and R is the

curvature ofQ^- The statement that curvature decreases in subbundles, applied to the

sub-line bundle of (End V) ® Q^ given by 6, can be written

A-ogiei^'2^:'8'-9'.

This holds in a distributional sense everywhere.

Now note that F^g + 66 + 66 == 0; this is the statement that the connection D

is flat. Therefore

^ ̂  ̂  ̂  _ (^^Aw+wmA + c.
I e I

where €3 depends on the curvature R. Now at any point, if we write 6 == QQ dz and

6 == QQ(IZ in a normal coordinate z, then 2V-— 1A(66 + 66) == [60,60] and

(2-/^"TadA(66 + 66) (6), 6) ^ ([[6p, 6p], 6p], 6p) ^ |[6p, 6p]|2

I 9 I2 | 9 o l 2 | 9 o l 2 '

We claim that there are c^ €5 such that |[6p, 6p]| $? ^4 | 60 [2 — C^l + [ 60 |). This

claim is the generalization to Higgs bundles of the calculation of the negative curvature

of the classifying space for Hodge structures [26]. We may choose an orthonorrnal basis

for the fiber of V and write 60 === a + T where a- is a diagonal matrix and T is strictly

upper triangular. Then | 6p |2 =•= | cr2 | + I T |2- By the bound for the eigenvalues of 60,

we have a bound | a \ ^ C. It therefore suffices to prove that | [r, r] | ̂  C | T |2. Now

the argument is the same as in the case of Hodge structures; we will sketch it. Note

that the matrix for T is the transpose complex conjugate of the matrix for T$ in particular

it is lower triangular. The upper left entry of [r, r] is the square norm of the first row

of T. If this is as big as the square norm of T, we are done. If it is much smaller than the

square norm of T, then the contribution from the first row to the next entry on the dia-

gonal of [r, r] is small, so this second diagonal entry is approximately the square norm

of the second row of T. Continue in this fashion until reaching a row whose norm is

comparable to the norm of T. This proves the claim.

From this claim we get the estimate

A l o g | 6 | 2 ^ -^I^Ge,

where Gg depends on the estimate for the eigenvalues of 6 as well as the curvature R.

Now we may apply Ahlfors3 lemma [1] (the extra constant Cg is easy to deal with, say
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by multiplying | 6 |2 by an appropriate factor e
8
) to conclude that sup [ 6 | ^ G^. This

completes the proof when X is a disk. When X is a polydisk, apply the previously

obtained estimate to various disks in X. This gives the required estimate on a smaller

polydisk. Now cover a compact space to obtain the proof of the lemma. D

Now, on to the compactness property. Say that a sequence { V,} of harmonic

bundles with metrics converges to V with respect to a norm || || if there are G00 isomor-

phisms ^,: V, ̂  V which preserve the metric, and such that ^(D,) — D — ^ 0 and

^(D,") — D" —0, with respect to the norm || |[ on sections of A^End^)).

Lemma 2.8 (Hitchin [30]^. — Suppose that { V,} is a sequence of harmonic bundles with

harmonic metrics such that the coefficients of the characteristic polynomials of 6, are bounded in

G°-norm. Then there is a harmonic bundle V and a subsequence Vy -> V convergent with respect

to any L9 norm.

Proof. — Fix p large. If the coefficients of the characteristic polynomials are

bounded, than the eigenvalues of 6, are bounded, so, by the above lemma, the | 6, |

are bounded. Now F^g. + 6,6, + 6,6, = 0, hence the curvatures F^._^. are

bounded. By Uhlenbeck's weak compactness theorem [51], there is a subsequence of i

and a sequence of isomorphisms V, ^ V preserving the metric, and there is a unitary
_ def •_ — —

connection ^ + 8 on V, such that fl, = 8 — ^ -^ 0 weakly in Lf. We have 3, (6,) == 0,

so ^(6,) == fl,(6,), and these converge to zero strongly in L^. Hence there is a subse-

quence of 6, which converge to some 6 weakly in Lf. The limit satisfies 8(Q) == 0. If

p is big enough, then the weak convergence implies that 6, -> 6 strongly in any I
9
. In

particular, the equations 6, A 6, == 0 imply that 6 A 6 == 0. Finally, Fg.^g. ->F^_^

weakly in I9
. In particular, B2 == 0. Hence (V, B, 6) is a Higgs bundle. The limit? of

the operators on V, are operators appropriately related by the metric on V. The equa-

tion D2 === 0 also holds in the limit, which shows that the metric is harmonic for V. The

operators on V, converge weakly in Lf to the operators on V, hence the convergence

is strong in L^. D

Remark. — This lemma is Hitchin's analytic version of the properness of the map

taking a Higgs bundle to the characteristic polynomial of 6, which in his case was just

the determinant of 6.

Corollary 2.9. — If a sequence of stable Higgs bundles E, approaches a limiting E, and

if E is also stable, then the monodromy representations corresponding to E, approach the represen-

tation corresponding to E.

Proof. — Choose harmonic metrics for the E,. Then these harmonic bundles

approach a limit E'. The monodromy representations corresponding to E, approach

the representation corresponding to E', and similarly the Higgs bundles E, approach
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the Higgs bundle E'. But the principle of semicontinuity implies that there must be

a nonzero map between E and E'. Since E is stable and E' is semistable of the same

rank, this map is an isomorphism. D

MONODROMY GROUPS

In the next two sections, we will give a preliminary discussion of various items

having to do with the monodromy representation of a flat connection. These topics

will be treated again in a more abstract way in the last two sections of the paper.

Suppose V is a local system on X. Let p denote the corresponding representation

7Ti(X, x) ->G1(VJ. The Zariski closure of the image of p is a group M(V, x) called

the monodromy group of V. (One might also use the terminologies Mumford-Tate group

or Galois group [9], § 7.)

There is an alternate characterization based on the following principle [13].

Suppose G is a complex algebraic group, and GCGl(n, C) is a faithful representation

{n^ 2). Denote by T^C" the tensor product (C1)00® (C^)06 of powers of the

standard representation and its dual. For each such tensor product, identify the set of

subspaces W C T°'6 CS^ which are preserved by G. Then G may be characterized as

the subgroup of elements g e Gl{n, C) such that ^(W) C W for every preserved subspace

in every tensor product. If G is reductive, then this can be simplified—one need only

consider trivial subrepresentations W. In other words, if we let (T"'b C71)0 denote the

subspace of elements fixed by G, then G is characterized as the subgroup of elements

g e Gl{n, C) such that g(v) = v for all v e (T0^ C^)0, for all a, b.

These lead to characterizations of the monodromy group M(V,A?). For each
T0'6 V == V00® (V*)06, identify the set of sub-local systems WC T"'6 V. Then M(V, x)

is the subgroup of all g e G1(VJ such that ^(WJ C W^ for every such sub-local system W.

If V is a semisimple local system, them M(V, x) is reductive, and can be characterized

as the set of g e G1(VJ such that g{v^) = ^ for every v e H^(X, T^6 V).

One may use these ideas to define the monodromy group M(E, x) for a semistable

Higgs bundle E with vanishing Ghern classes. It is the subgroup of g e G1(EJ such that,

for any Higgs subbundle of degree zero W C T®'b E, g preserves W^ C T°'b E^.

Lemma 2.10. — Suppose V == E is a harmonic bundle, with associated/lot bundle V and

associated Higgs bundle E. Then M(E, x) is reductive, and may be characterized as the group of

g e G1(EJ such that g{v^) = ̂  for all v e H î(X, T0'6 E). Finally M(E, x) == M(V, x)

via the identification V^ == E^g.

Proof. — The T"'b E are also harmonic bundles, and in particular they are direct

sums of stable Higgs bundles with vanishing Chern classes. Any Higgs subbundle

WC T0'6 E of degree zero is a direct summand, coming from a harmonic subbundle [47].

In particular, these correspond exactly with the sub-local systems W C T®'b V (in a

way which commutes with the identification E^^VJ. Hence M(E, x) =M(V,^).
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The monodromy representation associated to a harmonic bundle is semisimple, so the

monodromy group is reductive. We obtain the same alternate characterization for

M(E,^) as before, because H^T^V) is equal to H^T^E) (compatibly with

E^VJ. D

Suppose GCGl(^C) is fixed. Define a principal harmonic bundle for G to be

a Higgs bundle E with harmonic metric, and with identification (B : ̂  ^ C^ such that

P^ M(E, x) C G, up to equivalence obtained by composing (B with elements of G.

The results about moduli spaces stated at the end of § 1 work also for principal

harmonic bundles—we state these again without proof. Fix a reductive algebraic sub-

group GCGl(n, C). There is a moduli space M^i(G) whose points parametrize prin-

cipal harmonic bundles for the group G. The map to the moduli space Mg(G) o

reductive representations 7Ti(X) -> G is a horneomorphism. Furthermore, the natural

map M^i(G) -> M^ is proper.

REAL REPRESENTATIONS

The existence of canonical metrics and the correspondence between Higgs bundles

and local system allow us to state some analogues of the theorem of Frobenius about real

representations of finite groups. Lemma 2.12 will be generalized to arbitrary reductive

real algebraic groups in § 6, but it may be instructive to have a simple proof in this case.

If E == (E, 6) is a Higgs bundle, let E^ == (E, — 6). (It is the result of the action

of the element C == — 1 e C*, cf. § 4.) Hitchin pointed out to me the importance of

the action of this element in specifying the Higgs bundles corresponding to real

representations.

Lemma 2 .11. — If E is the Higgs bundle corresponding to a semisimple representation of

the fundamental group, then the Higgs bundle (E^)* corresponds to the complex conjugate repre-

sentation. In particular', the character of the representation takes values in R if and only if there

exists a morphism of Higgs bundles

E®Ec ->^x-

Proof. — Choose a harmonic metric K for E. Let E be the complex conjugate

bundle with the operators D, D", D' deduced from the operators D, D', and D" on E

respectively. Note that the sections of E are expressions of the form ~e where e is a section

ofE, and for example D" ~e is defined to be equal to D' ~e. Let K also denote the induced

metric on E, so (y, w) == (y, w). Then the representation corresponding to (E, D) is

the complex conjugate of the representation corresponding to (E, D). On the other

hand, K is a harmonic metric for E and the operators D" and D' are those induced by

this harmonic metric. The metric K gives a bilinear form M : E X E -> C^? defined

by M{u, v) == {u, v}-^. Let D^ = 3 — 6 be the structural operator for the Higgs bundle E^.

The change in sign between the definitions of ^ and 6^ gives the formula

(Dc'(^)K + {u, D'(.)^ == a(^, ̂ .
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Therefore

M(D )̂, v) + M{u, D"(^)) = SM{u, v } ;

in other words M i3 a morphism of Higgs bundles

M:EC®E-^X-

The pairing is perfect, as it came from a harmonic metric, so E ^ (E^;)*. D

Remark. — We can use the pairing M^ to give Riemann bilinear relations for

cohomology with coefficients in a harmonic bundle. If (3 is a harmonic form with coef-

ficients in E, then p is a harmonic form with coefficients in E representing the complex

conjugate of the de Rham cohomology class. Similarly, if a is a harmonic form decomposed

according to the Hodge type of X as a == So^'3, then set Ca == S(— l^a^3. The

components a^ are not harmonic, but Ga is a harmonic form for E^. This operation C

should be thought of as acting on the Dolbeault cohomology. The Riemann bilinear

relations now state that if a and JB are primitive harmonic z-forms, then

J^(a, [B)^vol - (V^T)^- ^^J^M^CaA p) A ^-\

This follows from the scalar case. The ^ ^ are universal positive constants depending

only on the dimension d of X and the degree i of the forms.

We can strengthen Lemma 2.11 to say when a local system can be defined over R.

Lemma 2.12. — If E is the Higgs bundle corresponding to a semisimple representation of

the fundamental group, then the representation can be defined over R if and only if there exists a

non-degenerate symmetric bilinear form

S:E®Ec-^,

in other words a morphism of Higgs bundles such that S(u, v) == S{v, u).

Proof. — The local system corresponding to E is defined over R if and only if there

is a semilinear involution a : E -> E such that a D == DCT. Suppose such an involution

exists. Choose a harmonic metric K.o, and define a new metric K by the formula

{u, v)^ = {u, v)^ + (<yy, au)^.

The condition that o- commutes with D insures that this is still a harmonic metric. Further-

more, we have orD" == D' o. Now define the form S by

S{u, v) = (u, av)^ = (o, au)^ = S{v, u).

It is a morphism of Higgs bundles S : E X E^. -> 6^ because, as above, we have

S(D" u, v) + S(u, D^ v) = (D" u, v) + (^, o D '̂ ̂

== (D" u, v) + (u, D^ av) == SS{u, »).

Conversely suppose S is a nondegenerate symmetric bilinear form as in the lemma.

Choose a harmonic metric K for E. Define a map p : E -> E by S(t/, v) = {u, p^. It
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is a semilinear automorphism, and pD" == D' p by the same calculation as above. How-

ever, it might not be an involution. To fix this, proceed as in [45]. We have

(P^ P^K = (^ P2 ̂ K = (P2 V, U)^

so p2 is self adjoint. Setting u == v shows that p2 is positive definite. It also commutes

with D", D' and hence D. Therefore p2 is an automorphism of the harmonic bundle.

We may choose a positive definite automorphism T such that r~2 == p2. Then set a == pr.

Note that T is a polynomial in p2, hence a polynomial in p, so p and T commute. There-

fore a-2 == 1. Thus the local system can be defined over R. n

3. Extensions

As an illustration of the formality result (Lemma 2.2), we will extend the equi-

valence of categories constructed in Theorem 1 and Corollary 1.3 to extensions of irre-

ducible objects. This is accomplished by introducing the notion of differential graded

category, which generalizes the notion of differential graded algebra, and plays the

role for extensions that differential graded Lie algebras play in the theory of deforma-

tions of Schlessinger-Stasheff-Deligne-Goldman-Millson [21]. In fact the following

theory of extensions is just a different incarnation of their theory.

DIFFERENTIAL GRADED CATEGORIES

A differential graded category (d.g.c.) is an additive C-linear category such that for

any objects U and V, Hom(U, V) is endowed with a grading (B^oHom^U, V) and

a differential d of degree one, such that d
2 == 0. The axioms are that the identity is an

element 1 e Hom°(U, U) with rf(l) =0, and that composition of maps behaves like

multiplication under the differential:

^(/^)=rf(/)^+(-~l) l / l / .^).

A functor between d.g.c.'s is a functor between categories which preserves the grading

and differentials of the Horn complexes.

An isomorphism between objects in a d.g.c. will always mean a map^cf degree zero,

such that d(f) =0, and such that there exists an inverse with the same properties.

Two objects are isomorphic if there exists an isomorphism between them. Note that all

of the structures are preserved by isomorphisms.

A natural isomorphism between two functors F and G is a collection of isomor-

phisms y^ : F(U) ^ G(U), satisfying the usual naturality condition with respect to all

elements of the Horn complexes.

We use the notation Ext^U, V) for the z-th cohomology of the complex Hom(U, V).

If ^ is a d.g.c., define an additive category E° ̂  as follows. The objects are the same

as the objects of %', but the set of morphisms from U to V is the set Ext°(U, V). Simi-

larly, if F : ̂  -> 3) is a functor between d.g.c.'s, then E° F is a functor from E° ̂
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to E° Of. The notion of natural map between functors E° F and E° G involves naturality

conditions only for morphisms in Ext°, so it is weaker than the notion of natural map
between F and G.

Suppose ̂  is a differential graded category. An extension in ̂  is a pair of morphisms

M-^U- tN

with a, b e Horn0, ba = 0, and d{a) == 0, d{b) = 0, such that a splitting exists: a splitting
is a pair of morphisms (of degree 0)

M^-U^-N

such that ga = 1, bh = 1, gh = 0, and ag + hb == 1. Given an extension, define

SeHom^N^M) by 8 = gd{h). One can check that d{S) == 0 and aS == d(h) and
Sb = d{g). For any object Y one gets a long exact sequence:

... Ext^V, M) -> Ext^V, U) -> Ext^V, N) -> Ext^^V, M) -> ...

and similarly for Ext(-, V). Also note that [8] is a class in Ext^N, M). Two extensions

are isomorphic if and only if their extension classes coincide, but the isomorphism is
not unique.

We say that a d.g.c. ^ is complete ifExt^N, M) classifies extensions, in other words

if every element of Ext^N, M) comes from an extension. We will construct the comple-

tion of a d.g.c. by the method used in [21]. Suppose ^ is a d.g.c. Define a new d.g.c. ^

as follows. The objects of ^ are pairs (U, T]) with U e ̂  and T\ e Hom^U, U) such that

dW + ̂  == o.

The morphisms from (U, T]) to (V, S;) are the morphisms from U to V with the same
grading, but a different differential. The new differential is

^/ )=^( / )+S/- ( - l ) l / I A

The condition on T} and S insures that d
2 = 0, so ^ is a d.g.c. Define the completion V

to be the full subcategory of ^ consisting of objects which are successive extensions of
objects of %7.

Lemma 3.1. — The category ^ is a full subcategory of ̂ , ̂  is complete, and every object

is an extension of objects of .̂ These properties uniquely characterize V (up to an equivalence

of d.g.c ^s which is unique up to unique natural isomorphism).

Proof. — To see that ^ is complete, suppose (M, Y]) and (N, T]) are objects, and

9 e Hom^N, M) with rfcp = 0 represents an extension class. To construct the extension

corresponding to <p take ( M ® N , T ] ® Y ] + 9). Tautologically, every object of ^ is an
extension of objects of ^.
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Suppose Q is any d.g.c., and suppose F and G are two functors from ^ to Q.

I f M : F | ^ - > G [ y i s a natural morphism, then there exists a unique extension to a natural

morphism u : F -> G. To see this, suppose for example that U is an extension of N by M

(and keep the same notations as above). Then v^ : F(U) -> G(U) is determined from u^

and Uy by the formula

^ == G{ag + hb) u^F{ag + hb) = G(a) ̂ F(^) + G(A) ̂ F(6).

The case of successive extensions can be treated by induction.

Now we show the uniqueness of €. Suppose Q is a d.g.c. with a fully faithful

functor ^ -> Qi, such that Q is complete and every object is a successive extension of

objects of ^. Since Q is complete, the inclusion 2 ->Q is surjective on isomorphism

classes. One checks that a functor of d.g.c.'s which is fully faithful and surjective on

isomorphism classes has an essential inverse which is a morphism ofd.g.c.'s, and which

is unique up to unique natural isomorphism. We may choose the essentiel inverse 2 -> Q

to be the identity on Q. Composition with the canonical map ^ ->Q gives a functor

V -> 2 which extends the originally given one. By the previous paragraph, this extended

functor is unique up to unique natural isomorphism. Again, ^ -> Q is fully faithful,

and the hypothesis implies that it is surjective on isomorphism classes. Thus it has an

essential inverse, unique up to unique natural isomorphism. D

A functor between d.g.c.'s is quasi-fully-faithful if it induces an isomorphism on

Ext groups, and is a quasi-equivalence if it is quasi-fully-faithful and is surjective on iso-
morphism classes.

Lemma 3.2.— IfF : ̂ i -^ ̂  is a quasi-fully-faithful functor, then E° F : E° ̂ i -> E° ^2

is fully faithful. If F is a quasi-equivalence, then E° F is an equivalence of categories.

Proof. — The first statement follows because the morphisms in E° ̂  are the

Ext° groups of ^. For the second, note that the isomorphism classes of E° ̂  are the
same as those of ^. D

Lemma 3.3. — If F : ̂ \ -> ̂  is a quasi-equivalence then it induces a quasi-equivalence

of completions F : ̂  -> ̂ .

Proof. — First we prove that F is quasi-fully-faithful. Suppose that U and V are

objects of ^ and U is an extension of N by M. If F : Ext^V, M) ^ Ext^FV, FM) and

F : Ext^V, N) ^ Exf(FV, FN), then by the long exact sequence of Ext groups and

the five-lemma, F : Ext^V, U) ^ Ext^FV, FU). A similar statement holds if V is

expressed as an extension. Then since every object of^i is an extension of objects in ^i,

and by assumption the maps F are isomorphisms on Ext groups of objects of ^i, one

shows inductively that the maps F are isomorphisms on Ext groups of all objects of ^i.
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To show that F is surjective on isomorphism classes, use induction again. If U is

an object of ^3 expressed as an extension of FN by FM, then it corresponds to an

extension class 9 e Ext^FN, FM). By the previous paragraph, F is an isomorphism

on Ext1, so 9 == F4> for an extension class ^ e Ext^N, M). Then if V is the extension

given by 4s U = FV. D

Remark. — These two lemmas imply that if F is a quasi-equivalence, then E° F

is an equivalence between E° ̂ i and E° ^2 •

EXAMPLES

We will give several examples of differential graded categories related to the results

o f § l . The idea of completion of a differential graded category will allow us to extend

the equivalence of categories given in Theorem 1, to objects which are extensions of

stable or irreductible objects. Define the following d.g.c.'s.

3.4.1. %p^ is the category of all flat bundles, with

Hom-(U, V) == (A-(Hom(U, V)), D).

%^ is the full subcategory consisting of semisimple objects, ^^ is the full subcategory

of trivial objects (those isomorphic to C"), and <^^ is the full subcategory consisting

of nilpotent objects (extensions of trivial objects).

3.4.2. %p^ is the category of Higgs bundles which are extensions of stable Higgs

bundles of degree zero, with chg. [(oj^-^-2 = 0; and

Hom-(U, V) == (A-(Hom(U, V)), D").

^p^ is the full subcategory consisting of semisimple objects (polystable Higgs bundles),

^^ is the full subcategory of trivial objects (those isomorphic to ^), and % î is the

full subcategory consisting of nilpotent objects (extensions of trivial objects).

3.4.3. ĝ is the category of all harmonic bundles, with

Hom-(U, V) - (J?T(Hom(U, V)), 0).

Here ̂  denotes the space of harmonic forms. This category is the same as the category

of semisimple flat bundles with morphisms the de Rham cohomology classes and zero

differential, and is the same as the category of objects of % î with morphisms the

Dolbeault cohomology classes and zero differential.

3.4.4. ^p. is the category of all harmonic bundles, with

Hom-(U, V) == (ker(D') C A-(Hom(U, V)), D").
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3.4.5, Suppose A* is any differential graded algebra. Then we can form

a d.g.c. ^^(A*). The objects are of the form I", and the morphisms are appropriate

direct sums of A\ Note that % = ^(A^) where A^ = (A-(X),rf). Similarly,

% = ^(Apol) where A^ == (A-(X), 8).

Lemma 3.4. — There are quasi-equivalences of d.g.c .'s from ̂  to ^p^, ̂ i w^ ^g.

r^n? are equivalences of d.g.c:'s ^R = ^DE fl7^ ^Doi == ^Doi? WA^ ^n^ ^ <^ == ^gg

^ < !̂ = <^^ 072 ̂  subcategories of nilpotent objects.

Proof. — The first three are due to Lemma 2.2. The last two are due to the uni-
^s,

versality of the completion ^, and the fact that %p^ and V^ are complete and all objects

are extensions of objects of ^p^ and ^or D

Remark. — We can describe the inverse functors ^p^ -> ^p^ and ^p^i -> %^i

concretely. An object of ^p^ is a pair (U, T]) where U == (U, D) is a semisimple flat

bundle, and T] eA^X, End(U)) is a one-form with D(T]) + Y] A T] = 0. This pair maps
to the flat bundle (U, D + T]). The same works for the Higgs bundles.

Lemma 3.5. — There is an equivalence of categories between the category of flat bundles

and the category of Higgs bundles which are extensions of stable bundles of degree zero, with

ch^E).^]^11^-2 == 0. Furthermore these are equivalent to the category E0^) formed from

the data of the simple objects and their Ext groups and cup products.

Proof. — To see this, note that the categories of flat and Higgs bundles referred

to are E0^^) and E°(^i) respectively. By Lemmas 3.2, 3.3 and 3.4, these are

equivalent and equivalent to E°(^) and E0^^). D

Remarks. — 1. The equivalence of categories constructed in this lemma is func-
torial with respect to morphisms of X.

2. We can interpret the last statement of the lemma as a formality statement,

the generalization to nonabelian cohomology of the formality statement of [12].

In a slight abuse of notation, we can in example (3.4.5) let ^"(A') denote

the completion of ^^(A*). Then according to the lemma, <^ = ^(A^J and

% == ^"(ApJ, and both are quasi-equivalent to ^(H*). In the context of example

(3.4.5), everything we have done so far is exactly taken from the paper of Goldman
and Millson [21].

The equivalences referred to in the lemma are obtained by equivalences

with the category E° %p,, which makes them very concrete, in a manner suggested

by K. Corlette. By definition, the objects of this category are pairs (U, T]) where

U == (U, D, D', D") is a harmonic bundle and T] eA^X, End(U)) is a one-form such

that D'(T)) = 0, and D"(Y]) + T] A T] = 0. The morphisms between (U, T]) and (V, S)

are maps/: U -> V such that, first of all, D'(/) = 0. This implies that/is a morphism
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of harmonic bundles, so D"(y) = 0. Second, the condition that the differential ofy

is zero becomes ^f—fr\ = O* Thus a morphism is simply a morphism of harmonic

bundles which intertwines T] and ^. A pair (U, T)) goes to the Higgs bundle (U, D" + T]),

and to the flat bundle (U, D + ^)' These functors are equivalences, so for any Higgs

bundle (satisfying the conditions of the lemma) or flat bundle, there is a unique pair

(U, 7)) which maps to it.

The C00 bundles underlying the corresponding Higgs bundles and flat bundles

are naturally isomorphic (in a way which is determined by functoriality for pullback

to a point)—see Lemma 6.13 below.

It is easy to see from the above interpretation that if a representation is an extension

of unitary representations or equivalently if the corresponding Higgs bundle is an extension

of stable vector bundles, then the identification between the underlying bundles preserves

the holomorphic structure. This is true for unitary harmonic bundles, and adding a

nilpotent Y] as described above changes both holomorphic structures by 7]0'1.

THE THEOREM OF MEHTA AND RAMANATHAN

We show that the theorem of Mehta and Ramanathan [36] [37] about restriction

of semistable and stable sheaves to hyperplane sections works for Higgs sheaves too.

The results of this part are valid only when X is a smooth projective variety. The

aim is to show that the category ^p^ consists of all semistable Higgs bundles E

with chi(E). [co]^3^-1 = 0 and cha(E). H11111 -̂2 = 0.

A Higgs sheaf is a coherent sheaf E with a map 6 : E -> E ® ̂  suc!1 ̂ at 6 A 6 == 0.

Say that a Higgs sheaf is torsion-free if the coherent sheaf is torsion-free, and E is reflexive

if it is equal to its double dual E**. A Higgs sheaf is semistable or stable if it is torsion

free, and if the usual condition is satisfied using the degree of a coherent sheaf.

Suppose IT is a vector bundle on X. Then we consider the category of sheaves

on X with ̂ -valued operators: an object is a sheaf € together with a map i\: € -> S ® H^.

The category of Higgs bundles is contained in the category of sheaves with Q^^v^11^

operators. In the category of torsion free sheaves with ^-valued operators, one can

make the usual definitions of semistability, stability, and so forth, by considering sub-

sheaves e^C g such that T^C y®iT. If YC X is a subvariety, then we may restrict i^

to Y, and if S is a sheaf on X with ^-valued operator, then S\-^ is a sheaf on Y with

^L-valued operator. The arguments of Mehta and Ramanathan [36] [37] show:

Proposition 3.6. — If € is a torsion free semistable (resp. stable) sheaf on X with if^'valued

operator, then for sufficiently general hyperplane sections Y of certain arbitrarily high degrees, S\^ is

a semistable (resp. stable) sheaf with i^\y-valued operator. D

Lemma 3.7. — If X is projective and E is a semistable (resp. stable) torsion free Higgs

sheaf then for general hyperplane sections Y of certain arbitrarily high degrees, Ejy is semistable

(resp. stable).
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Proof. — For generic Y of certain arbitrarily high degrees, E[y is semistable (resp.

stable) as a sheaf with Q^[y-valued operator. Furthermore, by applying the theorem

of Mehta and Ramanathan to the canonical filtration of the sheaf E with semistable

quotients, we may assume that for all generic Y of the various arbitrarily high degrees,

there is an upper bound B for the degree of any subsheaf J^C E|y. Here the notion of

degree should be normalized so that the degree of ^y(l) is always one. Now suppose

F C E j y is a saturated sub-Higgs sheaf, with deg(F) ^ A = (r(F)/r(E)) deg(E). Let
G = (E|y)/F. Consider the exact sequence

0 ->E( -Y) |y^E®Qx |Y-^E®tyy-^0 .

Composing the map 6 : F -> E ® Q^IY with the projection to G, we get a map F -> G(— Y).

Let HC F be the kernel of this map. Then deg(H) < B. Thus the image F/H has degree

at least A — B . L e t J C E ( — Y ) | y b e t h e inverse image of F/H. Then we have an exact
sequence

0->F->J(Y) ->F/H(Y) ->0

so deg(J(Y)) ^ 2A - B + r(F/H) .deg(fiy(Y)). But J(Y) is a subsheaf of E|y, so this

number is bounded by B. If Y is taken to have high degree, this implies that F/H == 0,

and hence 6 : F -> F®^|y Thus F ^ a subsheaf of E with Qxlv-^111^ operator, so

deg(F)/r(F) ^ deg(E)/r(E) (resp. <). This proves that E|y is semistable (resp. stable)
as a Higgs sheaf on Y. D

Corollary 3.8. — The tensor product of two semistable Higgs bundles is again semistable.

Proof. — The converse of the above lemma is also true: if the restriction to a generic

hyperplane section is semistable, then the Higgs bundle is semistable. This reduces the

statement to the case of curves. On a curve, a semistable Higgs bundle is an extension

of stable ones, and we may choose Hermitian-Yang-Mills metrics for the stable

subquotients. The tensor product of these metrics is again Hermitian-Yang-Mills,

so the tensor product of two stable Higgs bundles on a curve is polystable. Applied to

the subquotients, this shows that the tensor product of the semistable bundles is
semistable. D

In a similar vein, we can generalize the Enriques-Severi lemma of [36] and [37]
to Higgs sheaves.

Lemma 3.9. — Suppose M and N are reflexive Higgs sheaves. If Y is a hyperplane section

of high degree, then Hom(M, N) ^ Hom(M[y, N|y). If M and N vary in bounded families

then a single Y can be chosen.

Proof. — This is proved for reflexive sheaves in [36]. We have to prove that if (E, 6)

is a reflexive Higgs sheaf then H^(E) -^ H^(E|y). If Y has high degree, the map is
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injective. We may also assume that H^(E(— Y)[y) = 0. If e e H°(E[y) we may assume

that e extends to a section over X. If 6y(<?) == 0 in Ejy®^ then by the exact sequence

O-^-Y^y-^E^xlY-^E^y^O

it follows that Q{e) =0 in E00x|y. If Y has high degree, this implies that 6(<?) =0

on X. D

Theorem 2. — Suppose X is a smooth projective variety of dimension n, with [co] equal

to the hyperplane class. Let PQ be the Hilbert polynomial of 0^. Suppose E is a semistable torsion

free Higgs sheaf with chi(E). [(o]""1 == 0 and cha(E) .[co]""2 == 0. Make an additional

assumption, either that E is reflexive, or that the Hilbert polynomial of E is rk(E) P(). Then E

is an extension of stable Higgs bundles with vanishing Chern classes.

Proof. — If X is a curve this is clear. Suppose X is a surface. We claim more

generally that ifE is a torsion-free semistable Higgs sheaf of degree 0, then ch^E) ^ 0

and if equality holds, E is an extension of stable Higgs bundles. (In particular, the

conclusion of the theorem will hold without the additional assumptions.) To prove the

claim, suppose first that E is stable. The double dual E** is a stable Higgs bundle and

there is an exact sequence

0 - ^ E ^ E ^ - ^ S - ^ O

where S is concentrated on a finite set of points. Thus cl^S) ^ 0 with equality only

if S == 0. By Theorem 1, E** has a Hermitian-Yang-Mills metric. This implies that

ch^E*') ^ 0 [16] [52] [47]. Thus cha(E) ^ 0 and if equality holds, S == 0 so E is a
bundle. Now ifE is semistable, write it as an extension of stable Higgs sheaves and apply

the claimed statement to them.

To prove the theorem in higher dimensions we will use the argument of Mehta

and Ramanathan [37]. Suppose dim(X) ^ 3 and we have proved the theorem for

smaller dimensions. Suppose E is a semistable torsion free Higgs sheaf of degree 0 with

chg(E). [co]71""2 == 0. Let Y be a general hyperplane section of some high degree such

that E J Y is semistable (and—in case we are using the first additional assumption—such

that Ejy is reflexive). Note that Ejy satisfies the conditions of the theorem on Y. By the

inductive hypothesis E|y is an extension of stable Higgs bundles, so we may apply

Lemma 3.5 to conclude that E[y comes from a local system Vy on Y. By the Lefschetz

theorem TTi(Y) ^ 7^i(X), Vy is a local system on X. By Lemma 3.5, this local system

comes from a Higgs bundle Ey on X. Ey is an extension of stable Higgs bundles of

degree zero. The correspondence of Lemma 3.5 commutes with restriction to smooth

subvarieties, so Ey|y ^ Ejy . The Higgs bundles Ey which come from local systems on X

via Lemma 3.5 vary in a bounded family. Therefore we may choose Y so that the

Enriques-Severi lemma applies to E** and Ey. Thus E** ^ Ey on X, 30 E** is an extension

of stable bundles. This completes the proof in case we assume that E is reflexive.
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Suppose we assume instead that the Hilbert polynomial of E is rk(E) Po. By the

conclusion of the previous paragraph, the Hilbert polynomial of E** is that of a flat

bundle, also rk(E) P(). Now we have

O ^ E - > E * * — T - > 0

and both E and E** have the same Hilbert polynomial. Thus the Hilbert polynomial

of T is zero, so T == 0, and E = E1111' is an extension of stable bundles. D

Remark. — As a consequence of this theorem, we may reinterpret ^Dop as the

differential graded category of all semistable Higgs bundles with chi(E) .[(x)]*1111^""1 = 0

and ch^E).^:^-2^.

Corollary 3.10. — Suppose X is projective and [<o] is the hyperplane class. There is an

equivalence of categories between the category of flat bundles and the category of semistable Higgs

bundles with chi^co]41"121"1 =0 and ch^o)^"1131""2 =0. Furthermore these are equivalent

to the category E0^^) formed from the data of the simple objects and their Ext groups and cup

products. D

Continuing with the discussion at the end of the previous subsection about exten-

sions of unitary representations, we may conclude that any semistable vector bundle

with vanishing Chern classes has a holomorphic flat structure which is an extension of

unitary flat bundles.
TENSOR PRODUCTS

Recall that a tensor category is an additive C-linear category with an operation 00,

satisfying associativity and commutativity constraints (which entail the existence of

various natural isomorphisms), and with a unit 1 (cf. [13] [43]). We would like to

extend this notion to differential graded categories, and prove that it is compatible

with the operation of completion. Then our equivalences constructed above will be

compatible with tensor products.
If ^ is a d.g.c. then define a new d.g.c. ^ El ^ as follows. The objects are pairs

denoted U E3 V. The Horn complexes are

Hom"(U a U', V El V) = © Hom^U, V) ®c Hom^lT, V)
i + j = n

(use the notation a Kl a' for the element of Hom(U El U', V 121 V) corresponding to

a® a' on the right hand side). The composition of maps is defined by

(a ̂  a') (P ̂  JB') = (- l ) 1 0^ ' l p l a(B ̂  a' ?'.

The differential is defined by

^(a 13 a') = rf(a) 13 a' + .(- I)1 0 1 1 a El rf(a').

A differential graded tensor category (d.g.t.c.) is a differential graded category V

together with a functor of differential graded categories
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with associativity and commutativity constraints, which are natural isomorphisms

denoted ^ and 9 respectively, and a unit object. The definitions of the associativity and

commutativity constraints involve associativity and commutativity constraints for the
operation Kl. For example there is a natural equivalence of categories

(^ Kl V) S ̂  ̂  ̂  El (^ K] V)

both being equivalent to the category ̂  13 ^ B %7 of triples U [x3 V El W, where compo-

sition of morphisms is defined using the usual sign. The associativity constraint is a

natural isomorphism ^ : (U ® V) ® W ̂  U ® (V ® W) of functors from ^ S ^ Kl ^
to ^3 satisfying a compatibility axiom. The commutativity constraint for the operation S

must also take into account the usual sign change. This functor ^ S ^ ^ ^ S ^ takes
U S V to V 121 U, and takes a S (B to (- I)!"! 1P1 (3 S a (it would not be a functor without

the sign change). The commutativity constraint for ® is a natural isomorphism

( p : U ® V ^ V € ) U o f functors from ^ Kl ^ to %7, which satisfies 9^ ̂  9v, u == 1, and
also a compatibility with the associativity constraint. The unit object 1 for the ope-

ration (x) is an object together with natural isomorphisms 1 00 U ^ U, satisfying the
appropriate compatibility conditions.

A tensor functor from one d.g.t.c. %' to another Q is a pair consisting of a functor

F : ̂  -^ ̂  of d.g.c.'s, and a natural isomorphism T : F(U ® V) ^ F(U) ® F(V) compa-

tible with the associativity and commutativity constraints. Also there should be provided
a natural isomorphism F(l) ^ 1.

The category i^ect of C-vector spaces is a d.g.t.c. in a trivial way. A fiber functor

for a d.g.t.c. ^ is a tensor functor co from ^ to i^ect.

The compatibility conditions mentioned above are exactly the same as the condi-
tions for a tensor category. They are described in detail in [43] or [13], although perhaps

originally due to MacLane. The category E° ̂  is a subcategory of ^, and the constraints

are morphisms in E° ̂ . The compatibility conditions are equations involving these

constraints, so they are equations of morphisms in E° ̂ . The compatibility conditions

may all be described by saying that the category E° V, with its tensor product and

constraints, should be a tensor category (and similarly for tensor functors)—making

Lemma 3.11 below tautologically true. One should be careful to note, however, that

the naturality conditions on the constraints are stronger than simply saying that they

should hold for E° %7. The constraints are required to be natural with respect to all
elements of the Horn complexes in %7.

Lemma 3.11. — If ̂  is a d.g.t.c. then E° ̂  is an additive C-linear tensor category. IfF is

a tensor functor of d.g.t.c.'s then E° F is a tensor functor. In particular, if ̂  is a fiber functor for %',

then E° <o is a fiber functor for E° %\

Proof. — See the previous paragraph. D

Lemma 3.12. — If^ is a d.g.t.c., then the completion V has a canonical structure ofd.g.t.c.;

and if V is a tensor functor of d.g.t.c^ s then I7 has a canonical structure of tensor functor.
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Proof.—First we wilL show that ^ has a structure of d.g.t.c.:

(U,73)®(V,^) == ( U ® V , 7 ] ® l + i ' ® ( x ) .

The object on the right is an element of ^, as is seen by verifying that

d{^ 0 1 + 1 ® ^) + (7] ® 1 + 1 ® {A)2 == (A]) + 7]2) ® 1

+ 1 ® (4t + (^2) + (7] ® 1) (1 ® (A) + (1 ® (i) (7) 0 1) == 0.

The last two terms cancel because of the sign change in the definition of S. To define
the action of tensor product on morphisms, recall that

Hom-((U, T]), (U', 7]')) = Hom-(U, U')

but with different differential. One checks that the resulting map given by functoriality
of tensor product in ^

Hom-((U, 731), (U', T^)) 00 Hom-((V, 7)3), (V, ̂ ))

-> Hom-((U ® V, 7313), (U' ® V, ̂ ))

is also compatible with the new differentials. The associativity and commutativity

constraints are defined using the ones from ^. Again one checks that they are morphisms

killed by the new differentials as well. This is due to the fact that they are natural; for

example ^ intertwines (T] ® 1) ® 1 with T] ® (1 ® 1) and so forth.

Thus ^ has a canonical structure of d.g.t.c. The compatibility conditions for the

constraints remain satisfied, because they are simply equations of elements of the Horn0

sets, which are the same as the Horn0 sets in ̂  The structure of d.g.t.c. for ^is obtained

by noting that if M —^U -^N is an extension, then M ® V - ^ U ® V - ^ N ® V is an

extension. Thus %7, being the full subcategory of objects which are successive extensions
of objects of ^, is preserved by tensor product.

Suppose F: ̂  ->Q! is a tensor functor, with associated natural isomorphism T.

Recall that F : ̂  -^2 is defined by

F(U,7])=(F(U),F(73)) .

Extend T to ^ by setting T(^ ̂  ̂  ̂  == T^ y in

HomO((F(U ® V), F(T) ® 1 + 1 ® (JL)J, (F(U), F(T))) ® (F(V), F(pi)))

= Hom°(F(U®V), F(U) ®F(V)).

Again, one must show that d(^) == 0. We know that rf(r) = 0 so what remains is to

show that T intertwines F(T]®I + 1 ® (A) with F(T]) ® 1 + l®F(p). The reason for
this is that T is a natural morphism of functors.

Note that ? is compatible with the associativity and commutativity constraints,

because T is. Therefore (F, ?) is a tensor functor from ^ to ̂ . D

Given a fiber functor G) : ̂  -> i^ect^ it has a natural extension to a fiber functor

co:^-^y^.
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Finally we note that all of the categories and functors considered in examples

(3.4.1)-(3.4.5) above are d.g.t.c/s and tensor functors in obvious ways. The notions

of tensor product of Higgs bundles and flat bundles provide ^j^i and %p^ with struc-

tures of d.g.t.c., bearing in mind the fact that the tensor product of two semistable Higgs

bundles is again semistable (Corollary 3.8). Note that the unit objects are the obvious

ones, either the trivial Higgs bundle (P^ or the trivial flat bundle C.

Since the tensor product of two harmonic bundles is again a harmonic bundle,

the category ̂  has a structure of d.g.t.c. (the tensor product of two morphisms killed

by D^ is again killed by D'). Furthermore, the subcategories ̂ ^ and ^p^ of harmonic

objects are preserved by tensor product. Also the category ̂  where the morphisms

are the cohomology classes, is a tensor category. Even in example (3.4.5), for any

d.g.a. A-, ^(A-) is a d.g.t.c.

The functors from ̂  to ^R, ^w
 and ^H are a^ tensor functors. Therefore

the functors from E° ̂  to E° ^E? Eo ^Dop and Eo ^H are tensor functors. Recall
that they were equivalences of categories. Therefore they have essential inverses which

are tensor functors [43]. On the other hand, the inclusion %^ —^ ^p^ is a tensor

functor. Thus we get tensor functors from ^p^ to ̂ ^ and from ̂ ^ to ^R- These are
<<s

both equivalences. Thus there is a tensor equivalence between E° %^ and E° V^.

Similarly there is a tensor equivalence between E° %^i and E° ̂ r The tensor cate-

gories E° %^ and E° V^A
 are J118! ^le categories of flat bundles, and of semistable

Higgs bundles with vanishing Ghern classes, with their respective tensor products.

Thus the equivalence of categories constructed in Corollary 3.10 is an equivalence of

tensor categories, as is the equivalence with the category E° ^n. This tensor category is

formed from the data of the simple objects, their tensor products, the Ext groups, and

the cup products.

The equivalences are compatible with pullbacks, and this extends to the tensor

structure also. Suppose f: Y -> X is a morphism of smooth projective varieties. If ^(X)

denotes any of the categories of objects on X and %'(¥) denotes the corresponding

category of objects on Y, then the pullback functors/" : ̂ (X) -> ^(Y) are tensor functors.

These pullback functors commute with all of the other functors we are considering,

up to natural isomorphism compatible with the tensor structure. Thus the equivalences

of tensor categories are natural with respect to pullbacks.

This allows us to define fiber functors. If x e X, then any of the above construc-

tions (3.4.1)-(3.4.4), applied to the space { x } , yield canonically the d.g.t.c. "Tect.

Therefore, the pullback morphism associated to the inclusion { x } <-> X gives a functor

co : ̂ (X) -> ̂ {x) == i^ect. This will be a fiber functor, which we will refer to as the

fiber functor of evaluation at x.

In example (3.4.5), if A* is a d.g.a. with augmentation co : A° -> C, then co extends

to a fiber functor on the d.g.t.c. ^"^A"), and hence to a fiber functor on the

completion ^"(A*).
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4. Variations of Hodge structure

A complex variation of Hodge structure [24] [8] is a <^00 vector bundle V with a decom-

position V = (B^^^V'''8, a flat connection D satisfying Griffiths' transversality
condition

D : V'8 -^A^V^1^1) ©A^V^) ©A011^111) ©A^V'-1'^1),

and a parallel Hermitian form which makes the Hodge decomposition orthogonal and

which on V'8 is positive definite if r is even and negative definite if r is odd. The mono-

dromy representation of the flat connection D has image contained in a subgroup

U(A q) CGl(w, C). The representation is known to be semisimple [24]. By changing

the sign of the polarization on alternate V^®, one obtains a harmonic metric K for

the flat connection. Decompose D = 6 + ^ + 5 + 6 according to the above transver-

sality condition. Then set D" = 8 + 6 and D' = 9 + 6. The operator D" is the one

in § 1 associated to the flat connection D using the metric K. The condition (D")2 == 0

may be obtained from D2 = 0 by decomposing according to type of form in the base

and type of coefficients. These operators D" and D' were introduced by Deligne when

he extended the Kahler identities to variations of Hodge structure. This is the moti-
vation for the definitions made in § 1.

Corresponding to variations of Hodge structure, there is a type of algebraic struc-

ture for Higgs bundles. A system of Hodge bundles is a Higgs bundle (E, 6) with a decompo-

sition of locally free sheaves E = (BE^, such that 6 : E^8
 -> E*'-1^4"1®^- In the

theorem about partial differential equations used to construct representations from Higgs

bundles, the flat connections which come from variations of Hodge structure are those

obtained from Higgs bundles which are systems of Hodge bundles [47]. Moreover, there

is a one-to-one correspondence between the possible variations of Hodge structure on a

given local system, and the structures of system of Hodge bundles on the corresponding

Higgs bundle. We remark that the condition of stability for a system of Hodge bundles

and the condition of stability for the resulting Higgs bundle are a posteriori the same.
This can be seen from [47].

There is a natural action of C* on the space of Higgs bundles: t e C* maps (E, 6)

to (E, tQ). The action of C* clearly preserves the conditions of stability and vanishing

Ghern classes, so by Theorem 1 it gives an action on the set of semisimple representations

of the fundamental group. This action also preserves the monodromy group M(E, x),

and hence the Zariski closure of the image of the monodromy representation. Further-

more, Corollary 2.9 implies that on the space of semisimple representations the action

of / e C* is continuous in t.

If X is a smooth projective variety, then we get an algebraic action of C* on the

moduli space Mp^ (or Mp^i(G)), following from the construction of the moduli space.

In that case, the homeomorphism between Mp^ and Mg shows that the action is conti-

nuous in both variables, t and the representation.
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Hitchin originally considered this action in the form of an action of the circle

U(l) CC* [30]. The analytic picture is simplified in case of the action of t e U(l), for

the harmonic metric is then left unchanged: if K is a harmonic metric for (E, 6) then K

will still be a harmonic metric for (E, tQ). The operator D' changes from 8 + 6 to 8 + tQ,

but the curvature condition F == 0 still holds because ft == 1.

If a Higgs bundle E has a structure of system of Hodge bundles, then it is a fixed

point of C*. The automorphism of E obtained by multiplication by f on E^8 gives an

isomorphism between (E, 6) and (E, tQ). The converse also holds:

Lemma 4.1. — If (E, 6) ^ (E, fQ) for some t e C* which is not a root of unity, then E

has a structure of system of Hodge bundles. IfE is stable then this structure is unique up to translation

of indices.

Proof. — Let f: E -> E be the holomorphic automorphism such that /6 == tQf.

The coefficients of the characteristic polynomial off are holomorphic functions on X,

hence constant, so the eigenvalues are constant. This gives a decomposition E == (D^E^

where E^ = ker(/— >.)\ Since/is an isomorphism, X =(= 0. Now (/— /X)" 6 == ^ 6(/-- X)"

so 6 maps the X generalized eigenspace E^ to the fh generalized eigenspace E(^. The

fact that t is not a root of unity insures that the eigenvalues break up into strings of the

form X , ^ X , . . . , ^ X where r^X and F^X are not eigenvalues. Combining the

eigenspaces for these eigenvalues in the appropriate fashion yields the decomposition

of E. D

Corollary 4.2. — The representations of T^(X) which come from complex variations of

Hodge structure are exactly the semisimple ones which are fixed by the action of C*. D

Corollary 4.3. — ̂ X and Y are compact Kdhler manifolds andf: Y -> X is a map such

that the induced map / : 7i:i(Y) -> TCi(X) is surjective, and ifV is aflat bundle on X such thatf* V

comes from a variation of Hodge structure on Y, then V comes from a variation of Hodge structure on X.

Proof. — The correspondence between flat and Higgs bundles commutes with /*,

so the action of C* commutes with /*. If the map on fundamental groups in surjective

and/* V ^/* V, then V ^ V,. D

This corollary is particularly applicable if Y is a complete intersection of hyper-

plane sections. Thus if Y is such a curve on X, then any local system which restricts to

a variation of Hodge structure on Y comes from a variation of Hodge structure on X.

And if Y is a hyperplane surface on X, then the variations of Hodge structure on X and

on Y are the same. These are Lefshetz-type theorems for variations.

Remark. — In § 3 we extended our correspondence, and hence the C* action, from

semisimple local systems to all local systems. There is an extension of the notion of varia-

tion of Hodge structure to the nonsemisimple case, the notion of complex variation of mixed

Hodge structure. I do not think that the obvious generalization of Lemma 4.1 will remain
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true; in other words there are probably local systems fixed by the action of C* but which

do not underly complex variations of mixed Hodge structure. The correct generalization

probably Should refer to a local system and its complex conjugate. It seems to be reaso-

nable to conjecture that if a local system and its complex conjugate are both fixed by C*,

then they should underly complex variations of mixed Hodge structure (very nonuniquely).

Real structures. — A real variation of Hodge structure is a complex variation V

with flat real structure on the local system, V^CV, such that V^^V^. A real

polarization means a form S : Vg ® Vg —^ R, symmetric or antisymmetric depending on

the weight w == p + ?? such that < u, v > = S(^, v) (or V - — T times it) is a complex

polarization. Such may be chosen by choosing any complex polarization < u, v >o, and

setting S{u, v) == < u, v \ ± < y, u >o.

If the complexification of a real local system is the complex local system underlying

a complex variation of Hodge structure, then the real local system underlies a real varia-

tion of Hodge structure (possibly after changing the Hodge decomposition—and if the

representation is not irreducible it may be a sum of real variations of different weights).

The proof will be given in a slightly more general context in the next section, Lemmas 5.5

and 5.6, or you can obtain a proof by following the discussion in the back of [10]. In

particular, Corollary 4.3 holds for real variations.

GROUPS OF HODGE TYPE

We will now make some remarks on the monodromy groups of variations of Hodge

structure. Let W be a real algebraic group and G the associated complex group. Let a

be complex conjugation in G relative to the real form W. Recall that a Carton involution

is an automorphism GofW such that C2 == 1, and such that T = crC = Ca is the complex

conjugation with respect to a compact real form U of G (i.e. a compact group which

has a real point in every connected component of G).

Say that W is of Hodge type if there is an action ofC* on G such that U(l) preserves W

and such that the element C == — 1 is a Cartan involution. (Compare with [26], [11]

§ 1, and [9]).
Say that a representation p : ̂ (X) -> H comes from a variation of Hodge structure

if there is a faithful representation H <-> Gl(%, C) such that the composite representa-

tion of 7Ti(X) in Gl(n, C) comes from a complex variation of Hodge structure.

Suppose p is a representation with values in a complex algebraic group H. The

complex Zariski closure G is the smallest complex algebraic subgroup containing the

image. We may define the real Zariski closure to be the smallest real algebraic subgroup W

containing the image of p, in the real algebraic group resc/^ H obtained by restricting

scalars.

Lemma 4.4. — Suppose that p is a representation which comes from a variation of Hodge

structure. Let G be the complex Zariski closure of the monodromy group, and let W be the real

Zariski closure. Then W is a real form of G and W is a group of Hodge type.
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Proof.— We will give a concrete proof here; a more abstract version of the same

proof will be given in §§ 5 and 6. We may assume that p i? a representation into Gl(rt, C),

and the resulting local system E is a complex variation of Hodge structure. The Zariski

closure G is equal to the monodromy group M(E,A:). Choose a polarization of the

variation E, and let K be the associated harmonic metric for the Higgs bundle E. Let

U =G n U(E^, KJ. Let T denote complex conjugation in G1(EJ with respect to

the metric K^. We will prove that T preserves G and that the group of fixed points U is

a compact real form. Since G is reductive, it is equal to the group of elements fixing a

subspace of tensors SC T^EJ = E00® (E:)06. Furthermore we may assume that S

is the space of all tensors so fixed, hence S has a Hodge structure and there is a decom-
position of systems of Hodge bundles

T^E) = S®(P^@'F

with F not containing any tiivial subobject. In particular, G == M(E, x) preserves the

subspace F^. Now the harmonic metric K on E induces a harmonic metric on the tensor

product, and it follows that the direct sum S ® ̂ e F is an orthogonal direct sum of
bundles with harmonic metrics. Any element g of G1(EJ may be written uniquely

as a product g == u.exp{jy) where u e U(E^, KJ, and y is in the Lie algebra End(EJ

with r(j/) = —y. This decomposition is compatible with tensor products and orthogonal

direct sums. Thus if g e G, then the elements u and y preserve the decomposition

TO, &^j = S C F^ (and act trivially on S), so u e G and y is in the Lie algebra of G.

Since T(^) == ^.exp(—^), the conjugation T preserves G. The set of fixed points U is

compact and a real form of G. It meets every connected component because any ele-

ment g = u.exp{y) may be joined to an element u e U by a path of elements u.exp(ty)

which remain in G. This proves that U is a compact real form of G.

Next notice that the subspace of tensors S is compatible with the decomposition

into Hodge type. Therefore the action of C* obtained by multiplication by f on E^ s

preserves S, so it normalizes G. Thus we get an action ofC* on G. The elements of U(l)

preserve the polarization and the metric K, so they preserve U. The element C, which

is the image of — 1, yields a new complex conjugation a == CT and hence a new real

form W. By the fact that the polarization and the metric are related by a change of sign

on alternate E^s, the group W is the intersection of G with the group of elements preser-

ving the polarization form. But the monodromy representation preserves the polarization,

so the image ofTCi(X) is contained in W. As G is the complex Zariski closure, W must be

the real Zariski closure. Finally, W is by construction a group of Hodge type. D.

We will list several facts of a standard nature related to the question of whether

a real algebraic group is of Hodge type. Suppose W is a real algebraic group, and G is
its complexification.

4.4.1. If W is of Hodge type, then it is reductive.

This is because the complexification G has a compact real form. D
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4.4.2. W is of Hodge type if and only if it has a Cartan involution which is an inner auto-

morphism, given by an element of the connected component of G.

Since G is reductive, the map of G° -> Aut(G)° is surjective. If W is of Hodge

type, then the Cartan involution is in the connected component ofAut(G), so it comes

from an element of G°.

Suppose G in the connected component Aut(G)° gives the Gartan involution

for W. Let U be the compact real form defined by C. Then C is contained in the

compact group Aut(U)°, and we can let T be a maximal torus in Aut(U)° containing C.

The equation C2 == 1 implies that there is an algebraic one parameter subgroup

U(l) —> Aut(U) such that — 1 maps to C. This provides the structure of group of

Hodge type. D

Remark. — If W is an algebraically connected group, then it has a Cartan invo-

lution, and any two Cartan involutions are conjugate by an inner automorphism [28].

4.4.3. If W is of Hodge type, the center of W is compact.

The condition that the Cartan involution is inner means in particular that C fixes

the center. Therefore the center of W is the same as the center of the compact real

form U. D

4.4.4. If^W is a group of Hodge type, then it has a compact maximal abelian subgroup.

Lift the map U(l) -> G^ to a map U(l) -> G (possibly taking a cover of U(l)).

It maps into the maximal compact subgroup U and the real subgroup W. Let T be
a maximal torus in U containing the image of U(l). Then T contains the lift of the

Gartan involution, so T is fixed by the Cartan involution. Therefore T is contained

in W. It is a maximal abelian subgroup because if w e W commutes with T, it is fixed

by C so it is also in U, hence it is in T because T is maximal abelian in U. D

4.4.5. Suppose W is an algebraically connected reductive real group, which contains a compact

maximal abelian subgroup T. Then W is of Hodge type.

Choose a Gartan involution for W. The fixed points form a maximal compact

subgroup. Since all maximal compact subgroups are conjugate, we may assume that T

is perserved by C. As T is a Cartan subgroup, we may look at the root system of W with

respect to T to write

g = t ® © g ^
oc

where the a are characters of T, and the spaces ga are one dimensional. The Cartan

involution C preserves this root space decomposition, and C2 == 1, so C acts by ± 1

on ga. We claim that there is a linear function d from the root lattice to Z, such that C

acts by (-- l)^ on g^. This is because a set of simple roots y forms a basis for the root
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lattice. Set rf(y) equal to 0 or 1 depending on whether C acts by 1 or — 1 on g^,, and

extend this to a linear function on the root lattice. Then since C acts trivially on t, and

[gy, g-y] + 0 in t, C must act by (— 1)^ = (— 1)^-^ on g_^. Now the vectors

in gy and g_.y generate g, and in general if [g^, gp] == ga+p then the action of C on ga+p

is determined by the action on ga and gp. Therefore G acts by (— l)^ on g^. This

linear function d is given by an imaginary element 7 of the Lie algebra tg, and we can

set G = exp(?7ri). Conjugation by this element is the Cartan involution of the Lie

algebra, and hence of the connected group W. D

4.4.6. If W is of Hodge type, then the algebraic connected component is also of Hodge type,

However, the converse may not be true.

If the Cartan involution of the algebraic connected component is an inner auto-

morphism, this need not remain true for the nonconnected group W. Consider the

following example. Let W° be the group SU(3, 3), the group of matrices A with deter-

minant one such that

A1 QA = Q,

where Q is the diagonal matrix diag(l, 1 , 1 , — 1 , — 1 , — 1 ) . There is an automor-

phism m ofW° given by m(A) == A. Let W be the semidirect product W = W° X { 1, m}

with two components. The Cartan involution of W° is given by the element C == Q

in PSU(3, 3). However Q^has determinant — 1, so in order to lift C to an element C

in SU(3, 3) we must choose a number a with a
6
 == — 1 and set

£ = diag(fl, a, a, — a, — a, — a).

Now C2 == a
2 I is in the center of W°. However, it is not in the center of W, as it does

not commute with m. There is no way to find C in the connected component ofAut(W)

such that C2 = 1 in Aut(W). This example shows that a group W might not be of Hodge

type, even though its connected component W° is of Hodge type. D

4.4.7. A compact group is automatically of Hodge type. D

4.4.8. Any group which is a product of groups, is of Hodge type if and only if all of its

components are.

The Cartan involution of the product of groups is equal to the product of the Cartan

involutions. It is inner if and only if all of the components are inner. D

4.4.9. If two connected groups are isogenous, then one is of Hodge type if and only if the

other is.

The conditions that the Cartan involutions are inner are the same. D
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4.4.10. A complex group considered as a real group is never of Hodge type.

If a complex group is considered as a real group, the Gartan involution inter-

changes the two factors of the complexification, so it cannot be an inner automorphism. D

S. Zucker points out that the condition of Hodge type for a connected real group

is just the condition that the rank of the group is equal to the rank of the maximal

compact subgroup (4.4.4 and 4.4.5 above). He directs me, for example, to Corollary 1.6

of [3]$ an earlier discussion is in § 1 of [26].

One can interpret the condition that the Cartan involution is an inner automor-

phism in terms of the Dynkin diagram. The group of outer automorphisms modulo

inner automorphisms is equal to the group of automorphisms of the Dynkin diagram,

so a connected group is of Hodge type if and only if its Gartan involution fixes the Dynkin

diagram. In particular, if a connected absolutely simple real group is not of Hodge

type, it must be of type a^, c^, or eg (as may also be verified by the list below). This

comment was pointed out to me by Deligne.

We will divide the groups of Hodge type into two categories, those of Hermitian

type, and those not of Hermitian type. A group is of Hermitian type if W/K is a Hermi-

tian symmetric space, where K is the maximal compact subgroup. A group is of Her-

mitian type if and only if it has a structure of group of Hodge type such that the weights

of CS* acting on the Lie algebra are — 1, 0, 1. See for example ([11] § 1.5).

Now we may give a list of which connected simple groups are of Hodge type,

by consulting Helgason's book [28]. The classification is due to E. Cartan, and Hel-

gason's treatment is based on results of Kac. The noncompact real forms of simple

complex Lie algebras are listed in Tables II and III on pages 514-515. As a consequence

of Theorem 5.16 in that section (one checks that if the Gartan involution is inner in

the complex group, then it is inner in the corresponding real form), the Cartan involution

is inner for the entries in the first column of Table II (labeled k = 1) and for the entries

of Table III. The groups which are not of Hodge type are those in the second column

of Table II (labeled k == 2). The groups in Table III are those of Hermitian type. Thus

we compile the following lists:

Simple groups which are not of Hodge type:

SI(TZ, R) n ^ 3 Any complex group

SU*(2w) n ̂  3 e^

SOQ^) p.qodd e^_^

Groups which are of Hermitian type:

SV{p,q) Sp{n,R)

S0*(2n) n> 3 e^_^

S0{p, 2) e,<_^
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Groups which are of Hodge type but not Hermltian type:

S0(p, 2q) q ̂  2 e^

8P(A ^ ®8(-24)

e6(2) I4(4)

^(T) I4(- 20)

^C- 5) S2(2)

RIGID REPRESENTATIONS

A representation of the fundamental group into an algebraic group G is called

rigid if every nearby representation is conjugate to it. In other words, the set theoretic

orbit of the representation in the representation space Horn (7^ (X), G) under the action

of G is an open subset. If the Zariski closure of the monodromy group is not equal
to G, then there is a slightly weaker notion: a reductive representation is properly rigid

if it is rigid as a representation into the Zariski closure of the image.

Lemma 4.5. — Any properly rigid reductive representation comes from a complex variation

of Hodge structure. Consequently, the real Zariski closure W of the image of the monodromy repre-

sentation is a real form of the complex Zariski closure, and W is a group of Hodge type.

Proof. — Replace G by the Zariski closure of the image, and fix a faithful linear

representation of G. Let E be the corresponding flat bundle, which has a harmonic

metric by Theorem 1. Choose a sequence ^ -> 1 in C*, and assume that the ^ are not
roots of unity. Then the representations corresponding to (E, ^ 6) converge to the repre-

sentation corresponding to (E, 6) (by Corollary 2.9 or the remark below). Furthermore,

the monodromy groups of these representations are all the same as the monodromy

group of E, so these representations are contained in G. The representation (E, 6) is
rigid as a representation in G, so for some i, the representation (E, ^ 6) is conjugate to

the representation (E, 6). Hence the Higgs bundles are isomorphic. Now Lemma 4.1

implies that (E, 6) comes from a variation of Hodge structure. D

Remark. — We may choose the numbers ^ in the unit circle. In this case, a harmonic

metric K for (E, 6) is also a harmonic metric for (E, ^ 6). It is therefore easy to see that
the representations (E,^6) approach the representation (E, 6). Furthermore, this

obviates the need to refer to the second part of Theorem 1.

Corlette [5] has given many other results showing that under certain conditions

a flat bundle must be of Hodge type. The conditions are on the structure group G and
the rank of the harmonic map into G/K. The latter he verifies by the nonvanishing of

certain characteristic classes. Corlette has also proved a result which is partially converse

to the result about rigid representations. He proves that certain variations of Hodge

structure which have nonvanishing volume invariant, are rigid [6].
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DEFORMATION TO A VARIATION OF HODGE STRUCTURE

In the algebraic case, there is a moduli space which, although not projective, has

a proper map to a vector space. Using this we may strengthen the previous results about
rigid representations as follows.

Theorem 3. — Suppose X is a smooth projective variety, and G is a reductive complex algebraic

group. Any representation p : TTi(X) -> G can be deformed to a representation which comes from

a variation of Hodge structure.

Proof. — First of all, any representation can be deformed to a reductive repre-

sentation. This is easy to see in case G = G\(n, G): one puts the representation in block

upper triangular form, and conjugates by a diagonal matrix so as to make the strictly

upper triangular parts go to zero in the limit. The same type of argument works for

any reductive G. Let M C G denote the monodromy group, and assume it is not reduc-

tive. A theorem of Morozov provides a one-parameter subgroup C* —^ G such that

lim^oAd(^) (m) exists for m e M, and such that this limit is the identity matrix for

some m =f= 1. In particular, the dimension of the monodromy group is reduced in the

limit. Continue until the monodromy group is reductive.

Now suppose we are given a reductive representation. Treat first the case

G == Gl(^, C). Using the previous paragraph and Corollary 4.2, we just have to prove

that in any component of the moduli space Mp^, there is a fixed point of the action

of C*. Refer to the proper map /: M^ -> Gfc given by Proposition 1.4. If we try to
take the limit of tE as t -> 0, then the corresponding characteristic polynomials f(tE)

approach the trivial one. In particular by the properness of/, there is a limiting E().

The limit is unique, and hence is preserved by C*. If G is another group, choose a faithful

representation GCGl(^C), and refer to the discussion following Lemma 2.10. Note

that the action of C* preserves the monodromy group M(E, x), and hence there is an

action on the moduli space M^(G). The rest of the argument works equally well

because the inclusion GCG1(72,C) induces a proper map Mp^(G) -> Mj^i,(Gl(n, C)).

This proves the theorem. D

Remark. — This theorem depends on the construction of the moduli space, and

hence is currently valid only for smooth projective varieties. This strengthening of the

earlier result about rigid representations is the motivation for the construction of the
moduli spaces.

Corollary 4.6. — Let W be a real reductive algebraic group, with complex form G. Suppose X

is a smooth projective variety and p : 7Ti(X) -> W is a representation. Assume that there exists a

subgroup r C TCi(X) with pjp rigid and Zariski dense as a representation in G. Then W is a group

of Hodge type.
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Proof. — Deform p in G to a variation of Hodge structure p'. Since F is reductive,

the orbit of p j p is closed in the representation space Hom(r, G). Since F is rigid, the

orbit is open. Thus the orbit is a connected component of the representation space of F.

In particular, p ' j p is isomorphic to p j p . Thus W is contained in the Zariski closure of p';

but this Zariski closure is a real form of G, so it is equal to W and W is a group of Hodge
type. D

NONEXISTENCE STATEMENTS FOR FUNDAMENTAL GROUPS

We will now review some corollaries of these facts, based on known examples

of rigid representations.

Suppose W is a reductive real algebraic group with no compact factor. A lattice

is a discrete subgroup FC W such that W/F has finite volume. A lattice T is called

uniform if W/F is compact, and non-uniform otherwise; and F is irreducible if for any

projection onto a factor/: W -> H,/(F) is not discrete.

Let G be the complex form of W. Any lattice FC W is Zariski dense in G. Say

that r is rigid if the inclusion F -> G is a rigid representation.

The following facts are known.

4.7.1. If r is uniform and irreducible, and if W is not isomorphic to Sl(2, R),

then r is rigid [54].

4.7.2. If W has real rank ^ 2 and F is an irreducible lattice, then F is arithmetic

and rigid [35] [42]. For example, Sl(n, Z) is rigid for n ̂  3.

4.7.3. If r is an arithmetic lattice in a group ofQ^-rank one, ifW has no component

isogenous to Sl(2, R), and if W is not isogenous to Sl(2, C), then F is rigid [42].

4.7.4. If r is a nonarithmetic lattice in a simple group of R-rank one, and if W

is not isogenous to Sl(2, R) or Sl(2, C), then F is rigid [20].

Lemma 4.7. — If W is not of Hodge type, and if F C W is a lattice covered by one of the

above instances^ then F is rigid. Hence F cannot be the fundamental group of a compact Kahler

manifold.

Proof. — Otherwise Lemma 4.5 would provide a contradiction. D

IfW is a group of Hermitian type, then K\W is a hermitian symmetric space. If

r C W is a uniform lattice, then K\W/F is a smooth projective variety with fundamental

group r. D. Toledo has pointed out that in many cases when F is a non-uniform lattice,

there is still a compact two-dimensional hyperplane section of K\W/F which has funda-

mental group r.

This leaves open the question of whether the other cases not ruled out above can

occur. For example, if W is a Hodge group but not of hermitian type, like S0(^, 2q),

can a lattice F be the fundamental group of a compact Kahler manifold? There are
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no obvious ways of producing compact varieties which have these fundamental groups,

so it is an interesting question whether they exist. J. Garlson and D. Toledo considered

this question and have some partial results [4]. They have proved that compact quo-

tients K\SOQ&, ^)/r are not homotopic to compact Kahler manifolds, and also that if

rCSO(w, 1) is discrete and co-compact, then F is not the fundamental group of a

compact Kahler manifold. This latter result is stronger than ours when n is even, because

in that case S0(^, 1) is a Hodge group.

These corollaries can provide examples of compact complex manifolds which are

not homotopic the Kahler manifolds. If G is a complex group and F C G is a uniform

lattice, then G/r is a compact complex manifold; F is rigid and G is not of Hodge type,

so r cannot be the fundamental group of a compact Kahler manifold. In particular,

G/r is not homotopic to a Kahler manifold.

For smooth projective varieties, we can extend the non-existence results to some

groups which contain lattices. This paragraph uses the result about deformation to a

variation of Hodge structure, and hence depends on the construction of the moduli

space. Let W be a reductive real algebraic group which is not of Hodge type. Let Y be

a group with a representation in W. Suppose Y contains a subgroup F which maps

isomorphically to a lattice covered by statements 4.7.1-4.7.4. Then Y cannot be the fun-

damental group of a smooth projective variety. This is an application of Corollary 4.6.

A consequence is that if F is a lattice covered by statements 4.7.1-4.7.4, in a group which

is not of Hodge type, then the fundamental group of a smooth projective variety cannot

contain F as a split quotient. For example it cannot be a free or direct product of F

with any other group.

RIGID ^-ADIC REPRESENTATIONS

Suppose X is a variety over a field K, with a K-valued point. Then we have an

exact sequence of fundamental groups

1 -^ ̂ (X 0^ K) -> 7^(X) -> Gal(K/K) -> 1.

Here TT^ is the profinite algebraic fundamental group of a scheme. The K-valued

point gives a splitting, so Gal(K/K) acts on T^X®^)- In particular Gal(K/K)
acts on the space of continuous /-adic representations of TC^(X®^ K). The fixed points

of this action are the smooth f-adic sheaves which are defined over K. These are the ones

which have some relationship with arithmetic. Any representation coming from geometry

(i.e. from a family of varieties over X) would be defined over a number field in this

way. Beilinson pointed out to me that the action of C* on the moduli space of complex

representations is analogous to this action of the Galois group on the set of^-adic repre-

sentations in the arithmetic case.

As a demonstration of this philosophy, we obtain a result about rigid /-adic repre-

sentations which is analogous to the corollaries about rigid complex representations.

Make the assumption that there is a subgroup FC ̂ (X^K) such that the funda-
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mental group is equal to the profinite completion of F. This is true, for example, if X

is of finite type over a field K of characteristic zero: choose K. C C, and take C to be

the image of the usual fundamental group of the complex variety X ®^ C.

Let 0^ be the ring of integers in a finite extension E^ of Q^. The continuous

representations of Tr^X®^ K) ln ^(^ ^x) are Ae same as the 0^ points of the repre-
sentation space of r. Say that a continuous representation p of TT^X ®^ K) is rigid if

the representation restricted to F is rigid in the usual sense, as a representation with

coefficients in Q^.

Theorem 4. — Suppose p is an absolutely irreducible rigid representation of 7î (X 0^ K)

with coefficients in 0^. Then there exists a finite extension L of K and a representation

p': ̂ (X^^L) ->PGI(TZ, fi\) which restricts to p on TC^X®^)-

Proof. — We work in the profinite topology of the Galois group, and the X-adic

topologies of varieties over fl^. If y ^ F, and g is an element near the identity in Gal(K/K),

then g^g~
1 is near y. If p is a continuous representation, this means that ^{gyg~

1
) is a matrix

near p(y). The space of representations of F in GI(TZ, C\) is the space of ^-valued points

of the scheme Rep(r) of representations of F over Z. Choosing a finite set of generators

for r, we get an embedding of Rep (F) into a product of copies of the group scheme Gl(w).

We have seen that if p is a point of Rep(r) (fi\) and g is near the identity in Gal(K/K),

then p o Ad(^) is near p in the topology of the product of copies of Gl{n, ̂ ). On the

other hand, the condition that the representation p is rigid and absolutely irreducible

means that the orbit of p under conjugation by Gl(n,QJ is a connected component

ofRep(r) (QJ. But two points which are sufficiently close in the X-adic topology must
lie in the same connected component. Therefore p o Ad{g) is conjugate to p for g suffi-

ciently near the identity. By going to the finite extension L, we may assume that p o Ad(^)

is conjugate to p for all g. Since p is irreducible, the element P(^) such that

p o Ad(^) == Ad(P(^)) o p is uniquely determined up to scalars, in other words it is an

element of PG1(^, E^) (the rationality over E^ is due to the uniqueness). We need to

prove that P is continuous.
Let Z be the reduced irreducible scheme over 0^ which is the closure of the

orbit of p. We have a map f: PG1(%) ®E^ ->Z®E^ which is an isomorphism. Let

9 : Z®E^ -> PG1(%) ® E^ be the inverse. Embed PGl(^) in an affine space A^ . Then

the map 9 is given by a vector of regular functions (^i, ...,^) on Z®E^. Write

^ == X~01^ with ^ regular functions on Z. In particular, ^(p) == X" ̂  for ^ e^. If

p ' / ^p modulo (X3) then ^(p')^^(p) modulo (X0), so ^(p')^^?) modulo (X0-01).

In other words, 9(p') ^/ <p(p) modulo (X0""). This proves that the inverse 9 is continuous

in the X-adic topology. Therefore P^) == 9(poAd(^)) is continuous in g. If g is suffi-

ciently near the identity, then P(^) is in PG1(^, fl\). Combining this representation P

of Gal(K/K) with the representation p, we get a representation of all of TC^XS^L)

in PG1(7Z, ^), to complete the proof. D
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One way of obtaining a rigid representation is to take a rigid representation

of r with coefficients in some finite extension E of Q,. Then for all primes t except

finitely many, this representation will have coefficients integral at 1. Take such an t^

and then by completion we get a rigid representation of F in G\{n, fi\). This gives a

continuous representation of TT^X®^ K). By the theorem, this representation descends

to the arithmetic fundamental group over a finite extension L of K. This is the arithmetic

analogue of the statement that the representation comes from a complex variation of

Hodge structure. Theorem 4 may be viewed as proving a version of the <( Galois-type 5)

conjecture in [48] for rigid representations, in the same way that Lemma 4.5 gives the
<c variation of Hodge structure " conjecture of [48] for rigid representations.

^-STRUCTURE

Recall that a Q^-variation of Hodge structure is a complex variation of Hodge

structure with a local system VQ contained in the local system V^ of flat sections, such

that Vc = VQ 0Q C, and subject to the following additional conditions. First, V^q == V^'v

where the complex conjugation is taken with respect to the real structure VQ 0Q R.

Second, the polarization should be defined over %, in the sense that there is a symmetric

or antisymmetric bilinear form S : VQ X VQ-> %, such that the hermitian form

<( u, v > = S{u, v) polarizes the complex variation of Hodge structure.

A ^-variation of Hodge structure may be tensored with C to obtain a complex

variation of Hodge structure, and this may then be broken down into irreducible compo-

nents. We call these components the complex direct factors of the Q^-variation.

Theorem 5. — Suppose p : T^(X) ->• Gl{n, C) is a properly rigid irreducible representation.

Then p is a complex direct factor of a (^variation of Hodge structure.

Proof. — The idea is that if p is rigid, then it can be defined over a number field

and all of its Galois conjugates are rigid. Adding these together gives a representation

with coefficients in %. By Lemma 4.5, all of the summands come from complex varia-

tions of Hodge structure. By choosing everything carefully, we get a rational variation.

Suppose p : 7Ti(X) -> Gl(%, C) is a properly rigid irreducible representation.

Then, possibly after conjugating p, there is a number field K/Q^ such that

p : 7Ti(X) -> Gl(72, K). Let LC K be the field generated over % by the traces Tr(p(y)).

For every embedding a : K ->• C the resulting representation orp is properly rigid

and hence comes from a variation of Hodge structure. For each embedding cr, let a

denote the complex conjugate embedding. If V is a complex variation of Hodge struc-

ture, then the flat hermitian polarization form

v®v->c

provides an isomorphism of representations V ̂  V*. Since crp comes from a variation

of Hodge structure, we get ap ^ crp*. In particular, (T""1??^ p*. Thus

a-^Tr^^^Tr^M)
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is independent of cr. Note that the trace of the dual of a matrix is equal to the trace of

the inverse, so the T^p^y)) are in the field L. Hence there is a well-defined automor-

phism C of L which is equal to c~~
1
 a, in other words induces complex conjugation, for

every embedding a : L -> C. Thus L is either totally real (in the case G == 1) or a purely

imaginary extension of a totally real field F. These cases are distinguished by whether

p ^ p* or not.

M. Larsen explained the following lemma to me.

Lemma 4.8. — There is an extension L' ofL which is the composite ofL (or a purely imagi-

nary extension thereof, ifL is totally real) and a totally real extension F' of F, such that after conju-

gation we may assume p has coefficients in L'.

Proof. — There is a central simple algebra A over L with the property that p can

be realized in a field L' if and only if A® I/ == M^(L')—see [2], [33]. We analyze

what happens to the element A in the Brauer group, upon making a field extension.

There are finitely many primes XofL where A does not split. Let N be a number divisible

by all of these primes. Suppose L" is an extension such that A®j^L" splits. Let f be a

monic polynomial over Z such that L" is contained in the splitting field of/. Let g be a

polynomial of degree one smaller than/ having all real roots. Set h =/+ N^ g for large k.

Note that h ̂ f modulo N^, but h has all real roots. Let L' be the splitting field over L

of A, or ifL is totally real, let L' be a purely imaginary quadratic extension of the splitting

field. It is a field of the desired type. The local extensions L^ contain the L^ for X divi-

ding N; thus A(x)L' splits at all primes of L'. Since L' has no real place at infinity,

A0L' splits at the infinite places too. Therefore A®L' splits globally ([55] XI-2). D

Now assume that we have chosen L' totally imaginary and a realization

p : TCi(X) -> Gl(w, L'). Let V be the corresponding local system ofL'-vector spaces on X.

We may choose a Hermitian form

< , > :V xV^L' ;

in other words < y, w > = C < w, v >, and a < y, w > = < av, w > = < y, (Ca) w >.

Let F'CL' be the totally real subfield. Set Wp, == res^/p, V, so W^ = V C C V

with complex conjugation (^, Cv) h-» {v, Cu). We get a form S : Wy X Wp» -^F' as

follows:
S{u + Cu, v + Cu) = < u, Cv > + < v, Cu >

(resp. jS{u + Cu, v + Cv) == < u, Cu > — < v, Cu >

where j is a purely imaginary number). Thus S is symmetric (resp. antisymmetric).

For each embedding a: L' -> C we get a local system V^, and V^ == Vg. For

each of half of the embeddings cr, choose a complex variation of Hodge structure

V^ ® C00 == (B V;'fl. Then for the other half of the embeddings or, set Vj*v == V;'p. Now

for any embedding T : F -> R we get a real variation of Hodge structure W^ == Wp. ® R,

with W^ = V^ + Vj'® where cr and cr are the two extensions of T to L'.

8
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Choose the Hodge types (p, q) for the components to all have the same weight w.

If w is even, choose the form S to be symmetric; if w is odd, choose S antisymmetric.

By the way, if the rank of the representation is 2, it is either unitary or else we may

choose the Hodge types to be (1, 0) and (0, 1). To deal with the unitary factors, we can

add together two copies of everything, so if the rank is two, we can obtain a Hodge

decomposition with Hodge types (1, 0) and (0, 1).

The hermitian form < , > gives a form on Vg which is a real multiple of a pola-

rization. This is because the complex local system V^ is irreducible, so there is only one

flat hermitian form up to scalars, and the scalars must be real by the hermitian condition.

Thus the form S^ induced by S is either a polarization or the negative of a polarization

for the real variation of Hodge structure W^. Cure this problem by multiplying S by

a number/eF'. We have to choose/to have a specified sign in each embedding T.

This is possible because F' spans ©^ R, so there is a point which is in the specified qua-

drant. Thus we may assume that S^ is a polarization for every T.

Now let UQ == resp,^ Wp.. Then

U Q ® R = = © W..
T:r-^B

Thus UQ is a real variation of Hodge structure, polarized by the form SS^. This form

is equal to the form

T r o S : U Q X UQ-^%.

Thus U is a polarized ^-variation of Hodge structure and our original representation p

was isomorphic to one of the irreducible summands ofU ® C. This completes the proof. D

If the traces Tr(p(y)) are all algebraic integers, then p preserves a lattice AC V [2].

In this case, res^z^) ls an integer lattice V^CV^ preserved by the monodromy,

in other words U is an integral variation of Hodge structure. Note that our previous

result about rigid ^-adic representations applies at every prime t. So in this case, the

representation p has most of the attributes of a motive. This is in fact the case if the

dimension is two:

Corollary 4.9. — If p is a rigid two-dimensional irreducible representation of ̂ (X) such

that the traces of all the elements are algebraic integers^ then p is a direct summand of the monodromy

representation of a family of abelian varieties. D

Proof. — If the dimension is two, then the Hodge types can be chosen as (1, 0)

and (0, 1). An integer variation of Hodge structure U with those Hodge types comes

from a family of abelian varieties. D

Corollary 4.10. —If^(X) does not have an infinite cyclic quotient and does not decompose

as a nontrivial amalgamated product^ then every two-dimensional irreducible representation is a

direct factor of the monodromy representation of a family of abelian varieties.
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Proof. — This is a consequence of the theory of Bass and Serre on groups acting

on trees. If^X) has no infinite cyclic quotient and does not decompose as a nontrivial

amalgamated product, then every two dimensional representation is rigid, and further-

more has the property that the traces are integers [2]. Now apply the previous corollary, n

5. The Hodge structure on the fundamental group

In this section we will indicate how the Hodge theory for nonabelian cohomology

developed above may be interpreted as Hodge theory for the fundamental group of X.

In order to sharpen the exposition, we will defer the main proofs until the next section.

The reader should bear in mind that the theorems follow in an essentially formal way
from the information in the previous sections.

The Hodge structure on the first homology group H^X, Z) is actually a structure

on the vector space H^X, C), which one may think of as being the universal complex

vector space containing the abelian group H^X.Z). Similarly, in order to speak of a

Hodge structure for the fundamental group, we must consider the universal complex pro-

algebraic group containing T^(X, x). This will be denoted by G^(X, x). It is a projective limit

of complex algebraic groups. More precisely it is the pro-algebraic completion of T^(X, x),

defined by

CTi(X,^) =^m(G,p)

where the inverse limit runs over the directed system of representations p : 7ri(X, x) -> G

for complex algebraic groups G, such that the image of p is assumed (for convenience)
to be Zariski dense in G. An arrow (G, p) -> (G', p') in this directed system consists

of a homomorphism y:G->G' such that f^ = p'.

The completion c5i(X, x) is characterized by the pro-universal property that for

any representation p : TT^X, x) -> G into a complex algebraic group, there is a unique
extension to p : ©i(X, x) -> G making the diagram

^(X,^) —^ G

^i(X^)

commute. The reader might refer to several papers by Hochschild on the topic of pro-

affine groups ([31] and papers in subsequent issues of the same journal; and [32]).

We will consider some quotients of Ts^(X.,x). The reductive quotient cs^X, x) is

the inverse limit over Zariski dense representations p : TCi(X, x) -> G where G is a reduc-

tive complex algebraic group. The nilpotent quotient ©^(X, x) is the inverse limit over
representations where G is a nilpotent group.

The group ^^(X, x) may be given several topologies, corresponding to the various
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topologies on complex algebraic groups. The projective limit topology is the projective

limit of the discrete topologies on the algebraic groups G. The neighborhoods of the

identity are simply the inverse images p"^!) for representations p : Oi(X, x) -> G into

algebraic groups. The pro-algebraic topology is the inverse limit of the Zariski topologies on

the algebraic groups G, whereas the pro-analytic topology is the inverse limit of the usual

analytic topologies on the complex algebraic groups G. The neighborhoods of the identity

are sets of the form p'^W) for representations p into algebraic groups G, and neigh-

borhoods W of the identity in G (in the Zariski or analytic topology respectively).

Our basic structure for the fundamental group is an action of C* on the completion

G^(X, x). In order to state his properly, we must recall that there is an action of C* on

the set of representations p : TT^X, x) ->Gl{n,C). A representation is equivalent to

a local system, an object V in <^DR, together with an isomorphism (B : Va; s C". The

equivalence of categories of Theorem 1, Lemma 3.5, and Corollaries 1.3 and 3.10

identifies the set of representations (V, p) with the set of (E, 6, p), where (E, 6) denotes

a semistable Higgs bundle with vanishing Chern classes, and [3 : E^ ^ C^. The abstract

discrete group C* acts on this set by the prescription

^(E,6,(3) =(E,^),(3).

Theorem 6. — There is a unique action of the discrete group C* on cs^X, x), each t acting

by a homomorphism of pro-algebraic groups, such that if p : c5i(X, x) -> Gl{n, C) is the represen-

tation corresponding to (E, 6, p), then p o t is the representation corresponding to (E, tQ, p).

The idea to be conveyed by this chapter is that the action of C* on c$i(X, x)

constitutes the data of the Hodge structure on the fundamental group. We will support this

contention in two ways, related to the reductive and nilpotent quotients. First we will

formulate the notion of a pure Hodge structure for a pro-reductive group, modeled on

the notion of group of Hodge type defined in the previous section. We will show that the

action ofU(l)CC* provides such a Hodge structure for the reductive quotient ©^(X, x).

The restrictions on the fundamental group of a compact Kahler manifold obtained in

the previous section may also be derived from the fact that ©^(X, x) has a pure

Hodge structure. Second, we will briefly recall that Morgan, Hain, and Deligne have

already shown ©^(X, x) to carry a natural mixed Hodge structure. Our C* action

splits the Hodge filtration they have defined. Thus their mixed Hodge structure may

be recovered by taking the filtration associated to the grading given by the C*-action.

Doing these two things will not finish the formulation of the notion of Hodge structure

for c5i(X, x). The first is analogous in the abelian case to formulating the notion of a

pure Hodge structure, while the second is analogous to formulating the notion of uni-

potent mixed Hodge structure. But the structure of ro^(X, x) should combine pure and

mixed Hodge structures, in other words it should be analogous to a mixed Hodge struc-

ture where the quotients are nontrivial pure Hodge structures. This problem will be

left for the future.
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A pure non-abelian Hodge structure is an affine group scheme (pro-algebraic group)

^ defined over R, a finitely generated subgroup F C ̂ ? ^d an action of the abstract
discrete group U(l) on ̂  by homomorphisms of the pro-algebraic group, subject to

the following axioms which will be elaborated below.

1. r is Zariski dense in ^;

2. The map U(l) X F -> ^an is continuous;

3. The element G = = — l i n U ( l ) i s a Cartan involution of ^g.

The first condition means that for any surjective representation ^->H->1,

the image of F is Zariski dense in H. In the second condition, U(l) is given the usual

analytic topology, F is given the discrete topology, and ^an refers to the group ^

endowed with its pro-analytic topology. The third condition needs more explanation.

Let cr denote the antilinear involution of ^ given by complex conjugation with respect

to the real form ^* Then T = Ca = oG is an antilinear involution whose fixed points

are a real form ^T. The Gartan condition is that ^T is a compact real form of ^. By

this we mean that ^T is compact in the pro-analytic topology, and that every path-

connected component of ^S (in the pro-analytic topology) contains a point of ^T. In

particular, for any algebraic quotient ^S ->ti -> 1, the image of ^T is a compact real

form of H, meeting every connected component of H.

As a consequence, the group ^ is pro-reductive, an inverse limit of reductive

groups. Indeed, any quotient admits a compact real form. Furthermore, since F is

Zariski dense in ^, the real structure of ^S is determined: if o' were another real structure

fixing r, then the homomorphism CT(/ would fix F and so it would be the identity. Thus

we need not specify ^^ when speaking of a nonabelian Hodge structure.

Theorem 7. — Suppose X is a compact Kdhler manifold. The action of U(l) CC* on

^(X, x) gives a pure nonabelian Hodge structure, with finitely generated subgroup being the

image of 7ri(X, x).

This amounts to two statements: that the map

U(l) X 7Ti(X,^) -> CT^X, X)^

is continuous; and that the element C = — 1 in U(l) acts as a Gartan involution

for ©^(X, A:) a, in other words, Ca == aC = T is an involution giving a compact real

form ^(X, x) ̂  ̂ (X, x)\

One might ask whether T^(X, x) injects into ©^(X,^). The answer turns out to

be negative: D. Toledo has recently constructed an example of a smooth projective variety

whose fundamental group is not residually finite, in which case 7Ti(X, x) -> ̂ (X, x)

is not injective.
. We can now reinterpret the results of the previous section in terms of the abstract

framework of a nonabelian Hodge structure PC ^.
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Lemma 5.1. — I f G is an algebraic group with a pure Hodge structure, then the real form G^

is a group of Hodge type in the sense of the previous section.

Proof. — The only point which is not obvious is that the action ofU(l) comes from

an algebraic action of C*. We have FCG, Zariski dense, such that U(l) X F — G is

continuous. The group Aut(G) embeds in the affine variety Hom(F, G) as a closed

subvariety. Its connected components are orbits under the adjoint action ofG; the fact

that r is Zariski dense means that these orbits are stable in the sense of geometric inva-

riant theory, hence are closed. Now the action of U(l) gives a homomorphism

U(l) ->Aut(G), but by hypothesis the composition U(l) ->Hom(r, G) is continuous.

Therefore U(l) -^Aut(G) is a continuous group homomorphism, so it extends to a
one-parameter subgroup C* ->Aut(G).

Conversely if Gj^ is a group of Hodge type, then it is easy to choose a finitely

generated Zariski dense subgroup rCGg, to obtain a pure Hodge structure. D

The restrictions obtained in the last section, on which groups can be of Hodge

type, become restrictions on which groups can have pure Hodge structures.

Suppose that F C ̂  is a pure nonabelian Hodge structure on a pro-reductive

group, and that p : ̂  -> H -> 1 is a surjective representation to a complex algebraic

group. Ifker(p) is fixed by U(l), then we obtain an action ofU(l) on H. Together with

the finitely generated subgroup im(r) C H, this gives a pure Hodge structure for H:

the image of the compact real form ^T is a compact real form H'1', and therefore by

twisting, the image of the real form ^g is a real form Hg.

Recall that a representation p : F -> H is said to be rigid if any morphism

p': r -> H, nearby in the space of representations, is conjugate by an element h e H,

p'(y) = Ap(y) h~
1
. We may now state the analogue of Lemma 4.5 for abstract non-

abelian Hodge structures. The reader may compare with the number theoretic analogue,
Theorem 4.

Lemma 5.2. — Suppose F C ̂  is a pure nonabelian Hodge structure. If p : ̂  -> H -> 1

is a surjective representation onto a complex algebraic group such that Y -> H is rigid, then ker(p)
is fixed by U(l), so im(F) C H is a pure Hodge structure.

Proof. — The continuity of U(l) X F -> ̂  implies that the representation p o t is

near the representation p. Hence there is an element h^ in H such that p(/y) = A( p(y) A^"3

for Y e r. The fact that F is Zariski dense implies that p(^) == h^ p(^) h^~
1 for all g e ̂ .

Now if g is in ker(p) then h^ p(^) hf
1 == 1 so tg is in ker(p). By the previous discussion,

H has a pure Hodge structure. D

Corollary 5.3. — If Y is one of the groups listed above Lemma 4.7 and if ^S is the reductive

completion of F, then ^S does not have a pure Hodge structure. D

Corollary 5.4. — If^i(X, x) -> H is a rigid Zariski dense representation into a reductive

group, then H has a pure Hodge structure with image of'K^(X,x) as the finitely generated subgroup.
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In particular, the image of TT^X, x) is contained in a unique real form H^, and H^ is a group

of Hodge type. If F is one of the groups listed in 4.7, then F cannot occur as 7ri(X, x) for any

compact Kdhler manifold X. D

A Hodge representation of weight w is a vector space V, a representation p : ̂  -> G1(V),

and a vector space decomposition V == Op+g^V^, such that if \ve let U(l) act

on V by the prescription t{v) == r
9
 v for v e V^0, then this is compatible with the action

on ^ in the sense that p^y) {t{v)) = ̂ (p(v) (y))- ^polarization of a Hodge representation

is an indefinite Hermitian form < u, v > on V, satisfying the following conditions: the

image of ^g should be contained in the subgroup of transformations which preserve

the form < u, u >, the decomposition V == © V^
Q should be orthogonal, and if the

form is twisted in the usual way, the result should be a positive definite form

{u, u) == (— 1)^ < u, u > > 0 for u e V^.

A real Hodge representation is a Hodge representation V with a real structure Vg

such that p : ̂ R -> Gl(Va), and such that V^3 == V^. A real polarization is a bilinear

form S{u, v) defined over R such that < u, v > == (V— l)^ S(^, y) is a polarization in

the ^bove sense. Here w == p + q is the weight of the Hodge structure.

Lemma 5.5. — Suppose p : ̂  —^ G1(V) z'j a representation. It has a structure of Hodge

representation if and only if the kernel if fixed by U(l). This condition always holds if ̂  is an

algebraic group. If the representation is irreducible, then a structure of Hodge representation is unique

up to shifting indices. If V == © V^'Q is a structure of Hodge representation, then a polarization

always exists, and again is unique up to a scalar if p is irreducible. If p : ̂  -> Gl(Va) is an

irreducible real representation such that ker(p) is fixed by U(l), then it has a structure of real Hodge

representation, and a real polarization exists.

Proof. — Factor p through a surjection ^ -> H -> 1 where H is a reductive algebraic

group. If the kernel of p is fixed by U (1), then U (1) acts on H, and we obtain a pure nona-

belian Hodge structure on H (the image of ^T is a compact real form H^ and twisting

by C we obtain a real form H^, the image of ̂ ; the image of F is the finitely gene-

rated subgroup). We will show in general that if p : H -> G1(V) is a representation of an

algebraic Hodge group, then it has a structure of Hodge representation. The connected

component ofAut(H) is the adjoint group H^Z, where Z is the center ofH. The action

of U(l) lifts to a map U( l )~ -> H, where U( l )~ ->U(1) is a covering with kernel

contained in Z. Considering the characters o fU( l )~ acting on V, we obtain a decompo-

sition V = © V^, for rational numbers p, such that if we let t e U(l) act on V^ by t
9
,

then the representation p intertwines this with the action on <
S. We may assume that V is

irreducible, so Z acts by a single character, and hence the indices differ by integers.

We may translate indices to integers without affecting the intertwining condition, to

obtain the desired Hodge decomposition of V. To construct the polarization, choose a

positive definite H^invariant form (u, v) on V, and set < u, v > = (— 1)^ {u, v) for



64 CARLOS T. SIMPSON

u, v eV^. This works because the action of U(l)^ factors through IT, consequently
preserving the forms.

Suppose p is a real representation. It factors as ̂  ->HR -^Gl(Va), where the

first map is a surjection onto a real algebraic group Hg. If ker(p) is fixed by U(l),

then U(l) acts on HR, so again U(l) maps to the connected component of the auto-

morphism group (H/Z)a. Let Hg be the subgroup ofH^ on which all characters vanish.

Then H is isogenous to H' x Z, so H^ -> (H/Z)^ is a finite covering (at least over the iden-

tity component). Hence we may lift the action of U(l) to a map 9: U(l)" -> HgC Hg.

This gives a decomposition V == (BV^, where for t eU(l) , p(p(^) acts by t
9 on V^.

Note that the p may be rational numbers. Now suppose v e V1'. Then

p(p(^) v == pcpOO v == l^v) == r9 v.

Thus v e V~p. If r is any rational number, then

V^= ©V^
»ez

is a complex direct summand of the representation V, since as noted above, the p differ

by integers in an irreducible complex representation. Furthermore V^ = V(_^.

Since V is irreducible over R, there are three possibilities. If V = V^ then we obtain

a real Hodge representation of even weight. If V = V^) = V(-i/2p we obtain a real
Hodge representation of odd weight. If V == V^ © V^_,, with 2r ^ Z, then we may

arrange the Hodge types of V^ arbitrarily. These determine the Hodge types of the

complex conjugate V^.yp so we may obtain a Hodge representation of any weight.

To find a real polarization, use the usual trick of adding a complex polarization to its

complex conjugate (as in Lemma 2.12). D

Say that a surjection ^ -> H -> 1 comes from a Hodge representation if there exists a

faithful representation V of H such that the composed representation ^ -> G1(V) has

a structure of Hodge representation. It follows from Lemma 5.5 that a surjection

^ -^ H -> 1 comes from a Hodge representation if and only if the kernel is fixed by U(l),

in which case H becomes a pure Hodge structure with subgroup the image of F.

Lemma 5.6. — In the case of the Hodge structure on ^^(X, A;), there is a natural one-

to-one correspondence V <-> V ,̂ between complex variations of Hodge structure on X and Hodge

representations of ©^(X, x). Furthermore this induces one-to-one correspondences between pola-

rizations of the Hodge representation and polarizations of the complex variation of Hodge structure^

and between real Hodge representations and real variations of Hodge structure.

Proof. — If V is a complex variation of Hodge structure, with p : V^ ^ C", let

p : ©^(X, x) -> Gl(w, C) be the corresponding representation. The corresponding Higgs

bundle (E, 6, p) is a system of Hodge bundles, E = © E^. The resulting action of U(l)

on E intertwines 6 with rf), so by Theorem 6, the action (Bt, (3~1 on C" maps p to p.^.

Thus the decomposition ^(E^) == ^(V^) of C" provides p with a structure of Hodge

representation. Conversely, if p has a structure of Hodge representation, let (E, 6, p) be



HIGGS BUNDLES AND LOCAL SYSTEMS 65

the corresponding Higgs bundle. The Hodge structure on C" gives an isomorphism of

representations between p and p.^, and hence an isomorphism of Higgs bundles

(E, 6) ^ (E, tQ), compatible with the action on C" by the identifications (B : E^ C".

Decomposing E according to characters ofU(l) (or using the argument of Lemma 4.1),

E becomes a system of Hodge bundles E = © E^'0, and the corresponding local system V

becomes a complex variation of Hodge structure.

If < u, v > is a polarization of a complex variation of Hodge structure V, then it

polarizes the Hodge structure © V^. The form < u, v > is preserved by TT^X, x) and

hence by its real Zariski closure ©^(X 5 ^)n, so we obtain a polarization of the Hodge

representation. Conversely, a polarization of the Hodge representation Vg; is by definition

fixed by ©^(X, x)^^ and hence by the subgroup 7Ti(X, x), so it extends to a locally

constant hermitian form < u, v > on the local system V. Compare this with a known

polarization < u, v >o of the variation of Hodge structure. There is an endomorphism A,

locally constant and self-adjoint with respect to the known polarization, such that

< u, v > = < hu, v >o. The condition that A is a polarization of Va; means that hy^ is positive

definite and of type (0, 0). Hence h is of type (0, 0) everywhere, due to the principle

that a constant tensor which has pure type at one point, has the same pure type every-

where. Furthermore, h is positive definite everywhere, since its eigenvalues are constant.

Thus a polarization of the Hodge representation extends to a polarization of the variation

of Hodge structure.

Similarly, given a real structure V^ for the Hodge representation V^, by definition

preserved by ©^(X, x) a, it is preserved by the subgroup 7Ti(X, x). Thus V^ extends to

a local subsystem of the local system V. Choose a known complex polarization < u, v >,

The VB is determined by a locally constant tensor h e V* ® V* by the rule < M, v > = h{u, u).

The condition V1''q == V^v is equivalent to the condition that h have pure type

(— w, — w). Again, if this holds at one point, it holds everywhere. D

Let us turn now to the mixed Hodge structure on ^(X, x). A nilpotent group

is determined by its Lie algebra; Morgan and Hain construct a mixed Hodge struc-

ture on Lie c^" (X, x) [38] [27]. They construct a Hodge filtration F^, decreasing

and indexed by negative numbers p. It is compatible with the Lie bracket in

the sense that [F^, F9] C F^^. The weight filtration is defined by the derived series :

Wo = Lie G5f(X, x), and for k < 0, W^ is defined inductively to be [Lie ^"(X, x), W^J.

The Lie algebra Lie ̂ (X, x) is complete with respect to the weight filtration. The

Hodge filtration is a full filtration in the topological sense that U F" is dense. Morgan

and Hain show that the Hodge filtration F, its complex conjugate F taken with respect

to the real structure Lie ̂ (X, x) a, and the weight filtration W, define an T^-mixed

Hodge structure with weights concentrated in k < 0. Notice that the weight filtration and

real structure are defined group theoretically, so the only analytic information involved

is the Hodge filtration.
From Theorem 6, C* acts on ©^"(X,^), and hence on the Lie algebra.

9
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Theorem 8. — Our action of C* on Lie CT^X, ^) induces the Hodge filtration of Morgan

and Hain in the following sense. Let W C Lie ̂ (X, x) denote the subspace of elements h such

that t{h) = r h for t e C*. Then

^ == © IP.
*'^»

Consequently, the C*-action determines the mixed Hodge structure.

One should be careful that, unlike the reductive case, the action of 11(1)00*

does not preserve the real form ©^(X, x)^. This reflects the fact that the mixed Hodge
structure is not R-split.

An aspect of this theory as further developed by Hain and Zucker is that uni-

potent variations of mixed Hodge structure on X are identified with mixed Hodge

theoretic representations of Lie ^"(X, x). This was the motivation for the analogous

result in the reductive case, Lemma 5.6 above. Hain and Zucker also discuss the depen-

dence on the base point, showing that as x varies the Lie ̂ (X, x) fit together into a

pro-unipotent variation of mixed Hodge structure over X, which is in some sense the
universal variation of mixed Hodge structure.

The same should be true for the reductive case. At the present I will formulate

this as a problem for further study: there should be an appropriate notion of pure variation

of nonabelian Hodge structure, such that if (X(,A;() varies in an analytic family indexed

by a space T, then the ^(X^, x^) fit together into a variation of nonabelian Hodge

structure over T. One might then proceed to study degenerations of nonabelian Hodge

structures and monodromy of n^ (X, x), following by analogy the abelian case.

In lieu of treating these topics, we will finish with a description of the classifying
map for the dependence on the base point. It will map to a universal version ofCorlette's

harmonic maps. Let JT(X, x) be (he subgroup of elements k in ^(X, x)^ which are

fixed by the action of U(l). It is compact, since it is contained in the compact

real form ^(X, x). The adjoint action of jf(X, x) on ^(X, x)^ fixes the nonabelian

Hodge structure. Let X denote the pointed universal cover of X determined by the

base point x. A point in X may be thought of as a pair (j^, P) withj/ e X and P a homo-
topy class of paths from x to y.

Theorem 9. — There is a natural 7ti(X, x)-equivariant map

(i):x^<(x,^H/jr(x,^)
such that if (j, P) is a point in X, then the pullback of the Hodge structure on ©^(X,^) by

parallel transport along the path P is conjugate to the Hodge structure on ^(X, x) by the ele-

ment 0(j, P).

If ^ : ̂ (X, x) -> Gl(%, C) is a representation such that p(^(X, x)) preserves the standard

metric on C!̂  then

po<D:X-^Gl (^ /U(w)

is the harmonic map referred to in Theorem 1.
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The map O should be interpreted as the classifying map for the variation of non-

abelian Hodge structure describing how ^(X, x) varies with the base point x. I have

not yet made precise the notion of Griffiths transversality for 0, but surely it is straight-
forward.

6. Tannakian considerations

In this final section we will show how the results of the first sections imply the

theorems stated in the previous section. This is mostly formal, and we will adopt the

mechanism of Tannaka duality as the most natural way of using the relevant information

about tensor products. At the end of this section, we will discuss the notion of principal
object or torsor, using the ideas of Tannaka duality.

TANNAKA DUALITY

An algebraic group may be recovered from its category of representations, and

this process may be used to construct a group if given a category with the right properties.

Let us briefly recall the notion of neutral Tannakian category [50] [43] [13]. A

tensor category is a category provided with a functorial binary operation denoted as tensor

product of objects. An associative and commutative tensor category is a tensor category

provided with additional natural isomorphisms expressing associativity and commu-

tativity of the tensor product (we call these isomorphisms constraints, even though they

really represent additional structure—for example the commutativity constraint is a

natural isomorphism U ® V ^ V ® U ) . The associativity and commutativity constraints

are required to satisfy some axioms. The simplest way to describe the axioms is to say

that any natural automorphism of some object, canonically produced by composition

Of the constraints, should be the identity. In the future we call such axioms canonical

axioms, A unit is an object 1 provided with natural isomorphisms 1 ®V ^ V satisfying

canonical axioms. A functor F between associative and commutative tensor categories

with unit is a functor provided with natural isomorphisms F(U®V) ^ F(U) ®F(V),
satisfying canonical axioms.

A neutral Tannakian category is an associative and commutative tensor category with

unit, which is abelian, which is rigid (in other words, duals exist), such that End(l) == C,

and which is provided with an exact faithful fiber functor co to the tensor category of vector

spaces. If G is an affine group scheme over C, then the category Rep(G) of representa-

tions of G is a neutral Tannakian category. It has a natural fiber functor (OQ which sends

a representation to the underlying vector space. The group G is recovered as the group

Aut®(<OQ, Rep(G)) of tensor automorphisms of the fiber functor. Conversely, given

a neutral Tannakian category (<?, co) set G = Aut^co, <^). Then S is recovered as the
category Rep(G).

We will describe the basic facts in some detail; the proofs may be found in [50]

[43] [13]. Suppose € is a neutral Tannakian category, with fiber functor <x). Making

no reference to the tensor structure, let the algebra of endomorphisms of the fiber functor
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be denoted by End(co, S}. Its elements are collections {fy} with/y e End(<o(V)), such

that for any morphism a :V -^W, (*>(fl)/v =fw
u
{

a
)

9 For example, fy^ ==/y@/^.
The algebra End(<o, §} is a projective limit of finite-dimensional algebras (see below),

so it is endowed with a projective limit topology. We will consider this algebra as the
primary object of study.

The tensor structure gives End(o), S} a structure of continuous Hopf algebra
(cf. [27]). The diagonal

A0 : End(co, <?) -> End(co, <?) ® End(co, )̂

is defined by A^/y } = {fy^ }, where the completed tensor product on the right is

viewed as a subset of collections {/y.w} with /v,w e End(co(V)) ® End(co(W)). The
augmentation s : End(co, <?) -> C is given by e{/y } =/r

Let aut^co, <?) and Aut^co, <?) be the closed pro-algebraic subsets of End(<o, <E?)

defined by the conditions of respecting the tensor structure, in the Lie algebra or Lie

group sense respectively. Thus aut®((o, <s?) consists of those elements {fy } of End(co, S}

such that

fi = 0 /^ =/v® 1 + 1 ®/^,

whereas Aut^co, S} consists of those elements {fy} such that

/i== 1 A^=fy®fw'

The condition that duals exist in € implies that any element {/y} satisfying the

conditions for inclusion in Aut^co, <?) will automatically consist entirely of automor-

phisms—there is no need to include a condition of invertibility.

These subsets may be defined using the co-algebra structure of End(co, <?). The

Lie algebra aut®((x), <s?) is just the set of Lie-like elements A, those with e(A) = 0 and

A®(A) = A ® 1 + 1 ®A. Similarly, the group Aut^co, <?) is the set of group-like ele-
ments ^, those with e(^) = 1 and A0^) ==^®^.

The algebra End(co, <?) has a structure of a projective limit of finite-dimensional

algebras. I f S C ^ i s a subset of objects, let <?g denote the category generated by objects

in S and their direct sums; let ^g ^ denote the bigger category generated also by tensor
products. Then

End(<o, §} = lim End(co, <?g),

the projective limit being indexed by the directed set of subsets S. Note that

End(cx), <?g) C IIygg End(<o(V)) is a finite dimensional algebra. In particular, we get

a topology on End(cx), <?), the projective limit topology.

The subsets aut^co, S} and Aut^o, S} are projective limits of closed algebraic

subsets inside the projective limit End(ci), <^). For example,

Aut®(o>, g} ==mnAut®((o, ^s^),

and Aut^co, ^g^) is a closed algebraic subset of End (co, <?g) (one might want to assume

that S contains the duals of all its objects). In particular, these subsets are closed in
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the projective limit topology. Also, Aut^co, <?) has a structure of projective limit of

algebraic varieties, hence it has a structure of pro-algebraic ajfine group scheme. The coordi-

nate ring of Aut®(co, <?) is the continuous dual of End((o, <?) (so it is a direct limit of

finite dimensional spaces) [13]. A representation ofAut^co, <f) into an algebraic group G

will always mean a representation which factors through an algebraic representation
of one of the algebraic quotients.

The pro-algebraic group Aut®(co, §} is the object which is dual to the Tannakian

category in the duality statement of Tannaka-Grothendieck-Saavedra [50] [43] [13].

The theorems (which we state without proof) are as follows: the category € is isomorphic

to the category of representations of Aut®((o, <?); conversely, if G is a pro-algebraic

group, its category of representations is a neutral Tannakian category Rep(G) with

a natural fiber functor co^, and G = Aut0^, Rep(G)); and also aut^co, €} is the
Lie algebra of Aut^co, <?).

The map from G to Aut0^, Rep(G)) sends a group element g e G to the natural

automorphism {fy } of <x)^ defined by setting fy equal to the action of g on the vector

space O)Q(V) underlying the representation V. One can think of Aut0^, Rep(G)) as

being the group of " virtual group elements ", namely systems of transformations of

representation spaces which behave like group elements with respect to natural trans-

formations and tensor products. One half of the duality theorem says that for complex

affine group schemes, all virtual group elements are actual group elements. In the case

of a discrete group, the group of < ( virtual group elements )) is the pro-algebraic comple-
tion (see Lemma 6.1).

The notion of monodromy group can be defined in the context of a Tannakian
category. Suppose V is an object of a neutral Tannakian category (<f, co). Then the

monodromy group M(V, co) of V at the fiber functor co is defined to be the image of the

map Aut^G), <?) -> Gl(<o(V)). If <?y ^ denotes the subcategory of all objects in € which

are subquotients of tensor products ofV and V, then M(V, <o) = Aut®(o), <^v,®)- The

monodromy group may also be defined in the manner of § 2: M(V, G)) is the subgroup

of those elements g in Gl(co(V)) which preserve subspaces <o(U) C T"'6 co(V) whenever

U C T^ V is a subobject in <?. The object V is called reductive if M(V, <o) is a reductive

group. This is equivalent to the condition that V is semisimple, a direct sum of simple
objects.

PROOF OF THEOREM 6

Lemma 6.1. — Suppose T is a finitely generated group. The tensor category Rep(F) of

representations of F, with its obvious fiber functor co, is a neutral Tannakian category. The group

Aut^co, Rep(F)) is naturally isomorphic to the pro-algebraic completion ^ of F. If Rep^F)

and Rep^F) denote the sub categories of semisimple and nilpotent representations, the quotients

Aut^co, Rep^F)) and Aut^G), Rep^F)) are, respectively, the pro-reductive and pro-nilpotent

quotients ^red and <S^.
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Proof. —The Tannakian conditions are easy to check, and the rest follows from

the Tannaka duality theorem stated above. The details are left to the reader. D

The differential graded categories ^ in examples (3.4.1)-(3.4.5) in § 3 give

rise to tensor categories € == E° ̂ , for example <?p^ == E° <^ is the category of local

systems on X, and <?p^ == E° ̂ ^ is the category of semistable Higgs bundles with

vanishing Chern classes. These have fiber functors co^, evaluation at the base point x.

The operation of taking the monodromy representation provides an equivalence

of tensor categories between the category of local systems <?p^ and the category of repre-

sentations Rep(7Ti(X, x)). This equivalence is naturally compatible with the fiber

functors, co^ and the standard co. The above lemma then implies that (^DE?^) ls a

neutral Tannakian category, and that Aut®(c^, ^p^) == ^(X, x) is the pro-algebraic
completion of the fundamental group.

The categories <^, ̂ , E0^'? and Eo ^H constructed in examples (3.4.1)-
(3.4.4) in § 3 are all naturally equivalent tensor categories, and this natural equi-

valence preserves fiber functors ^.Therefore all are Tannakian, and for example

G?i(X, x) == Aut0^, ̂ i). From now on, simply let S denote one of these mutually

equivalent categories. The category of semisimple objects <?8 is equivalent to the

category of harmonic bundles on X, and the category of nilpotent objects <S^ is equi-

valent to the category E° ̂ \A
9
) constructed from the algebra of forms on X in

example (3.4.5) of § 3. By Lemma 6.1, the Tannaka duals of the categories S
8 and S^

are, respectively, the pro-reductive completion ©^(X, x) and the pro-nilpotent
completion ©^(X,^).

We should make precise the notion of a group acting on a category, say in the

specific case which occurs below. An action of the discrete group C* on the category S

consists of a collection of functors a^: S -> € indexed by t e C*, together with natural

isomorphisms of functors a^a^ ^ a^, satisfying the canonical axioms that the two iso-

morphisms fly a^ Ot ^ a^ are the same. In the case of an action by tensor functors,

there are additional canonical axioms expressing compatibility between the constraints

of the group action and the constraints of the tensor functors. We make the convention

that such considerations are implicit in discussing group actions.

There is a natural action of the discrete group C* on the category of Higgs

bundles <?j)oi, by tensor functors which preserve the fiber functor:

dt: (E, 6) h-> (E, tQ).

These are tensor functors because 6^0? ̂  6^® 1 + 1 ®6p, and multiplying by t pre-
serves this linear relation. The fiber functor <o^ is preserved because the underlying

bundle is fixed, <o^(E, tQ) = E^ = <o.,(E, 6). By transport of structure, C* acts on the

algebra End(o^, <^i), the Lie algebra aut0^, <^i), and the group Aut0^, <s?ooi).

This gives the requisite action on ©^(X, x). This completes the proof of Theorem 6.

Some more insight can be gained as follows. We can define an action of C* on
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the differential graded category <^. Suppose U and V are objects of ^p^. Let a^ U

and a, V denote the same underlying bundles with new operators D(" = '8 + tQ. These

are the new Higgs bundles resulting from the action of C* described previously. Define
the map

^ : Hom-(U, V)-> Hom^U^V)

by a^f) = t^f for fe A^(X, Hom(U, V)) == A^(X, Hom^U, AQ).

Note that D;'(^(/)) == ^(D'V)), so this defines a functor ^ : ̂  -> <T^. Further-
more, fl( has a structure of tensor functor. The natural isomorphism

Tu,v :^U®^V->^(U®V)

is given by the identity map on the underlying bundles. Note that 6^® y == QU ® ! + 1 ® 9y,
and

 \v == ^u and similarly for V, so Q^®V)
 = ^u®v == ^TJ®^- We have an action

of C* by tensor functors on <^^ (the composition of tensor functors a^ a^ is naturally

isomorphic to a^, with canonical axioms satisfied). This action is compatible with pull-

backs, and it is trivial over a point, so the action preserves the fiber functor co, evaluation

at a point x. In other words there are natural isomorphisms co(^ U) ^ co(U). These

are again just the identity maps. The composition of these natural isomorphisms for s

and t is equal to the natural isomorphism for st, so we have an action of C* by (< tensor

functors which preserve the fiber functor ". The action of C* preserves the subcate-

gory ^^oi, and the action on the full category is obtained from this restricted action by

the process of completion (the second paragraph of the proof of Lemma 3.1 shows that

the required uniqueness is satisfied, for extending an action by functors to the completion

ofad.g.c.). Be careful to note, however, that the quasi-equivalence between ^p^ and G^
may not be compatible with the C^-action, because it goes through the category ^p,.

Compatibility will only hold for subcategories of objects (such as the trivial object)
where D' is compatible with the C-action. a

Caution. — The action of C* on ^j^ permutes the objects in an essential way.

Thus the action on End((x), E° ̂ pj will not be algebraic, but rather more like the

action on a space such as II^ g y C. This problem is most serious on the category of

semisimple objects, which we discuss in the next section. But then in the following

section, we will discuss nilpotent objects, and there it will be a consequence of our

argument that the action of C* on End(co, E° ̂ i) will be pro-algebraic, a projective
limit of algebraic actions.

REAL AND CARTAN STRUCTURES

A real structurefar a Tannakian category is an antilinear tensor functor

or :

(in other words (T : Hom(U,V) -> Hom(d-(U), (T(V)) is antilinear) satisfying the condi-

tion that d be an involution, meaning that there is provided a natural isomorphism
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(A : (TOT ^ 1 satisfying the canonical axiom that the two maps aaa ^ a are equal. A real

structure for the fiber functor a> is a natural isomorphism of tensor functors

(po : coo ^ L(O

such that the two resulting maps icoo- ^ G) are equal. Here we are using the notation i.

for the canonical involution i : i^ect -> i^ect, ^l**) ==1" and i(/) =/for an m X n

complex matrix f\ I" -> i"
1
.

Given R-structures for a Tannakian category € and its fiber functor <o, there is

an R-structure for the pro-algebraic group G = Aut^co, <?), such that ifV is an object

of S corresponding to a representation of G, then <y{V) corresponds to the complex

conjugate representation. The real structure of G is given by an involution a, defined by

^C?)v == ^C?o(V)).

or more precisely

^§)v = ̂ v^mPo;^

for an element g == { gy } ofAut^o, <s?). The real points of the group are then elements g

such that a{g) == g, in other words such that gy^ == i(^). More concretely this says

that g should act in the complex conjugate representation, as the complex conjugate
of the way it acts in the original representation.

Caution. — While it is true that all fiber functors defined over C are isomorphic,

the real structures for a fiber functor are not all isomorphic. The real forms of the algebraic

group Aut®(co, S} given by two different real structures for co might not be isomorphic.

Say that a pair (r, <pJ consisting of a real structure for S and a real structure for a

fiber functor <o, is compact if the associated real form is a compact real form ofAut^co, <^),

meaning that it is compact and it meets every path-connected component (in the pro-
analytic topology).

Recall that a Cartan involution of a real algebraic group (G, cr) is an involution

G : G -> G, with G2 = 1, such that T = Co == o-G is an antilinear involution defining

a compact real form of G. We can make some similar definitions in the dual Tannakian
context.

An involution of a Tannakian category S is an exact C-linear tensor functor

C : S -> § together with a natural isomorphism CC ^ 1 satisfying the canonical axiom

that the two isomorphisms CGG ^ C are equal. Say that C commutes with an antilinear

involution a if there is given a natural isomorphism Co ^ cC, such that the three iso-

morphisms CaCcs ^ 1 are equal. If this is the case, then T = Co has a structure of anti-
linear involution, in other words it gives a new real structure.

A C-structure for a fiber functor <o is a natural tensor isomorphism <po: coC ^ o>

such that the two isomorphisms O)CG ^ co are equal. As before, this leads to an invo-

lution C, now linear, ofAut^co, €}. Suppose that § has a real structure a and a Cartan

involution C, which commute. Suppose <o is a fiber functor. Say that a C-structure 9^

and a real structure cpg commute \f the two maps cooC -> ico are equal (this refers to the
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structure of isomorphism C(T ^ aC). If 9^ and <pg commute, then we may compose

them to get a real structure 9^ for co relative to the real structure T == Co on <^. Say

that (G, 9^) is a Cartan involution for (or, 9^) if G and cr commute, and 9^ ̂ d 9o commute,
and if the resulting real structure (r, 9^) is compact.

A Cartan triple for (^, co) is a triple of pairs ((C, 9^), (a, 9^)3 (r, 9^)) where (C, a, r)

is a triple of involutions of <?, with C linear and a, T antilinear, and 9c? 9o? a11^ 9^ are

commuting structures for co, with (r, 9^) equal to the composition of (G, 9^) and (a, 9^),

and (r, 9,.) compact. A Cartan triple for a group G is a triple (G, cr, r) where C is an invo-

lution commuting with real structures a and T, and T = Cor is a compact real form of G.

Lemma 6.2. — Cartan triples for (<?, <x)) ^r^ m natural one to one correspondence with

Carton triples/or Aut®(co, S}.

Proof. — One has to check that two pairs commute if and only if the corresponding
involutions of Aut^co, <?) commute. D

The following lemma is the standard fact about Gartan structures.

Lemma 6.3 (E. Cartan). — Suppose G is a reductive algebraic group. Suppose either that G

is an involution, or that a is an antilinear involution. Suppose Ho is a compact real subgroup which

is preserved by G or a. Then there is a compact real form T of G which is preserved by G or (T, and

such that HQ is contained in the compact group G^. Thus, C or a may be extended to a Cartan

structure (G, o, r) such that Ho C G^. The compact real form T is unique up to conjugation by

an element of G° or G°.

Proof. — The proof is well known—see, for example, [28]. We will discuss it briefly.
Let v denote either C or o-. For existence, choose a compact real form U' = G^ contai-

ning Ho. Set N == VT' VT' ; it is semisimple with positive real eigenvalues in its action

on the Hopf algebra End(o^, Rep(G)). Setting T == N174 T' N-1/4 = N172 T' gives the

desired compact real form. For the uniqueness statement, suppose T and T' are two

compact real forms preserved by v, and let U and U' denote the compact subgroups. They

are conjugate, gVg~
1 = U' with g eG unique up to multiplying on the right by an

element of U. From the Gartan decomposition G = exp(m) U we may assume that

g == exp(j^) withj/ e m. In particular, r(^) = g~
1
. Apply the involution v to the equa-

tion gVg~
1
 = U', to find v^) Uv(^)~1 == U'$ by the uniqueness of g this implies that

v(^) = gu with u e U. Apply T to the equation v(g) = gu to obtain ^(g)~
1 == g~

1
 u (since T

commutes with v and r{g) = g~
1
). Therefore g~

1 v(^) =^v(^)~1, so v(^2) = g
2
. Note

that ^ acts on the Lie algebra u and hence on m, so the last equation translates

to exp(2v(j/)) = exp(2j/). But the map exp : m -> G is inj'ective, so 2v(j/) = 2j. Therefore
v(j/) ==y so v(^) = g, g e Gv as desired. D

Question. — Is this lemma true for reductive pro-algebraic groups? The main ques-

tion is whether a compact real form exists. This will be true in our example ^(X, x),

but I don't know if it is true in general.

10
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PROOF OF THEOREM 7

The pro-algebraic fundamental group G5i(X, x) has a natural real structure. The

involution cr is the unique involution which fixes the original group ^(X, x), or to put

it another way, CT^X, x)^ is the real algebraic completion of ^(X, x). The action of a

on the category S of local systems is defined by <r(V, D) == (V, D).

We restrict our attention now to the reductive quotient of the fundamental group.

The subcategory <§'
8 of semisimple objects is isomorphic to the category of harmonic

bundles, and ©^(X, x) is the group associated to the Tannakian category <S'
8 with

fiber functor evaluation at A:.

Lemma 6.4. — If K. is a harmonic metric on a harmonic bundle (V, D, D', D"), then K is

a harmonic metric on the complex conjugate bundle (V, D, D", D'). If t e. U(l) then K. is a

harmonic metric on the bundle (V, D(, D(', D^') where D(" == 8 -}- tQ, D^ == 8 + t~1 85 ^d

D^D;+D;\

Proof. — The operator D' is a Higgs operator on the complex conjugate bundle V,

and the operator related to it by the metric K is D". Since all of these operators are

integrable and they are related by the metric, K is harmonic (cf. Lemma 2.11). Note

that TQ = f9 = t~
1 6. Therefore D( is the operator associated to D(' and the metric. The

curvature is D( D;' + D<' D; == S8 + 8Q + 66 + 66 + ^(6) + t~
1 ^(6). This is the same

as the original curvature D' D" + D" D' except that the components of type (p, q)

have been multiplied by ^. Thus, if the original curvature vanishes, then so does the

new curvature, so K is a harmonic metric for the operator D^. D

Corollary'6.5. — The action ofU(\) CC* on ̂ (X, x) preserves the real form ̂ (X, x)^.

Proof. — The a complex conjugate of (V, D;, D;7) is (V, D;', D;). But for example

D; = a + r1 6 = 8y + tQy == (D')<.

Therefore the action of U(l) commutes with the involution or. The natural isomorphism

expressing this commutativity is just the identity V = V on underlying bundles, so

the action ofU(l) preserves the o-structure of the fiber functor (x)^. The corresponding

action on the group ©^(X, x) commutes with the involution o there. D

Lemma 6.6. — Let G denote the element — 1 e U(l). There is an antilinear involution

T = aC = Ca of the category <T, defined by T(V, D, D', D") = (V, Do, Do', Do). The

jiber functor co has a natural real structure with respect to this involution also. The resulting real

form ^(X, x) of the group ^^(X, x) is a compact real form (in particular, it meets every path-

component).

If co^X, x) -> G1(VJ is a representation, and if K. is a harmonic metric on the associated

harmonic bundle V, then g e '^(X, x) is contained in ^(X, x) if and only if g preserves K^.
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Conversely, a metric K^ on V^ comes/Torn a harmonic metric K on V ?/* f̂i? on^ z/* K^ ̂  preserved

by every real point u e ̂ (X, x).

Proo/*. — Note that Go == oG by the previous corollary, so T is well defined and is

an involution. Suppose (V, D, D', D") is a harmonic bundle. Applying both statements

of the previous lemma, we see that r(V, D, D', D") is a harmonic bundle. The involution T

commutes with the fiber functor, in the sense that canonically <*yr(V) == i-^(V), where i

denotes complex conjugation of the vector space o(V). Also T commutes with tensor

product and dual (because a obviously does, and C does). Therefore T provides real

structures for €
9 and for the fiber functor, so it gives a real form ^(X,;c).

Here is an interpretation of this real form. If K is a harmonic metric, we can think

of K as a C00 isomorphism between V and V*. In fact, the definition of the relationship

between the operators D' and D", and the metric, says exactly that K is an isomorphism

of harmonic bundles from V to r(V*). Suppose that g == { gy } is an element of ^^(X, x).

The condition that g e ̂ (X, x) is that for all V, ^(Y) == igy. The fact that g is natural

with respect to the morphism K means that g^y*) = K^^yK^"1. Compatibility of g

with the tensor structure implies that ^y* = t
g

:
v

lf Therefore the condition that g lies

in ^(X, x) may be interpreted as t
g ^

l
 = K.^gyK.^

1
. This is exactly the condition

that g preserves the metric K^. This proves the first statement of the second paragraph,

and also immediately implies that ^<(X, x) is an inverse limit of compact groups—hence,

by Tychonoff's theorem, ^<(X, x) is compact.

Next we will show by a standard type of argument, that ^(X, x) meets every

path-component of ©^(X.A:). Suppose ^ess^X,^) is some element. The element

h == g~
1 r(^) is positive self adjoint in any representation, with respect to any harmonic

metric. Thus for any reductive representation V and any real number t there is a unique

automorphism h^ characterized by the conditions that the eigenspaces are the same as

those of hy and the eigenvalues are raised to the power t (remaining positive numbers).

This is compatible with direct sums, tensor products, and isomorphisms, so it defines

an element h
1 e ©^(X, x). As t varies this path of elements gives a map R -> ©^(X, x)

which is continuous with respect to the pro-analytic topology, because in any algebraic

image it is continuous with respect to the usual topology. All of the elements h
1 commute

with each other. Note that r(A) == A~~1, so

T^2) = T(^) h-112 = r{g) h-1 h112 == gh112.

Therefore the element gh
112 is in ^<(X, x). But it is joined to the element g by the conti-

nuous path 11-> gh\ for t e [0, 1/2]. Thus we have shown that ^(X, x) has a point in

every path-component, so it is a compact real form of ^(X, x).

Finally, suppose K^ is a metric preserved by all g e ^(X, x). Choose a harmonic

metric H for V. There is a unique endomorphism hyc, of V^ which is self adjoint and

positive definite for H^, and such that K^ == H^. Since H^ and K^ are preserved

by ^(X, x), we have uh^ u~
1 == h^ and since ^(X, x) is a compact real form of ©^(X, x)

(meeting every path-component), this implies that gh^g~
1

 == hy, for every g e ̂ ^(X, x).
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Therefore h^ is the value at x of an endomorphism h of the harmonic bundle V. Now

let K be the metric defined by (u, v)^ = {hu, hu)s. It restricts to K,, = H^ ̂  at x. This
proves the last statement of the lemma. D

Corollary 6.7. — The category €3 = S^ = <sf^ has a natural Cartan triple (C, (T, r),

W i/' co^ ^ ^ ̂ r functor of evaluation at x, then (<^, <o) has a natural Cartan

triple ((G, <pcJ, (o, 9^), (r, <p^)). D

Finally we will complete the proof of Theorem 7. The above discussion shows that

the action of G == — 1 on the category S
8 is a Cartan involution with respect to the

real structure (T, and hence the action o f G = = — l on the group ^(X, x) ̂  is a Cartan

involution. The image of 7ri(X, x) in ©^(X, x) is Zariski dense by definition.

To finish the proof we must verify the continuity axiom. For any representation

prcs^X,^) ->G1(72,C), corresponding to a flat bundle (V, D) with V^ ^ C", the
composed map

U(l) x ^(X, x) -^ ̂ (X, x) -> Gl{n, C)

is given concretely as follows. A pair (t, y) is sent to the monodromy around y of the

flat bundle (V, D(), using the notation of Lemma 6.4. The action of t preserves the

harmonic metric, and the new connection is D( == 8 +1) + tQ + t~
1 6. This connection

on the fixed bundle V varies continuously with t, so the resulting monodromy around y

varies continuously (using the analytic topology on G\(n, C)). This continuity for any
representation p implies that the map

U(l) XTTi(X^) -><(X,^)

is continuous in the pro-analytic topology on cs^X, A:). D

PROOF OF THEOREM 9

The metric connection 8 + ^ on a harmonic bundle is compatible with tensor

products. Therefore if P is a path from x to jy, then parallel transport along P using

this connection defines an isomorphism Op : <x>^ ^ cOy of fiber functors. This isomorphism

preserves the U(l) action, since the action of t e U(l) does not change ^ + 3. It also

preserves the compact real form, because 8 + 8 is a unitary connection for any harmonic

metric; and therefore Op preserves the real structure cr too. The map Op provides an

isomorphism between the Hodge structures CT^X, x) and ^(X,^) except for the fact

that Op does not preserve the finitely generated subgroup ^(X, x). On the other hand,

let Tp denote parallel transport along P using the flat connection D. This again defines

an isomorphism Tp : (x)^ ^ coy, which, however, is not compatible with the action of U(l).

Composing we obtain an automorphism Tp^Op of the fiber functor o^, hence an ele-

ment 0(jy, P) == Tp^Op eos^X, x)^. If P' is a different path from x to y, then the
element 0(^, P') will be different:

0(js P') = Tp;1 Tp0(j/, P) 0(^, P-1 P').
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The element Tp^1 Tp on the left is in 7Ti(X, x). The element on the right is an element

ofJf(X, ^) because the connection 8 + 3 is unaffected by the action of U(l), so the

parallel translation 0(^, P~1 P') is an automorphism of the fiber functor which is fixed

by U(l). So after dividing out by Jf(X, x) on the right, we obtain a 71:1 (X, ^)-equivariant

map.

(D:X-><(X^)n/Jf(X^).

Suppose p : ©^(X, x) -> Gl{n, C) is a representation such that p(^<(X,jc)) pre-

serves the standard metric on C". Then there is a harmonic metric K for the resulting

local system V, which is equal to the standard metric on Vg; ̂  C^. The parallel trans-

port Op from V^ to Vy takes K^ to Ky, and therefore the element p(0(j,P)) = Tp1 Op

takes the standard metric on Cw to the pullback of the harmonic metric Ky. The element

p(0(j, P)) is by definition a representative for the image ofj in the harmonic map. D

PROOF OF THEOREM 8

We have discussed the reductive part of the fundamental group above; now we

will discuss the nilpotent part CT^X, A:). This will not complete an exhaustive discus-

sion, because it leaves the question of what happens to the part of the group detected

by representations which are extensions of nontrivial semisimple representations. That

topic must be left for another time.

Morgan and Hain have defined a mixed Hodge structure on the nilpotent comple-

tion of 7Ti(X, x), which is to say, on the completed group algebra CTT^X, x)^ and on

the Malcev Lie subalgebra [38] [27]. In the present case, X is compact, so the weight

filtration is the same as the filtration by powers of the augmentation ideal. Thus the

data of the mixed Hodge structure is essentially contained in the Hodge filtration Fp

(nontrivial only for negative p) and the real structure RTC^X,.^. We would like to

show a basic compatibility, that our action of C* determines the Hodge filtration. On

the other hand, it will probably be impossible to detect the real structure through <?poi.

The completion of the group algebra CTC^X, x)^ is a Hopf algebra, and the Malcev

Lie subalgebra is defined to be the subspace of Lie-like elements using the Hopf algebra

structure. The Malcev Lie group is the exponential of the Malcev Lie algebra. The

following proposition and its corollary show that we obtain this Hopf algebra, and hence

the Malcev nilpotent completion of the fundamental group of X, by looking at the

category of nilpotent flat bundles <^B.

Proposition 6.8. — Let <o : <?^ -> i^ect be the fiber functor of evaluation at a point x e X.

Then End(co, <^y is naturally isomorphic to CTT^X, ̂ A, the completion of the group algebra of the

fundamental group with respect to the augmentation ideal J. The projectiue limit topology corresponds

to the adic topology of the completion. Furthermore, the structures of Hopf algebra are the same.

Proof. — There is an obvious natural map ^(X, x) -> End((x>, ^Ss)? sending

Y e ̂ i(X, x) to { YvL where yy ls
 ^

le action ofy on co(V) (the fiber ofV at x) by parallel
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translation around y. I11 fact, the category <?^ is naturally isomorphic to the category

ofnilpotent representations of^X, x) (with co corresponding to the obvious fiber functor).

We get a map CTC^X, x)^ —^ End(co, <?SR), well defined and continuous on the

completion, because the action of the group algebra on any finite collection of nilpotent

representations factors through a power of the augmentation ideal. The map is also

injective, because any nonzero element of CTT^X, x)^ acts nontrivially on some nil-

potent representation, namely the representation CTC^X, x)!^ itself.

Suppose V is a nilpotent representation (abusing notation we denote the vector

space o)(V) also by V). Let AyCEnd(V) denote the subalgebra generated by the image

of 7Ci(X, x). We claim that if {f^} is an element of End(co, <S^), then fy eAy. To

prove this, note that Ay C V ® V^ is the subrepresentation generated by the identity

matrix, under the action of7Ci(X, x) on the first factor only (V^ denotes the dual vector

space but with trivial group action). Therefore, jfy^y*(l) eAy. Now V®V^ is really

a direct sum of copies of V, soj^y^y^ =fy® 1 is the same as left multiplication by^y.

Therefore, left multiplication by fy maps the identity matrix into Ay, so fy e Ay.

Recall that End(6), <f) == lim End(co, <^g). The previous paragraph implies that

the image of CTT^X, x) in any of the quotients End(co, <?g) is equal to the image of

End(o), <?). The completion with respect to the augmentation ideal may be written as

an inverse limit over the same directed set: for each S C <?, let k(S) denote the maximum

length of a minimal nilpotent filtration for objects in S (and hence in <?g). Then

CTC^X,.^ ^limCn^X.x)/]^. Replace the directed system End(<o, (?g) by the

directed system of images of End(co, <^). Then the map between the directed systems

is surjective at each stage. Therefore the map between the inverse limits is surjective.

We saw above that it was injective, so it is an isomorphism. To see that the topologies

are the same, note that if an element is close to the origin in End(co, <?'), meaning that

it acts trivially on a large collection of objects, then in particular it acts trivially on the

representation CT^(X, x)^ for some large k, so it is close to the origin in CTC^X, .y)^

Finally we have to show that the structures of continuous Hopf algebra are the

same (cf. [27]). The comultiplication in CTT^X,^ is given by A(y) = y ® Y ^or

group elements y- Recall that the comultiplication of End(co, <^) was defined by

A® {/v ) = {/v®w }• Thus if Y e TT^X, x), A0 { yy } == { w®w }• But yy^ == Yv ® Yw in
End(<*>(V)) ®End(co(W)), so the comultiplications are the same. The augmentations

are the same since y acts by 1 on the unit object 1. D

Corollary 6.9. — Under the above identification^ aut^co, <^ )̂ corresponds to the Malcev

Lie algebra^ and Aut^co, <? )̂ to the C-Malcev completion of the fundamental group.

Proof. — See [27]. The Malcev Lie algebra and the Malcev completion are the

subsets of Lie and group-like elements of CTT^X,.^, respectively. D

The action of C* on <^i gives an action on <? ,̂ and hence by Proposition 6.8,

an action of C* on CTC^X,.^ preserving the Malcev Lie algebra and Malcev group.

This action on the Malcev Lie algebra is the one referred to in Theorem 8.
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Our reason for introducing differential graded categories was to deal with the

case of objects which are extensions of nontrivial irreducible objects. However, for

nilpotent objects (extensions of trivial objects), the essential information comes from

differential graded algebras. In following the definitions to describe our action of C*

on the nilpotent completion of the fundamental group, it will often be easier to work

at the level of d.g.a.'s.

Recall that<^ is equivalent to the d.g.t.c. ^^(A^) derived from the d.g.a. Ap^.

This completes to give an equivalence ^^ ^ ^(ADE), ^d hence an isomorphism

CTT^X, ̂ A -> End(o), <%) ^ End(co, E° ̂ (A^)).

We can describe this concretely as follows. An object in E° ^'(Ap^) is a pair (I", T])

where T] e A^X) ® M^ is a nilpotent n X n matrix valued one form such that

d(^ + T] A Y] == 0. If Y is an element of the fundamental group TCi(X, A:), then it maps

to the endomorphism ofci^l^ T)) == C^ given by transport around y using the connection Y],

which we can expand in a series of iterated integrals:

^ ̂  1 + J^ + J^ | ̂  4- . . .

(see below). The series terminates because Y] is nilpotent.

There is an action of C* on the d.g.a. A^i, obtained by letting t act on A^

by ^. The C* action on Ap^ provides an action on ^"^ApJ, and by completion,

an action on ^"(ApJ (recall that this d.g.t.c. was defined to be the completion of

previous one). Recall that we defined an action of C* on the d.g.t.c. V^ of Higgs

bundles. The category ^^(A^) is equal to the subcategory ^^C^i of trivial

Higgs bundles. The identification ^^(ApJ == ^SS preserves the C* action, and

since the extension of a functor between d.g.t.c.'s to a functor between completions is

unique up to unique natural isomorphism, the identification ^"(A^J ^ (
S

V
^ pre-

serves the C* action.
The quasi-equivalence between ^i and ^g^ was defined to be the completion

of the quasi-equivalence between ^^ and ^S, which in turn is equal to the quasi-

equivalence provided by the quasi-isomorphism of d.g.a.'s

A^ = (A-(X), B) -> (ker(a), B) -> (A-(X), d) = A- .̂

The C* action on A^i induces an action of C* on

E° ̂ "(A^) = E° ^(ker^)) == E° ̂ (A^),

and hence on CT^(X, x)^. From our discussion so far, this is the action of C* referred

to in Theorem 8.
In order to prove that this C* action corresponds to the known Hodge filtration,

we must choose one of the ways of defining this Hodge filtration. The most convenient

seems to be the method of Hain, using the bar construction, which we now recall.
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Chen and Ham associate to every d.g.a. A' with augmentation denoted co, the
bar complex

k

B^A- = © 0ker(co).

The elements are sums of tensor products written with bars < a^ \ a^ \ . . . | a^ >, where
G)(fl,) = 0. The total degree of < a^ \ ... | ^ > is defined to be S deg(<z,) — k. The dif-
ferential is defined by

8<^|... |^>=S;±<fl i | . . . |^|. . . |^>±<^|... |a,f l^J ... K>.

Then H° B^ A* has a structure of Hopf algebra, and its dual (H° B^ A')* is a continuous

Hopf algebra [27]. In the case when A* = A^ == (A-(X), rf), and the augmentation co

is given by evaluation at x e X, they define a map ^ : n^(X, x) -^(H^A^)* by
iterated integrals:

^(v) «^il • • • |^» ==J^i| ... |^.

To define the iterated integrals, represent y by a path y(^ : [0, 1] -> X, and let A^ C [0, Ip
be the tetrahedron defined by 0 ̂  ^ ̂  . . . ^ ^ ̂  1. Then

J l̂ I • • • I ̂  ̂  J^T* ̂ l) A ... A Y* ^(^).

Ghen and Hain show that this map gives an isomorphism

^C^X.^^H^A^r

of continuous Hopf algebras. The filtration F^Ap^ = (B^A^X) induces a filtration

on (H^A^)* and hence on CTC^X, A:)^ This is the Hodge filtration on the funda-
mental group as defined by Hain.

For any augmented d.g.a. A\ we can define a map

T : (H° B^ A-)* -> End(co, E° ^"(A-))

as follows. For X e ( H ° B ^ A - ) * and (1^ T]) eE°^\A
9
), set

T(X)^ == X(l + < ^ > + < Y] | T] > + . . . ) e M, = End^l**, 7,)).

When we bar a number of elements T] e A^X) ® M^, it means to multiply the matrices,

combining by bar the coefficient one forms. Note that T(X)(p,^ is well defined, since
the equation A] + Y] A T) = 0 implies that 8(1 4 - < 7 ] > + < y ] | Y ] > + . . . ) ==0. Further-
more, T(X) is a natural endomorphism, for if

.:(!-, 7)) ^(i-a A + ^ - ^ = O ,
then

±8 ( S < ^ | ... |^[(,-(o(,))[^ ... |^»

== (S < ^ [ . . . | 0) <oM - <oM (S < T) | ... | T) »

is zero in H°B^A^, so

^MT(X)^,)=T(X)^^O)M.
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One should be able to show directly that T is a morphism of continuous Hopf algebras.

This will be automatically verified in our cases because of the following lemma.

Lemma 6.10. — The composition

CTT^X, x)
 A 4 (H° B, A^r ̂  End(<o, E° ^"(A^))

is equal to the transport map defined in Proposition 6.8. In particular, the above map T is an iso-

morphism of continuous Hopf algebras in the case of A^.

Proof. — This follows immediately from the Picard-Chen expansion: the mono-

dromy of a connection d + T] on the trivial bundle 1" is equal to

i + J ^ + . f ^ h + . . .

which is the same as T o ^(Y)(I«,.>))- D

Now we can complete the comparison between our C* action and the Hodge
filtration. The quasi-isomorphisms of augmented d.g.a.'s

ADOI^ (ker(0),a) - A-̂

lead to a diagram

(H-B^A^,)* ——————. (H°B,ker(?))* <—————— (H°B,A^)*

I I I

End^^^A-^)) —> End^E0^!^))) <— End(<x), E° ̂ (A^)).

Hain shows that the cohomology of the bar complex is invariant under quasi-isomor-

phisms, so the maps along the top are isomorphisms. Similarly, quasi-isomorphic d.g.a/s

give quasi-equivalent d.g.c.'s ^^(A*), and hence quasi-equivalent completions ^(A^).

The functor E° transforms quasi-equivalences to equivalences, so the maps along the

bottom are isomorphisms. The vertical map at the right is an isomorphism by the previous

lemma, so all of the maps are isomorphisms. Therefore all of the algebras including the

above and CTT^X, x)^ are canonically isomorphic; let H denote this algebra. Then C* acts
on H via its action on A^. Note that the isomorphism T between (H°B^A^i)*

and End((x), E° ̂ (ApJ) is compatible with the C* action, since the construction

T is natural. Let IP denote the subspace of H on which C* acts by the character ^.

By looking at (H° B^ ApJ* it is clear that © IP is dense in H. The filtration F^ = ©,^ ^ H1'

is equal to the filtration induced on (IPB^A^i)'1' by the Hodge filtration of Ap^. But

this is equal to the Hodge filtration of H, in other words the filtration induced by the

Hodge filtration of Ap^. This is because the quasi-isomorphisms of d.g.a.'s considered

above are filtered quasi-isomorphisms, and the differentials are strictly compatible with

the Hodge filtrations. Hain proves that these imply that the filtrations on the coho-

mology of the bar complex are preserved [27]. Thus we have proved Theorem 8. D

11
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Remark. — Our C* action preserves the Malcev Lie algebra, and hence induces

the Hodge filtration there also.

Question. — We have obtained a canonical splitting of the Hodge filtration on the

fundamental group. Deligne constructed a canonical splitting of the Hodge filtration

of any mixed Hodge structure [10], so it is natural to ask, are they the same?

PRINCIPAL OBJECTS

This section formalizes the intuition that one does not need to worry about prin-

cipal objects—once a theory is developed for vector objects, with information about

tensor products, then the notion of principal object is recovered as the notion of a functor

from Rep(G) to the Tannakian category of objects in question.

Suppose G is an algebraic group. We will discuss the notion of principal object,

or G-torsor, from three points of view. From the group theoretic standpoint, a G-torsor

is just a representation p : cs^X, x) -> G, up to conjugacy. Such a representation can be

reinterpreted in terms of Tannakian categories as a tensor functor p : Rep(G) -> €.

A more intrinsic description is that a G-torsor is a principal G-bundle P on X together

with some additional structure. We will draw the connections between these viewpoints,

and use them to include additional information such as real or Cartan structures.

First we will define the groupoid of representations in G to be the groupoid whose

objects are representations p : G5i(X, x) -> G. The set of isomorphisms from p to p' is

the set of all group elements g e G such that ^p = p7
 g.

A G-torsor in € is an exact fully faithful tensor functor p : Rep(G) -^ S. There is

a functor from the groupoid of representations in G to the groupoid of G-torsors as
defined in the previous sentence. It sends a representation p : c^(X, x) -> G to the tensor

functor

p = p*: Rep(G) -> € = Rep(CTi(X, x)).

Lemma 6 .11. — This functor p \-> p = p* is an equivalence between the groupoid of repre-

sentations in G and the groupoid of G-torsors.

Proof. — I f p : Rep(G) -> S is an exact fully faithful tensor functor, then ^p is

a fiber functor for Rep(G). We may choose an isomorphism <p : co^ ^ ^acP
9 This yields

a representation p == (j&, <p)* : c5i(X, x) — G, and an isomorphism p* ^ p. Suppose pi

and pa are two representations. If/= {/y : Pl(V) -> P^(V)} is a natural map of tensor
functors on Rep(G), then applying the fiber functor o^, and using c^ p,T^ co^, we

obtain a natural automorphism coj/) of the tensor functor co^. This corresponds to

a unique group element, c^(/) = g. The condition that/maps p^(V) to p^(V) means

that the element g intertwines the representations pi and pg. Conversely, any group

element intertwining pi and pa gives rise to a natural map/: pi -> pa. This gives an iden-

tification between the isomorphisms of objects p, and tensor isomorphisms of functors p,

as desired. D
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In view of this lemma, we will use interchangeably the concepts of representation

in G and G-torsor. These concepts can also be expressed in terms of principal objects

on X, using the notion of a family of fiber functors.

We begin with a general definition. A continuous, C°°, complex analytic, locally constant,

or complex algebraic family of fiber functors on a Tannakian category <^, indexed by a topo-

logical space, G00 manifold, reduced complex analytic space, topological space, or

reduced complex algebraic variety Y, is an exact faithful tensor functor coy from S to

the category of (continuous, C°°, complex analytic, locally constant, or algebraic)

complex vector bundles on Y, such that for eachj^ e Y, the functor <0y obtained by compo-

sing the functor " fiber at j /5 ? with (x)y ls a fiber functor for <?.
One way to construct a family of fiber functors is as follows. Suppose G is an

algebraic group. Suppose P is a continuous, C00, complex analytic, locally constant,

or algebraic principal G-bundle on Y. Then for any representation V eRep(G), we

can form the vector bundle P X ^ V on Y. If we set (Oy(V) == P X ^ V then c*)y becomes

a continuous, G°°, complex analytic, locally constant, or algebraic family of fiber functors

on the Tannakian category Rep(G). The following converse is a generalization of a

result of M. Nori, who proved it in the algebraic case [41].

Lemma 6.12. — If G is an algebraic group and <*)y is a continuous, G00, complex analytic,

locally constant, or algebraic family of fiber functors on Rep(G), then there is a continuous, G°°,

complex analytic, or complex algebraic principal G^bundle P on Y and a natural isomorphism

o)y(V) ^ P X^V of families of fiber functors. Any natural tensor isomorphism between two

families of fiber functors P x ^ V ^ P ' X e V comes from a unique isomorphism of principal

bundles P ̂  P'. And Py is naturally identified with the set of tensor isomorphisms (OQ ̂  (Oy.

Proof. — The proof will be the same in all of the cases. Define the fiber of the

principal bundle P at a point y e Y to be the set Py of natural tensor isomorphisms

<o^(V) ^ (^y(V). We have to describe how these fit together into a bundle over Y.

Ghoose an object U in Rep(G) such that any representation is a subquotient of a

tensor product T^U = U®"® (U*)06. Fix a frame coo(U) ^ C". Then fy may be

identified as the subset of the set of isomorphisms of vector spaces 9:0"^ <*>y(U)

defined by equations expressing the conditions of naturality and compatibility with

tensor product. (These equations say, in particular, that for any subrepresentation

WCT^U, the isomorphism y maps o)e(W) C T^ C" to <Oy(W) C T0'6 (Oy(U)— there

are further equations saying that the resulting transformations of subquotients

y : <o^(W/W') -> co^W/W') are natural with respect to morphisms, and compatible

with tensor product.) Locally, we may choose a frame P : (Oy(U) s C^ X Y varying

in the appropriate fashion. Then P is identified with a subset of the bundle

G\{n, C) X Y == Iso^C" X Y, C^ X Y). It is a right principal G-bundle, in other

words G acts on G\(n, C) on the right (by precomposition via the representation U

with its chosen frame) and for each y e Y, Py is a coset. Thus we obtain a map
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Y ->Gl(w, C)/G. The main contention is that this map is a continuous, G°°, complex

analytic, locally constant, or complex algebraic morphism. The principal bundle P

with then be the pullback of the natural bundle of cosets over Gl(w, C)/G.

To prove this contention, we use <( Pliicker coordinates55. Recall that there is

a one dimensional representation LCT^U such that GCG1(^,C) is characterized

as the subgroup of elements which preserve the line ^(L) C T0^ C" [13]. Let P^ denote

the projective space of lines in T^C", and let LQ denote the point corresponding

to (OG(L). Then GI(TZ, C) acts on P^ and the stabilizer ofLo is G. The orbit Gl{n, C) Lo

is a locally closed subvariety of P^ and the map Gl{n, C)/G -> G\(n, C) Lo is an
isomorphism.

A map 9 : A —^ B of vector bundles is strict if locally there are direct sum decom-

positions A = Ao ® AI and B == Bo ® Bi such that 9 factors through an isomorphism

<p : AI ^ BI. If coy is a family of fiber functors, then the image o)y(/) of any morphism

is a strict morphism, because of the conditions that o)y and each cx)y are exact and

faithful. Apply this to the inclusion j^L-^T^U. We obtain a family of lines

P<x)y(L) C T"'b C" varying in the appropriate way, hence a morphism to P^ (conti-

nuous, G°°, etc.). The fact that all fiber functors over C are isomorphic [13] means

that the morphism Y -> P^ maps Y into the orbit Gl(%, C) Lo. This provides our mor-

phism from Y to Gl(n, C)/G. For each y eY, Py is contained in the set of elements

of GI(TZ, C) which map ^{L) to (B(x)y(L). Since both are G cosets, Py is equal to that

set of elements. Thus P is equal to the pullback of the natural bundle of cosets

over Gl(n, C)/G, which gives P the structure of principal bundle in the appropriate sense

(continuous, G°°, etc.). Changing the trivialization (B causes the map Y -> G\{n, C)/G
to change by the same matrix-valued function. The structure of principal bundle remains
the same.

For eachj? e Y we have a natural isomorphism of fiber functors o)y(V) ^ Py X^ V.

To see that these isomorphisms vary nicely with y, express V as a subquotient of a

tensor product T6^ U. Note that tautologically from our construction, the isomorphisms

o)y(U) ^ Py X ^ U vary in the appropriate way.

If P is a principal bundle and we set (Oy(V) = P X^V, then P is equal to the

principal bundle provided by the above construction. This is because P embeds naturally

in the bundle of isomorphisms from C
91 to (OyW, and in each fiber is equal to the prin-

cipal bundle constructed above. This completes the proof. D

Lemma 6.13. —Let S == <?p^ = <?p .̂ The fiber functors co^, evaluation at x, form

a G'0 family <x>x of fiber functors. This family has a structure of locally constant family^ coming

from <?J)R; and two structures of algebraic family^ one coming from <?p^ and the other coming

from <T^.

Proof. — There are obvious functors (Op^ and o)poi from § to the categories of

flat vector bundles on X and analytic vector bundles on X, respectively. The first
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gives the flat family of fiber functors. Since a flat bundle may be considered as an ana-

lytic vector bundle, both functors give analytic families of fiber functors. Serre's GAGA

theorem says that analytic vector bundles are the same as algebraic vector bundles,

so we obtain two algebraic families of fiber functors. To complete the proof, we must

show that the two corresponding C00 families of fiber functors are isomorphic. Recall

that the isomorphism <?p^ s <?p^ is obtained from the diagram of quasi-equivalences

of differential graded tensor categories

<y r^ <ys ^ <ys . <ys r^ (y
^DB = ^DE <- ^D' -> °Dol ^ ^Dol-

Each of these categories has a natural G00 family of fiber functors co^. For the comple-

tions, note that the completion of a C00 family of fiber functors <o on ^ yields a G00

family of fiber functors on ^, defined by <x)(U, T)) == <x)(U). There are natural isomor-

phisms between these families of fiber functors (intertwining with the above quasi-

equivalences). For example,

^X,^^ ^X,^

^x^^x^oi

by our harmonic bundle construction (the G°° bundles underlying the flat and Higgs

bundles of a harmonic bundle are the same). These complete to give

^X,%^^X.%B

^X^D-^ ^yoor

This proves the lemma. D

Suppose now that p : Rep(G) -> g is a representation in G, or G-torsor. Then,

from the above lemma, we obtain a family of fiber functors ̂ o pon Rep(G). By the

previous lemma, there is a canonical principal G-bundle P such that Q)x^(V) == P X^V.

This P is a C00 principal bundle, with a structure of flat principal bundle, and two

algebraic structures Pp^ and Ppop A point of Pg; corresponds to an isomorphism of

tensor functors <p : <x)^ ^ ^xP- ^ such a point is chosen, then we get a representation

pq,: ®i(X, x) —^ G, hence an element in the groupoid of G-torsors.

We would like to obtain a converse to this construction, showing how to define

a G-torsor in terms of a principal bundle. This can be done with <?p^ as follows. If given

a G-torsor p, the principal bundle P constructed above has a flat structure Pp^, since

(OX,DR°^ ls a ^at family of fiber functors on Rep(G). Conversely, given any flat prin-
cipal G-bundle P, we obtain a G-torsor^ : Rep(G) -> <fp^ defined byj&(V) = P X^V.

Furthermore if P' is another flat principal bundle, the natural tensor isomorphisms p ^ p '

are in one to one correspondence with the isomorphisms P ̂  P' of flat principal G-bundles,

by the last statement of Lemma 6.12 applied in the locally constant case. Thus the

category of G-torsors in €^ is equivalent to the category of flat principal G-bundles P^.

We can also define a G-torsor as a principal bundle with some additional Higgs

structure. If given a G-torsor^, the algebraic principal bundle P^i has a Higgs field: a
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functorial section 6y of End(P®^V)®Dx, compatible with tensor product in the

infinitesimal sense. For each x^ the set of endomorphisms of Pg; XoV, functorial in V

and infinitesimally compatible with tensor product, is equal to the Lie algebra

aut0^ o p , Rep(G)). As x varies, these Lie algebras fit together into the principal

bundle ad(P) = P X^g, where g == aut0^, Rep(G)) is the Lie algebra of G. Thus

we get a section 6 of ad(P) ®Q^- 1̂  V is any representation, then 6y is deduced from 6

by the action of ad(P) on P X^V. By looking at a faithful representation V, it follows

that 6 is a holomorphic section ofad(P), and that [6, 6] === 0. Conversely, given a holo-

morphic principal G-bundle P and a holomorphic section 6 of ad(P) ® 0.^ such that

[6, 6] = 0 in ad(P) ®t^, we get a functor^ : V i-> P X^ V from Rep(G) to the category

of Higgs bundles on X.

We can define a Higgs G-torsor to be a tensor functor/? from Rep(G) to the category

of Higgs bundles on X, faithful and exact, taking all morphisms to strict morphisms.

This is equivalent to the data of a principal Higgs bundle consisting of a holomorphic

principal G-bundle P, and a section 6 ofad(P) ®0.^ such that [6, 6] == 0. Say that (P, 6)

is semistable if there exists a faithful representation V of G such that P XQ V is a semistable

Higgs bundle. Recall that we get Chern classes for the principal bundle P (one for each

invariant polynomial on the Lie algebra of G). If P has vanishing Chern classes then

for any representation W, the bundle P X o W has vanishing Chern classes. In particular,

any subquotient of a tensor power of V leads to a bundle of degree zero. Since any

representation can be expressed as a subquotient of T^V, and tensor powers of a

semistable Higgs bundle are semistable, this means that for any representation W, the

Higgs bundle P X ^ W is semistable and therefore an object of <?Dor This shows that

a G-torsor in S^^ is the same thing as a principal Higgs bundle which is semistable and

has vanishing Ghern classes.

(Caution. — Without assuming at least the vanishing of those Chern classes of P

which arise from invariant linear functionals, the semistability of P X o V doesn't imply

semistability of bundles associated to other representations.)

Our equivalence of categories <^j^ ^ <?j^ provides an equivalence between the

notions of flat G-torsor, and of semistable Higgs G-torsor with vanishing Chern classes.

It is compatible with pullbacks, so the fibers of corresponding objects at a point x are

naturally identified.

If P is a G-torsor in <?poi ^ ^DE) anc^ 9 is a point in P^g, then we obtain a repre-

sentation CT^(X, x) -> G, because 9 amounts to an identification between the fiber

functors co^ and <o^ o p. Choice of a different point ^g results in a representation conju-

gate by the inner automorphism Ad(^).

Say that a G-torsor P as above is reductive if the image of the representation

ofc5i(X, x) is a reductive group. Let S
3 denote the category of harmonic bundles (iso-

morphic to S^ and ^a)- Then a G-torsor is reductive if and only if the image of

the functor p is contained in the subcategory <?8.
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REAL AND CARTAN TORSORS

In what follows, we will consider the relation between principal objects, and the

various structures C, (T, T for ©^(X,^). In order to simplify notation, let the letter v

stand for one of the following types of structures: an involution C, an antilinear invo-

lution cr or T, or a Cartan triple (C, cr, r) with C = GTT = TCT. I fGis a group with v struc-

ture, let G^ denote the fixed points of v; in the last case this means G° n C° n G\

If v == C then G° is an algebraic subgroup of G, whereas if v == a or v == T, Gv is a real

form. We will usually use the notation T for a compact real form, in keeping with the

notation of a Cartan triple.

The Tannakian categories we will consider have structures v. A ^-structure for a

tensor functor f\ y -> y is a natural isomorphism of tensor functors ^y \f^ ^ vf such

that the two isomorphisms v/v ̂ f are equal. If v == (C, (T, r), then ^ consists of three

isomorphisms ^y o? ^/ o? anc^ ^ / r - ^n ^^ case ^Y ^ould satisfy natural compatibility
conditions. These may be phrased as saying that the various automorphisms of functors

such as G/cr, C/r or q/r, constructed using ^ and the commutativity constraints

Cor ^ oG, etc., should be equal to the identity.

A family of ̂ -structures for a family of fiber functors co is a natural tensor isomorphism

^ : (ov(V) s vco(V) compatible with the continuous, C°°, analytic, locally constant, or

algebraic structure of ex) (and subject to the constraints described above). Note that this

only makes sense in some combinations. If v == G then, on the category Vect(X) of

vector bundles over X, v is defined to be the identity. However, if v == o- or v == T,

then v is defined on the category Vect(X) to be the complex conjugation (.. This only

makes sense for continuous, G00, or locally constant vector bundles. If U is such a vector

bundle, then tU is defined to be the vector bundle whose transition functions are the

complex conjugates of the transition functions of U. There is a canonical antilinear

identification between U and iU. Thus i f v = = o - , v = = T , o r v = = = (C, G-, r), only the notions

of continuous, C00, or locally constant family of v structures make sense, In practice,

i f v = ( y then the notion of locally constant family is useful, but i f v = = r o r v = (C, (T, r),

then our families will be C00 only.

Suppose G is a reductive group with v-structure. Then the canonical fiber functor o^

has a canonical v-structure ̂ . Suppose co is a C°° family of fiber functors with v-structure

on the category Rep(G). It will not always be the case that (co^, ^J are isomorphic

to (o>^, ^o) as fiber functors with v-structure. Therefore we make the following definition:

a family of v-structures for fiber functors <x> is good if (<x^, ^J ^ (<^G? ^e) ^or a^ x e ̂ -

Lemma 6.14. — Assume that X is connected. Suppose <x> is a family of fiber functors. The

data of a ̂ -structure ^ is the same as the data of an involution v induced on the corresponding principal

bundle P. The ^-structure is good if and only if this involution has fixed points in at least one fiber P^g.

If this is the case, then there are fixed points in all of the fibers, and the fixed points ̂  form a prin-

cipal G^bundle, with P = P^ X^ G.
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Proof. — The v-structure ^ induces an involution of P^ == Iso0^, <oJ by the

following rule. Suppose p : (OQ -> co^, and suppose ^ e ̂ (V). Then

^) M =^^G1^)-

Note that v(^) evci^(V), so ^S(^) ecoo(vV), ^ maps this element to <o.c(vV), ^ "^P8

it to an element of v(Oa;(V), and v then takes it to o^(V). The involution of P^ varies

smoothly with x, so it gives an involution of the principal bundle P. The fixed points

of this involution are exactly the isomorphisms of fiber functors with v-structure

(^G? +c) ^ (^ ^J- Conversely, given an involution v of P, we obtain a family of
v-structures ^ by the same formula.

We have to show that if an involution v has fixed points in one fiber, then it has

fixed points in all fibers, and the set of fixed points Pv is smooth over X. Suppose now

that v is an involution (not a Cartan triple). By covering X, it suffices to prove the lemma

in the case that P has a trivialization P ̂  PQ X X (of right G spaces). Fix a base point

q e PQ . Let N denote the space of involutions v of Po compatible with the right action

of (G, v). If v e N, then there is a unique group element h such that ^(qg) = qh^{g) for

all g e G. The condition that v is an involution is that h^(K) = 1, and N may be identified

with the set of A e G satisfying this condition. Let Aut(Po) denote the group of auto-

morphisms of the G-space Pg. This group acts on N by transport of structure. The choice

of base point gives an isomorphism Aut(Po) ^ G, and with this identification the action

of G by transport of structure is given by the formula g{h) == gh^{g)~
1
' The stabilizer

of an element h is the set of fixed points of the twisted ^-structure for G,

^{g) = W h-\

We claim that the orbits under the action of G are open. If h' is a point in N near A,

we can write h' == uh, with uh^{u) v(A) = 1. Since Av(A) == 1, this gives

u^(u) -= 1.

The element u is near the identity, so we may write u == exp(Z), Z = log(^) in the

Lie algebra g of G. The involution v^ acts on g, and we have

v,(Z) = log(v^)) = log(^-1) - - log(^) = - Z.

Set co == exp(Z/2). Then still ^{w) == w~\ so

w^(w)~1 = w2 == u.

The point h is translated by the action of w to

w(h) = wh^{w)~1 == w^{w)~1 h = uh = V.

This proves that the orbit of any A G N contains all nearby points. The set N is therefore

a disjoint union of the orbits, which are its connected components.

The family of involutions of the bundle P = P^ x X corresponds to a map from X

to N. Since X is connected, the image is contained in one orbit. Thus all of the invo-

lutions ̂  are conjugate by automorphisms of the G-space P^. In particular, the condition
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that there exists a fixed point is independent of x. To see that the sets of fixed points P^

fit together into a smooth principal G" bundle, use the same argument as in Lemma 6.12.

Let N° denote the component of N corresponding to involutions with fixed points. Then

N° ̂  G/G^ so there is a universal bundle of cosets over N°. The bundle P^ is the pull-

back of this bundle of cosets by the map X -> N°.

To finish the proof in the case where v is a Gartan triple, apply the above proof to

the case of the involution C, to obtain a principal bundle P°. Then apply the same

proof to the involution a of P° to obtain the principal bundle P\ D

Corollary 6.15. — If ̂  is a ^-structure on a family of fiber functors co on Rep(G), then

the fiber functors with ^-structure (<x^, 4'J an(^ (^v? ^y) are isomorphic for any x^y e X.

Proof. — Ghoose an isomorphism co^ s ̂ . Let v' be the involution of G deter-

mined by the structure ^, so ((OQ, ^) ^ (co^, ^J. This involution of G yields an invo-

lution v' of the principal bundle P, and the condition of the previous sentence implies

that it has fixed points in the fiber Pg;. Therefore there are fixed points in all fibers, so

all (o)y, ^y) are isomorphic to (co^, ^). D

The Tannakian category € = <?pg, = ^M ^las ^-structures for v == C or v == cr,

and the subcategory of semisimple objects <§
8 has a Cartan structure v = (C, a, r).

The family of fiber functors o^ has a family of v-structures in each of these cases. These

induce v-structures on G5i(X, x). If v = T or v = (C, o, r), then the subcategory €
9 of

reductive objects has a v-structure, and again co^ has a family of v-structures. The cor-

responding reductive quotient ^(X, x) has a v-structure.

Now we may proceed with our definition of torsors. The groupoid of (G, »}-torsors

has for objects the representations p : c5i(X, x) -> G compatible with v. If v = T or

v = (G,CT,T) , then the representation p is assumed to factor through the reductive

quotient ^(X, x). The isomorphisms between p and p' are the elements g of G" such

that g^ = p' g.

The corresponding definition in terms of Tannakian categories is as fol-

lows. A (G, v)-torsor in € (or <?8) is a tensor functor p : Rep(G) -> € together

with a v-structure ^y : pv ^ vp such that the associated family of fiber functors with

v-structure (co^, +a, ^p) on Rep(G), is good with respect to (G, v). Recall that this means

that {^P^x^p) ^ (^G? ^e)? an<^ by Corollary 6.15 it need only be checked at one

point x.

Given a representation p compatible with v, one obtains a functor p == p* with

v-structure ^y. Conversely, the condition of goodness assures that, given a functor p,

we may choose an isomorphism (co^A 4as 4'p) ^ (^G) ^o)? an^ so ^tain a repre-
sentation p : c5i(X, x) -> G compatible with v-structures. The morphisms of functors p

compatible with v-structure ^y are the same as the morphisms of representations p in

the previously defined groupoid, because the group of tensor automorphisms of (co^, ^)

is equal to G^ (a tensor automorphism of o^ is given by a group element g, and the

12
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condition of compatibility with ^ is that gy = v(^,v 5v(V) ^o/v)^ Ae latter expression

is the definition ofv(^)y, so the condition of compatibility with ^ reduces to g = vQ?)).

This shows that our two notions of (G, v)-torsor are equivalent, extending Lemma 6.11.

Finally, we will establish the connection with principal bundles. Suppose p is

a (G, v)-torsor. Then we obtain a good family of fiber functors ̂ p with v-structures ̂  ^p,

on Rep(G). By Lemma 6.14, there is a unique principal G^-bundle P^, with the prin-

cipal G-bundle corresponding to p equal to P == Pv X^vG. The bundle P^ is the set

of fixed points of an involution v of P. The relationship between Pv and the additional

structures of P depends on what v is, so we examine each case separately.

If v == T, assume that G^ is a compact real form. The representation p factors

through ^(X, x). If V is a representation of G, then P X ^ V is an element of <?8,

in other words a harmonic bundle. In this case, the principal bundle P^ is a harmonic

reduction of P, in other words for any G^invariant metric K on a representation V, the

resulting metric y X^K is a harmonic metric for the harmonic bundle P X^V.

Conversely, given any reduction of structure group P^ for P from G to G'', with the above

harmonic property for a faithful representation V, there will be a corresponding struc-

ture of (G, r)-torsor on the G-torsor p. It is given by the isomorphism

^Xo.V^P-X^V).

That this is an isomorphism of harmonic bundles may be checked by interpreting a

G'1"-invariant metric K as an isomorphism between V* and r(V). The harmonic condi-

tion says that PT X or K gives an isomorphism between harmonic bundles y X o-r V*

and T(PT XQTV), which implies that the above isomorphism is also an isomorphism

of harmonic bundles. Note also that if this harmonic condition is satisfied for one repre-

sentation V, then it is satisfied for any other embedded in a tensor power of V.

A G-torsor p has a harmonic reduction if and only if it is reductive. For, if

p : ̂ i(X, x) -> G factors through ©^(X, x)y then the image pU(X, x) of the compact

real form ofcs^X, x) defined by T is a compact subgroup of G. Any compact subgroup

of G is conjugate to a subgroup of the compact real form G^y so after conjugation we

may assume that p is compatible with T.

The notion of harmonic reduction can no doubt be defined in terms of the diffe-

rential geometry of the principal bundle, with operators D, D", etc., related by the

reduction of structure group.

Suppose v == CT, and fix a real form G° of G. Then a (G, or)-torsor is a represen-

tation p : CT^(X, x)° -> G°. Since the real form or oft3i(X, x) is just the real pro-algebraic

closure of7Ti(X, x), a (G, cr)-torsor is the same thing as a representation TT^X, x) -> G°.

In terms of principal bundles, the principal bundle P associated to p has a locally constant

structure. The family of cr-structures for the fiber functors ̂  on <?p^ is a locally constant

family, so the principal bundle P° associated to the (G, o)-torsor is a locally constant

principal G°-bundle. Conversely, given any locally constant G°-bundle P°, the mono-

dromy representation p : 7Ti(X, x) -> G° (which depends on choice of a point 9 in P^)
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will be a (G, cr)-torsor. Given two principal bundles with points chosen, an isomorphism

/: P° -> P0' is given by an element g e G°, defined by 9' =/(<p) g. This element inter-

twines the representations p and p'. Thus the groupoid of (G, (r)-torsors is the same as
the groupoid of locally constant principal G° bundles P°.

Suppose v == C. Fix an involution C of G. A (G, C)-torsor is a representation

p : ?3i(X, x) -> G which is compatible with G, up to conjugacy by G°. Associated to the

underlying G-torsor is a principal bundle P, which we now consider as an algebraic

principal bundle by the algebraic structure of the family of fiber functors on <^p

There is an involution C of P defined as follows. If V is a representation of G, then the

representation GV is the vector space of elements denoted Cv, u e V. A group element

acts by g(Cv) = G{C{g) u). The functorial isomorphism ^ :j&(GV) ^ Cp(V) is an iso-

morphism ^ : P x^CV^ G(P x^V) ofHiggs bundles. Note that the vector bundle

underlying G(P X^V) is the same as that underlying P X^V. The isomorphism ^ is

given by ^(9, Cu) == (G9, v), which defines the involution 9 h-> Cy of P. Since the

C-structures of S^ and the family of fiber functors are defined algebraically, the

involution G of P is algebraic, and the set of fixed points P° is an algebraic prin-
cipal G°-bundle.

The Higgs structure of the principal bundle P is a section 6 of P X ^ g ® Ox-

Write this section locally as (9, 6<p) with 6, eg®^- This serves to define the Higgs

structure Qy of a bundle P X^V, by the formula 6^(9, v) == (9, 6^). Now we can

translate the condition that the isomorphism ^ is an isomorphism of Higgs bundles.

Recall that the operation C applied to P x^V changes the sign of 6. Therefore the
condition that ^ preserves 6 is that

+(6^(9, Cy)) = -6^(9,&Q,

or +(?, e^(Gy)) = - e^(C9, v) = (€9, - e^.).

The involution G o f G acts on the Lie algebra g, and 6<p(Co) == G(C(6,) {v)). Therefore

+(9, e,(G.)) == ^(9, C(C(6,) (.)) = (G^ 0(6^) (v)).

Thus our condition becomes

C(6,) = - 6^.

If 9 lies in the reduction of structure group P0, then €9 = 9 so this condition becomes

C(6q>) = — e<p. Decompose the Lie algebra g as g == k®p according to the eigenvalue

ofG (this is the Cartan decomposition). The fixed points k form the Lie algebra ofG°,

and p is the — 1 eigenspace of G. They are representations of G°. Our condition above

says that if 9 e G°, then 6<p ep®^- In other words, 6 is a section of P° XQcp^Qx-
Gonversely, this condition is sufficient for ^ to be a morphism of Higgs bundles.

Thus we have arrived at the principal bundle version of the notion of (G, C)-torsor.

A Higgs (G, C)-torsor is an algebraic principal G^bundle P° together with a section 6

ofP^ocp®^ such that [6, 6] == 0. This results in a Higgs G-torsor P == P° x^c G,
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and the conditions of semistability and vanishing of Chern classes need only be stated in

terms of P. A(G, C)-torsor in € is a Higgs (G, G)-torsor P° such that the associated

Higgs G-torsor P is semistable and has vanishing Ghern classes. This means that the

Chern classes of the principal bundle P vanish and, for some faithful representation V
of G, P X e V = = P0 X^cV is a semistable Higgs bundle.

Finally we must treat the case where v = (G, CT, r). Fix a Cartan structure (C, o, r)

for G. A (G, C, (T, r)-torsor is a representation p : ̂ (X, x) -> G which is compatible

with Cartan structures, up to conjugacy by G01^ Such a torsor results in a G00 reduction

of structure group to a G0'°'^bundle P^0-^ for the G-torsor P. From this we obtain
reductions

PT ^pc,o.T x^^.G^

p0^pC,0,T ><^,0,TG°,

pc=pc^x^,o,.G°

which are, respectively, a harmonic reduction, a locally constant G°-bundle, and a

Higgs (G, G)-torsor. Conversely, suppose we are given a reduction P0'0^ which results

in a harmonic reduction, a locally constant G° bundle, and a Higgs (G, C)-torsor. Then, by

choosing a point 9 in P^0^, we obtain a representation p : ̂ (X, x) -> G. It is in

turn compatible with all of the structures T, CT, and C, so it is a (G, G, CT, r)-torsor. As

usual, the isomorphisms between P and P' which map a reduction P0'0^ to a reduc-

tion P0'0'^ are seen to correspond to elements of G^0^ which intertwine the repre-

sentations p and p', if one bears in mind that the representations come from choices of
points 9 and <p'.

Say that a (G, a)-torsor or (G, C)-torsor is reductive if the representation p factors

through the reductive quotient ^(X,^). This is equivalent to requiring that the

functor p has image in S\ the category of semisimple objects. In terms of principal

bundles, this means that for a representation V, the object P X ^ V should be a direct

sum of irreducible objects. This condition need only be checked for one faithful repre-

sentation V. In terms of representations of the fundamental group, it means that the

Zariski closure of the image of^X, x) should be a reductive group. In terms of Higgs

bundles, it means that for a faithful representation V, the Higgs bundle P
0 X ̂ c V should

be a direct sum of stable Higgs bundles of degree zero (and as usual, the Chern classes

of P vanish). Note that if P is a (G, G, cr, r)-torsor, then the associated (G, a)-torsor

and (G, G)-torsor are reductive. We can now state the main theorem about real struc-

tures for reductive principal objects. It generalizes to any reductive group Lemma 2.12,
which concerned the case G° == Gl(%, R).

Theorem 10. — Suppose that (G, (T, r) is a Cartan structure for G. The natural functors

from the category of (G, G, CT, ^-torsors^ to the categories of reductive (G, G)-torsors or reductive

(G, a)-torsors, are bijective on sets of isomorphism classes.
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Proof. — Let v == C or v = or; the proof is the same in either case. Suppose

p : ̂ (X, x) -» G is a representation compatible with v. The compact real form ^(X, x)

of CT^X, x) maps to a compact subgroup U C G. This subgroup is preserved by the

involution v. Therefore by Lemma 6.3 it can be extended to a compact real form T'

preserved by v, with U C G^. This gives a Cartan structure (v, T') for G. The uniqueness

statement of Lemma 6.3 shows that this Gartan structure is conjugate to the original

one (v, r) by an element g of G\ After conjugating p by g, it preserves Cartan structures.

Therefore, p is isomorphic as a (G, v)-torsor to a (G, C, a, T)-torsor.

To prove essential injectivity, suppose p and p' are two (G, C, CT, r)-torsors, and

suppose the corresponding (G, v)-torsors are isomorphic, so there is an element g e G"

such that ^p = p' g. We would like to replace g by an element of G0' °^. Set h = r(^) g~
1
.

The Cartan decomposition for the group G considered as real group with maximal

compact U == G^ says that we may write g = exp(j/) u with y e zu and u e U. Then

^{g) == ^(—jO u so h = exp(— 2jy). Since v commutes with T, and g is an element

of G", v(A) = A. Since exp : m — G is injective, v(j/) ==j/. Thus v(^) == ^, so u e G^0^.

Apply T to the equation ̂ -1 == p' to get T(^) ^(g)~
1 == p', which implies Ap' A-1 = p'.

This can be rewritten as p'(y) ^'(y)"1 = h for y^^X,^). If y e ̂ (X, ^), then

P'(T) e U, so p'(y) acts on m. Therefore we have exp(— 2p'(Y)^p /(Y) - l) = exp(— 2y).

Again since exp : m -> G is injective this implies that p^Y^P^Y)"1 ^J^- ^is is true

for all Y in the compact real form ^<(X, x), so it is true for all y. In particular, exp(j/) com-

mutes with p'. Now the equation exp(j^) ^p(y) u~
1 exp(—j/) == p'(y) implies that

u^u~~
1
 = p'. Thus we may replace g by the element u eG010^. If two representations

are isomorphic as (G, v)-torsors, then they are also isomorphic as (G, G, CT, r)-torsors. D

Corollary 6.16. — There is a one to one correspondence between the isomorphism classes of

reductive (G, C)-torsors and the isomorphism classes of reductive (G, a)-torsors. D

In interpreting this corollary, one should note that the notion of reductive

(G, G)-torsor is an algebraic one: it is a principal Higgs bundle (P, 6) consisting of a

G0 bundle P0 together with a section 6 in H^P0 x^cp®Qx) such ^at [6, 6] = 0,
such that the Ghern classes of P = Pc X^c G vanish, and for some faithful representa-

tion V of G, the resulting Higgs bundle P° X^cV is a direct sum of stable factors of

degree zero. The notion of reductive (G, (r)-torsor is a topological one, simply meaning

a semisimple representation of 7ri(X, x) in the real group GR = G°.
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