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2Institut de Théorie des Phénomènes Physiques, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland

(Received 5 August 2011; published 7 December 2011)

We consider a minimal scale-invariant extension of the standard model of particle physics combined

with unimodular gravity formulated in [M. Shaposhnikov and D. Zenhausern, Phys. Lett. B 671, 187

(2009).]. This theory is able to describe not only an inflationary stage, related to the standard model Higgs

field, but also a late period of dark-energy domination, associated with an almost massless dilaton. A

number of parameters can be fixed by inflationary physics, allowing us to make specific predictions for

any subsequent period. In particular, we derive a relation between the tilt of the primordial spectrum of

scalar fluctuations, ns, and the present value of the equation of state parameter of dark energy (DE), w0
DE.

We find bounds for the scalar tilt, ns < 0:97, the associated running, �0:0006< d lnns=d lnk &

�0:000 15, and for the scalar-to-tensor ratio, 0:0009 & r < 0:0033, which will be critically tested by

the results of the Planck mission. For the equation of state of dark energy, the model predicts w0
DE >�1.

The relation between ns and w0
DE allows us to use the current observational bounds on ns to further

constrain the dark-energy equation of state to 0< 1þ w0
DE < 0:02, which is to be confronted with future

dark-energy surveys.
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I. INTRODUCTION

At the classical level, the Lagrangian describing

the standard model (SM) of particle physics minimally

coupled to general relativity (GR) contains three dimen-

sional parameters: Newton’s constant G, the vacuum ex-

pectation value of the Higgs field or, equivalently, the

Higgs boson mass and a possible cosmological constant

�. The masses of quarks, leptons and intermediate vector

bosons are induced by the vacuum expectation value of the

Higgs field. At the quantum level, additional scales, such as

�QCD and all other scales related to the running of coupling

constants, appear due to dimensional transmutation. It is

tempting to look for models in which all these seemingly

unrelated scales have a common origin.

In this work, we present a detailed analysis of a model

realizing this idea, proposed in [1]. Wewill refer to it as the

‘‘Higgs-dilaton model.’’ The model is based on a minimal

extension of the SM and GR that contains no dimensional

parameters in the action and is, therefore, scale-invariant at

the classical level. Scale invariance is achieved by intro-

ducing a new scalar degree of freedom, called dilaton. The

motivation of the model relies on the assumption that the

structure of the theory is not changed at the quantum level.

In other words, the full quantum effective action should

still be scale-invariant, and the effective scalar potential

should preserve the features of the classical potential. A

perturbative quantization procedure maintaining scale

invariance was presented in [2] (see also [3]). In the

Higgs-dilaton model, all scales are induced by the sponta-

neous breakdown of scale invariance (SI). As a conse-

quence of the broken symmetry, the physical dilaton is

exactly massless. Replacing GR by unimodular gravity

(UG), in which the metric determinant is fixed to one,

jgj ¼ 1, results in the appearance of an arbitrary integra-

tion constant in the equations of motion, representing an

additional breaking of scale symmetry. As discussed in

[1], in theories with scalar fields nonminimally coupled to

gravity, this constant effectively gives rise to a nontrivial

potential for the scalar fields. In the case of the Higgs-

dilaton model, the new potential is of the ‘‘run-away’’

type in the direction of the dilaton.

While the dynamical breakdown of the scale symmetry

by the Higgs field can provide a mechanism for inflation

in the early Universe [4], the light dilaton, practically

decoupled from all SM fields, can act as quintessence

(QE), i.e. as dynamical dark energy (DE). We find that,

under some assumptions, it is possible to relate the ob-

servables associated to inflation to those associated to dark

energy. Namely, we establish a functional relation be-

tween the predicted value for the tilt ns of the primordial

scalar power spectrum and the predicted equation of state

parameter w0
DE of dark energy. Further, we find a relation

involving the corresponding second order quantities, i.e.

the running �� of the spectral tilt and the rate of change

wa
DE of the DE equation of state.

The paper is organized as follows: In Sec. II A, we

introduce and discuss the minimal scale-invariant exten-

sion of the standard model and general relativity. In

Sec. II B, the idea of unimodular gravity is described

and applied to the scale-invariant model. We then discuss

the cosmology of the resulting Higgs-dilaton model.
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The inflationary period is studied in detail in Sec. III.

The implications of the model for the late dark-energy-

dominated stage are studied in Sec. IV. Finally, conclu-

sions are presented in Sec. V. For completeness, an

analysis of slow-roll inflation in the Jordan frame and

the differences with respect to the Einstein frame are

presented in the Appendix.

II. THE HIGGS-DILATON MODEL

In this section, we review the Higgs-dilaton model

of [1], which consists of two moderate extensions of the

standard model and general relativity (SM plus GR). In

Sec. II A, we show how the introduction of a dilaton allows

us to extend SM plus GR to a phenomenologically viable

scale-invariant theory. After discussing the main properties

of the resulting theory (II A 1), we discuss two naturalness

issues, the cosmological constant problem and the gauge

hierarchy problem, in the context of this model (II A 2).

Next, we give some arguments in favor of a particular

parameter choice corresponding to the absence of a cos-

mological constant (II A 3). In Sec. II B, the construction of

the model is completed by replacing GR with UG. The

qualitative picture of cosmology in the Higgs-dilaton

model, as found in [1], is recalled in Sec. II C.

A. Minimal scale-invariant extension of SM plus GR

1. Introducing the Dilaton

Let us start by writing down the Lagrangian density that

combines GR and the SM,1

L
ffiffiffiffiffiffiffi�g

p ¼ 1

2
M2

PRþLSM½�!0� � �ð’y’� v2Þ2 ��; (1)

where the first term is the usual Einstein-Hilbert action

for GR with MP ¼ ð8�GÞ�1=2, the second term is the SM

Lagrangian without the Higgs potential, the third term is

the Higgs potential with the SM Higgs doublet ’ and its

vacuum expectation value v, and � is a cosmological

constant. In this standard theory, to which we will refer

as ‘‘SM plus GR’’, classical scale invariance is violated by

the presence of the dimensional constants MP, v and �.

Our goal is to let these scales be dynamical, i.e. replace

them by a field. The most obvious solution, without

introducing new degrees of freedom, would be to let the

Higgs field be responsible for all scales. This corresponds

to considering the Lagrangian2

L
ffiffiffiffiffiffiffi�g

p ¼ �’y’RþLSM½�!0� � �ð’y’Þ2; (2)

� being a new real parameter (’’nonminimal coupling’’).

The associated action is now scale-invariant, i.e. invariant

under the global transformations,

g��ðxÞ� g��ð�xÞ; �ðxÞ� �d��ð�xÞ; (3)

where �ðxÞ stands for the different particle physics fields,
d� is their associated scaling dimension, and � is an

arbitrary real parameter. In a theory that is invariant

under all diffeomorphisms, as is the case for Eq. (2),

the symmetry associated with the absence of dimensional

parameters can equivalently be written as an internal

transformation3

g��ðxÞ� ��2g��ðxÞ; �ðxÞ� �d��ðxÞ: (4)

Can the Lagrangian (2) give a satisfactory phenomenol-

ogy? Since we are looking for a theory that should even-

tually be quantized, we want to introduce the requirement

that the theory possesses a classical ground state. The term

‘‘classical ground state’’ will be used throughout this work

to refer to solutions of the classical equations of motion,

which correspond to constant fields in the particle physics

sector of the theory and a maximally symmetric geometry,

i.e. Minkowski (flat), de Sitter (dS) or anti-de Sitter (AdS)

space-time. The existence of such a ground state might be

essential for a consistent quantization of the theory. At the

quantum level, the theory should possess a ground state that

breaks scale invariance, and in this way, induces masses

and dimensional couplings for the excitations (particles).

We will require that this spontaneous symmetry breaking

already appears in the classical theory due to the existence

of a symmetry-breaking classical ground state.4

Let us now look for symmetry-breaking classical ground

states in the theory (2). If gravity is neglected, i.e. the first

term in the Lagrangian is dropped, the classical ground

states correspond to the minima of the scalar potential

�ð’y’Þ2. The only possibility for them to break the scale

symmetry, ’ ¼ ’0 � 0, is to set � ¼ 0. In this case, the

theory possesses an infinite family of classical ground

states satisfying 2’y’ ¼ h20, where h0 is an arbitrary real

constant. If one includes gravity, the set of possible clas-

sical ground states becomes richer. Namely, even if � � 0,
the theory possesses a continuous family of classical

ground states satisfying 2’y’ ¼ h20 and R ¼ 4�h20=�,
where h0 is an arbitrary real constant. The states with

h0 � 0 break scale invariance spontaneously and induce

all scales at the classical level. Hence, the goal of having a

classical theory in which all scales have the same origin,

1We use the conventions 	��¼diagð�1;1;1;1Þ and R�

��¼

@��
�

�þ��

���
�

��ð�$�Þ.

2With the conventions used here, a conformally coupled scalar
field has � ¼ �1=6.

3Note that, in a theory that is invariant only under a restricted
class of diffeomorphisms, such as UG, the absence of dimen-
sional parameters will still guarantee invariance under Eq. (3)
but not under Eq. (4).

4The authors of [5,6] propose that scale symmetry could be
broken by the pure presence of a time-dependent cosmological
background.
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spontaneous breakdown of SI, is achieved. However, the

above theory is in conflict with experimental constraints.

In fact, although the nonzero background value of ’ gives

masses to all other SM particles, the excitations of the

Higgs field itself are massless and, moreover, decoupled

from the SM fields [7]. This fact is seen most easily if the

Lagrangian is written in the Einstein frame by defining the

new metric ~g�� ¼ M�2
P �’y’g�� and the new canonical

Higgs field ~’ ¼ MP

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=�þ 6
p

lnð’=MPÞ. (This type of

variable change will be discussed in detail in Sec. III).

In the new variables, the SI of the original formulation

corresponds to a shift symmetry for the Higgs field ~’,
which is the massless Goldstone boson associated with the

spontaneous breakdown of SI. A Higgs field with these

properties is excluded by electroweak precision tests [8].

Therefore, in order to construct a viable SI theory, it

seems unavoidable to introduce new degrees of freedom.

The next simplest possibility is to add a new singlet

scalar field to the theory. Wewill refer to it as the dilaton 
.
The scale-invariant extension for the SM plus GR includ-

ing the dilaton reads

LSI
ffiffiffiffiffiffiffi�g

p ¼ 1

2
ð�



2 þ 2�h’
y’ÞRþLSM½�!0�

� 1

2
g��@�
@�
� Vð’;
Þ; (5)

where the scalar potential is given by5

Vð’;
Þ ¼ �

�

’y’� �

2�

2

�

2

þ 

4: (6)

We will only consider positive values for �
 and �h, such

that the coefficient in front of the scalar curvature is

positive, whatever values the scalar fields take. The pos-

itivity of the nonminimal coupling parameters is, at the

same time, the condition for positive definiteness of the

scalar-field kinetic terms. By construction, the action asso-

ciated with Eq. (5) is invariant under Eq. (3), respectively

(4). The theory should possess a symmetry-breaking clas-

sical ground state with ’ ¼ ’0 � 0 and 
 ¼ 
0 � 0. The
case ’0 ¼ 0 would correspond to a theory with no elec-

troweak symmetry breaking, while the case 
0 ¼ 0 would
result in a theory with a massless Higgs field. Both these

cases are phenomenologically unacceptable.

Let us again start by neglecting the gravitational part of

the action. In its absence, the ground states correspond to

the minima of the potential (6). It is easy to see that the

only possibility to get a ground state satisfying ’0 � 0
and 
0 � 0 is to have a potential with a flat direction,

i.e. �> 0 and 
 ¼ 0, as well as � > 0 for stability. The

corresponding family of classical ground states is given

by 2’y’ ¼ h20 and 
 ¼ 
0 with h20 ¼ �
�

2
0, where 
0 is

an arbitrary real constant.

Like before, the inclusion of gravity results in the

appearance of additional classical ground states for 
 � 0,
given by

h20 ¼
�

�

2
0 þ

�h

�
R; R ¼ 4
�
2

0

��
 þ ��h

: (7)

The solutions with 
0 � 0 spontaneously break SI. All

scales are induced and proportional to 
0. For instance,

one can directly identify the Planck scale as

M2
P ¼ �



2
0 þ �hh

2
0 ¼

�

�
 þ �h

�

�
þ 4
�2

h

��
 þ ��h

�


2
0:

(8)

Depending on the value of
, the background corresponds to
flat space-time (
 ¼ 0), de Sitter, or anti-de Sitter space-

time of constant scalar curvature R, corresponding to a

cosmological constant

� ¼ 1

4
M2

PR ¼ 
M4
P

ð�
 þ �
�
�hÞ2 þ 4 


�
�2
h

: (9)

The spectrum of perturbations around a symmetry-breaking

solution contains the usual massless spin-2 perturbation in

the gravitational sector. The scalar sector contains an

excitation with mass

m2¼2�M2
P

ð1þ6�
Þþ�
�
ð1þ6�hÞ

�
ð1þ6�
Þþ�h
�
� ð1þ6�hÞ

þOð
Þ; (10)

which will play the role of the physical SM Higgs field,

plus a massless Goldstone boson (both perturbations are

combinations of the fields 
 and h). We use h to denote

the field ’ in the unitary gauge. Like in the standard

Higgs mechanism, the excitations of the standard model

fields get masses proportional to h0. If one extends the

SM by introducing right-handed neutrinos [9,10], these

neutrinos get induced masses proportional to 
0.
6

In the described model, physics is completely indepen-

dent of the value of 
0, as long as 
0 � 0. This is because
only dimensionless ratios of the different scales can be

measured. Therefore, parameters of the model have to be

chosen such that these ratios correspond to the measured

ones. For instance, one should reproduce the hierarchies

between the cosmological scale and the electroweak

scale, i.e.�=M4
P �Oð10�120Þ, as well as the ratio between

the electroweak and the gravitational scale m2=M2
P �

Oð10�30Þ. We choose the parameter 
 to be responsible

for the first ratio and � for the second ratio. Therefore,

these parameters have to take values satisfying
 ��� ��1
and 
, � ���
, and �h. One then gets approximately

5The parametrization chosen for the scalar potential assumes
� � 0. This only excludes the phenomenologically unacceptable
case where a quartic term ð’y’Þ2 is absent.

6Gauge invariance does not allow for couplings of 
 to SM
fields.
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�=M4
P’ 


�2


and m2=M2

P’ 2�
�

. Note that the order of magni-

tude relation
ffiffiffiffi

�
p

=m2�m2=M2
P (or, equivalently,

ffiffiffiffi



p ��2)

is reminiscent of the big number coincidence pointed out

by Dirac [11]. However, the present model does not ad-

dress the question about the origin of the big differences

between theses scales, i.e. the smallness of � and 
, nor
does it explain their approximate relation. The nonminimal

couplings �
 and �h will be constrained by cosmological

considerations, and � & Oð1Þ, as it corresponds to the

self-coupling of the Higgs field. Therefore, one can fix

the values of � and 
 that give the correct ratios. In the

same fashion, one has to choose values for the SM

Yukawa couplings that produce the observed mass ratios.

As the theory contains a new massless degree of free-

dom, the dilaton, one has to make sure that it does not

contradict any experimental bounds. A detailed analysis of

the interactions between this massless field and the SM

fields is contained in [12]. Let us cite the relevant findings

of that work. It turns out that, as a consequence of SI, the

massless scalar field completely decouples from all SM

fields except for the Higgs field. Since the massless field is

the Goldstone boson associated with the broken scale

symmetry, there exists a set of field variables in terms of

which it couples to the physical Higgs field only deriva-

tively. In addition, for an appropriate choice of field vari-

ables, these interactions appear as nonrenormalizable

operators, suppressed by the scale MP=�h. The analysis

of Sec. III will show that �h � 105. The suppression scale

of nonrenormalizable operators is therefore considerably

lower than the Planck scale, but still much larger than all

known Particle physics scales.

Other deviations from the SM appear as a consequence

of the nonminimal couplings to gravity. In fact, the physi-

cal Higgs field, i.e. the field that couples to the SM degrees

of freedom, is not h, but a combination of h and 
. It was
shown in [12] that the resulting deviations from the SM

are suppressed by the ratio m2=M2
P between the physical

Higgs mass and the Planck mass, respectively, by the

small parameter �. While the new massless field hardly

affects SM phenomenology, we will see that it might

play an important role in cosmology.

At the classical level, the above theory successfully

implements the idea that all scales are consequences of

the spontaneous breaking of SI. All conclusions remain

true if SI and the features of the potential can be main-

tained at the quantum level (in this context, see [2,13,14]).

In that case, the presented model is a viable effective field-

theory extension of the SM and GR.

2. Naturalness issues

The presented theory contains two important fine-

tunings related to the very big differences between the

Planck scale MP, the electroweak scale m, and the

cosmological scale �. At the quantum level, this can

lead to two much-discussed naturalness issues. One of

them is part of the cosmological constant problem. In

standard SM plus GR the effective cosmological constant

is the sum of a bare constant and radiative corrections

proportional to the particle physics mass scales of the

theory, e.g. the electroweak scale. Matching the effective

cosmological constant with its observed value, tiny com-

pared to, for instance, the electroweak scale, requires a

tremendous fine-tuning of the bare cosmological constant.

In the case of the scale-invariant theory discussed here, the

situation is somewhat different. Exact SI forbids a term
ffiffiffiffiffiffiffi�g

p
� in the action. Also, if the quantization procedure

respects SI, such a term is not generated radiatively.

However, as we saw above, due to the nonminimal cou-

plings of the scalar fields to gravity, the cosmological

constant is, in fact, associated with the term 

4. Now,

this term is not forbidden by scale invariance. Therefore,

even if scale invariance can be maintained at the quantum

level, the quantum effective potential will contain a term


eff

4, where 
eff is a combination of the bare value of 


and other nondimensional couplings of the theory. These

other couplings are generally much bigger than the value

of 
eff that corresponds to the observed cosmological

constant. So, again, a strong fine-tuning is needed in order

to keep 
eff sufficiently small. This tells us that the

cosmological constant problem also exists in an exactly

scale-invariant theory of the type proposed here.

The second naturalness issue is related to the mass of the

Higgs boson and is commonly called ‘‘gauge hierarchy

problem’’. The problem is twofold. The effective field

theory combining the SM with GR contains two extremely

different mass scales, namely, the electroweak scale v ¼
246 GeV (v being the vacuum expectation value of the

Higgs field) and the Planck scale MP ¼ ð8�GÞ�1=2 ¼
2:44� 1018 GeV. It is considered unnatural to have such

a huge difference between two scales of the same theory.

This is the first part of the gauge hierarchy problem. In

the considered type of scale-invariant theories, the big

difference between the electroweak and the Planck scale

remains unexplained.

The other part of the gauge hierarchy problem is related

to the stability of the Higgs mass against radiative correc-

tions (for a recent discussion see, e.g. [15]). Much like the

cosmological constant, the mass of the Higgs field gets

radiative corrections proportional to the other particle

physics mass scales of the theory. The logic is the same

as in the case of the cosmological constant. If there exists a

particle physics scale much bigger than the electroweak

scale, the measured value of the electroweak scale can only

be explained by an important fine-tuning of parameters. In

other words, if there exists a new particle physics scale

between the electroweak scale m and the Planck scaleMP,

the ‘‘smallness’’ of the Higgs mass constitutes a serious

theoretical issue. This issue still appears in an exactly

scale-invariant theory with spontaneous breaking of the

scale symmetry.
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If the theory contains no intermediate particle physics

scale between m and MP, the situation is different. In that

case, whether or not the Higgs mass should be expected to

contain big radiative corrections of the order MP depends

on the ultraviolet (UV) completion of the theory. At the

level of the low-energy effective field theory, the UV

properties can be encoded in the choice of the renormal-

ization scheme. A renormalization scheme based on the

assumption that the UV completion is scale-invariant, and

which does not bring in extra particle physics scales, was

presented in [2] (see also [3]). If this scheme is applied to

the considered minimal scale-invariant extension of SM

plus GR, the Higgs mass does not obtain corrections pro-

portional to MP (induced by the vacuum expectation value

of the dilaton), and there is no problem of stability of the

Higgs mass against radiative corrections. Hence, SI makes

for the absence of this part of the gauge hierarchy problem.

3. The special case �¼ 0

We now want to give some arguments in favor of the

case 
 ¼ 0. This case corresponds to the existence of a flat
direction in the Jordan-frame potential (6) and, hence, to

the absence of a cosmological constant.

The reasoning of the precedent paragraph tells us that

choosing 
 ¼ 0 corresponds to a fine-tuning of the pa-

rameters, especially at the quantum level, just like putting

� ¼ 0 in standard SM plus GR. From this point of view,

such a parameter choice should clearly be disfavored.

Nevertheless, we think that the case 
 ¼ 0 is specially

interesting. One reason is that only if 
 ¼ 0, SI can be

spontaneously broken in the absence of gravity. Put in

other words, 
 ¼ 0 allows flat space-time together with

ð’;
Þ ¼ ð’0; 
0Þ � ð0; 0Þ to be a classical solution.

Another argument is related to the stability of the ground

state. As discussed above, a scale-invariant theory with

spontaneous symmetry breaking always contains a mass-

less scalar degree of freedom, Goldstone boson, indepen-

dently of the value of 
. Now, if 
 � 0, the background

space-time of the theory corresponds to de Sitter (or

anti-de Sitter) space-time. It is known, however, that a

massless scalar field is unstable in de Sitter space-time

[16]. There are also indications that this is the case for

the 4-dimensional AdS [17]. Therefore, it is conceivable

that a consistent quantization of the theory might rely

on the requirement 
 ¼ 0 and, hence, the existence of

flat space-time as a solution (see also [18–22]).

A third aspect appears in the context of cosmology. The

theory with 
 ¼ 0, not containing a cosmological con-

stant, does not seem to withstand the confrontation with

cosmological observations. Just like the case 
< 0 (AdS),
it can not explain the observed accelerated expansion of

the Universe without introduction of a new dark-energy

component. From this point of view, the only viable

option seems to be 
> 0 (dS). This conclusion is correct

if gravity is described by GR. However, as we will see in

the upcoming section, the situation is very different if GR

in Eq. (5) is replaced by unimodular gravity. In that case,

the appearance of an arbitrary integration constant will

give rise to a potential for the Goldstone boson of broken

scale invariance. As a consequence, for appropriate pa-

rameter values and initial conditions, the now pseudo-

Goldstone boson can act as a dynamical dark-energy

component. In this new situation, the case 
 ¼ 0 will

again be peculiar, because it is the only case where

dark energy is purely dynamical and has no constant

contribution.

Based on these reasons, in what follows, we will single

out the case 
 ¼ 0 and study the associated phenomenol-

ogy in more detail.

B. Combining scale invariance and unimodular gravity

We now want to add to the idea of SI the idea of

UG [23–30] and apply it to the Higgs-dilaton scenario. In

UG, one reduces the independent components of the metric

g�� by one, imposing that the metric determinant g �
detðg��Þ takes some fixed constant value. Conventionally,

one takes jgj ¼ 1, hence the name. Fixing the metric deter-

minant to one is not a strong restriction, in the sense that the

family of metrics satisfying this requirement can still de-

scribe all possible geometries.

If we impose the unimodular constraint, the scale-

invariant Lagrangian (5) becomes

L SI-UG ¼ 1
2
ð�



2 þ 2�h’
y’ÞR̂þ L̂SM½�!0�

� 1
2
ĝ��@�
@�
� Vð’;
Þ; (11)

where a hat on a quantity, like R̂, indicates that it depends on
the unimodular metric ĝ��, which satisfies detĝ�� ¼ �1.

The potentialVð’;
Þ is still given by (6). As a consequence
of the unimodular constraint, the action associated to

LSI-UG is no longer invariant under all diffeomorphisms,

but only under transverse diffeomorphisms, i.e. coordinate

transformations x� � x� þ ��ðxÞ, with the condition

@��
� ¼ 0. Just as in pure UG (not including nongravita-

tional fields), the equations of motion derived from the

Lagrangian (11) contain an arbitrary integration constant

�0, which can be interpreted as an additional initial condi-

tion. It was shown in [1] that the classical solutions obtained

from the Lagrangian (11) are equivalent to the solutions

derived from the equivalent diffeomorphism-invariant

Lagrangian

LSI-UG
e
ffiffiffiffiffiffiffi�g

p ¼ 1

2
ð�



2 þ 2�h’
y’ÞRþLSM½�!0�

� 1

2
g��@�
@�
� Vð’;
Þ ��0; (12)

where �0 is the mentioned arbitrary constant. While

in the original formulation (11), the dimensional constant

�0 only appears in the equations of motion and thereby
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spontaneously breaks SI; in the equivalent diffeomorphism-

invariant formulation (12), the same constant appears as an

explicit symmetry breaking in the action. Nevertheless, this

constant should not be understood as a parameter in the

action, but rather as an arbitrary initial condition. Given

the equivalence of the two formulations, in order to study

the phenomenology issued by Eq. (11), we will simply

study the theory given by Eq. (12) for different values

of �0.
7

We now turn our attention to the physical implications of

the term proportional to�0. In the first instance, let us only

consider the gravitational and the scalar sector of the

theory, i.e.

L
ffiffiffiffiffiffiffi�g

p ¼ 1

2
ð�



2 þ �hh
2ÞR� 1

2
ð@�
Þ2

� 1

2
ð@�hÞ2 � Vðh; 
Þ ��0; (13)

where h is the Higgs field in the unitary gauge. In order to

simplify the physical interpretation, we define the Einstein

frame (E-frame) metric8

~g �� ¼ M�2
P ð�



2 þ �hh
2Þg��; (14)

in terms of which the Lagrangian reads

L
ffiffiffiffiffiffiffi�~g

p ¼ M2
P

~R

2
� 1

2
~K � ~Uðh; 
Þ; (15)

where ~K is a noncanonical but positive definite kinetic term

(given below in Eq. (25)), and ~Uðh; 
Þ is the E-frame

potential given by

~Uðh; 
Þ ¼ M4
P

ð�


2 þ �hh

2Þ2
�

�

4

�

h2 � �

�

2

�

2

þ 

4 þ�0

�

: (16)

Note that the E-frame potential gets singular at 
 ¼ h ¼ 0.
The reason is that, at this point, the conformal transforma-

tion (14) is singular, and the change to the E-frame is not

allowed. Since for 
 ¼ h ¼ 0 scale invariance is not bro-

ken, we will not be interested in the theory around this

point. Let us discuss the shape of the E-frame potential and

the classical ground states of the theory for �, �, �
, and

�h > 0 (cf. Figure 1). If �0 ¼ 0, in which case the theory

(12) reduces to Eq. (5), the potential is minimal along the

two valleys:

h20 ¼
�

�

2
0 þ

4
�h

2
0

��
 þ ��h

: (17)

They correspond to the infinitely degenerate family of

classical ground states found in Eq. (7). As before, if


 ¼ 0, the potential vanishes at its minimum, while a

nonzero 
 gives rise to a cosmological constant (9). In

other words, space-time in the classical ground state is

Minkowskian, dS, or AdS. These are the results we have

already discussed Sec. II A. As soon as �0 � 0, the

valleys get a tilt, which lifts the degeneracy of the classi-

cal ground states. For �0 < 0, the valleys are tilted to-

wards the origin. The true classical ground state for this

case is the trivial one, 
 ¼ h ¼ 0. Hence, we discard this

possibility. For �0 > 0, the potential is tilted away from

the origin; it is of the run-away type. In this case, the

theory has an asymptotic classical ground state, given by

Eq. (17) with 
0 ! 1. Again, depending on the value of


, this asymptotic solution corresponds to Minkowski, dS,

or AdS space-time with curvature given by Eq. (9).

We see that, as a consequence of the nonminimal coupling

between the scalar fields and gravity, the arbitrary integra-

tion constant �0 does not play the role of a cosmological

FIG. 1 (color online). These plots show the shape of the E-frame potential ~Uðh; 
Þ (Eq. (18)) for �0 ¼ 0, �0 > 0, and �0 < 0,
respectively.

7Of course, the choice to analyze the theory in the
diffeomorphism-invariant rather than in the original formulation
is purely a matter of convenience.

8The Lagrangian in terms of the original variables is said to be
written in the Jordan frame.
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constant (as it does in pure UG), but rather gives rise to a

peculiar potential for the scalar fields. For �0 > 0, the
potential is of the run-away type. In the following sections

we will see that such a potential can have an interesting

cosmological interpretation. In fact, the evolution of the

scalar fields along the valley can give rise to dynamical

dark energy (quintessence). We will focus on the case


 ¼ 0, where dark energy does not contain a constant

contribution and is purely due to the term proportional to

�0 (cf. arguments in Sec. IIA 3).

While the term proportional to�0 can play an important

role in cosmology, its presence barely affects the particle

physics phenomenology of the model. In fact, if the run-

away potential is of the order of magnitude of the present

dark-energy density, the time evolution of the background

scalar fields along the valley can be neglected on particle

physics time scales. Also, the additional interactions be-

tween the Higgs field and the dilaton that are induced by

this potential are negligibly small.

C. Higgs-dilaton cosmology—the qualitative picture

In this subsection, we want to qualitatively describe the

cosmological scenario issued by the model of Eq. (12) (or

equivalently Eq. (11)) presented in the previous two sub-

sections (cf. [1]). We consider the theory in the Einstein

frame (15) and focus on the case 
 ¼ 0, for which the

scalar-field potential (16) reduces to (cf. Figure 1)

~Uðh; 
Þ ¼ M4
P

ð�


2 þ �hh

2Þ2
�

�

4

�

h2 � �

�

2

�

2

þ�0

�

: (18)

The scalar fields 
 and h are now considered to be

homogeneous background fields evolving in flat

Friedmann-Lemaı̂tre-Robertson-Walker (FLRW) space-

time. Their evolution is affected by the noncanonical na-

ture of the kinetic term. However, since the kinetic term is

positive definite, in order to get a qualitative picture, it is

enough to look at the features of the potential. In the

absence of �0, ~U has its minima along the two valleys

h2 ¼ �
�

2. The main effect of�0 � 0 is to give a tilt to the

valleys. As discussed in the previous subsection, �0 < 0 is
phenomenologically unviable. We will only consider the

case �0 > 0, in which the valleys are tilted away from the

origin.

For an appropriate choice of parameters, the crude pic-

ture of the role of the cosmological scalar fields is the

following: If the scalar fields start off far from the valleys,

�0 can initially be neglected, and the scalar fields roll

slowly towards one of the valleys. This roll-down can be

responsible for cosmic inflation. As inflation is mainly

driven by the Higgs field, this phase is much like in the

case of the Higgs-Inflation model of [4].

After the end of inflation, preheating takes place. During

this phase the scalar-field dynamics is dominated by the

field h, and, hence, preheating in the present model is

expected to be very similar as in the Higgs-Inflation model

[31,32] (see also [33]): The gauge bosons created at the

minimum of the potential acquire a large mass while the

Higgs field increases towards a maximal amplitude and

starts to decay into all standard model leptons and quarks,

rapidly depleting the occupation numbers of gauge bosons.

The fraction of energy of the Higgs field that goes into

SM particles is still very small compared to the energy

contained in the oscillations, and, therefore, the nonper-

turbative decay is slow. As the Universe expands in a

matterlike stage with zero pressure, the amplitude of the

Higgs field oscillations decreases. Eventually, this ampli-

tude is small enough so that the gauge boson masses

become too small to induce a quick decay of the gauge

bosons. As a consequence, their occupation numbers start

to grow very rapidly via parametric amplification. After

about a hundred oscillations, the produced gauge bosons

backreact on the Higgs field, and the resonant production

of particles stops. The Higgs field acquires a large mass

via its interaction with the gauge condensate and preheat-

ing ends. From there on, the Higgs field, as well as the

gauge fields, decay perturbatively until their energy is

transferred to SM particles.

The phase of preheating is followed by the usual radia-

tion- and matter-dominated stages, during which the scalar

fields are ‘‘frozen’’ at some point of the valley. Their

energy density is now given by the �0 term and practically

constant. As a consequence, it eventually comes to domi-

nate over radiation and matter and, hence, provides a dark-

energy component. In other words, the scalar fields rolling

slowly down the potential valley play the role of a thawing

quintessence field [34–37]. In this late stage, the fields

satisfy hðtÞ2 ’ �
�

ðtÞ2. On particle physics time scales the

time variation of the background fields can be neglected.

Perturbations around this almost-constant symmetry-

breaking background can be interpreted as the SM particles

plus an additional almost massless and almost decoupled

particle, the dilaton. Note that as long as the background

is constant, it is equivalent to quantize perturbations in

the original (Jordan) frame or in the Einstein frame

(cf. [38,39]).

In the following sections, we present a detailed analysis

of the inflationary phase (Sec. IV) and the dark-energy

dominated phase (Sec. IV). A detailed study of preheating

in the present model is left for a future work.

Allowing for 
 � 0 in the potential would not affect the
discussion of inflation. It will, however, have an effect on

the dark-energy phenomenology, on which we will com-

ment in Sec. IV.

III. HIGGS-DILATON INFLATION

As usual, it is assumed that during inflation all the

energy of the system is contained in the inflaton fields

and in the gravitational field. Therefore, during this stage,

the SM fields can be neglected. Let us rewrite the scalar-

tensor part of (12) as
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L
ffiffiffiffiffiffiffi�g

p ¼ fð�Þ
2

R� 1

2
g���ab@��

a@��
b �Uð�Þ; (19)

with a nonminimal coupling

fð�Þ �
X

a

�a�
a2; (20)

and the potential

Uð�Þ ¼ Vð�Þ þ�0 ¼
�

4

�

h2 � �

�

2

�

2

þ�0; (21)

including the SI breaking term �0. As discussed in

Sec. II A, the parameter � is set to be very tiny ��
Oð10�30Þ, in order to obtain the correct hierarchy between

the electroweak and the Planck scale. Greek indices �,

�; . . . ¼ 0, 1, 2, 3 denote space-time coordinates, while

Latin indices are used to label the two real scalar fields

present in the model: the dilaton field �1 ¼ 
 and the

Higgs field in the unitary gauge �2 ¼ h. The abstract

notation in terms of �i will, in the following, allow us to

interpret the scalar fields as the coordinates of a two-

dimensional sigma-model manifold. We will be able to

write expressions and equations that are covariant under

variable changes �� �0ð�Þ.
Whenever the nonminimal coupling is nonzero9

fð�Þ � 0, one can define the new metric

~g �� ¼ �2g��; (22)

with �2 ¼ M�2
P fð�Þ to reformulate the Lagrangian in

the E-frame. Taking into account that the metric deter-

minant and the Ricci scalar transform as10

ffiffiffiffiffiffiffi�g
p ¼ ��4

ffiffiffiffiffiffiffi

�~g
p

; (23)

R ¼ �2ð ~Rþ 6 ~h ln�� 6~g��@� ln�@� ln�Þ; (24)

one obtains

L
ffiffiffiffiffiffiffi�~g

p ¼ M2
P

2
~R� 1

2
~K � ~Uð�Þ; (25)

where the kinetic term is given by

~K ¼ �ab~g
��@��

a@��
b; (26)

and �ab is a generally noncanonical and nondiagonal

field-space metric, which, in terms of the variables

ð�1; �2Þ ¼ ð
; hÞ, is given by

�ab ¼
1

�2

�

�ab þ
3

2
M2

P

�2
;a�

2
;b

�2

�

: (27)

Unlike in the single-field case, the noncanonical kinetic

term cannot, in general, be recast in canonical form by

redefining the scalar-field variables. In fact, the field-space

metric can be brought to canonical form by a local variable

change if and only if its Riemann tensor identically van-

ishes. In the present case of a 2-dimensional manifold, the

Riemann tensor has only one independent component, and

it is enough to compute the Ricci scalar R� associated with

the field-space metric �ab,

R� ¼ ð�h � �
Þ
2

M2
P

�2

ð1þ 6�
Þ
4 � �2

hð1þ 6�hÞh4
ð�hð1þ 6�hÞh2 þ �
ð1þ 6�
Þ
2Þ2 :

(28)

ForR� to vanish globally, onewould need to have �
 ¼ �h.

As we will see, this case is not allowed by phenomenology.

The E-frame potential is defined as

~Uð�Þ ¼ ~Vð�Þ þ ~V�0
ð�Þ; (29)

where we have defined a scale-invariant and a scale-

invariance breaking part as

~Vð�Þ ¼ Vð�Þ
�4

and ~V�0
ð�Þ ¼ �0

�4
: (30)

We can now write down the equations of motion derived

from the E-frame Lagrangian (25). Einstein’s equations are

~G �� ¼ �ab

�

@��
a@��

b � 1
2
~g��~g

��@��
a@��

b

�

þ ~U~g��; (31)

where ~G�� is the Einstein tensor computed from the metric

~g��. The equations for the scalar fields are

~h�c þ ~g���c
ab@��

a@��
b ¼ ~U;c; (32)

where �c
ab is the Christoffel symbol computed from the

field-space metric �ab,

�c
ab ¼ 1

2
�cdð�da;b þ �db;a � �ab;dÞ; (33)

and where we use the notation ~U;c ¼ �cd ~U;d. Notice that

Eqs. (31) and (32) are covariant under redefinitions of the

scalar-field variables �i
� �0ið�Þ.

We choose to do our analysis in the Einstein, rather than

in the Jordan frame. The reason for this choice is that, in

the literature predictions, for measurable quantities are

usually computed in the Einstein frame, where gravity

has the standard GR form. At the classical level, there is,

apart from such practical arguments, nothing that would

privilege one or the other frame. After all, the choice of the

frame simply corresponds to a choice of variables.

A. Exploiting scale invariance

By construction, all terms in the Lagrangian (19), except

the one proportional to �0, are invariant under the scale

transformations (4). We will see that if the �0 term is to be

9For our choice of parameters, where �
, �h > 0 this is the
case whenever the scalar fields are away from the origin ð
; hÞ �
ð0; 0Þ.
10The action of the covariant d’Alembertian ~h on a scalar field
sðxÞ is given by ~hs ¼ 1

ffiffiffiffiffi�~g
p @�ð

ffiffiffiffiffiffiffi�~g
p

~g��@�sÞ.
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associated with dark energy, it must be negligibly small

during inflation. The approximate scale invariance of the

theory will considerably simplify the analysis of the infla-

tionary period.

1. The Noether current of scale invariance

Let us start by computing the Noether current associated

with the scale transformations (4), which for an infinitesi-

mal value of the parameter � become

g�� � g�� þ ��g��; �i
� �i þ ���i: (34)

The explicit expressions for �g�� and ��i depend on the

choice of the field variables. For the original variables,

one has �g�� ¼ �2g��, �
 ¼ 
, and �h ¼ h. The

associated current is given by (see, e.g. [40])

ffiffiffiffiffiffiffi�g
p

J� ¼ @L

@½@�g�
�
�g�
 þ @L

@½@��i���
i (35)

and satisfies

D�J
� ¼ � 1

ffiffiffiffiffiffiffi�g
p

@½�0
ffiffiffiffiffiffiffi�g

p �
@g��

�g�� ¼ 4�0; (36)

where D� denotes the covariant derivative constructed

with the metric g��.

In the E-frame, scale transformations do not act on the

metric, �~g�� ¼ 0, and are simply given by

�i
� �i þ ���i: (37)

In this case, the expression for the current is

ffiffiffiffiffiffiffi

�~g
p

~J� ¼ @L

@½@��i���
i; (38)

while the conservation law becomes

~D �
~J� ¼ �@ ~V�0

@�i
��i ¼ 4�0

�4
; (39)

where the covariant derivative ~D� is constructed with the

metric ~g��. Whenever �0 vanishes, scale invariance be-

comes exact, and the associated current J�, or, equiva-
lently, ~J�, is conserved.

2. New variables

The approximate conservation law can lead us to a very

convenient choice for the scalar-field variables in the

E-frame formulation. In fact, one can always choose a

set of variables ð�01; �02Þ ¼ ð�; �Þ such that a scale trans-

formation only acts on a single variable �. Moreover, � can

always be defined such that the scale transformation acts

on it like a shift �� �þ �MP. This transformation is a

symmetry of the Lagrangian if �0 ¼ 0. This means that �
can appear in the Lagrangian only through ~V�0

and

through derivatives in the kinetic term. Moreover, the

variable � can be defined such that the field-space metric

�0
ab, which is independent of �, is diagonal. If the

Lagrangian (25) is expressed in terms of variables that

satisfy these requirements, the current ~J� takes the form

~J � ¼ MP~g
���0

��ð�Þ@��: (40)

Now, in order to find the relation between the variables

ð�01; �02Þ ¼ ð�; �Þ and the original variables ð�1; �2Þ ¼
ð
; hÞ, let us express the current ~J� in terms of the original

variables

~J� ¼ ~g�� M2
P

2ð�


2þ�hh

2Þ@�ðð1þ 6�
Þ
2þð1þ 6�hÞh2Þ:

(41)

Comparing this expression to Eq. (40), it is clear that �
must be a function of the combination of the fields 

and h acted upon by the partial derivative, i.e. � ¼
�½ð1þ 6�
Þ
2 þ ð1þ 6�hÞh2�. For the scale transforma-

tion to correspond to a shift of � by �MP, this function

has to be chosen as

� ¼ MP

2
ln

�ð1þ 6�
Þ
2 þ ð1þ 6�hÞh2
M2

P

�

: (42)

The variable �, as it does not transform under scale

transformations, has to be a function of the ratio between

h and 
, i.e. � ¼ �½h


�. There is some freedom in the

choice of this function. One can notice that the argument

of the logarithm in Eq. (42) corresponds to the radius of

an ellipse in the (
, h)-plane. We will therefore define �
as the angular coordinate of the ellipse, i.e.

� ¼ arctan

0

@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 6�h

1þ 6�


s

h




1

A: (43)

Let us note that, in terms of the variables (�, �), since
one has �� ¼ MP and �� ¼ 0, the current conservation

law (39) corresponds to the equation of motion for �.
Further, one can see from Eq. (39) that the dependence

of ~V�0
on � is such that ~V�0

/ expð�4�=MPÞ.
In terms of the new variables, the E-frame kinetic term ~K

and the potential ~U ¼ ~V þ ~V�0
(cf. Eq. (25)) are given by

~K ¼
�

1þ 6�h

�h

�

1

sin2�þ &cos2�
ð@�Þ2

þM2
P&

�


tan2�þ�

cos2�ðtan2�þ &Þ2 ð@�Þ
2 (44)

and

~Vð�Þ ¼ �M4
P

4�2
h

�sin2�� �
�

1þ6�h

1þ6�

cos2�

sin2�þ &cos2�

�

2

; (45)

~V �0
ð�; �Þ ¼ �0

�

1þ 6�h

�h

�

2 e�4�=MP

ðsin2�þ &cos2�Þ2 ; (46)
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where we have defined the parameters

� � �


�h

; & � ð1þ 6�hÞ�


ð1þ 6�
Þ�h

: (47)

We will see in Sec. III D that for a successful description

of inflation, the parameters have to be such that �
 �
Oð10�3Þ and �h �Oð105Þ, and, hence, � � 1. In this

case, one can neglect � in the kinetic term (44). In this

approximation, the action can be further simplified by

introducing the variables

~� ¼ ��1� and ~� ¼ MP

a
tanh�1

�
ffiffiffiffiffiffiffiffiffiffiffiffi

1� &
p

cos�
�

; (48)

with the parameters

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�
ð1� &Þ
&

s

; � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�


1þ 6�


s

: (49)

In terms of these variables and for � � 1, the kinetic term
takes the simple form

~K ’ e2bð~�Þð@~�Þ2 þ ð@~�Þ2; (50)

with

bð~�Þ ¼ 1
2
lnð&cosh2ða~�=MPÞÞ;

which has been studied in the literature previously [41–43].

The potentials are given by

~Vð~�Þ ¼ �M4
P

4�2
hð1� &Þ2

�

1� &cosh2ða~�=MPÞ

� �

�

1þ 6�h

1þ 6�


sinh2ða~�=MPÞ
�

2

; (51)

~V �0
ð~�; ~�Þ ¼ �0

�2
&2cosh4ða~�=MPÞe�4�~�=MP : (52)

3. Departure from scale invariance

Let us now look at the E-frame equations of motion (31)

and (32) in order to see in which region of field space

the effect of a nonzero �0 will be important. �0 enters

the equations through ~U ¼ ~V þ ~V�0
and through ~U;c ¼

~V ;c þ ~V ;c
�0
. We therefore define the two new parameters

�1 ¼
~V�0

~V
; (53)

v2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~V�0

;a ~V�0;a

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~V;b ~V;b

q (54)

that characterize the departure from scale invariance.

The parameter �1 compares the importance of the scale-

invariance-breaking part of the potential ~V�0
to the

scale-invariant part ~V in the Einstein equations (31). In

the region of field space where �1 � 1, ~V�0
can be ne-

glected in Einstein’s equations. The parameter �2 provides

a coordinate invariant measure of the importance of ~V�0

;a

compared to ~V ;a in the scalar field equations (32). In fact,

locally one can always choose a coordinate system in

which j ~V�0

;1= ~V;1j ¼ j ~V�0

;2= ~V ;2j ¼ �2. Hence, in the re-

gion of field space where �2 � 1, ~V�0

;a can be neglected

in the scalar field equations. In the regionwhere both�1 � 1
and �2 � 1 hold, the effect of �0 is negligible, and the

equations of motion become practically scale-invariant. We

will refer to this region as the scale-invariant region. It will

turn out that for phenomenologically viable values of the

parameters, the whole period of observable inflation takes

place in this region.

B. Evolution of the homogeneous background

Let us now consider homogeneous scalar fields �i ¼
�iðtÞ in spatially flat FLRW space-time characterized by

the line element

ds2 ¼ ~g��dx
�dx� ¼ �dt2 þ a2ðtÞd~x2: (55)

Before writing down the equations of motion, we intro-

duce some notation for vectors lying in the tangent and

cotangent bundles of the field manifold that will allow us to

write many of the upcoming expressions in a very compact

way. The notation corresponds to the one of [44]. We

denote vectors in boldface, i.e. A ¼ ðA1; A2Þ. The inner

product of two vectors A and B is given by

A �B � AyB ¼ �ijA
iBj; (56)

and the norm of a vector A is

jAj �
ffiffiffiffiffiffiffiffiffiffiffiffiffi

A �A
p

; (57)

where a dagger y on a naturally contravariant or covariant

vector denotes its dual, e.g. _�y � ð�ij
_�jÞ and ry �

ð�ijrjÞ. Here and in the following, we use rj to denote

the covariant derivative constructed from the field-space

metric ð�ijÞ.
For homogeneous fields in flat FLRW space-time,

Eqs. (31) and (32) reduce to the Friedmann equations

and the equations of motion for the scalar fields,

H2 ¼ 1

3M2
P

�

1

2
j _�j2 þ ~U

�

; (58)

2 _H þ 3H2 ¼ � 1

M2
P

�

1

2
j _�j2 � ~U

�

; (59)

D _�

dt
þ 3H _� ¼ �ry ~U; (60)

where a dot stands for a derivative with respect to t,
H ¼ _a=a, and the action of D on a contravariant vector
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Xi is defined as DXi ¼ dXi þ �c
abX

ad�b. To this we

can add the equation for the current Eq. (39), which for

homogeneous fields reduces to

d

dt
ða3 _� � ��Þ ¼ 4 ~V�0

; (61)

where �� ¼ ð��1;��2Þ. This relation is of course not

independent of the equations of motion. However, it

will prove useful in the following.

For the discussion of inflation, it is helpful to change

the time parameter from t to the e-fold time parameter

N ¼ lnaðtÞ. The field equations can then be written as

H2 ¼
~U

3M2
P � 1

2
j�0j2 ; (62)

H0

H
¼ � 1

2

j�0j2
M2

P

; (63)

D�0

dN

3� 1
2
j�0j2=M2

P

þ�0 ¼ �M2
Pr

y ln ~U; (64)

where a prime denotes a derivative with respect to the

e-fold parameter N.

1. Slow-roll inflation and background trajectories

In the present model, inflation can occur due to a phase

of slow-roll of the scalar fields over the flat part of the

potential towards one of the potential valleys (cf. Fig. 1).

Let us define the slow-roll parameter � and the slow-roll

vector � as [44,45]11

� � �H0

H
¼ 1

2

j�0j2
M2

P

; (65)

� � D�0

dN
=j�0j; (66)

in terms of which Eqs. (62) and (64) read

H2 ¼ 1

M2
P

~U

3� �
; (67)

�

3� �
j�0j þ�0 ¼ �M2

Pr
y ln ~U: (68)

The exact condition for inflation, i.e. for €a > 0, is given

by � < 1.
The slow-roll regime is characterized by the fact that the

Eqs. (67) and (68) are well-approximated by the ’’slow-roll

equations’’

H2 ¼
~U

3M2
P

; (69)

� 0 ¼ �M2
Pr

y ln ~U: (70)

The conditions for the validity of the slow-roll approxima-

tion are12

� � 1 and 	 � j�j � 1: (71)

Still following Ref. [44], we introduce the kinematical

orthonormal basis vectors ek ¼ �0

j�0j , pointing in the direc-

tion of the field trajectory, and e?, pointing in the direction
of ðI� eke

y
k Þ�, where I is the 2� 2 unit matrix. This

allows us to write the second slow-roll parameter as

	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

	2
k þ 	2

?

q

; (72)

where the speed-up rate 	k and the turn-rate 	? are

defined as

	k ¼ ek � � ¼ � 3� �

j�0j ðj�0j þM2
Pek � r ln ~UÞ; (73)

	? ¼ e? � � ¼ �M2
P

3� �

j�0j e? � r ln ~U: (74)

In the case of one-field inflation, 	? is equal to zero, and

	 ¼ j	kj. In the upcoming section, we will see that for the

Higgs-dilaton model, as long as the fields are in the scale-

invariant region, 	? goes to zero very quickly, and 	 can

be computed like in a single-field model.

Within the slow-roll approximation, i.e. making use of

Eqs. (69) and (70), one can compute approximations in

terms of the potential for the slow-roll parameters � and 	

�ðSRÞ ¼ 1
2
M2

Pjr ln ~Uj2; (75)

	ðSRÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðeðSRÞk ÞyM2e
ðSRÞ
k

q

; (76)

such as for the speed-up rate 	k and the turn rate 	?

	ðSRÞ
k ¼ �ðeðSRÞk ÞyMe

ðSRÞ
k ; (77)

	ðSRÞ
? ¼ �ðeðSRÞk ÞyMe

ðSRÞ
? ; (78)

where the matrix M is defined as

M � M2
Pr

yr ln ~U; (79)

and the kinematical unit vectors in the slow-roll approxi-

mation are given by

11The definition of the vector � used here differs from the
definition in [44] by the factor j�0j.

12Note that � ¼ �1 and j	j ¼ 1
2
j�2j, where �1 � H0

H
and �2 �

D ln�
dN are the multifield generalizations of the standard first two
horizon-flow parameters defined in [46].
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e
ðSRÞ
k ¼ �ry ln ~U

jr ln ~Uj ; and

e
ðSRÞ
? ¼ �

Mþ 	ðSRÞ
k I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð	ðSRÞÞ2 � ð	ðSRÞ
k Þ2

q e
ðSRÞ
k : (80)

Hence, instead of the exact slow-roll conditions (71), one

can use the approximate slow-roll conditions

�ðSRÞ � 1 and 	ðSRÞ � 1; (81)

which should be understood as consistency conditions for

the slow-roll approximation. Once the system is in the

slow-roll regime, i.e. the exact conditions (71) are satisfied,

the approximate conditions (78) guarantee that the system

remains in the slow-roll regime and describes a phase of

inflation. We will approximate the time where inflation

ends as the moment where �ðSRÞ ¼ 1.
Let us now discuss the regions in the ð
; hÞ-plane

for which the approximate slow-roll conditions hold

(cf. Fig. 2). The slow-roll region extends to infinity along

the potential valleys if �
 < 1
2
. As will be shown in Sec. IV,

only if this condition holds, the scalar fields can constitute

a dark energy component in the late stage. Further, during

inflation, it is safe to neglect the term in the potential

proportional to �. In fact, for � ¼ 0, the potential pos-

sesses only one valley which goes along the 
-axis. For
� � 0, this valley splits into two valleys that lie at the

angles � ¼ 	 arctanð�Þ with respect to the 
-axis. For
� ��1, these angles are very small. We will see that

inflation in our model occurs far from these valleys where

the effect of a nonzero � is irrelevant. Hence, we will put

� ¼ 0 for the rest of this section. The plot of the slow-roll

region for �
 < 1
2
and � ¼ 0 is presented in Fig. 2.

Next, we want to analyze the different trajectories the

fields can take if the initial conditions are chosen in the

slow-roll region. We will only consider trajectories starting

in the first quadrant 
, h > 0. Trajectories starting in other

quadrants are exactly analog. The shape of the potential

(29) makes that all trajectories tend to approach one of the

potential valleys. There are trajectories (type a) that on

their way to the valley never leave the slow-roll region.

Numerical computations show that such trajectories

undergo only very few slow oscillations before asymptoti-

cally approaching the valley. One can not expect a suc-

cessful reheating period from this type of behavior [31,32].

The good trajectories (type b) are those that at some point

leave the slow-roll region. After the exit of the slow-roll

region, which, at the same time, marks the end of inflation,

these trajectories undergo a fast roll towards the valley and,

therefore, oscillate strongly around its minimum. Typical

examples for both types of trajectories are given in Fig. 2.

Looking at Fig. 2, we observe that all good trajectories

(type b, blue line) go through the scale-invariant region

before leaving the slow-roll region. Therefore, for these

trajectories, the end of inflation always takes place within

the scale-invariant region. We will see in Sec. IVB that

requiring the scalar fields to act as a dark-energy compo-

nent in the late phase will give a bound on the initial

conditions. Qualitatively, this bound tells that the scalar

fields during inflation have to be very far from the origin.

Therefore, not only the end, but the whole period of

observable inflation (i.e. the final �60 e-folds) takes place

in the scale-invariant region. This fact considerably sim-

plifies the analysis. In particular, during inflation the scale-

invariance-breaking part ~V�0
of the potential (29) can be

neglected, i.e. ~U ’ ~V. As a consequence, if one uses the set
of variables (�, �) introduced in Sec. III A 2, the potential

only depends on �. Consequently, also the slow-roll pa-

rameters �ðSRÞ and 	ðSRÞ are functions of � only. Further,

FIG. 2 (color online). The blue (shaded) region is the slow-roll

region for �
 � 1, �h � 1, and � ¼ 0, given by �ðSRÞ < 1. The

inclusion of the second slow-roll condition 	ðSRÞ < 1 does not

change the essential properties of this region. The general

features of the slow-roll region are the same whenever �
 < 1
2

and �h >
1
2
. For �
 < 1

2
and �h <

1
2
, the central fast-rolling

region vanishes. For �
 > 1
2
, the slow-roll region does not extend

to infinity along the 
-axis, in which case the scalar fields cannot
act as dark energy in the late stage of evolution. The dashed

region corresponds to the scale-invariant region delimited by

�1 < 1 and �2 < 1. This is the region where the influence of

�0 � 0 is small. The presence of the slow-roll region along the


-axis, such as the central fast-roll region, are effects of �0 > 0.
For �0 ¼ 0, the slow-roll region is simply given by the triangles

delimited by the two diagonal lines. Note that, in this case, the

units of the axis have to be chosen differently. The curves with

arrows represent typical trajectories of the background fields.

Trajectories of type (a) never leave the slow-roll region.

Trajectories of type (b) leave the slow-roll region and oscillate

strongly before rolling down the valley. These trajectories were

found by numerically solving the exact equations (60).
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one finds that the lowest order approximation of the turn

rate 	? vanishes, i.e. 	ðSRÞ
? ¼ 0.

In the scale-invariant region and written in terms of

the variables (�, �), the slow-roll equations for the scalar

fields (70) read

�0 ¼ 0; (82)

�0 ¼ � 4�


1þ 6�


cot�

�

1þ 6�
�h

�
cos
2�þ �hsin

2�

�

: (83)

From the first equation, one finds that the background

trajectories in the scale-invariant slow-roll region corre-

spond to a constant value for �, � ¼ �0, respectively, to

ellipses in the ð
; hÞ-plane described by

ð1þ 6�
Þ
2 þ ð1þ 6�hÞh2 ¼ M2
Pe

2�0=MP : (84)

The second scalar field equation (83), as a consequence

of scale invariance, does not depend on �0. This equa-

tion can be integrated in order to get the number of

e-folds before the end of inflation as a function of the

angle �,

Nð�;�endÞ¼
1

4�


�

ln

�

cos�end
cos�

�

þ3�
 ln

�

�
cos
2�endþ�hsin

2�endþ6�
�h

�
cos
2�þ�hsin

2�þ6�
�h

��

;

(85)

where �end is the value of � at the end of inflation, which

can be found from the condition

�ðSRÞð�endÞ ¼
8�2


ð1þ 6�hÞ
1þ 6�


cot2�end
�
cos

2�end þ �hsin
2�end

¼ 1:

(86)

After inserting values for �
, �h, and requiring a mini-

mal number of inflationary e-folds Nð�min; �endÞ ¼ Nmin,

Eqs. (85) and (86) can be solved to obtain a lower bound

�min < �initial on the initial conditions for inflation. In

what follows, we will derive bounds on the parameters

�
 and �h, which are related to the spectra of primordial

perturbations.

2. One-field attractor in the scale-invariant region

In the previous section, we have seen that if the slow-roll

conditions hold and if the system is in the scale-invariant

region, i.e. �1 � 1 and �2 � 1, the trajectories are given
by � ¼ �0. In other words, there exists a set of variables in

term of which only one of the two fields evolves during

inflation.

In this section, we are going to show that in the scale-

invariant region, �0 ¼ 0 is an attractor independently of

slow-roll and also after inflation. We will further show that

during inflation in the scale-invariant region, the turn-rate

	? goes to zero very rapidly, also beyond the lowest order

slow-roll approximation. This fact will have important

consequences for the evolution of perturbations of the

scalar fields.

Let us look at the equation for the scale current (61). In

the scale-invariant region, the term on the right-hand side

can be neglected. In terms of the variables (�, �) and using
the e-fold time parameter, one obtains

�0 ¼ cst:

H���

e�3N ; (87)

where the constant depends on initial conditions. ��� can

be read from Eq. (44) and represents a bounded function.

During inflation, the factor H�1 is generally nearly con-

stant but grows at most like eN at the end of inflation. For a

matter-domination-like stage, one obtains H�1 / e1=2N ,

and for a radiation-domination-like stage H�1 / e2=3N .
One can read from Eqs. (62) and (63) that whenever the

potential is positive, which is always the case in the scale-

invariant region of our model, H�1 grows more slowly

than e3N . We conclude that as soon as the system can be

approximated by the scale-invariant equations, �0 ¼ 0 is

an attractor.

Let us now turn our attention to the turn rate 	?. In the

scale-invariant region, Eq. (71) reduces to

	? ¼ �M2
P

3� �

j�0j e? � r ln ~V

¼ �M2
Pjr ln ~Vj 3� �

j�0j e? � eðr ~VÞ; (88)

where eðr ~VÞ is a unit vector pointing in the direction of r ~V.

From the current conservation law (61), still neglecting
~V�0

and noticing that �� is perpendicular to r ~V, we find

e k � eðr ~VÞ? ¼ cst:

j��jj�0jH e�3N ; (89)

where eðr ~VÞ? is a unit vector perpendicular to eðr ~VÞ. At
every point in field space, one can find an orthogonal

matrix O such that e? ¼ Oek and eðr ~VÞ ¼ Oeðr ~VÞ? .
Hence, one has

je? � eðr ~VÞj ¼ jðOe?Þ � ðOeðr ~VÞÞj ¼ jek � eðr ~VÞ? j: (90)

Inserting this relation and Eq. (89) in Eq. (88) and making

use of Eqs. (65) and (75), we find the following result for

the turn rate:

j	?j ¼ cst: � ð3� �Þ
ffiffiffiffiffiffiffiffiffiffi

�ðSRÞ
p

�Hj��j e�3N ; (91)

where we have redefined the constant related to initial

conditions. During slow-roll inflation, � is growing, but
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remains smaller than unity, H is decreasing very slowly,

and �ðSRÞ is small. j��j is a bounded function, which in

terms of the variables (�, �), is given by j��j ¼ MP
ffiffiffiffiffiffiffiffi

���
p

.

We conclude that during slow-roll inflation and for ap-

proximate scale invariance, the turn rate 	? goes to zero

exponentially fast. Further, one can show that if scale

invariance is slightly violated, 	? is proportional to �2.

C. Linear perturbations

The theory of cosmological perturbations as stemming

from quantum fluctuations during inflation was developed

in [47–51] (see also [52] and references therein).

Including scalar and tensor perturbations and fixing the

Newtonian transverse traceless gauge, the line element

can be written as

ds2 ¼ �ð1þ 2�Þdt2 þ aðtÞ2ðð1� 2�Þ�ij þ hTTij Þdxidxj:
(92)

� and � are the Bardeen potentials [53]. For comparison

with observations of the Cosmic Microwave Background

(CMB), we will be interested in the power spectrum of

the comoving curvature perturbation, which is defined as

[53,54]

� � ��H
_H
ð _�þH�Þ: (93)

Through the perturbed Einstein equations, � is related to

the linear perturbations of the scalar fields, ��, like (see,

e.g. [55])

� ¼ 1

j�0j ð��0 þ ��Þ � ek; (94)

where the quantity in parenthesis is the multifield version

of the Mukhanov-Sasaki variable [56,57]. The evolution

equation for � is given by [42–44]

� 0 ¼ 2

ðaHÞ2j�0j2 ��� 2	?
��?
j�0j ; (95)

where � ¼ �ij@i@j. The quantity ��? � �� � e? is the

component of the field perturbations perpendicular to the

background field trajectory sometimes called relative

isocurvature (or entropy) perturbation (see, e.g. [58]).

In the long wavelength limit, k � aH, the first term in

Eq. (95) can be neglected, and the evolution equation

becomes

� 0 ¼ �2	?
��?
j�0j ; (96)

This is a well-known result, showing that for multifield

inflation, � is not in general conserved outside the

Hubble horizon [42,43]. There are two cases in which

the source term on the right-hand side of the equation

vanishes. One is if the perturbation vector �� is tangent

to the field trajectory, i.e. ��? ¼ 0. This corresponds

to the complete absence of relative isocurvature pertur-

bations during inflation and is not satisfied in our sce-

nario. The second possibility is to have the potential

gradient rU parallel to the background field trajectory,

resulting in the vanishing of the turn rate 	? ¼ 0. In

our model, as we have seen in the previous sections,

inflation takes place in the scale-invariant region, where

	? ¼ 0 is an attractor. Hence, as a consequence of scale

invariance, the comoving curvature perturbation is practi-

cally conserved outside the horizon, just like in single-

field inflation.13 As mentioned before, corrections due to

deviations from scale invariance are suppressed by the

parameter �2. This parameter being extremely small

(cf. Sec. IVB), we will neglect such corrections.

We will from now on use the fact that inflation takes

place in the scale-invariant region and suppose that

initial conditions are such that the attractor 	? ¼ 0
has been reached before the observable scales cross the

horizon. In that case, � is constant outside the Hubble

horizon, and the result for the primordial spectrum

of � is like in the case of one-field inflation. To lowest

order in the slow-roll parameters, it can be expressed as

[52,59,60]

P � ðkÞ ’
1

2M2
P�




�

H


2�

�

2

’ 1

24�2�ðSRÞ

~V


M4
P

; (97)

where quantities with an asterisk are evaluated at the mo-

ment of horizon crossing, i.e. when aH ¼ k. The scalar

spectral index is given by

nsðkÞ � 1 � d lnP �

d lnk
’ �2ð�
 þ 	


kÞ

’ �2ð�ðSRÞ
 þ 	ðSRÞ

k Þ; (98)

while the running of the spectral index can be expressed

as [61]

�� ðkÞ �
dns
d lnk

’ �4�
	

k � 2	


k�



’ �4�ðSRÞ
	ðSRÞ

k � 2ð	


k�

ÞðSRÞ; (99)

where � is the third Hubble-flow parameter � � d2 ln�
dN2 . In

the slow-roll approximation, the combination 	k� can be

expressed in terms of the potential as [44]

ð	k�ÞðSRÞ ¼ e
ðSRÞy
k Xe

ðSRÞ
k ;

13Using the results of [44], one finds that ��?=j�0j is of the
same order of magnitude as � and does not grow considerably
during inflation.
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with the matrix X � M2
Pr ln ~UryM, where ~U can be

replaced by ~V due to scale invariance.14

Now, even if the relative entropy perturbations ��? do

not affect the evolution of � , since they are completely

decoupled, they can in general be present at the end of

inflation. The total entropy perturbations, however, are

given by S / 	?��?=j�0j [58]. And, as we have shown

above, scale invariance during inflation leads to 	? ’ 0
and, hence, to a strong suppression of S. As has been

shown in Ref. [62] (see also [63] for a general perspective),

the large scale suppression of entropy perturbations during

inflation avoids the resonant growth of these fluctuations

also during (p)reheating. Working with this assumption,

we will be able to relate the primordial spectra to CMB

observations.

The primordial spectrum of the tensor perturbations is

given, to the lowest order in the slow-roll approximation,

by [52,59]15

P gðkÞ ’
8

M2
P

�

H


2�

�

2

’ 2

3�2

~V


M4
P

; (100)

which results in a tensorial spectral index:

ngðkÞ �
d lnP g

d lnk
’ �2�
 ’ �2�ðSRÞ
: (101)

The ratio of the tensor and the scalar spectra to first order in

slow-roll is then given by

r � P g

P �

’ 16�
 ’ 16�ðSRÞ
; (102)

and we have the consistency condition like in one-field

inflation

r ¼ �8ng; (103)

valid to the lowest nontrivial order in the slow-roll

approximation.

D. CMB constraints on parameters

and predictions of the model

In this section, we are going to explicitly compute the

primordial spectra and confront them with CMB observa-

tions. As discussed in the previous sections, the whole

period of observable inflation takes place in the scale-

invariant region. We can therefore use Eqs. (85) and (86)

for the background. Moreover, due to scale invariance, � is

conserved for large wavelengths during inflation. Further,

we make the assumption that after inflation, entropy per-

turbations die away before having an observable effect.

This allows us to directly compare the primordial spectra

(97) and (100) to observations of the CMB.

We will show in the following that the running of the

scalar spectral index and the amplitude of tensor perturba-

tions are related and very small, cf. Eq. (119). Therefore,

we can consider those observational bounds (WMAP7þ
BAOþ H0) for the scalar tilt and the amplitude of the

scalar power spectrum, which are based on the standard

�CDM model and the assumptions that the primordial

spectrum obeys a power-law and that tensor modes can

be neglected (see Ref. [64]):

P � ðk0Þ ¼ ð2:43	 0:27Þ � 10�9; (104)

nsðk0Þ ¼ 0:968	 0:036; (105)

where k0=a0 ¼ 0:002 Mpc�1, and the indicated errors cor-

respond to the 99% confidence levels.

Let us start by computing the spectral quantities P � ðk0Þ,
nsðk0Þ, �ðk0Þ and rðk0Þ, evaluated at the pivot scale k0, in
terms of the parameters �
, �h, and �. This is done in four

steps:

(i) Equation (86) is solved for �end ¼ �endð�
; �hÞ.
(ii) �end is inserted into Eq. (85), from which one de-

termines �
 ¼ �
ð�
; �h; N

Þ.

(iii) Expressions (97)–(99) and (103) are evaluated at �


to find the spectral quantities as functions of �
, �h,

�, and N
.
(iv) N
, the number of e-folds between the moment

where k0 exits the horizon and the end of inflation,

is expressed as a function of the parameters �
, �h,

and �.
In order to determine N
 (step (iv)) we need to know the

post-inflationary evolution of the Universe, including the

details of the reheating process. If there are uncertainties

related to the post-inflationary history, these can be ac-

counted for by varying the value of N
. One can compute

N
 approximately by making a few assumptions about the

post-inflationary evolution. First, during the reheating

phase, the scale factor is expected to evolve like in a

matter-dominated universe. The reason is that, during this

stage, the present model behaves much like the Higgs-

Inflation model (cf. [31,32]). In this sense, matterlike

scaling of the Universe during reheating is not really an

14Let us mention again that, since inflation takes place in the
scale-invariant region, one can choose variables (�, �) for which

the approximate slow-roll parameters �ðSRÞ, 	ðSRÞ
k and the com-

bination ð	k�ÞðSRÞ depend only on �. In models of one-field
inflation with a canonical kinetic term, an alternative common

definition of approximate slow-roll parameters is given by �s �
1
2
M2

PðU
0

U
Þ2, 	s � M2

P
U00
U
, and �s � M4

P
U000U0

U2 . In the case of one or

several fields with noncanonical kinetic terms, these definitions

generalize to �s � 1
2
M2

Pjr lnUj2, 	s � ðeðSRÞk ÞyMse
ðSRÞ
k , and

�s � ðeðSRÞk ÞyXse
ðSRÞ
k , where the matrices Ms and Xs are defined

as Ms � M2
P

1
U
ryrU and Xs � M4

P
1
U2 rUryryrU, and the

unit vectors are given in Eq. (80). These parameters are related
to the approximate slow-roll parameters used in the present

work as �ðSRÞ ¼ �s, 	
ðSRÞ
k ¼ 2�s � 	s and ð	k�ÞðSRÞ ¼ 8�2s �

6�s	s þ �s.
15This result is based on the slow-roll approximation and
involves no further assumptions.
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assumption, but rather a property of the considered model.

Next, we make the usual assumptions that reheating is

followed by the standard radiation- and matter-dominated

stages. Further assuming that the transitions between the

different phases are instantaneous, one can derive the

following relation (cf. [59])

N
 ’ � ln
k0

a0H0

� ln

�

%cr
0 =�

�
0

~Vð�
Þ

�

1=4
þ ln

� ~Vð�
Þ
~Vð�endÞ

�

1=4

� 1

3
ln

� ~Vð�endÞ
%rh

�

1=4
: (106)

Here, a0,H0, %
cr
0 , and�

r
0 stand for the current values of the

scale factor, the Hubble parameter, the critical density, and

the abundance of radiation, respectively. %rh denotes the

radiation energy density at the end of reheating, i.e. at the

onset of the hot big bang. After inserting the observational

value �r
0h

2 ’ 4:2� 10�5 (for T�
0 ’ 2:73K [65]), where h

is the dimensionless Hubble parameter, the above formula

can be written as

N
 ’ 59� ln
k0 Mpc

0:002a0
� ln

1016 GeV

~Vð�
Þ1=4 þ ln

� ~Vð�
Þ
~Vð�endÞ

�

1=4

� 1

3
ln

� ~Vð�endÞ
%rh

�

1=4
: (107)

Notice that the dependence on H0 has cancelled out.16 A

detailed determination of %rh goes beyond the scope of this

work and is postponed for a future publication. We can,

however, consider two limiting cases. An upper limit on

%rh is simply given by

%max
rh ¼ ~Vð�endÞ; (108)

corresponding to instantaneous reheating at the end of

inflation. A lower limit can be found in the same way as

for the Higgs-Inflation model in [31,32]. Namely, one can

look for the value of �, below which the particle interac-

tions become those of the standard model, apart from the

suppressed interactions discussed in Sec. II A 1, and there-

fore guarantee immediate reheating. Inspecting the kinetic

term (44) and the potential (45), we find that this happens

as soon as tan2� <minð�; 1Þ.17 We will therefore set the

lower limit

%min
rh ¼ ~Vð�min

rh Þ; with tan2�min
rh ¼ minð�; 1Þ: (109)

The value of � to be used when computing the spectral

parameters corresponds to the Higgs self-coupling eval-

uated at the scale of inflation [31,32]. It contains the

uncertainty related to the Higgs mass m2
H. We expect the

running of � to be similar, as in the case of the Higgs-

Inflation model [66–73]. As was shown in [31,32], for

m2
H ’ 130–180 GeV, the coupling � evaluated at the scale

of inflation lies in the range � ’ 0:1� 1.
Step (ii), i.e. the exact inversion of Eq. (85), can not be

done analytically. Hence, before computing approximate

analytical results, we execute the four steps numerically.

This allows us to plot the region in parameter space, for

which P � ðk0Þ and nsðk0Þ lie within the observational con-

straints (104) and (105), cf. Fig. 3. It turns out that in the

observationally allowed range and for � ’ 0:1� 1, the
spectral quantites depend on �h and � almost only through

the combination �h=
ffiffiffiffi

�
p

. This fact will become explicit

in the approximate analytical results to be derived below.

The red (upper) region in Fig. 3 is obtained under the

assumption of instantaneous reheating (%rh ¼ %max
rh ),

while the blue (lower) region corresponds to the case of

long reheating, i.e. %rh ¼ %min
rh . We obtain the bounds

0< �
 & 0:008; for %rh ¼ %min
rh ;

43 000 &
�h
ffiffiffiffi

�
p & 85 000;

(110)

and

0< �
 & 0:008; for %rh ¼ %max
rh :

44 500 &
�h
ffiffiffiffi

�
p & 92 000;

(111)

In this region of parameter space, the quantities

nsðk0Þ, �ðk0Þ, and rðk0Þ vary only with �
. The numerical

results for these quantities are given in Figs. 4 and 5,

respectively.

FIG. 3 (color online). This plot shows the parameter regions

for which the amplitude P� ðk0Þ and the tilt nsðk0Þ of the scalar

spectrum lie in the observationally allowed region (WMAP7þ
BAOþH0 at 99% confidence level), for � ¼ 1. (The variation

of the result induced by a variation of � in the interval 0:1<
�< 1 is negligible.) The red (upper) region is obtained for

%rh ¼ %max
rh (instantaneous reheating), while the blue (lower)

region corresponds to %rh ¼ %min
rh (long reheating). The fact

that the bands are cut on the right comes from the constraint

on the scalar tilt nsðk0Þ, cf. Eq. (116), while the band-shape is

due to the constraint on the amplitude P� ðk0Þ, cf. Eq. (115).

16In the analog formula of [59], this fact remains somewhat
hidden.
17Note that the value of & lies always between 1 and the value
of �.
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Wehave found that the parameters need to satisfy�
 � 1

and �h � 1. With this knowledge, we again carry out the

above four steps and derive approximate analytical results.

From Eq. (86), we obtain

�end ¼ 2� 31=4
ffiffiffiffiffiffi

�


q

�

1þO

�

�
;
1

�h

��

: (112)

In order to approximately solve Eq. (85) for �
, we can

neglect the second term on the right-hand side. The inver-

sion then gives

�
 ’ arccosðcosð�endÞe�4�
N

Þ: (113)

Here, the sign for approximate equality ‘‘’’’ refers to the

approximation made when inverting Eq. (85). This approxi-

mation will constitute the main source of error in the ap-

proximate expressions for the spectral quantities. One can

get a more accurate approximation by reinserting the first

approximation into the right-hand side of Eq. (85) in order to

compute the second-order approximation of an iterative

solution. However, as the expressions get considerably

more complicated, we stick to the first-order approximation,

which already comes very close to the numerical results.

Inserting �end from Eq. (112) into Eq. (113), one obtains

�
 ’ arccosðe�4�
N

Þ
�

1þO

�

�
;
1

�h

��

: (114)

We can now evaluate the spectral parameters at the approxi-

mate value for �
. Inserting Eq. (114) into Eqs. (97)–(99)

and (102) and recalling Eq. (103) we obtain18

P� ðk0Þ ’
�sinh2ð4�
N


Þ
1152�2�2


�
2
h

�

1þO

�

�
;
1

�h

;
1

N


��

(115)

nsðk0Þ � 1 ’ �8�
 cothð4�
N

Þ
�

1þO

�

�
;
1

�h

;
1

N


��

;

(116)

�� ðk0Þ ’ �32�2

sinh

�2ð4�
N

Þ
�

1þO

�

�
;
1

�h

;
1

N


��

;

(117)

rðk0Þ ¼ �8ngðk0Þ

’ 192�2

sinh

�2ð4�
N

Þ
�

1þO

�

�
;
1

�h

;
1

N


��

:

(118)

One can see that in this approximation, �� ðk0Þ, rðk0Þ and
ngðk0Þ are related as

�� ðk0Þ ’ �1
6
rðk0Þ ¼ 4

3
ngðk0Þ; (119)

which can be understood as an approximate consistency

condition for the Higgs-dilaton model.

In order to find N
 in terms of the parameters of the

theory, we insert Eq. (114) into Eq. (107), from which we

derive the approximate results19

N

min ’

�

64:3� 1

12
ln�� 2

3
ln
�h
ffiffiffiffi

�
p

��

1þO

�

�
;
1

�h

;
1

N


��

;

(120)

N

max ’

�

64:5� 1

2
ln
�h
ffiffiffiffi

�
p

��

1þO

�

�
;
1

�h

;
1

N


��

; (121)

where the subscripts ‘‘min’’ and ‘‘max’’ stand for the cases

%rh ¼ %min
rh and %rh ¼ %max

rh , respectively. These approxi-

mate results, together with the numerical results for N

min

and N

max, are plotted in Fig. 6.

Equations (115)–(118), together with Eqs. (120) and

(121), constitute our approximate analytical results for

the spectral parameters in terms of the parameters �
, �h,

and �, in the two limiting cases of instantaneous and late

reheating. One can see that the results depend on �h and �

mainly through the combination �h=
ffiffiffiffi

�
p

. Independent

variation of � affects the spectral parameters only through

N

min. Further, we remark that for 0:1< �< 1 and �h=

ffiffiffiffi

�
p

FIG. 4 (color online). The spectral tilt as a function of the

nonminimal coupling parameter �
. The other parameters are set

to �h ¼ 65000 and � ¼ 1. Note, however, that changing the ratio
�h=

ffiffiffiffi

�
p

in the observationally allowed range affects the result

only by a negligible amount. The solid curves correspond to the

numerical results, the blue (lower) one is obtained for %rh ¼
%min
rh (long reheating) and the red (upper) one for %rh ¼ %max

rh

(instantaneous reheating). The blue (lower) and red (upper)

dashed curves are obtained from the analytical approximation

(116) for �N

min and

�N

max. The straight dashed line represents the

asymptotic solution (133), which is a good approximation if
1

4N
 < �
 � 1. The horizontal line and the shaded regions cor-

respond to the observational mean value and the 1� and 3�
confidence intervals, cf. Eq. (105).

18Note that these approximate results can equivalently be de-
rived from the approximate action given by Eqs. (50) and (51)
with � ¼ 0.
19The numerical factor is given to the first decimal.
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in the observationally allowed range of Eq. (110) or

Eq. (111), both N

min and N


max vary only very little with

the parameters (cf. Fig. 6). For the precision required here,

it is enough to knowN
 at the precision of a whole number.

Therefore, inserting parameters of the allowed order of

magnitude, we can set the approximate values to

�N 

min ¼ 57; (122)

�N 

max ¼ 59: (123)

In the two limiting cases, the spectral parameters can be

evaluated at these values for N
. Neglecting the small

variation of N
 with the parameters of the theory, we

observe that the amplitude P� of the scalar spectrum

depends on the combination �h=
ffiffiffiffi

�
p

and on �
. The ex-

pression (115) allows to understand the shape of the

allowed parameter region in Fig. 3. The other spectral

parameters, unlike the amplitude, are practically indepen-

dent of �h and � and depend on the single parameter �
.

Hence, we can plot ns, �� , and r as functions of �


(cf. Figs. 4 and 5). Compared to the numerical results,

the approximate formula for the spectral tilt has an accuracy

of the order of 10�3, while the accuracy of the approximate

results for �� and r is of the order of 5 � 10�4. Given the

uncertainties in the observational values, these accuracies

are largely sufficient.

As long as the quantity 4�
N

 is smaller than 1 (i.e.

�
 & 0:004), the series expansions of the hyperbolic func-

tions in Eqs. (115)–(118) converge rapidly, and the expres-

sions can be further approximated by

P� ðk0Þ ’
�N
2

72�2�2
h

�

1þ 1

3
ð4�
N


Þ2 þ . . .

�

; (124)

nsðk0Þ � 1 ’ � 2

N


�

1þ 1

3
ð4�
N


Þ2 þ . . .

�

; (125)

�� ðk0Þ ’ � 2

N
2

�

1� 1

3
ð4�
N


Þ2 þ . . .

�

; (126)

rðk0Þ ’
12

N
2

�

1� 1

3
ð4�
N


Þ2 þ . . .

�

: (127)

40 000 50 000 60 000 70 000 80 000 90 000

56

57

58

59

60

N

FIG. 6 (color online). The number of e-folds N
 between hori-
zon crossing of the scale k0 and the end of inflation as a function of
�h=

ffiffiffiffi

�
p

, for �
 ¼ 0:001. Note that changing �
 in the observatio-

nally allowed range affects the result by a negligible amount.

The solid curves correspond to the numerical results, the blue

(lower two) ones correspond to N

min (long reheating), and the red

(top) one toN

max (instant reheating). Among the blue (lower two)

curves, the upper one is obtained for � ¼ 1 and the lower one for
� ¼ 0:1, showing the slight dependence of N


min on �. The

dependence of N

max on � is negligible. The dashed curves are

obtained from the analytical approximations (120) and (121).
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r k0

FIG. 5 (color online). The running of the scalar spectral tilt (left) and the tensor-to-scalar ratio (right) as a function of the coupling

�
. The other parameters are set to �h ¼ 65 000 and � ¼ 1. Note, however, that changing the ratio �h=
ffiffiffiffi

�
p

in the observationally

allowed range affects the result only by a negligible amount. Solid curves show the numerical results, while dashed curves are obtained

from the approximate expressions(118) and (117). In the plot on the left, the red (upper) solid and dashed curves show the case of

instant reheating, and the blue (lower) curves show the case of long reheating. In the plot on the right, the red (lower) solid and dashed

curves show the case of instant reheating, and the blue (upper) curves show the case of long reheating.
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From these expressions, we can see that in the limit

�
 ! 0, the predictions of the Higgs-dilaton inflation

model reduce to those found for the Higgs-Inflation model

[31]. Hence, one can think of �
 as the deviation of our

predictions from those of the Higgs-Inflation model. In the

Higgs-dilaton scenario, the results for ns, �� , and r in the

limit �
 ! 0 constitute a prediction of bounds on these

quantities. We find (cf. Figs. 4 and 5)

nsðk0Þ< 0:97 ’ 1� 2

N
 ; (128)

�� ðk0Þ>�0:0006 ’ � 2

N
2 ; (129)

rðk0Þ< 0:0033 ’ 12

N
2 : (130)

These bounds are nontrivial predictions of our model.

Further, given that ns, �� , and r are functions of �


only, the bound �
 & 0:008 deduced from the observatio-

nal lower bound on ns translates to (cf. Fig. 5)

�� ðk0Þ & �0:000 15; (131)

rðk0Þ * 0:0009: (132)

The upper bound on ns is well in accord with the observa-

tional constraints. Results of the Planck mission are ex-

pected to reduce the errors by a factor of a few and will,

hence, provide an important test of the Higgs-dilatonmodel

[74]. While the present observational limits on�� and r are

too weak to compete with the bounds derived above [64],

the results of Planck might also improve this situation.

We will see in Sec. IVA that, if the scalar fields con-

stitute a dark-energy component at late times, its equation

of state parameter w0
DE is also a function of the parameter

�
 only. As a consequence, the observational lower bound

on ns will induce a bound on w0
DE. Thereby, the Higgs-

dilaton model provides a nontrivial connection between

observables related to the early and the late Universe.

Besides the parameter region in which both �
 and

4�
N

 are small, the observational bounds do not com-

pletely exclude the region where �
 is small, but 4�
N

 is

somewhat bigger than unity. In this region, as can be

deduced from the approximate results (116)–(118), the

predicted values for �� and r go to zero exponentially

with growing 4�
N

, while the spectral tilt becomes

asymptotically linear in �
 (cf. Fig. 4), i.e.

nsðk0Þ � 1 ’ �8�
; for
1

4N
 < �
 � 1: (133)

This fact will allow us to speculate about a somewhat

deeper connection between ns and wDE in Sec. IVA.

From the approximate results (116)–(118), one can see

that �� and r are suppressed with respect to ns � 1. In the

region where 4�
N

 < 1, the suppression factor is 1=N
,

while in the region where 4�
N

 > 1, the suppression

factor is smaller than �
. This fact justifies the use of the

observational bounds (104) and (105), that are based on the

assumption of a power-law spectrum for scalar perturba-

tions and the absence of tensor modes.

The above results provide limits on the reheating tem-

perature Trh, defined as the initial temperature of the

homogeneous radiation-dominated Universe. Trh is related

to %rh through

%rh ¼ �2

30
geffðTrhÞT4

rh; (134)

where geffðTrhÞ is the effective number of relativistic

degrees of freedom present in the thermal bath at the

temperature Trh. Counting all degrees of freedom of the

standard model plus the dilaton, one has geffðTrhÞ ¼
107:75. To lowest nontrivial order in �
 and 1=�h, the

limits on %rh, i.e. Vð�min
rh Þ< %rh < Vð�endÞ (cf. Eqs. (108)

and (109)) are found to be

Vð�min
rh Þ ’ �

144�4
h

M4
P; (135)

Vð�endÞ ’
�

�2
h

XM4
P; (136)

where X ¼ 7� 4
ffiffiffi

3
p

’ 0:7. The bounds on %rh, together

with the obtained bounds on �h=
ffiffiffiffi

�
p

(110) and (111), trans-

late into the following bounds on the reheating temperature

Trh:

3:8

ffiffiffiffiffiffiffiffiffiffiffiffiffi

65000

�h

s

� 1012 GeV & Trh & 2:5� 1015 GeV: (137)

Finally, let us note that the findings of this section allow

us to constrain the region of initial conditions for the scalar

fields, which lead to successful inflation. Based on the

assumption that the last N
 e-folds of inflation take place

in the scale-invariant region, we have found the field value

�
 close to which the observable scales exit the Hubble

horizon during inflation. The initial conditions for inflation

have to be such that �in � �
. In terms of the original

variables, this condition reads

hin

in

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 6�


1þ 6�h

s

tan�
: (138)

�
 was found to be �
 ’ arccosðe�4�
N

Þ (114). For typical

parameter values �
 ¼ 0:005, �h ¼ 65 000, and N
 ¼ 58,

one obtains �
 ’ 1:25 and hin

in

0:3 * 0:005. Considerations
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related to dark energy (Sec. IVB) will yield an additional

constraint on the initial conditions. The region of accept-

able initial conditions satisfying both constraints is shown

in Fig. 7.

IV. IMPLICATIONS FOR THE LATE UNIVERSE

We have shown in the previous section that a number of

parameters of the theory can be constrained by two inde-

pendent inflationary observables: the amplitude and the tilt

of the primordial spectrum of scalar perturbations P � ,

cf. Fig. 3. The theory is, therefore, completely specified

at the inflationary stage, and any subsequent period should

be consistent with that choice of parameters. In this sec-

tion, we focus on the late dark-energy dominated stage

previously described in Sec. II C, during which the dilaton

field is rolling down along one of the potential valleys. In

Sec. IVA, we show how this results in the dilaton playing

the role of a quintessence field. We then derive consistency

conditions among the inflationary observables and those

associated to the dark-energy dominated stage, which

could allow us to either confirm or exclude the model in

the coming years. In Sec. IVB, we derive a constraint that

has to be imposed on the initial conditions of the scalar

fields in order to have a successful description of dark

energy. This will prove a posteriori that the whole period

of observable inflation must take place in the scale-

invariant region.

A. The dilaton as quintessence field

After the phase of reheating, the system enters the

radiation-dominated stage, at the beginning of which the

total energy density is given by %rh (cf. Eq. (134)).

At that moment, the scalar fields have almost settled

down in one of the potential valleys, i.e. hðtÞ2 ’ �
�

ðtÞ2

or, in terms of the variables ð~�; ~�Þ, tanh2ða~�ðtÞ=MPÞ ’
1�&

1þ�
�

1þ6�h
1þ6�


¼ 1� &þOð�Þ.
We will work with the assumption that the equality is

exact and that the fields evolve exactly along the valley

(cf. [1]).20 In this case, at the level of homogeneous fields,

we are left with a single degree of freedom ~�ðtÞ. As

discussed in Sec. II, also at the level of perturbations, the

field ~� (or equivalently �) is almost decoupled from the

SM fields. Hence, we will from now on treat ~� as a field

minimally coupled to gravity and not interacting with

matter and radiation. Given that � � 1 and � � 1, its
dynamics is described by the E-frame Lagrangian (25)

with ~K and ~U ¼ ~V þ ~V�0
given by Eqs. (50)–(52), where

one inserts the constraint tanh2ða~�ðtÞ=MÞ ’ 1� &, i.e.

L
ffiffiffiffiffiffiffi�~g

p ’ M2
P

2
~R� 1

2
ð@~�Þ2 � ~VQEð~�Þ; (139)

with

~V QEð~�Þ ¼
�0

�4
e�4�~�=MP : (140)

As already pointed out in [1], it is remarkable that the

exponential potential, which was proposed for QE a long

time ago [34,35,75], appears automatically in the present

model. It, hence, turns out that the dilaton field ~� can play

the role of QE.

Let us now discuss in more detail the influence of the

field ~� on standard homogeneous cosmology. The equation

of motion for the homogeneous field ~� ¼ ~�ðtÞ in spatially

flat FLRW space-time is given by

FIG. 7 (color online). This plot shows the different regions of

initial conditions giving rise to qualitatively different evolutions.

For a successful description of inflation, initial conditions have

to lie above the line � ¼ �
 ’ arccosðe�4�
N

 Þ. For �0 > 0, the

scalar fields contribute to dark energy in the late stage. Initial

conditions have to lie above the arc of an ellipse given by � ’
�~�0 ’ �MP

4
lnð�4 �eff

�0
Þ for this contribution not to exceed the

observed value of �0
DE. Hence, the blue (shaded) region corre-

sponds to initial conditions giving rise to successful inflation and

a contribution to dark energy not exceeding �0ðobsÞ
DE ¼ 0:74. The

bold segment of the ellipse corresponds to initial conditions for

which the scalar fields yield the total observed dark energy. The

hyperbola is given by �2 ¼ 1. Initial conditions below the

hyperbola lie in the non-scale-invariant region, where �0 is

important. Trajectories starting here tend to move away from

the origin before entering the scale-invariant region and follow-

ing a scale-invariant trajectory. Therefore, such initial conditions

can also be acceptable as long as the corresponding trajectories

enter the scale-invariant region at or above the line given by �.

Note that, while we only describe the quadrant 
=�1=4
0 ,

h=�1=4
0 > 0, the reasoning would be completely analog in the

other quadrants.

20The validity of this approximation can be checked numeri-
cally. Let us further note that the trajectory going exactly along
the valley is an asymptotic, but not an exact solution of the
equations of motion.
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€~�þ 3H _~�þ dVQE

d~�
¼ 0: (141)

Defining energy density %QE, pressure pQE, and equation

of state parameter wQE of the scalar-field ~� as

%QE � 1
2
_~�2 þ VQE; (142)

pQE � 1
2
_~�2 � VQE; (143)

wQE � pQE

%QE

; (144)

its equation of motion (141) can equivalently be written as

_% QE ¼ �3H%QEð1þ wQEÞ: (145)

On the other hand, in the presence of a barotropic fluid of

energy density %b, for instance relativistic or nonrelativis-

tic matter, the Hubble parameter is given by the first

Friedmann equation as

H2 ¼ 1

3M2
P

ð%b þ %QEÞ; (146)

which, in terms of the relative abundances � ¼
%=3M2

PH
2, can be written as the cosmic sum rule �b þ

�QE ¼ 1. The cosmological model described by

Eqs. (141) and (146) with a scalar-field evolving in an

exponential potential has been widely studied in the litera-

ture (for a recent review see [76]). We want to recap the

main results established in the literature and show how they

apply to our model.

For the qualitative analysis of the system we rewrite

Eqs. (141) and (146) in terms of the observable quantities

�QE and �QE � 1þ wQE as (cf. e.g. [77])

�0
QE¼�3�QEð2��QEÞþ4�ð2��QEÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3�QE�QE

q

; (147)

�0
QE ¼ 3ð�b � �QEÞ�QEð1��QEÞ; (148)

where prime, as before, denotes the derivative with respect

to the number of e-folds N ¼ lna. Further, �b � 1þ wb,

where wb is the equation of state parameter of the baro-

tropic fluid. For radiation, one has �b ¼ 4=3, while for

nonrelativistic matter, �b ¼ 1. An additional dark-energy

component with constant equation of state would have

�b < 2=3. In the scale-invariant model analyzed here, a

component of this type is present as soon as the action (11)

contains a term

4 with 
> 0 (cf. also Sec. II A). For the
reasons mentioned in Sec. II A 3, we will mainly focus on

the case 
 ¼ 0, in which only ~� will be responsible for

dark energy.21 It has been shown in [34,36,78] that as

long as 0 � �b � 2 and depending on the value of the

parameter �, the system approaches one of two qualita-

tively very different attractor solutions.

For 4� >
ffiffiffiffiffiffiffiffi

3�b

p
, the variables evolve towards the stable

fixed point �QE ¼ 3�b=16�
2 and �QE ¼ �b. This means

that the scalar field inherits the equation of state parameter

of the barotropic fluid. Hence, the energy density of the

scalar-field scales like the energy density of the fluid.

Unless the scalar field gives the dominating contribution

to the energy density from the very beginning, it will never

become dominating. Therefore, these so-called ‘‘scaling

solutions’’ cannot be responsible for the late-time accel-

eration of the Universe. In this case, the accelerated

expansion must be due to another mechanism, e.g. a baro-

tropic dark-energy component with �b < 2=3. In other

words, a scaling field can at best provide a small contribu-

tion to dark energy.

For 4� <
ffiffiffiffiffiffiffiffi

3�b

p
, the situation is very different. The stable

fixed point is given by�QE ¼ 1 and�QE ¼ 16�2=3. Hence,
in this case, the asymptotic solution describes a scalar-field-

dominated universe, which is accelerating if 4� <
ffiffiffi

2
p

, i.e.

�
 &
1
2
. This means that the scalar field with exponential

potential and 4� <
ffiffiffiffiffiffiffiffi

3�b

p
can describe the late-time accel-

eration of the Universe, provided that the system has not

quite reached the fixed point by today.22

In the previous section, we have found that our model

can successfully describe inflation if �
 & 8� 10�3. This

yields the bound 4� ’ 4
ffiffiffiffiffiffi

�


p

& 0:36. Hence, for this pa-

rameter choice, the system evolves toward the second type

of fixed point, corresponding to a scalar-field-dominated

universe in accelerated expansion. This allows us to draw a

nontrivial conclusion. Namely, if the parameters of the

model are fixed by the requirements of inflation, and for


 ¼ 0, the late-time behavior of the system necessarily

corresponds to an accelerating universe, dominated by ~�.
Current observations [64] show that the present abun-

dance of dark energy is �0
DE ’ 0:74. For 
 ¼ 0, dark

energy is entirely due to ~�, and we can identify �0
QE ¼

�0
DE and w0

QE ¼ w0
DE. The observed value shows that dark

energy is not clearly dominating the present Universe,

which means that the system must not have reached its

fixed point yet.

We now want to qualitatively discuss the scenario in

which the field ~� is irrelevant during the radiation- and

matter-dominated stages, but has become important re-

cently and is now responsible for the present accelera-

tion of the Universe. During the radiation- and matter-

dominated stages, one must have �QE � 1. As long as

this is the case, the second term on the right-hand side

of Eq. (147) is small compared to the first one. Hence,

�QE is driven toward a very small value �QE � 1 and

wQE ’ �1. This shows that, even if initially %QE were

21Let us mention that, even in the case 
< 0, appropriate
initial conditions lead to a dark-energy dominated phase.

22As has been shown in [79], this statement holds even
if 4� >

ffiffiffi

2
p

.
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dominated by kinetic energy, the kinetic part would

soon die away and �QE become potential dominated.23

As a consequence, the value of ~� is almost constant during

the radiation- and matter-dominated epochs and remains

practically equal to its value at the end of reheating.

However, since %QE decreases more slowly than the energy

densities of radiation and matter,�QE becomes relevant at

some point. At this point, ~� starts rolling down the poten-

tial, and �QE starts growing toward its attractor value. The

initial value of �QE has to be small enough such that �QE

remains negligible throughout radiation domination and

only becomes important in the late matter-dominated

stage. The described scenario in which the quintessence

field remains constant for a long time and then starts roll-

ing down the potential goes under the name of ‘‘thawing

quintessence’’ [37]. Two recent studies treating the case of

an exponential potential can be found in [77,80].

In the approximation where �QE ¼ 1þ wQE � 1, the

system of equations (147) and (148) can be integrated, and

one finds the interesting relation [77]

1þ wQE ’ 16�2

3
Fð�QEÞ; (149)

where

Fð�QEÞ¼

2

6

4

1
ffiffiffiffiffiffiffiffiffiffi

�QE

q �1

2

�

1

�QE

�1

�

ln
1þ

ffiffiffiffiffiffiffiffiffiffi

�QE

q

1�
ffiffiffiffiffiffiffiffiffiffi

�QE

q

3

7

5

2

: (150)

The function Fð�QEÞ is monotonically increasing from 0

to 1 (cf. Fig. 8). For the observed value �0
QE ¼ �0

DE ’
0:74, one gets Fð�0

QE ¼ 0:74Þ ’ 0:5. Inserting this into

Eq. (149) and identifying w0
QE ¼ w0

DE, we obtain the fol-

lowing result for the present equation of state parameter of

dark energy (provided by quintessence field ~�)

1þ w0
DE ’ 8

3

�


1þ 6�


: (151)

We can now plug into this relation the upper bound �
 &

0:008 (cf. Eq. (111)), derived from the observational bound

on ns, as well as the theoretical lower bound �
 > 0, such

that (cf. Fig. 9)

0 � 1þ w0
DE & 0:02: (152)

Thus, we have found that the parameter bound from in-

flation implies a strong bound on the equation of state

parameter of dark energy. This is a rather nontrivial result.

The current observational constraint �0:52< 1þ w0
DE <

0:32 (WMAP7þ BAOþH0 at 99% confidence level

[64]) is much too weak to compete with this theoretical

prediction. From this point of view, the energy density %QE

is practically indistinguishable from a cosmological con-

stant. Nevertheless, the observational bound is expected to

improve considerably in the near future. While the Dark

Energy Survey collaboration aims at measurement of w0
DE

with an accuracy of�5% [81], the expected accuracy from

the Euclid consortium is �2% [82]. These measurements,

together with the projected improvement on the determi-

nation of ns from the Planck mission [74], should provide

an important consistency check of the Higgs-dilaton model

in the near future.

In fact, the theoretical predictions of our model (with


 ¼ 0) can be further refined. Namely, since both the

scalar spectral index ns and the equation of state parameter

w0
DE depend mainly on �
, it is possible to establish a

functional relation between these two very different ob-

servables. Combining Eq. (151) with the approximate re-

lation (116) allows us to express the scalar tilt ns as a

function of �0
DE and the number of e-folds N
 as

ns � 1 ’ � 12�0
DE

4� 9�0
DE

coth

�

6N
�0
DE

4� 9�0
DE

�

: (153)

We plot this relation and the corresponding numerical

result in Fig. 9. The plot is equivalent to the plot of

Fig. 4, except that the independent variable is changed

from �
 to �DE ¼ 1þ w0
DE with the help of Eq. (151).

As before, we see that the result is rather insensitive

to variations of N
 in the range �N

min <N
 < �N


max,

cf. Eqs. (122) and (123). One can also derive a relation

involving the respective second-order quantities

QE 0.739

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

QE

F QE

FIG. 8. The function Fð�QEÞ. Note that it becomes exactly 1=2
for�QE ¼ 0:739, which is very close to the observed abundance

of dark energy �0
DE ¼ 0:725	 0:048 (WMAP7þ BAOþH0

at 99% confidence level [64]). At this value, the functional

relation between the spectral tilt ns of CMB anisotropies and

the equation of state parameter w0
QE is particularly simple.

23In principle, one could imagine a scenario in which, after
reheating, �QE is non-negligible, as long as �QE ’ 1. Since the
kinetic part of %QE decreases as a�6, it would soon fall below
%radiation, and radiation would start dominating, provided that the
potential energy of ~� is small enough. However, we do not
expect this to happen in our model, because the field ~� is almost
constant during reheating.
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�� ’ 48wa
DE

ð�4þ 9�0
DEÞ3

�

ð�4þ 9�0
DEÞ coth

�

6N
�0
DE

4� 9�0
DE

�

þ 6N
�0
DEsinh

�2

�

6N
�0
DE

4� 9�0
DE

��

; (154)

connecting the running �� of the scalar spectral index to

the equation of state parameter w0
DE of dark energy and its

rate of change wa
DE, defined through

wDEðaÞ ¼ w0
DE þ wa

DE lnða=a0Þ:

While the first-order consistency condition (153) should

become testable in the near future, a the test of the second-

order relation (154) will be more challenging.

We have mentioned previously that the parameter region

where ns is well-approximated by the asymptotic linear in

�
 is not excluded by observations. In terms of �DE, this

region is given by �DE � 1 and 1<
6N
�0

DE

4�9�0
DE

’ 3
2
N
�0

DE, in

which the relation (153) becomes approximately

�3ð1þw0
DEÞ’ ðns�1Þ; for

2

3N
<�DE�1; (155)

which can equivalently be written as a relation between

‘‘first orders’’ in the early and the late Universe:

d ln%0
DE

d lna
’ d lnP�

d lnk
: (156)

Whether this is a fundamental consequence of SI or just a

coincidence remains yet unclear. Note that if relation (156)

should hold, it would not only imply that the deviation �0
DE

of dark energy from a cosmological constant is propor-

tional to the deviation ns of the primordial spectrum from

the scale-invariant one. In fact, if we could take it at face

value, it would imply a concrete value for the present

abundance of dark energy: Fð�DEÞ ¼ 1=2 ) �DE ¼
0:739, surprisingly close to the observed value. In the

same region of parameter space, also the respective

second-order quantities are proportional to each other,

again for �DE ¼ 0:74,

3wa
DE ’ �� ; (157)

or equivalently

d2 ln%0
DE

ðd lnaÞ2 ’ d2 lnP�

ðd lnkÞ2 : (158)

Let us stress again that the links between the observables

ns and �� , related to inflation, and w
0
DE and w

a
DE, related to

dark energy, are nontrivial predictions of the present

model. They relate two a priori totally independent periods

and allow us to use the measurable observables from CMB

anisotropies to make predictions for the widely unknown

DE sector. On the other hand, one should bear in mind that

these results rely on several important assumptions. In

particular, the functional relations are based on the require-

ment that the Jordan frame potential has a flat direction

(
 ¼ 0).

B. Dark-energy constraints on initial conditions

Let us now show how the obtained results justify the

assumption we made about inflation taking place in

the scale-invariant region. From Eq. (152), we infer that

%QE is dominated by the potential energy contribution,

and, hence, %QE ’ VQEð~�Þ. This allows us to deduce from

the observational value �0
QE ¼ �0

DE ’ 0:74 today’s value

of ~�,

~� 0 ’ � 1

4�
MP ln

�

�4
�eff

�0

�

; (159)

where we have defined an effective cosmological constant

as

�eff � 3M2
PH

2
0�

0
DE ’ 10�120M4

P: (160)

Now, numerical simulations show that the field ~� has been

almost constant from the end of inflation till today.

Therefore, the value of ~�0 provides an order of magnitude

estimate for the value of ~� at the end of inflation. During the

analysis of inflation, we have made the assumption that the

whole period of observable inflation, i.e. the last �60
e-folds, took place in the scale-invariant region, where �1,

FIG. 9 (color online). This plot shows the approximate func-

tional relationship between ns and w0
DE. The plain curves are

numerical results. The red (upper) one is obtained for %rh ¼
%max
rh (instant reheating), while the blue (lower) one represents

the case %rh ¼ %min
rh (long reheating). The dashed curves are

obtained from the approximate relation (153). The red (upper)

one for N
 ¼ �N

max ¼ 59 (instant reheating), and the blue

(lower) one for N
 ¼ �N

min ¼ 57 (long reheating). The dashed

straight line corresponds to the relation (155), approximately

valid in the region 2
3N
 < 1þ w0

DE � 1. Note that it does not

exactly correspond to the straight line in Fig. 4, which would not

correspond to a straight line in the present plot. The horizontal

line and the shaded regions correspond to the observational mean

value and the 1� and 3� confidence intervals, cf. (105).
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�2 � 1, and, hence, � ’ cst:. We can now check this as-

sumption by computing �1 and �2, cf. Eqs. (53) and (54) at

� ’ �
 ’ �end ’ �~�0. Using Eq. (159) and working in the

usual approximation �
 � 1 and �h � 1, we obtain

�1 ’
144�2


�
2
h

�

�eff

M4
P

1

sin4�
;

�2 ’
24�
�

2
h

�

�eff

M4
P

1

sin2� cos�
:

(161)

FromEqs. (112) and (114), we have �end ’ 2 
 31=4 ffiffiffiffiffiffi

�


p

and

�
 ’ arccosðe�4�
N

Þ. Evaluating �1 and �2 for values �
,

�h, and N
 of the orders of magnitude found in Sec. III D

and 0:1< �< 1, we find that for the whole interval �end <
�< �
, �1, �2 ��1, and, hence, that the deviation from

exact scale invariance is negligible. This justifies a poste-

riori the neglecting of �0 during inflation. Let us note that

this conclusion is not altered if one takes into account the

slight change of the scalar fields between the end of inflation

and today. The change of ~� during the reheating oscillations

and during the thawing quintessence stage are of the percent

level.

In Sec. III D, we have seen that, for a successful descrip-

tion of inflation, the initial conditions for the scalar fields

need to satisfy �in > �
, respectively, hin

in

�
ffiffiffiffiffiffiffiffiffiffiffi

1þ6�


1þ6�h

q

tan�
.

We recall that, for typical values �
 ¼ 0:005, �h ¼ 65 000,

and N
 ¼ 58, one obtains hin

in

* 0:005. The observational

value for �0
DE ’ 0:74 (respectively, Eq. (159)), together

with the knowledge that the field � remains almost

constant from horizon crossing during inflation until

today, allows us to further restrict the region of allowed

initial conditions (cf. Fig. 7). Namely, if ~� is alone

responsible for dark energy, and as long as the initial

conditions lie in the scale-invariant region (�1, �2 � 1),
the relation (159) yields approximately the initial value for

the field �, i.e.

�in ’ �
 ’ �end ’ �~�0 ’ �MP

4ti
ln

�

�4
�eff

�0

�

: (162)

In terms of the original variables, this corresponds to a

relation between
in and hin given by (�
 � 1 and�h � 1):


2
in

�
1=2
0

þ 6�h

h2in

�1=2
0

’ 1

�


M2
P

�1=2
eff

� 1060: (163)

Together with the bound hin=
in * 10�3, this shows

that initial conditions have to approximately satisfy

hin=�
1=4
0 * 1030. Hence, the initial value of h has to be

much larger than the scale �
1=4
0 . For ~� to exactly produce

the observed abundance of dark energy, the initial

values have to be chosen precisely on a line in the (�, �)-,
respectively, the (
, h)-plane. This tuning of initial

conditions is commonly referred to as the Cosmic

Coincidence Problem (see e.g. [83]).24 Our model does not

alleviate this problem with respect to other quintessence

models. In fact, if one allows for an additional dark-energy

component, present if 
> 0, the set of acceptable initial

conditions extends to an infinite region. In that case,while the

fine-tuning issue does not concern the initial conditions, the

parameter 
 has to be finely tuned. Hence, in either case

some ‘‘fine-tuning’’ is needed. At this point, it should be

recalled that, although the Cosmic Coincidence Problem is

an undesirable feature, it is not a consistency problem and,

therefore, does not invalidate this and other models of dy-

namical dark energy.

Finally, we can briefly comment on the case of initial

conditions lying in the region where �0 cannot be ne-

glected. Initial conditions lie in this region (�2 > 1) when-
ever �in is sufficiently close to �=2, respectively, when
hin=
in is sufficiently big. Note, however, that as a conse-

quence of condition (162) and for typical parameter values,

this only happens for extreme values �=2� �in & 10�112,

respectively, hin=
in * 10109. In that region, � is no longer

constant. The E-frame potential (29) becomes dominated

by the term proportional to �0, i.e. ~Uðh; 
Þ ’ ~V�0
ðh; 
Þ ¼

M4
P�0

ð�


2þ�hh

2Þ2 . The effect of this potential is to drive the scalar

fields to larger values of 
 and h, respectively, larger values
of �, before they enter into the scale-invariant region.

Qualitatively, this means that, in the non-scale-invariant

region, the line of successful initial conditions is no longer

given by Eq. (162) (respectively, Eq. (163)) but turns

towards the origin. Still, the discussion related to the

Cosmic Coincidence Problem equally applies to initial

conditions in this region.

V. CONCLUSIONS

We have considered a minimal scale-invariant extension

of the standard model, nonminimally coupled to gravity,

including a scalar dilaton. All mass scales at the classical

level, including the Planck scale and the Electroweak scale,

are induced by the spontaneous breaking of the scale

invariance. The physical dilaton is almost massless but

hardly affects particle physics phenomenology. Our find-

ings rely on SI, both at the classical and the quantum level

[2,3]. The replacement of standard general relativity by

unimodular gravity gives rise to an arbitrary constant in the

equations of motion, which, in a minimally coupled theory,

would play the role of a cosmological constant. However,

due to the nonminimal couplings between the scalar and

the gravitational sectors, this constant gives rise to a non-

trivial run-away potential for the dilaton. As a conse-

quence, the dilaton can play the role of a quintessence

field, responsible for a late dark-energy dominated stage.

For appropriate values of the free parameters and initial

24For a discussion of the fine-tuning issue in the particular case
of a quintessence field with an exponential potential, see [79].
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conditions, the constructed model presents a rich cosmo-

logical phenomenology, providing mechanisms both for

inflation and dark energy.

We find that the amplitude P� of CMB anisotropies

depends mainly on the ratio �h=
ffiffiffiffi

�
p

, while the spectral

tilt ns, the associated running �� , as well as the scalar-to-

tensor ratio r depend mainly on �
. The observational

limits on P� and ns put bounds on �h=
ffiffiffiffi

�
p

and �
, which

in turn provide the bounds �� & �0:000 15 and r *

0:0009. In addition, the model predicts the bounds ns <
0:97, �� >�0:0006, and r < 0:0033, which are obtained

in the limit �
 ! 0 and correspond to the predictions of the

Higgs-Inflation model of [1]. The confrontation of these

bounds with the results of the Plack satellite mission will

constitute an important test of the Higgs-dilaton model.

Neither SI nor unimodular gravity forbid the existence

of a quartic term 

4 in the Jordan frame, which would

correspond to a proper cosmological constant in the

Einstein frame. However, the parameter choice forbidding

such a term (
 ¼ 0) appears to be specially interesting,

both from the cosmological and the quantum theory point

of view. For this choice, the dilaton alone is responsible for

dark energy. The associated equation of state parameter

w0
DE is found to practically depend on �
 only. This has the

interesting consequence that the spectral index ns can be

expressed as ns ¼ nsðw0
DEÞ, thus relating an observable

from the very early Universe to an observable of the

present Universe. For a particular parameter region, this

relation takes the simple form �3ðw0
DE þ 1Þ ’ ðns � 1Þ.

The observational bound on ns translates into a bound

0 � 1þ w0
DE & 0:02, which might be tested by future

experiments. Further, we were able to derive a relation

between the running of the spectral index �� and the rate

of change 3wa
DE of the equation of state parameter. Notice

that for the dilaton to provide the measured abundance of

dark energy, initial conditions have to be finely tuned.

Hence, as is the case for all quintessence models, the

Cosmological Coincidence Problem remains unsolved.

ACKNOWLEDGMENTS

We thank Julien Lesgourgues and Andrei Linde for

helpful discussions and useful comments. J. G. B. thanks

the Institute of Theoretical Physics in Geneva for its hos-

pitality. J. R. thanks EPFL for its hospitality. We also

acknowledge financial support from the Madrid Regional

Government (CAM) under the Program No. HEPHACOS

P-ESP-00346 and MICINN under Grant No. AYA2009-

13936-C06-06. We also participate in the Consolider-

Ingenio 2010 PAU (CSD2007-00060), as well as in the

European Union Marie Curie Network UniverseNet under

Contract No. MRTN-CT-2006-035863. J. R. would like to

acknowledge financial support fromUAM/CSIC. Thework

of M. S. and D. Z. was supported by the Swiss National

Science Foundation and by the Tomalla Foundation.

APPENDIX A: HIGGS-DILATON INFLATION

IN THE JORDAN FRAME

This appendix is devoted to the study of the inflationary

trajectories in the Jordan frame. We perform an analytical

study of the trajectories of the scalar fields during slow roll

and compare it with the results of an exact numerical

computation in Jordan and Einstein representations. The

numerical computation in the Einstein frame is performed

in the way described in [55] and takes into account the

nonminimal kinetic terms in Eq. (25). At the classical

level, different frames just correspond to different choices

of variables, and, therefore, the final physical results

should not differ. Notice, however, the different units

used in every frame. For homogeneous fields, h ¼ hðtÞ
and 
 ¼ 
ðtÞ, the conformal transformation of the metric

from the Jordan to the Einstein frame (22) depends only on

time � ¼ �ðtÞ and implies a redefinition of the cosmic

time, d~t ¼ �ðtÞdt, as well as the scale factor, ~að~tÞ ¼
�ðtÞaðtÞ, in the Einstein frame. The associated Hubble

rate should be also redefined as

~H � 1

~a

d~a

d~t
¼ H

�

�

1þ�0

�

�

; (A1)

where the prime denotes derivatives with respect to the

number of e-folds N in the Jordan frame. Relation (A1)

allows us to easily obtain a useful relation between the

number of e-folds computed in both frames,

� � dN

d ~N
¼ 1� d ln�

d ~N
: (A2)

Integrating this equation from the initial field configu-

ration �0 at the beginning of inflation, we get

~N � N ¼ ln
�ð�Þ
�ð�0Þ

� 0: (A3)

As expected, the number of e-folds is not an invariant

under conformal transformations. However, the differ-

ence between the two frames turns out to be practically

irrelevant during the inflationary stage. To obtain an

upper bound, we focus on the value at the end of

inflation, lnð�end=�0Þ, where the discrepancy between
~N and N is larger. As we saw in Sec. III A 2, the

inflationary are well described by ellipses with constant

radius, r20 � ð1þ 6�hÞh20 þ ð1þ 6�
Þ
2
0. Here, h0 and


0 are the initial values for the Higgs and dilaton fields,

respectively. Let us assume that they are roughly equal.

In this case, it is possible to relate the initial and final

amplitude of the h field to obtain

hend
h0

’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6�


1þ 12�


s

; (A4)

where we have used �h � �
 as well as the approxi-

mate relation among the field amplitudes at the end of

inflation 
 ’
ffiffiffiffi

�h

�


q

h. Taking into account Eq. (A4), we
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obtain �end=�0 ’
ffiffiffiffiffiffiffiffiffiffiffiffiffi

12�


1þ12�


r

, which corresponds, for a

typical value �
 ¼ 0:005, to

�

�

�

�

�

�

�

�

N � ~N

N

�

�

�

�

�

�

�

�

� 2%: (A5)

It can be shown numerically that, during most of the

inflationary stage, the difference among the number of

e-folds defined in both frames (A2) is indeed quite

smaller than the previous bound. Given the small dif-

ference between the number of e-folds defined in Jordan

and Einstein frames, we will from now on identify

N ¼ ~N. Let us now consider the Higgs-dilaton

Lagrangian density in the Jordan frame (19). We will

assume that the initial values of the fields are such that

they evolve within the scale-invariant region, in which

the �0 term in Eq. (21) can be neglected. Far away

from the valleys of the potential, the contribution of

terms proportional to ��Oð10�30Þ can also be safely

ignored. The Klein-Gordon equations of motion for

homogeneous scalar fields are then given by

€� a þ 3H _�a þ V ;a � 1
2
f;aR ¼ 0; (A6)

where R is the Ricci scalar, given by R ¼ 6ð _H þ 2H2Þ.
In the Jordan frame, field-space indices are raised and

lowered with the Euclidean metric �ij. The two

Friedmann equations can be written as

3H2fð�Þ ¼ 1
2
_�a _�a þ Vð�Þ � 3H@0fð�Þ; (A7)

fð�ÞR¼�3ð@20þ3H@0Þfð�Þ� _�a _�aþ4Vð�Þ: (A8)

If we assume the fields to be homogenous during inflation,

together with the standard slow-roll approximation,
_�a _�a � V, €�a � V ;a, and €�a � H _�a, the equations of

motion for the scalar fields (A6) expressed in terms of the

number of e-folds N, become

3H2�a0 ’ �V ;a þ 1
2
f;aR; hh (A9)

while the Friedmann equations (A7) and (A8) simplify,

respectively, to (note that _f ¼ Hf0)

V ’ 3H2ðfþ f0Þ; (A10)

fR ’ 4V � 9H2f0: (A11)

In the last equation, we have assumed extended slow-roll

conditions, namely1þ 6�a
_�a � Vð�Þ and 1þ 6�a

_�a �
H _fð�Þ, which should be checked numerically a posteriori.

Equations (A10) and (A11) imply that the Ricci scalar can

be approximated as R ’ 12H2ð1þ f0=ð4fÞÞ, which does

not correspond to the usual approximation _H � H2.

Although it can be checked numerically that the contribu-

tion of the extra term f0=ð4fÞ is indeed very small, it must

be explicitly maintained to preserve the conservation of the

dilatational current in the slow-roll approximation. Indeed,

combining Eqs. (A9)–(A11), we obtain the field-space

constraint

ð1þ 6�
Þ

0 þ ð1þ 6�hÞhh0 ’ 0; (A12)

which, as shown in Sec. III A 2, gives rise (in those cases in

which the �0 term can be neglected) to inflationary tra-

jectories that can be properly described as ellipses in field

space. Therefore, it will be useful to apply the same

strategy of Sec. IIIA 2 and rewrite the problem in terms

of polar coordinates (r, z), defined as

r2 � ð1þ 6�hÞh2 þ ð1þ 6�
Þ
2;

z �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ 6�hÞ
ð1þ 6�
Þ

s

h



;

(A13)

where z ¼ tan�, cf. Eq. (43). The evolution equation for

the previous variables can be computed making use of

Eqs. (A9)–(A11) to obtain
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FIG. 10 (color online). Evolution of the angular variable z as a function of the number of e-folds N and detailed view of the last 60
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r0 ’ 0;
z0

z
’ �4�


z2 þ &

z2 þ &þ 2�


�

1þ 1

z2

�

; (A14)

where & depends on the couplings �h, �
 and is given by

Eq. (47). The previous equations can be easily solved to

obtain the evolution of the radial and angular coordinates

with the number of e-folds:

r ¼ r0;
ð1þ z2Þ1�2�
ðz2 þ &Þ2�


ð1þ z20Þ1�2�
ðz20 þ &Þ2�

¼ e�8�
N ; (A15)

where r0 and z0 stand for the initial values of the fields.

The comparison between the slow-roll solution (A15) for

the z variable and the exact solutions obtained numerically

in Jordan and Einstein frames is shown in Fig. 10. Notice

that, as pointed out above, we have identified the number

of e-folds computed in Jordan with that computed Einstein

frame, N ’ ~N, given the small difference between the two

during the whole inflationary period. As expected, the

evolution of the dimensionless quantity z does not depend
on the chosen frame. Making use of Eq. (A15), it is also

possible to compute the corresponding values of the origi-

nal Higgs and dilaton fields, which, in terms of the z
variable, can be written as

hðNÞ ¼ rðNÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 6�h

p ð1þ z�2ðNÞÞ�1=2;


ðNÞ ¼ rðNÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 6�


p ð1þ z2ðNÞÞ�1=2:

(A16)

The comparison with the numerical solutions is shown in

Fig. 11.

[1] M. Shaposhnikov and D. Zenhausern, Phys. Lett. B 671,

187 (2009).

[2] M. Shaposhnikov and D. Zenhausern, Phys. Lett. B 671,

162 (2009).

[3] F. Englert, C. Truffin, and R. Gastmans, Nucl. Phys. B117,

407 (1976).

[4] F. L. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659,

703 (2008).

[5] P. Jain and S. Mitra, Mod. Phys. Lett. A 22, 1651

(2007).

[6] P. Jain and S. Mitra, Mod. Phys. Lett. A 25, 167 (2010).

[7] D. S. Salopek, J. R. Bond, and J.M. Bardeen, Phys. Rev. D

40, 1753 (1989).

[8] K. Nakamura et al. (Particle Data Group), J. Phys. G 37,

075021 (2010).

[9] T. Asaka, S. Blanchet, and M. Shaposhnikov, Phys. Lett. B

631, 151 (2005).

[10] T. Asaka and M. Shaposhnikov, Phys. Lett. B 620, 17

(2005).

[11] P. A.M. Dirac, Proc. R. Soc. A 165, 199 (1938).

[12] D. Blas, M. Shaposhnikov, and D. Zenhausern, Phys. Rev.

D 84, 044001 (2011).

[13] M. E. Shaposhnikov and I. I. Tkachev, Phys. Lett. B 675,

403 (2009).

[14] M. E. Shaposhnikov and F.V. Tkachov, arXiv:0905.4857.

[15] M. Shaposhnikov, in Workshop on Astroparticle Physics:

Current Issues (APCI07), Budapest, Hungary, 2007 (un-

published), arXiv:0708.3550.

[16] B. Allen and A. Folacci, Phys. Rev. D 35, 3771

(1987).

[17] P. Bizon and A. Rostworowski, Phys. Rev. Lett. 107,

031102 (2011).

[18] I. Antoniadis, J. Iliopoulos, and T. N. Tomaras, Phys. Rev.

Lett. 56, 1319 (1986).

0 50 100 150 200
0

2

4

6

8

10

N

h
N

0 50 100 150 200
0

1000

2000

3000

4000

5000

6000

N

N

FIG. 11 (color online). Evolution of the Higgs h and dilaton 
 fields as a function of the number of e-folds N. The green (dotted-

dashed) lines represent the approximate slow-roll solutions given by Eq. (A16), while the red (solid) and blue (dashed) curves are exact

numerical results in the Jordan and Einstein frames, respectively.

HIGGS-DILATON COSMOLOGY: FROM THE EARLY TO . . . PHYSICAL REVIEW D 84, 123504 (2011)

123504-27

http://dx.doi.org/10.1016/j.physletb.2008.11.054
http://dx.doi.org/10.1016/j.physletb.2008.11.054
http://dx.doi.org/10.1016/j.physletb.2008.11.041
http://dx.doi.org/10.1016/j.physletb.2008.11.041
http://dx.doi.org/10.1016/0550-3213(76)90406-5
http://dx.doi.org/10.1016/0550-3213(76)90406-5
http://dx.doi.org/10.1016/j.physletb.2007.11.072
http://dx.doi.org/10.1016/j.physletb.2007.11.072
http://dx.doi.org/10.1142/S0217732307023754
http://dx.doi.org/10.1142/S0217732307023754
http://dx.doi.org/10.1142/S0217732310032317
http://dx.doi.org/10.1103/PhysRevD.40.1753
http://dx.doi.org/10.1103/PhysRevD.40.1753
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1016/j.physletb.2005.09.070
http://dx.doi.org/10.1016/j.physletb.2005.09.070
http://dx.doi.org/10.1016/j.physletb.2005.06.020
http://dx.doi.org/10.1016/j.physletb.2005.06.020
http://dx.doi.org/10.1098/rspa.1938.0053
http://dx.doi.org/10.1103/PhysRevD.84.044001
http://dx.doi.org/10.1103/PhysRevD.84.044001
http://dx.doi.org/10.1016/j.physletb.2009.04.040
http://dx.doi.org/10.1016/j.physletb.2009.04.040
http://arXiv.org/abs/0905.4857
http://arXiv.org/abs/0708.3550
http://dx.doi.org/10.1103/PhysRevD.35.3771
http://dx.doi.org/10.1103/PhysRevD.35.3771
http://dx.doi.org/10.1103/PhysRevLett.107.031102
http://dx.doi.org/10.1103/PhysRevLett.107.031102
http://dx.doi.org/10.1103/PhysRevLett.56.1319
http://dx.doi.org/10.1103/PhysRevLett.56.1319


[19] N. C. Tsamis and R. P. Woodard, Phys. Lett. B 301, 351

(1993).

[20] N. C. Tsamis and R. P. Woodard, Ann. Phys. 238, No. 1,

1 (1995).

[21] I. Antoniadis, P. O. Mazur, and E. Mottola, New J. Phys. 9,

11 (2007).

[22] A.M. Polyakov, Nucl. Phys. B834, 316 (2010).

[23] J. J. van der Bij, H. van Dam, and Y. J. Ng, Physica

(Amsterdam) 116A, 307 (1982).

[24] F. Wilczek, Phys. Rep. 104, 143 (1984).

[25] A. Zee, Proceedings of 20th Annual Orbis Scientiae,

Miami, Florida, 1983 (Plenum, NY, 1985), 211.

[26] W. Buchmuller and N. Dragon, Phys. Lett. B 207, 292

(1988).

[27] W.G. Unruh, Phys. Rev. D 40, 1048 (1989).

[28] S. Weinberg, Rev. Mod. Phys. 61, 1 (1989).

[29] M. Henneaux and C. Teitelboim, Phys. Lett. B 222, 195

(1989).

[30] W. Buchmuller and N. Dragon, Phys. Lett. B 223, 313

(1989).

[31] F. Bezrukov, D. Gorbunov, and M. Shaposhnikov, J.

Cosmol. Astropart. Phys. 06 (2009) 029.

[32] J. Garcia-Bellido, D. G. Figueroa, and J. Rubio, Phys. Rev.

D 79, 063531 (2009).

[33] F. Bezrukov, D. Gorbunov, M. Shaposhnikov,

arXiv:1106.5019.

[34] C. Wetterich, Nucl. Phys. B302, 668 (1988).

[35] B. Ratra and P. J. E. Peebles, Phys. Rev. D 37, 3406 (1988).

[36] P. G. Ferreira and M. Joyce, Phys. Rev. D 58, 023503

(1998).

[37] R. R. Caldwell and E.V. Linder, Phys. Rev. Lett. 95,

141301 (2005).

[38] S. R. Coleman, J. Wess, and B. Zumino, Phys. Rev. 177,

2239 (1969).

[39] N. Makino and M. Sasaki, Prog. Theor. Phys. 86, 103

(1991).

[40] M. E. Peskin and D.V. Schroeder, An Introduction to

Quantum Field Theory (Addison-Wesley, Reading,

Massachussetts, 1995) p. 842.

[41] J. Garcia-Bellido and D. Wands, Phys. Rev. D 52, 6739

(1995).

[42] J. Garcia-Bellido and D. Wands, Phys. Rev. D 53, 5437

(1996).

[43] F. Di Marco, F. Finelli, and R. Brandenberger, Phys. Rev.

D 67, 063512 (2003).

[44] C.M. Peterson and M. Tegmark, Phys. Rev. D 83, 023522

(2011).

[45] D. H. Lyth, in Summer School in High Energy Physics and

Cosmology, ICTP, 1993 (unpublished), arXiv:astro-ph/

9312022.

[46] D. J. Schwarz, C.A. Terrero-Escalante, and A.A. Garcia,

Phys. Lett. B 517, 243 (2001).

[47] A. Sakharov, Zh. Eksp. Teor. Fiz. 49, 245 (1965).

[48] V. Lukash, Pis’ma Zh. Eksp. Teor. Fiz. 31, 631 (1980);

[JETP Lett. 31, 596 (1980)].

[49] V. F. Mukhanov and G.V. Chibisov, Pis’ma Zh. Eksp.

Teor. Fiz. 33, 549 (1981) [JETP Lett. 33, 532 (1981)].

[50] G. V. Chibisov and V. F. Mukhanov, Mon. Not. R. Astron.

Soc. 200, 535 (1982).

[51] D. H. Lyth, Phys. Rev. D 31, 1792 (1985).

[52] V. F. Mukhanov, H. A. Feldman, and R.H. Brandenberger,

Phys. Rep. 215, 203 (1992).

[53] J.M. Bardeen, Phys. Rev. D 22, 1882 (1980).

[54] H. Kodama and M. Sasaki, Prog. Theor. Phys. Suppl. 78, 1

(1984).

[55] C. Ringeval, Lect. Notes Phys. 738, 243 (2008).

[56] M. Sasaki, Prog. Theor. Phys. 76, 1036 (1986).

[57] V. F. Mukhanov, Zh. Eksp. Teor. Fiz. 94N7, 1 (1988)

[Sov. Phys. JETP 67, 1297 (1988)].

[58] C. Gordon, D. Wands, B.A. Bassett, and R. Maartens,

Phys. Rev. D 63, 023506 (2000).

[59] A. R. Liddle and D.H. Lyth, Phys. Rep. 231, 1 (1993).

[60] T. Chiba and M. Yamaguchi, J. Cosmol. Astropart. Phys.

01 (2009) 019.

[61] S.M. Leach, A. R. Liddle, J. Martin, and D. J. Schwarz,

Phys. Rev. D 66, 023515 (2002).

[62] F. Finelli and R.H. Brandenberger, Phys. Rev. D 62,

083502 (2000).

[63] S. Tsujikawa and B.A. Bassett, Phys. Lett. B 536, 9

(2002).

[64] E. Komatsu et al. (WMAP Collaboration), Astrophys. J.

Suppl. Ser. 192, 18 (2011).

[65] J. C. Mather, D. J. Fixsen, R. A. Shafer, C. Mosier, and

D. T. Wilkinson, Astrophys. J. 512, 511 (1999).

[66] A. O. Barvinsky, A.Y. Kamenshchik, and A.A.

Starobinsky, J. Cosmol. Astropart. Phys. 11 (2008) 021.

[67] A. De Simone, M. P. Hertzberg, and F. Wilczek, Phys.

Lett. B 678, 1 (2009).

[68] F. L. Bezrukov, A. Magnin, and M. Shaposhnikov, Phys.

Lett. B 675, 88 (2009).

[69] F. Bezrukov and M. Shaposhnikov, J. High Energy Phys.

07 (2009) 089.

[70] F. Bezrukov, A. Magnin, M. Shaposhnikov, and S.

Sibiryakov, J. High Energy Phys. 01 (2011) 016.

[71] S. Ferrara, R. Kallosh, A. Linde, A. Marrani, and A. Van

Proeyen, Phys. Rev. D 82, 045003 (2010).

[72] S. Ferrara, R. Kallosh, A. Linde, A. Marrani, and A. Van

Proeyen, Phys. Rev. D 83, 025008 (2011).

[73] R. Kallosh, L. Kofman, A. D. Linde, and A. Van Proeyen,

Classical Quantum Gravity 17, 4269 (2000); 21, 5017(E)

(2004).

[74] Planck Collaboration, arXiv:astro-ph/0604069.

[75] C. Wetterich, Nucl. Phys. B302, 645 (1988).

[76] E. J. Copeland, M. Sami, and S. Tsujikawa, Int. J. Mod.

Phys. D 15, 1753 (2006).

[77] R. J. Scherrer and A.A. Sen, Phys. Rev. D 77, 083515

(2008).

[78] E. J. Copeland, A. R. Liddle, and D. Wands, Phys. Rev. D

57, 4686 (1998).

[79] U. J. Lopes Franca and R. Rosenfeld, J. High Energy Phys.

10 (2002) 015.

[80] S. Sen, A.A. Sen, and M. Sami, Phys. Lett. B 686, 1

(2010).

[81] J. Annis et al. (DES Collaboration), arXiv:astro-ph/

0510195; See also http://www.darkenergysurvey.org.

[82] A. Refregier, A. Amara, T. D. Kitching, A. Rassat, R.

Scaramella, J. Weller, arXiv:1001.0061; See also http://

sci.esa.int/euclid.

[83] S. Weinberg, in Dark Matter 2000, Marina del Rey,

California, 2000 (unpublished), arXiv:astro-ph/0005265.
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