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Abstract

The observed Higgs mass MH = 125.9± 0.4GeV leads to the criticality of the Stan-

dard Model, that is, the Higgs potential becomes flat around the scale 1017–18GeV

for the top mass 171.3GeV. Earlier we have proposed a Higgs inflation scenario in

which this criticality plays a crucial role. In this paper, we investigate the detailed

cosmological predictions of this scenario in light of the latest Planck and BICEP2

results. We also consider the Higgs portal scalar dark matter model, and compute

the Higgs one-loop effective potential with the two-loop renormalization group im-

provement. We find a constraint on the coupling between Higgs and dark matter

which depends on the inflationary parameters.
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I. INTRODUCTION

The observed value of the Higgs mass [1]1

MH = 125.9± 0.4GeV (1)

indicates that the Standard Model (SM) Higgs potential becomes small and flat at the scale around

1017–18GeV for the top mass 171.3GeV; see e.g. [4–16] for latest analyses.2 This fact suggests [34]

that the Higgs field beyond the ultraviolet (UV) cutoff of the SM, at the criticality [35], may play

the role of the slowly rolling inflaton in the early universe; see Ref. [36] for the original proposal

to use the Higgs field for the cosmological inflation and also Refs. [37–40] for the idea to use the

false vacuum of the SM at criticality. Especially, under the presence of the large non-minimal

coupling ξ ∼ 104 between the Higgs field and the Ricci curvature, there arises a plateau in the SM

effective potential above the field value ϕ ∼MP /
√
ξ, and enough number of e-foldings is achieved

without introducing any other field beyond the SM [36, 41–46]. In Ref. [47], it has been shown by

numerical analysis that smaller values of ξ ∼ 400 and 90 are possible in the prescriptions I and II,

respectively; see Sec. III for what “prescription” means.

In Ref. [48], we have proposed to push the idea of Ref. [34] to use the criticality of the SM for

the Higgs inflation scenario in order to accommodate a lower value of ξ = 7–100, as well as a wider

range of the tensor-to-scalar ratio r . 0.2; see also Refs. [49, 50].3 Similar attempts have been done

in some extensions of the SM [48, 51–55]. There have also been different directions of the extension

of the Higgs inflation involving higher dimensional operators [56–63]. See also Refs. [64–92].

In this paper, we give detailed analyses of the Higgs inflation scenario proposed in Ref. [48] that

utilizes the saddle point, at which both the first and second derivatives of the potential become very

small. The scale dependence of the effective quartic coupling λeff is very important to determine

the effective potential, whose behavior around the saddle point is characterized by the minimum

value λmin of the effective coupling λeff, the corresponding scale µmin, and the second derivative β2

of λeff around µmin, in addition to ξ. We examine the predictions of this model on spectral index

ns, tensor to scalar ratio r, and the running of spectral index dns/d ln k.

1 The latest values of the Higgs mass are 125.03+0.26
−0.27(stat)

+0.13

−0.15
(syst)GeV (CMS)[2] and 125.36 ± 0.37(stat) ±

0.18(syst)GeV (ATLAS)[3], which are consistent with each other and also with the PDG value we are using here.
2 It is an intriguing fact that the bare Higgs mass also becomes small at the same scale [9, 17–19]; see also Refs. [20–
24]. The running Higgs mass after the subtraction of the quadratic divergence is considered e.g. in Ref. [25]; see
also Refs. [26–33].

3 See Sec. VA3 for an explanation for the apparent discrepancy between the results from Refs. [48, 50] and those
from Ref. [47, 49].
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We also estimate how small the higher dimensional Planck-suppressed operators must be in order

to maintain the observed values of the cosmic microwave background (CMB). For that purpose, we

pick up the six-dimensional operator ϕ6/M2
P in the Jordan-frame potential as a concrete example,

and compute the CMB spectral indices.

We also evaluate the relation between the high-scale parameters µmin, β2 and the low energy

parameters in the SM, as well as in the Higgs portal scalar dark matter (DM) model, using one-loop

effective potential and the two-loop renormalization group equation (RGE).

This paper is organized as follows. In Section 2, we review the criticality, namely the flatness

and smallness, of the SM Higgs potential around the scale 1017–18GeV. In Section 3, we review

the Higgs inflation scenario in a wider perspective. In Section 4, we investigate the predictions of

this model in detail. In Section 5, we consider the extension with the Higgs portal scalar DM. We

summarize our results in the last section.

II. STANDARD MODEL HIGGS POTENTIAL

In the SM on the flat spacetime background, the one-loop effective potential calculated in the

MS scheme in the Landau gauge is

V = Vtree +∆V1-loop, (2)

with

Vtree = e4Γ(ϕ)
λ(µ)

4
ϕ4, (3)

∆V1-loop = e4Γ(ϕ)
{
− 3mt(ϕ)

4

16π2

(
ln
mt(ϕ)

2

µ2
− 3

2
+ 2Γ(ϕ)

)

+
6mW (ϕ)4

64π2

(
ln
mW (ϕ)2

µ2
− 5

6
+ 2Γ(ϕ)

)
+

3mZ(ϕ)
4

64π2

(
ln
mZ(ϕ)

2

µ2
− 5

6
+ 2Γ(ϕ)

)}
,

(4)

Γ(ϕ) =

∫ ϕ

Mt

γ d lnµ, (5)

γ =
1

(4π)2

(
9

4
g22 +

3

4
g2Y − 3y2t

)
, (6)

where mW (ϕ) = g2ϕ/2, mZ(ϕ) =
√
g2Y + g22 ϕ/2, and mt(ϕ) = ytϕ/

√
2. We have neglected the

effects from the loops of the Higgs and would-be Nambu-Goldstone bosons since we are interested

in the scale where λ becomes small. We also neglect the quadratic term; the bare Higgs mass is

canceled by the loop effect at low energies; see e.g. Appendix B in Ref. [34].
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We define the effective quartic coupling as [6]

V (ϕ) =
λeff(ϕ, µ)

4
ϕ4. (7)

At the one-loop level,

λeff(ϕ, µ) = e4Γ(ϕ)λ(µ) + e4Γ(ϕ)
1

16π2

[
− 3y4t

(
ln
y2tϕ

2

2µ2
− 3

2
+2Γ(ϕ)

)

+
3g42
8

(
ln
g22ϕ

2

4µ2
− 5

6
+2Γ(ϕ)

)
+

3
(
g2Y + g22

)2

16

(
ln

(
g2Y + g22

)
ϕ2

4µ2
− 5

6
+2Γ(ϕ)

)]
,

(8)

where we have made the scale dependence explicit in the right hand side while omitting it in yt,

g2, and gY , which corresponds to the two-loop corrections.

In the SM on the flat spacetime background, ∆V1-loop is minimized by

ln
ϕ2

µ2
=
C2
t

(
− lnCt +

3
2 − 2Γ

)
− 2C2

W

(
− lnCW + 5

6 − 2Γ
)
− C2

Z

(
− lnCZ + 5

6 − 2Γ
)

C2
t − 2C2

W − C2
Z

=

(
− lnCt +

3
2 − 2Γ

)
− 2

C2
W

C2
t

(
− lnCW + 5

6 − 2Γ
)
− C2

Z

C2
t

(
− lnCZ + 5

6 − 2Γ
)

1− 2
C2

W

C2
t

− C2
Z

C2
t

, (9)

where CW = g22/4, CZ =
(
g2Y + g22

)
/4, and Ct = y2t /2. Around µmin ∼ 1017–18GeV, Eq. (9) leads

to µ ≃ 0.23ϕ. However, because the difference of the numerical values of the one-loop effective

potential for µ = ϕ and µ = 0.23ϕ is negligibly small, we use µ = ϕ hereafter in this section.

Then, we obtain

V (ϕ) =
λeff(µ = ϕ)

4
ϕ4, (10)

where λeff(µ) is written by

λeff(µ) = e4Γλ(µ) + e4Γ
1

16π2

[
− 3y4t

(
ln
y2t
2

− 3

2
+2Γ

)

+
3g42
8

(
ln
g22
4

− 5

6
+2Γ

)
+

3
(
g2Y + g22

)2

16

(
ln

(
g2Y + g22

)

4
− 5

6
+2Γ

)]
, (11)

at the one-loop level.

The effective coupling λeff is quartically sensitive to yt thus the top quark mass, Mt, which is

scheme dependently defined. The actual value of Mt is known with large uncertainties at the level
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of GeV scales depending on the measurements:

Mpole
t =





171.2± 2.4GeV, MITP [93],

176.7+4.0
−3.4GeV, PDG [94],

(12)

MPythia
t =





173.21± 0.51± 0.71GeV, direct measurement, PDG [94],

174.98± 0.76GeV, D0 [95],

174.34± 0.64GeV, D0+CDF [96],

173.34± 0.76GeV, ATLAS [97],

172.38± 0.10± 0.65GeV, CMS [98].

(13)

One should note that the “directly measured value” in Eq. (13) obtained by Tevatron (D0 and CDF)

and by LHC (ATLAS and CMS) is indeed a parameter in Monte Carlo simulation code [7, 99],

so-called the Pythia mass [100], whose physical relation to the pole and MS masses is not well

established. In discussing the Higgs inflation near criticality, however, the only important fact is

that the critical value for the pole mass Mt ≃ 171.3GeV, shown just below, is perfectly consistent

with both the MITP and PDG within 2σ confidence level. In below, we will take the MITP value

as a benchmark.

In Fig. 1, we can see that λeff has the minimum around 1017–18GeV. Interestingly, if Mt ≃

171.3GeV, the minimum value of λeff becomes zero around the scale 1017–18GeV, and the Higgs

potential has a plateau around 1017–18GeV as shown in Fig. 2.4

Let us expand the effective potential of the Higgs field Veff(ϕ) on the flat space-time background

around its minimum in terms of lnϕ:

V (ϕ) =
λeff(µ = ϕ)

4
ϕ4, λeff(µ) = λmin +

∞∑

n=2

βn
(16π2)n

(
ln

µ

µmin

)2

, (14)

where the overall factor ϕ4 is put to make the expansion well-behaved. In the potential analysis

around the minimum, we can safely neglect the higher order terms with n ≥ 3, and will omit them

hereafter. By tuning the top mass for a given Higgs mass, we can obtain arbitrarily small λmin.

This fact is crucial for our inflation scenario.

We note that for the potential to be monotonically increasing [48], λmin must be larger than a

4 It has been known that such a position of plateau is unphysical and can vary by an order of magnitude depending on
the gauge choice [101]. The gauge dependence of the effective potential can be absorbed by a field redefinition [102].
The eventual field equation for ϕ should not depend on such a choice, but the field value here necessarily contains
this amount of uncertainty. See also Refs. [103, 104] for a further account on the gauge (in)dependence.
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FIG. 1: The light red (lower) and blue (upper) bands are 2-loop RGE running of λ(µ) and λeff(µ) (11) ,

respectively. The dark red (upper) and blue (lower) bands are the beta function times ten 10× dλeff/d lnµ

evaluated at the tree and 1-loop levels, respectively. We take MH = 125.9GeV and αs = 0.1185. The band

corresponds to 95% CL deviation of Mt [93]; see Eq. (12).
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FIG. 2: Left: The tree level Higgs potential (3) as a function of Higgs field ϕ. Right: The one-loop Higgs

potential (3) and (4). We take MH = 125.9GeV and αs = 0.1185.

critical value λc:

λmin ≥ λc :=
β2

(64π2)2
. (15)

When λmin saturates this inequality,

λmin = λc, (16)

there appears a true saddle point of the potential Vϕ = Vϕϕ = 0. We will see in Section VA

that in the prescription I, this value λc also gives the true saddle point of the modified potential:
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FIG. 3: Mt (left), β2 (center), and µmin (right) that realize the condition λmin = λc are plotted as functions

of MH . We have imposed the condition λmin = λc using the tree-level potential (3) and the one-loop one,

(3) and (4), for the red and blue bands, respectively. (The one-loop blue band is the upper one for left and

right, whereas the lower for center.) The width of the bands corresponds to the 95% CL of αs(MZ). Dotted

lines show the current 95% CL for MH ; see Eq. (1).

Uϕ = Uϕϕ = 0.5

In the left, center, and right of Fig. 3, we plot Mt, β2, and µmin, respectively, with the critical

value of λmin given in Eq. (16). The band corresponds to the 95% CL for the strong coupling

constant measured at µ =MZ , where

αs(MZ) = 0.1185± 0.0006 (17)

at the 1σ level [1]. We see that β2 does not depend much on MH . In the following figures except

Fig. 12, we take a reference value β2 = 0.5. 6 µmin changes by an order of magnitude when one

includes the one-loop corrections to the effective potential as shown in the right of Fig. 3. The

two-loop corrections are negligible compared with the one-loop corrections; see e.g. Ref. [6]. In

Fig. 3, we see that β2 and µmin differ between at tree and one-loop levels, but note that Mt is

almost identical at both levels.

III. INFLATION MODEL

Let us consider the effective action of the SM-gravity system in the local potential approxi-

mation. As we are interested in the spatially constant field configuration and the case where the

Hubble parameter is much smaller than the Planck scale, we restrict ourselves to the terms con-

5 Numerical difference between the results from the condition λmin = 0 and from Eq. (16) is much smaller than the
deviation coming from the αs(MZ) error. We have imposed λmin = 0 within a precision of 10−5 in the actual
numerical computation in writing Fig. 3. Note that λc = 2.5× 10−6β2.

6 We have checked that the changes of spectral index, its running, its running of running, and tensor-to-scalar ratio
are hardly seeable when we vary β2.
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taining up to second derivative of the fields. We can write down the effective action schematically

as7

S =

∫
d4x

√
−g
[
M2
P

2
A(ϕ)R

− 1

2
B(ϕ) gµν

(
∂µϕ∂νϕ+AµAνϕ

2
)
− V (ϕ)

− C(ϕ)ψγµDµψ − y√
2
D(ϕ)

(
ϕψψ + h.c.

)

− E(ϕ)

4g2A
FµνF

µν

]
, (18)

where gA and y are gauge and Yukawa couplings, respectively, MP := 1/
√
8πG = 2.4 × 1018GeV

is the reduced Planck scale, ϕ is the physical (real) Higgs field, and

A(ϕ) = 1 + a2
ϕ2

M2
P

+ a4
ϕ4

M4
P

+ · · · , B(ϕ) = 1 + b2
ϕ2

M2
P

+ b4
ϕ4

M4
P

+ · · · , etc., (19)

with a2, . . . , b2, . . . , etc. being dimensionless constants. Generically the potential V also contains

higher dimensional terms

V (ϕ) =
m2

2
ϕ2 +

λ

4
ϕ4 +

(
λ6

ϕ6

M2
P

+ λ8
ϕ8

M4
P

+ · · ·
)
. (20)

We can recast the Jordan frame action (18) by the field redefinition

gEµν = A(ϕ) gµν , (21)

to get the action in the Einstein frame

S =

∫
d4x

√
−gE

[
M2
P

2
RE

− 1

2

[
B(ϕ)

A(ϕ)
+

3

2

B(ϕ)A′(ϕ)2

A(ϕ)2

]
gµνE ∂µϕ∂νϕ− 1

2

[
B(ϕ)

A(ϕ)

]
gµνE AµAνϕ

2 − V (ϕ)

A(ϕ)2

− C(ϕ)

A(ϕ)3/2
ψγµEDµψ − y√

2

D(ϕ)

A(ϕ)2
(
ϕψψ + h.c.

)

− E(ϕ)

4g2A
FµνF

µν
E

]
, (22)

see e.g. Refs. [105, 106].

7 In the Letter [48], we have used h instead of ϕ.
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By the field redefinition:

dχ

dϕ
=

√
B(ϕ)

A(ϕ)
+

3

2

B(ϕ)A′(ϕ)2

A(ϕ)2
, ψ̃ =

C(ϕ)1/2

A(ϕ)3/4
ψ, (23)

we get the canonically normalized kinetic term for χ and ψ̃.8 For a given background field ϕ in

the Jordan frame, the effective mass for the canonically normalized field ψ̃ is

m
ψ̃
=
yϕ√
2

D(ϕ)√
A(ϕ)C(ϕ)

. (24)

Similarly, the effective mass for a canonically normalized gauge field is

m
Ã
= gAϕ

√
B(ϕ)

A(ϕ)E(ϕ)
. (25)

For later convenience, we define the Einstein frame potential

U(ϕ) :=
V (ϕ)

A(ϕ)2
. (26)

In the original version of the Higgs inflation [36, 44, 45], it is assumed that ξ := a2 happens to be

large: ξ ∼ 104, whereas the other couplings are not much larger than unity: ξ ≫ a2, a4, . . . ; b2, . . .

etc. In that limit, we can write

A(ϕ) = 1 +
ξϕ2

M2
P

, B(ϕ) = C(ϕ) = D(ϕ) = E(ϕ) = 1, λ6 = λ8 = . . . = 0. (27)

As a side remark, we note that we can instead assume b2 ∼ 105 while keeping all other coefficients,

including a2, not much larger than unity in order to realize another version of Higgs inflation [61].

It may be interesting to look for more possibilities of putting a large number in other places. In

this paper, we restrict ourselves to more conventional set of the non-minimal couplings (27), and

later take into into account the term λ6ϕ
6 in the potential (20) as a next step.

For ϕ≫MP /
√
ξ, we have dχ/dϕ ≃

√
6MP /ϕ, which leads to ϕ ≃ MP√

ξ
exp

(
χ/

√
6MP

)
, and the

potential becomes [36]

U(χ) =
V

(
1 + e2χ/

√
6MP

)2 . (28)

8 There appear extra derivative terms from the kinetic term of the fermion. We neglect such terms, since we are
interested in the expression of the fermion mass for a constant background field ϕ and for the Hubble parameter
much smaller than the Planck scale.
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The analysis of this model without taking into account the running of λ gives following predic-

tions [36]

ns = 1− 6ǫV + 2ηV ≃ 0.967,

r = 16ǫV ≃ 3× 10−3,

dns
d ln k

= 16ǫV ηV − 24ǫ2V − 2ζ2V ≃ −5.4× 10−4, (29)

where

ǫV =
M2
P

2

(
dU/dχ

U

)2

, (30)

ηV =M2
P

d2U/dχ2

U
, (31)

ζ2V =M4
P

(d3U/dχ3)(dU/dχ)

U2
. (32)

As is seen in Eq. (8), the loop corrections to the effective potential contain large logarithms.

They can be written as ln(M(ϕ)/µ), where µ is the renormalization scale and M(ϕ) stands for

the field-dependent mass of the particle running in the loop, namely the top quark and the gauge

bosons. The problem is that there are two possibilities in defining the field dependent mass [44]. In

the so-called prescription I, we use the field dependent mass in the Einstein frame, as in Eqs. (24)

and (25), whereas in the prescription II, we use the ones in the Jordan frame, namely mψ = yϕ/
√
2

and mA = gAϕ. We leave the possibilities open for future research and present our results for both

prescriptions.

As we have done below Eq. (9), in either prescriptions I or II, we can drop the gauge and

Yukawa couplings in the field dependent mass. For the prescription I, assuming the minimal set of

coefficients (27), we put

µ =
ϕ√

1 + ξϕ2/M2
P

(33)

and for the prescription II,

µ = ϕ. (34)

Therefore, the effective potential is

V =
λeff(µ)

4
ϕ4, (35)

with the scale (33) for the prescription I and scale (34) for the prescription II, where λeff(µ) in the

SM is given by Eq. (11).
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IV. COSMOLOGICAL CONSTRAINTS

The overall normalization of the CMB fluctuation fixes [107]

As =
V

24π2ǫVM4
P

=
(
2.196+0.053

−0.058

)
× 10−9, (36)

within 1σ CL. Current Planck+WMAP bounds on the spectral index, its running, its running of

running, and the tensor-to-scalar ratio are [107]

ns = 0.9514+0.0087
−0.0090,

dns
d ln k

= 0.001+0.016
−0.014,

d2ns

d ln k2
= 0.020+0.016

−0.015, r = 0 (assumed),

ns = 0.9583± 0.0081,
dns
d ln k

= −0.021± 0.012,
d2ns

d ln k2
= 0 (assumed), r < 0.25 (2σ CL),

(37)

at the pivot scale k∗ = 0.05Mpc−1, within 1σ CL unless otherwise stated. The BICEP2 experiment

has reported an observation of r [108]:

r = 0.20+0.07
−0.05, (38)

within 1σ CL.

It has been pointed out that the BICEP2 result may become consistent with r = 0 because the

foreground effect can be sizable [109, 110]. We also note that by including isocurvature perturba-

tion, the 95% CL bound on ns is roughly loosened to [111]

0.93 . ns . 0.99 (39)

and that by including sterile neutrinos, the allowed range is shifted to [112]

0.95 . ns . 1.02. (40)

Given above, we will plot our results within wider ranges than those in Eqs. (37) and (38):

0.93 ≤ ns ≤ 1.02, (41)

−0.05 ≤ dns
d ln k

≤ 0.05, (42)

0 ≤ r ≤ 0.3. (43)

V. HIGGS INFLATION FROM STANDARD MODEL CRITICALITY

In this section, we start from the minimal set of coefficients (27), and later include the term

λ6ϕ
6.
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FIG. 4: SM Higgs potential in the prescription I with ξ = 10 and c = 1, corresponding to µmin = 7.6 ×

1017 GeV, and with β2 = 0.5. The red (upper), green (center) and purple (lower) lines are drawn with

λmin = 2λc, λc, and λc/2, respectively. The values of λmin = 2λc and λc/2 are chosen just for illustration.

Each line roughly corresponds to the one with the same color in Fig. 2.

We expand the effective potential of the Higgs field Veff on the flat space-time background

around its minimum as in Eq. (14):

V =
λeff(µ)

4
ϕ4, (44)

λeff(µ) = λmin +
∞∑

n=2

βn
(16π2)n

(
ln

µ

µmin

)2

. (45)

The choice of scale (33) and (34) corresponds to the prescription I and II, respectively. As in

Section II, we can safely neglect the higher order terms with n ≥ 3, and we continue to omit them.

A. Prescription I

1. Analysis in prescription I

In the prescription I, the Higgs potential is given by Eqs. (26) and (44) with the scale (33).

Concretely,

U(ϕ) =
ϕ4

4(1 + ξϕ2/M2
P )

2



λmin +

β2

(16π2)2

[
ln

(
1

c

√
ξϕ2/M2

P

1 + ξϕ2/M2
P

)]2


U ′(ϕ) =
ϕ3M6

P

(M2
P + ξϕ2)3

{
λmin +

β2

2 (16π2)2

[
1 + 2 ln

(
1

c

√
ξϕ2

M2
P + ξϕ2

)]
ln

(
1

c

√
ξϕ2

M2
P + ξϕ2

)}
,

(46)
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where we define c by

µmin = c
MP√
ξ
. (47)

Note that we have defined µmin to give the minimum of the effective coupling λeff(µmin) = λmin on

the flat spacetime background Eq. (45). The stationary points U ′(ϕ1) = 0 are given by

ϕ1 =
cMP√
ξ

1
(
e

1

2

[
1±

√
1−λmin

λc

]

− c2

)1/2
. (48)

We can see the following:

• When λmin > λc, the potential is a monotonically increasing function of ϕ. This case

corresponds to the red (upper) line in Fig. 4.

• When λmin = λc:

– For c ≥ e1/4, the potential is monotonically increasing.

– For c < e1/4, the potential has a stationary point at

ϕc =
cMP√
ξ

1

(
√
e− c2)

1/2
. (49)

In this case, ϕc becomes a saddle point: U ′(ϕc) = U ′′(ϕc) = 0. This case corresponds

to the green (center) line in Fig. 4.

• When λmin < λc, we define c± := exp
1±

√
1−λmin

λc

4 :

– For c ≥ c+, the potential is monotonically increasing.

– For c− < c < c+, the potential has a stationary point given by the plus sign of Eq. (48).

– For c ≤ c−, the potential has two stationary points given by Eq. (48). This case

corresponds to the purple (lower) line in Fig. 4.

In this paper, we pursue the possibility that λ(µmin) ≃ 0 is realized by a principle beyond the

ordinary local field theory, such as the multiple point criticality principle [35, 113, 114], classical

conformality [26–31, 115–117], asymptotic safety [118], the hidden duality and symmetry [119, 120],

and the maximum entropy principle [121–124].

In practice, this amounts to the following: µmin is fixed for a given set of MH and αs(MZ) in

the SM. For a given µmin, we require ξ to sit in

ξ = c2
M2
P

µ2min

<
√
e
M2
P

µ2min

. (50)
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That is, we consider the case c < e1/4. By tuning the top quark mass, we can always choose a λmin

that is very close but larger than λc so that we realize U ′(ϕ) ≪ U(ϕ)/MP and U ′′(ϕ) ≪ U(ϕ)/M2
P

around ϕ ≃ ϕc.
9 In Fig. 4, our choice is very close but slightly above the green (middle) line.

In extensions of the SM, µmin depends on newly-added parameters too. Anyway we require

Eq. (50), and choose a λmin that is very close to λc, with λmin > λc, by the tuning of the top mass

and possible other parameters.

We also need to consider the effect of the running of ξ [125–128]. However, this effect is small.

More concretely, if ξ and ϕ are sufficiently large, ξ is given around µ = µmin by [44]

ξ(µ) ≃ ξ0

{
1−

(
3

2
g2Y + 3g22 − 6y2t

)
1

16π2
ln

µ

µmin

}
≃ ξ0

{
1 + 0.001 ln

µ

µmin

}
, (51)

We treat ξ as a constant in this paper.

2. Results in prescription I

The Higgs potential is determined by three parameters, ξ, c and λmin. Qualitatively, ξ de-

termines the total suppression of the potential above the scale φ & MP /
√
ξ, c determines the

maximum value of ǫV above the almost-saddle point, and λmin determines the number of e-folding.

We choose λmin such that we can have sufficient e-folding N = 60. For a fixed As = 2.2 × 10−9,

other cosmological parameters ns, r and dns/d ln k can be calculated as functions of ξ and c.

We show the typical predictions of this model in Fig. 5. Each solid line corresponds to a

constant c. Dashed lines correspond to the values of ξ from 6 to 50 as indicated in the figure. In

Fig. 5, we see that there is a minimum value of ξ that can result in r . 0.2, namely ξmin ∼ 7.

The model can reproduce r = O(10−3) ∼ 0.2 and ns = 0.9 ∼ 1.0. These predictions are consistent

with Planck or BICEP2 result [107, 108]. However, the value of dns/d ln k is slightly large. The

prediction is dns/d ln k = O(0.01) for r & 0.05. In Section VA4, we will see that the introduction

of small coefficients of higher dimensional operators may ameliorate the situation.

Finally, we discuss the field value ϕ∗ that corresponds to the observed CMB fluctuation. The

left panel of Fig. 6 shows ϕ∗ in the case of c = 1 and β2 = 0.5.10 We see that ϕ∗ is around the

Planck scale: ϕ∗ ∼MP .

9 More precisely, we need Uχ ≪ U/MP and Uχχ ≪ U/M2
P , which are satisfied when Uϕ ≪ U/MP and Uϕϕ ≪ U/M2

P

because we have dϕ/dχ ∼ 1/
√
6ξ during the inflation.

10 Precisely speaking, there are two ϕ∗ which satisfies Eq. (36) given c, ξ. We plot the one solution which gives more
desirable predictions on cosmological parameters, namely, ns . 0.99.
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FIG. 5: Left: r vs ns. Right: dns/d ln k vs ns. The solid and dashed contours are for fixed c and ξ,

respectively. The left end of each dashed line for ξ = 15, 20 and 50 corresponds to c = 0.94. The lower end

of each solid line corresponds to ξ = 50.
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FIG. 6: Left and right: ϕ∗ as a function of ξ, with λ6 = 0 and 7.5 × 10−9, respectively. Other parameters

are taken as c = 1 and β2 = 0.5.

3. Constraint on µmin

The above analysis shows the existence of the lowest possible value of ξ, which is ξmin ∼ 7. It

is a necessary condition that µmin, which is obtained from the parameters at low energy, satisfies

µmin .MP /
√
ξmin for any successful Higgs inflation with ξ > ξmin. However, as we have observed

in Sec. II, SM one-loop effective potential takes its minimum above MP /
√
ξmin although the tree
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FIG. 7: r vs ns, with c = 0.98 (left) and 1 (right). Solid and dashed contours are for fixed λ6 and ξ,

respectively. We put β2 = 0.5.

level potential can realize µmin .MP /
√
ξmin. It appears that it is difficult to do our Higgs inflation

in SM.

However, taking into account the ambiguity coming from non-renormalizable non-minimal cou-

pling ξ, there still remains a possibility of realizing µmin . MP /
√
ξmin [50]. Around the scale

MP /ξ, we match λ in the SM without ξ and λξ in the SM with ξ:

λ = λξ + (threshold corrections), (52)

where the threshold corrections generally contain power divergences and cannot be determined

unless we specify a UV theory beyond the cutoff. One expects that the threshold corrections start

from one loop order. Because they are of the same order as the difference between the tree and

one-loop effective potentials, it may result in µmin .MP /
√
ξmin. See also the similar discussion in

footnote 4 regarding the gauge dependence.

In Section VI, we will see that we can easily obtain µmin . MP /
√
ξmin in the Higgs portal

scalar DM model without referring to such arguments. Argument of this section applies also to

the prescription II shown in Sec. VB.
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FIG. 8: dns/d ln k vs ns, with c = 0.98 (left) and 1 (right). Solid and dashed contours are for fixed λ6 and

ξ, respectively. We put β2 = 0.5.

4. Estimation of the effects of higher dimensional operators in prescription I

As we have seen in the previous sections, the extrapolation of the low energy data shows that

the Higgs potential in the SM is flat around the string scale. This flatness can be broken if we

introduce arbitrary strengths to the higher dimensional Planck-suppressed operators. In order to

examine the effects of such operators on the cosmological data, we consider, for example, a small

sixth order term in the Jordan frame

∆V = λ6
ϕ6

M2
P

. (53)

Here we do not claim that Eq. (53) gives the leading contribution among the higher dimensional

operators, but simply estimate the ambiguity in the value of dns/d ln k discussed in the previous

section. Of course, we can give any form to dns/d ln k as a function of k if we introduce arbitrary

strengths to the higher dimensional operators. As we will see below, the single term (53) allows

the value of dns/d ln k at k∗ to reside in the favored region. However, this should not be taken as

a prediction of the value of λ6 but as an estimation for the allowed magnitude of the coefficients

of the higher dimensional operators.

In the Einstein frame potential, the term (53) becomes,

∆U = λ6
ϕ6

(
1 + ξϕ2/M2

P

)2 . (54)
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In Figs. 7 and 8, we plot the contours for fixed λ6 ≤ 10−8 with the solid lines, in the r vs ns plane

and the dns/d ln k vs ns one, respectively. We also plot the contours for fixed ξ and λ6 in the

dashed and solid lines, respectively. We can realize the r ≃ 0.1, ns ≃ 0.96, and dns/d ln k ≃ −0.01

simultaneously. Finally, ϕ∗ has been plotted in the right panel of Fig. 6 with λ6 = 5× 10−9, c = 1,

and β2 = 0.5.

The other higher dimensional operators should also have the coefficients . O(10−8) in order

to keep the flatness of the potential. Their smallness may be understood for example as a tiny

explicit breaking of the asymptotic scale invariance in Jordan frame (the shift symmetry in Einstein

frame) [129].

B. Prescription II

1. Analysis in prescription II

In the prescription II, the Higgs potential is given by Eqs. (26) and (44) with µ = ϕ,

U(ϕ) =
λ(ϕ)

4

ϕ4

(
1 + ξϕ2/M2

P

)2 , (55)

which gives

U =
X4

(1 +X2)2
1

4

(
λmin +

β2

(16π2)2

(
ln
X

c

)2
)(

MP√
ξ

)4

, (56)

Uϕ =
X3

(1 +X2)3

{
λmin +

β2

2 (16π2)2
(
1 +X2

)
ln
X

c
+

β2

(16π2)2

(
ln
X

c

)2
}(

MP√
ξ

)3

, (57)

where X =
ϕ

MP /
√
ξ
. Then the slow-roll parameter (30) becomes

ǫV =
8ξ

X2 + (1 + 6ξ)X4

(
λmin +

β2
2(16π2)2

ln X
c

(
1 +X2 + 2 ln X

c

))2

(
λmin +

β2
(16π2)2

(
ln X

c

)2)2 . (58)

For ϕ≫MP /
√
6ξ and ξ ≫ 1/6, we obtain

ǫV ≃ 4

3X4

(
λmin +

β2
2(16π2)2

ln X
c

(
1 +X2 + 2 ln X

c

))2

(
λmin +

β2
(16π2)2

(
ln X

c

)2)2 . (59)

Similarly we have

ηV ≃ 4

3X4


1−X2 +

β2

4 (16π2)2

(
1 +X2

) (
1 +X2 + 6 ln X

c

)

λmin +
β2

(16π2)2

(
ln X

c

)2


 . (60)
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FIG. 9: Left: λ0, the minimal value of λmin to maintain monotonicity of the potential, as a function of c.

Right: ϕ0, the position of the saddle point when we set λmin = λ0, as a function of c.

These expressions are in agreement with those in the original Higgs inflation [36] if we take β2 = 0

and X ≫ 1.

The e-folding N is written by

N =

∫ X∗

Xend

dχ

MP

1√
2ǫV

=

∫
dχ

dX

dX√
2ǫV

1

MP
, (61)

where

dχ

dX
=

√
1 + (1 + 6ξ)X2

1 +X2

MP√
ξ

≃
√
6X

1 +X2
MP . (62)

In the last step, we have used the same limit as above: X ≫ 1/
√
6ξ and ξ ≫ 1/6. Finally, we can

write N as a function of X in that limit:

N ≃
∫ X∗

Xend

dX
3X3

1 +X2

λmin +
β2

(16π2)2

(
ln X

c

)2

2λmin +
β2

(16π2)2
ln X

c

(
1 +X2 + 2 ln X

c

) . (63)

This is also in agreement with Ref. [36] if we put β2 = 0 and X∗ ≫ 1.

2. Results in prescription II

Let us numerically estimate the lowest possible value of λmin that allows U(ϕ) to be mono-

tonically increasing. We call this value λ0. In the prescription I, such a value was λc, whereas

in the prescription II, λ0 is a function of β2 and c. Note that λ0 is independent of ξ because the

expression in the braces in Eq. (57) only depends on X, and explicit dependence on ξ drops out

of it. In Fig. 9, we plot λ0 and the position of the saddle point ϕ0 as functions of c for a fixed

β2 = 0.5. We see that λ0 ∼ 10−5.5 and ϕ0 ≃ 0.73µmin for c = 1.
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The potential is determined by λmin, c and ξ. To be specific, we consider the c = 1 case

hereafter. We plot the ǫV in Fig 10 with c = 1, β2 = 0.5, and λmin = λ0. The solid and dashed

lines represent ǫV and ηV , respectively. We can see that ǫV ≃ ηV ≃ 1 around X ≃ 2. Therefore

the end of inflation corresponds to Xend ≃ 2.

We can calculate the prediction of inflationary parameters with c = 1, β2 = 0.5, and λmin = λ0.

N = 50 and 65 correspond to X∗ ≃ 360 and 790, respectively. We fix ξ in such a way that Planck
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normalization is satisfied,

As =
U

24π2M4
P ǫV

= 2.2× 10−9. (64)

By using this condition, ξ becomes 190 and 240 for N = 50 and 65, respectively. The prediction

of ns and r is shown in Fig. 11. dns/d ln k is small in this case, dns/d ln k ≪ O(10−2). These

predictions are just the same as the chaotic inflation, as discussed in Ref. [48].

We note that the argument in this subsection implicitly assumes that Planck scale physics does

not modify the Higgs potential above the UV cutoff.

VI. SCALAR DARK MATTER MODEL

Next we consider the model which includes Higgs portal singlet scalar DM S [130, 131]; see also

Ref. [132]. The Lagrangian is [133]

L = LSM +
1

2
(∂µS)

2 − 1

2
m2
SS

2 − ρ

4!
S4 − κ

2
S2H†H. (65)

We put subscript Z on the new parameters at the Z mass scale µ =MZ , that is, κZ = κ(µ =MZ),

and ρZ = ρ(µ =MZ). If we require perturbativity up to the cutoff scale, these parameters should

be κZ . 0.4 and ρZ . 0.6 [134]. The one-loop effective potential in this model is given by

V = Vtree +∆V1-loop,DM, (66)

Vtree = e4Γ(ϕ)
λ(µ)

4
ϕ4,

∆V1-loop,DM = ∆V1-loop +
m4

DM

64π2

(
ln
mDM(ϕ)2

µ2
− 3

2

)
, (67)

where mDM(ϕ) =
√

κϕ2

2 e2Γ(ϕ) +m2
S . ∆V1-loop and Γ are given by SM one-loop potential (4) and

Eq. (5), respectively.

We plot Mt, β2, and µmin as functions of κZ imposing the existence of the saddle point in

Fig. 12. Here we use two loop RGEs [134] and put MH = 125.9GeV, αs = 0.1184. The band

width comes from the requirement of perturbativity of ρ up to string scale [134]: 0 ≤ ρZ ≤ 0.6.

The red (lower) and blue (upper) bands correspond to the tree and one-loop effective potentials,

respectively. From this figure, we see that µmin can become smaller than MP by adding κ and that

β2 remains to be O(1). In particular, the addition of the scalar DM does not alter the existence of

the minimum of λeff(µ), which is essential in this inflation scenario with criticality.
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requirement of perturbativity of ρ up to the string scale [134]: 0 ≤ ρZ ≤ 0.6. MH and mS are set to be

125.9GeV and 0, respectively.

VII. SUMMARY

We have considered the Higgs inflation model which contains non-minimal coupling ξϕ2R [36].

Conventional wisdom was that a large non-minimal coupling ξ ∼ 104 is required to fit the COBE

normalization, δT/T ∼ 10−5, and cosmological predictions are ns = 0.967 and the small tensor-to-

scalar ratio, r = 3×10−3. In the letter [48], we have reconsidered this model in light of the discovery

of the Higgs boson, which indicates the criticality of the SM. That is, if the SM parameters are

tuned so that the saddle point appears, it is possible to realize a Higgs inflation with moderate ξ

and generate O(0.1) tensor to scalar ratio r. The value of ξ is O(10) for the prescription I and

O(100) for the prescription II.

In this paper, we investigate the cosmological predictions of this Higgs inflation in greater detail.

To realize this Higgs inflation scenario, it is essential that the effective Higgs quartic coupling λeff

takes its minimum around the scale 1017–18GeV. The Higgs potential around the inflation scale is

determined by the position µmin of the minimum of λeff, the minimum value λmin, and the second

derivative β2 around the minimum, in addition to the non-minimal coupling ξ. We calculate

the cosmological predictions as functions of above parameters. We also estimate the effects of

higher dimensional operators by considering the λ6ϕ
6/M2

P term as an example. We find that the

coefficients of the higher dimensional operators should be as small as 10−8 in order to account for

the scalar and tensor perturbations consistent with the Planck and BICEP2 results. Although we

have concentrated on the SM and the Higgs portal scalar DM model in this paper, one may apply

our analysis to the other models beyond the SM by evaluating λmin, µmin, β2 in terms of the model

parameters.
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Finally, we comment on the problem of the unitarity [62, 135–140]. The problem of uni-

tarity does not threaten the consistency of the Higgs inflation by itself. Concretely speaking,

the physical momentum scale during the inflation, which is given by the de Sitter temperature

Hinf ≃ 1014GeV (r/0.2)1/2, is smaller than the unitarity violation scale MP /ξ that is evaluated on

the electroweak vacuum.11 In general, a new physics would appear around the unitarity violation

scale. It is interesting that it is around the GUT or string scale in our model.
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