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Higgs: Discovery to Precision
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Current status: ~10-20% precision on 
some couplings (V, g, gamma)



Future: Higgs Precision Program
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• 2-5% precision achievable at the HL-LHC

• 0.1% precision on V, 1% on g and gamma at e+e- Higgs factories

• At or almost at precision electroweak levels! 

Snowmass Higgs Report



Electroweak Phase Transition

• At high temperatures (e.g. in the early Universe), electroweak 
symmetry is restored: 	


• Electroweak Phase Transition into the current broken-EW phase 
occurred about          sec after the Big Bang (                       )	


• Baryon asymmetry may have been produced during this phase 
transition - “electroweak baryogenesis”	


• A strongly first-order transition is required for successful EWBG	


• In the SM, transition is second order; BSM physics at the weak 
scale can modify dynamics, inducing a 1st order transition



First-Order EWPT in Cartoons

• “Transition strength” ~ entropy release

• Numerical studies: EW Baryogenesis possible if 

• Otherwise, sphelaron washout of the baryon number



HC and EWPT

• No possibility of producing “plasma” with restored EW 
symmetry (T-RHIC?) so no direct experimental probe	


• However, hard to induce large modifications of the finite-T 
potential without also modifying T=0 Higgs potential and 
couplings 	


• Can precise measurements of Higgs couplings conclusively 
probe the nature of EWPT?	


• Two basic mechanisms for first-order EWPT: tree-level mixing 
with other scalars; and loop-induced corrections (the famous 
Th^3 term) 	


• We focused on loop-y models since they seem harder to 
probe* 

[* a study of tree-y models is now in progress…]



• The cubic term at high-T is induced by loops of scalars, not fermions	


• Add a single complex scalar     , with 	


• One-loop corrections to the potential at both T=0 and finite-T are well known:	


!

• The key object is the Higgs-dependent      mass! But recall:	


!

!

• Expect direct correlation between the size of the cubic coupling induced at finite-T 
and non-SM contributions to           and           (unless     is color and EM-neutral)

HC and EWPT: Setup

VΦ = m2
0|Φ|2 + κ|Φ|2|H|2 + η|Φ|4.

V1(ϕ) =
gi(−1)Fi

64π2
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Analytic Example
• A special case can be studied analytically*:  	


• High-temperature expansion of the thermal potential:	


!

• Location of the broken-symmetry minimum at finite T: 	


• Critical temperature:	


• Solve together:	


• Strongly 1-st order if	


• Gluon-Higgs coupling: 

Veff(ϕ; T ) = V0(ϕ) + VT (ϕ; T ) ≈
1

2
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Numerical Studies
• In general, no analytic solution for critical T and order parameter - solve 

numerically	


• Numerical code also includes SM contributions, “daisy resummations” etc.	


• Analyzed a few toy models, representative of the range of possibilities for 
quantum numbers of the      field

Model (SU(3), SU(2))U(1) gΦ C3 C2
ΠW

g2T 2

ΠB

g02T 2

∆Πh

κT 2

“RH stop” (3̄, 1)�2/3 6 4/3 0 11/6 107/54 1/4

Exotic triplet (3, 1)�4/3 6 4/3 0 11/6 131/54 1/4

Exotic sextet (6̄, 1)8/3 12 10/3 0 11/6 227/54 1/2

“LH stau” (1, 2)�1/2 4 0 3/4 2 23/12 1/6

“RH stau” (1, 1)1 2 0 0 11/6 13/6 1/12

Singlet (1, 1)0 2 0 0 11/6 11/6 1/12

Table 1. Benchmark models studied in this paper.

[* we treat     as a free parameter, unlike SUSY]
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Results: “Sextet”

Rg = 1.08± 0.14,

Rγ = 1.23+0.16

−0.13.
ATLAS: ruled out!*

[* usual caveat: SM total width assumed]

NOTE: Our sextet can decay to 4 jets       no direct search!
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Results: “RH Stop”

NOT ruled out if                !

MIN deviation ~17%, probed at 3-sigma at LHC-14

NOTE:  The “RH stop” can decay to 2 jets or be “stealthy/
compressed”       avoid direct searches!



•     does not need to have SM gauge interactions to drive a first-order EWPT	


• Obviously this scenario would not produce any deviation in         or	


• However, it does predict a (small) deviation in           coupling [Craig, Englert, 
McCullough, 1305.5251]	


• Consider                  , integrate it out       a dim-6 operator:	


• After Higgs gets a vev: 	


• Canonically normalized Higgs       shift in            coupling	


• Effect is small, but            coupling can be determined very precisely from 
Higgsstrahlung cross section: ~0.25% ILC, ~0.05% “TLEP” [Snowmass Higgs 
report]

Higgs and a Singlet



Results: “LH Stau”
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hZZ: MIN deviation 0.8%, probed at 3-sigma at ILC



Results: Singlet
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hZZ: MIN deviation 0.5%, probed at ~2-sigma at ILC,	

10-sigma at “TLEP”



Higgs Self-Coupling
[Noble, MP, 0711.3018]

same correlation for Higgs self-coupling: deviations of 20% or more in a broad 
range of models with first-order EWPT

Measure it at the ILC-1TeV? a 100 TeV collider?



Conclusions: EWPT

• Strongly first-order EWPT, and with it Electroweak Baryogenesis, remains a 
viable possibility in a general BSM context	


• We focused on the models where first-order EWPT is induced by loops of a 
BSM scalar, with various SM quantum numbers	


• In the case of colored scalar, LHC-14 measurement of         will be able to 
conclusively probe the full parameter space with a 1-st order EWPT	


• For non-colored scalars, e+e- Higgs factories will be necessary	


• Higgs factory may be able to conclusively probe the full parameter space with 
1-st order EWPT in all models, even if induced by a SM-singlet scalar


