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Abstract. We compare Higgs inflation in the metric and Palatini formulations of general
relativity, with loop corrections treated in a simple approximation. We consider Higgs in-
flation on the plateau, at a critical point, at a hilltop and in a false vacuum. In the last
case there are only minor differences. Otherwise we find that in the Palatini formulation the
tensor-to-scalar ratio is consistently suppressed, spanning the range 1×10−13 < r < 7×10−5,
compared to the metric case result 2×10−5 < r < 0.2. Even when the values of ns and r over-
lap, the running and running of the running are different in the two formulations. Therefore,
if Higgs is the inflaton, inflationary observables can be used to distinguish between different
gravitational degrees of freedom, in this case to determine whether the connection is an in-
dependent variable. Non-detection of r in foreseeable future observations would not rule out
Higgs inflation, only its metric variant. We conclude that in order to fix the theory of Higgs
inflation, not only the particle physics UV completion but also the gravitational degrees of
freedom have to be explicated.
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1 Introduction

Extending the Standard Model to high scales and Higgs inflation. The range of
validity of the Standard Model of particle physics has proven to be wider than expected,
as no physics beyond it has been discovered in collider experiments. Indeed, the only new
piece of information (stronger exclusion limits on extensions of the Standard Model aside)
that the LHC has uncovered is the Higgs mass, mH = 125.09 ± 0.21 ± 0.11 GeV [1]. It is
noteworthy that this value is such that the Standard Model may be a viable theory all the
way to the Higgs field taking Planck scale values MPl = 2.4× 1018 GeV, or even beyond (the
energy density remains sub-Planckian at Planck scale field values). The main limit comes
from top mass loop contributions possibly driving the quartic Higgs self-coupling negative at
large field values, making the electroweak vacuum unstable. The stability limit is sensitive to
the precise values of the Higgs and top masses and the strong coupling constant, and present
values are consistent with stability, instability and metastability at the Planck scale, within
the experimental and theoretical errors [2–6]. The fact that the Standard Model sits close
to the instability limit (i.e. that the quartic Higgs coupling runs close to zero) at the Planck
scale is an unexpected feature. Such behaviour was used to predict the value of the Higgs
mass in the context of asymptotic safety [7]. Validity of the Standard Model to high scales
also means that Higgs could possibly be the inflaton [8, 9].1

In cosmology, inflation has become the standard scenario for the primordial universe.
It alleviates the homogeneity and isotropy problem [10–14], explains spatial flatness and
has predicted in detail that initial perturbations are predominantly adiabatic, close to scale-
invariant, highly Gaussian and predominantly scalar [15–17], in excellent agreement with
observations [18].2 If the non-minimal coupling of the Higgs field to gravity is neglected,

1As we discuss below, in this case it is not clear what is the correct way to treat the loop corrections, so
stability at large field values is even more unsettled.

2As there are inflationary models where some of these properties do not hold, calling them predictions may
be too strong, but they are certainly generic features of inflation.
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then at large field values the potential can be approximated as 1
4λ(h)h

4, where the change in
the potential due to loop corrections is taken into account as running of the quartic coupling
with the field. The potential is not sufficiently flat to allow a long enough period of inflation
with a small enough amplitude of perturbations [19–21].

However, if the Higgs field is non-minimally coupled to gravity, the inflationary be-
haviour changes. Even if the non-minimal coupling ξ is not input at the classical level, it
will be generated by quantum corrections [22]. Even if ξ is set to zero on some given scale,
it will be non-zero on other scales due to renormalisation group running. Inflation with
non-minimal coupling has been considered since the 1980s [23–29], but Higgs inflation is a
remarkably simple model, which uses the only known scalar field that may be elementary in-
stead of composite, and does not introduce any new parameters that are not required by the
theory. If only the tree level Standard Model Higgs potential is considered, the non-minimal
coupling makes the potential flat at high field values, and the inflationary predictions for
the spectral index and the tensor-to-scalar ratio depend only on the number of e-folds until
the end of inflation [8]. As the Standard Model field content and couplings are precisely
known3, in Higgs inflation the processes of preheating and reheating can be calculated in
detail, removing the uncertainty in the number of e-folds that accompanies less complete
embeddings of inflation into particle physics [32, 34–37]4 (see also [39]). Higgs decay also
produces a distinctive signature of gravitational waves (also present, though different, when
Higgs is not the inflaton) [40]. The tree level predictions agree well with observations [18].

Quantum corrections complicate the picture. The loop modifications to the potential,
and thus the inflationary predictions, depend on the Higgs and top mass measured at low en-
ergies, which offers a novel consistency test between collider experiments and cosmological ob-
servations [41–53]. However, as the Standard Model coupled to gravity is non-renormalisable,
it is not clear how the loop corrections should be calculated, and the relation between the
low energy and high energy regime is still debated [54–64]. At low energies, where gravity
can be neglected, the Standard Model is renormalisable, and at high energies there is an
approximate shift symmetry that keeps loop corrections small, but the matching between
the two regimes depends on the ultraviolet completion of the theory [49, 54, 57, 59, 61–64].
Put another way, because the theory is non-renormalisable, the low energy theory does not
uniquely fix the predictions and the results depend on the renormalisation prescription.

It has been claimed that the large non-minimal coupling ξ lowers the scale of perturba-
tive violation of unitarity from the Planck scale down to the energy ∼ MPl/ξ [43, 65, 66].5

However, it has been countered that the cutoff scale should depend on the Higgs field [33, 49],
and when this is taken into account, the theory is during inflation perturbatively valid at the
scale relevant for inflation. In any case, no explicit violation of unitarity in the inflationary
regime has been demonstrated. It has been argued using resummation [55] that, in contrast
to naive power-law counting arguments, the theory remains unitary all the way to the Planck
scale.6 It has also been claimed that the treatment ceases to be valid for Higgs field values (as
opposed to energies) larger than MPl/ξ, as higher order corrections spoil the flatness of the
potential required for inflation [65] and alter the renormalisation group running of the quartic

3Though dark matter and baryogenesis physics, at least, has to be added. The νMSM is an economical
possibility [30–33], where Higgs inflation is unchanged.

4This may also make it possible to distinguish Higgs inflation from R2 inflation [17, 38], where the slow-roll
stage is very similar.

5For the Palatini formulation discussed below, naive power counting gives the scale MPl/
√

ξ instead [67].
6It has been claimed that this follows from writing the action in terms of gauge-invariant variables, but

only tree-level 2-to-2 Higgs scattering has been considered so far [68–70].
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Higgs coupling [71]. If a theory ceases to be valid on some scale, then using an expansion
with terms suppressed by that scale is not expected to work close to that scale, and definite
statements would require knowing the ultraviolet completion [3]. As the completion of Higgs
inflation, which includes the Standard Model and general relativity, is unknown, we do not
know whether such terms are present or not. There is not necessarily any problem in using
field values larger than the Planck scale, as long as the energy density remains sub-Planckian
(see section 2.4 of [72]), as is the case in Higgs inflation.

The loop corrections not only affect the mapping between the inflationary parameters
and low energy observables, they can also open qualitatively new inflationary regimes by
changing the shape of the potential. In addition to inflation on the flat plateau originally
proposed, it is possible that the Higgs field drives inflation at an inflection point (or an
almost inflection point, called a critical point) [51, 56–58, 61, 63, 73], on the hilltop [61]
or in a degenerate vacuum in a hillclimbing scenario [74, 75]. It is also possible to have
false vacuum Higgs inflation, although in that case new physics is needed to end up in the
electroweak vacuum, one suggestion involving non-minimal coupling to gravity [4, 21, 76–80].
False vacuum and critical point Higgs inflation have the interesting property that they can
produce a sizeable tensor-to-scalar ratio r ∼ 0.1, unlike plateau inflation, which gives (at tree
level) r = 5× 10−3.

Palatini gravity. If Higgs is the inflaton, then in addition to (at least in principle) con-
necting inflationary observables to electroweak scale particle physics, it also opens a window
on the theory of gravity. In the usual formulation of general relativity, called the metric
formulation, the independent variables are the metric and its first derivative. Even though
the action involves the second derivative of the metric, the equations of motion obtained by
varying it are nevertheless only second order due to the unusual structure of the Einstein–
Hilbert action [81, 82]. (In higher dimensions, this property is shared by the other Lovelock
Lagrangians [83, 84].) However, deriving the equations of motion requires adding the York–
Gibbons–Hawking boundary term to the action to cancel a total derivative term that depends
on the first derivatives of the metric, the variation of which cannot be taken vanish on the
boundary [85, 86].

In the Palatini formulation of general relativity, the independent variables are instead
taken to be the metric and the connection.7 The metric thus appears as an auxiliary variable
with no kinetic term. The variation of the action with respect to the metric gives the Einstein
equation, and variation with respect to the connection determines the connection in terms of
the metric. For Lovelock Lagrangians, the Palatini formulation leads to the same equations
of motion as general relativity and to the same, namely Levi–Civita, connection, and is thus
physically equivalent, at least at the classical level [90]. Using the Palatini formulation is not
an extra assumption about the theory, just a different parametrisation of the gravitational
degrees of freedom. It could be argued that the Palatini formulation is simpler than the metric
formulation, because there is no need to add a boundary term to the action, as it involves
only first derivatives of the variables. The first order formulation is also more natural from
the point of view of canonical quantisation. For actions more general than the Lovelock
action, the metric and the Palatini formulation are physically inequivalent. In particular,
this is true when the Higgs is non-minimally coupled to gravity.

7The formulation is usually credited to the paper [87] by Palatini, but it appears to have been first presented
in the paper [88] by Einstein [89].
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Thus, in addition to the particle physics ambiguity resulting from sensitivity to the
particle physics UV completion, there is also another ambiguity, related to choosing the
gravitational degrees of freedom (which presumably are determined by the UV completion of
the gravitational part of the theory). Turning this around, if Higgs is the inflaton, inflationary
observables can be used as probes of the gravitational degrees of freedom.

The difference in the predictions of the metric and Palatini formulations was worked
out in [91] for Higgs plateau inflation at tree level. We extend the analysis to include loop
corrections, treated in a simplified way, and consider also inflation outside of the plateau. In
section 2 we discuss plateau, critical point, hilltop and false vacuum inflation analytically. In
section 3 we do a numerical calculation to fully cover the parameter space, and compare to
the analytical results and previous work. We summarise our results in section 4.

2 Analytical study

2.1 The potential and the two frames

Action. At the classical level, we have the usual Standard Model action plus the Einstein–
Hilbert action, along with a term that couples the Higgs doublet directly to the Ricci scalar
R. We consider only the radial Higgs mode h, which corresponds to the physical Higgs field
(for the effects of the three other components, the would-be Goldstone modes, see [54, 59,
66, 92, 93]), so the relevant part of the action is, in the non-minimally coupled Jordan frame,

S =

∫

d4x
√−g

(

M2 + ξh2

2
gαβRαβ(Γ, ∂Γ)−

1

2
gαβ∇αh∇βh− V (h)

)

, (2.1)

where h is the Higgs field with the potential V (h) = λ
4 (h

2 − v2)2. In our sign conven-
tion ξ = −1

6 corresponds to the conformally coupled case; we only consider positive values
of ξ, as negative values are not suitable for Higgs inflation. The Planck mass today is
MPl =

√

M2 + ξv2 = 2.4 × 1018 GeV. The limit from the LHC is |ξ| < 2.6 × 1015 [94], so
as v = 246 GeV, we have MPl ≈ M ; we use units such that M = 1. In the action (2.1),
Γ is the connection. If we assume that Γ is the Levi–Civita connection, we have the met-
ric formulation, whereas keeping Γ as an independent variable corresponds to the Palatini
formulation. Note that the equation of motion for h involves the covariant derivative with
respect to the Levi–Civita connection even in the Palatini formulation. (This is determined
by the requirement that when varying the action a total derivative term that involves the
variation of h becomes a boundary term that vanishes.)

The action can be brought into the non-minimally coupled form by writing gαβ =
Ω−2g̃αβ ≡ (1 + ξh2)−1g̃αβ . This field redefinition is the same in both the metric and the
Palatini formulation, and it multiplies the kinetic term of h with the factor (1+ξh2)−1. In the
metric formulation, Rαβ depends on gαβ , resulting in an extra contribution to the kinetic term
of h, which is not present in the Palatini formulation. Therefore the field transformation to
recover a canonically normalised kinetic term is different in the two formulations. Specifically,
we have

dχ

dh
=

√

1 + αξh2

(1 + ξh2)2
, (2.2)

where χ is the canonically normalised field and α = 1 + 6ξ in the metric formulation and
α = 1 in the Palatini formulation. From (2.2) the new field χ is solved in terms of h as
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(setting χ(h = 0) = 0)

√

ξχ =
√
α arsinh(

√

αξh)−
√
α− 1 artanh

(

√

(α− 1)ξh
√

1 + αξh2

)

. (2.3)

In the Palatini case, the second term is zero, and (2.3) can be inverted as
√
ξh = sinh(

√
ξχ).

In the metric case, there is no general closed form expression for h, but in the limit ξh2 ≫ 1

we have
√
ξh ≃ 1

2
√
α

(

1−β
1+β

)− 1

2
β
e

√

ξ

α
χ
, where β ≡

√

α−1
α . This asymptotic form applies in

both the metric and the Palatini formulation. In the metric case it reduces to
√
ξh ≃ e

√

1

6
χ
for

ξ ≫ 1. In this limit, the main difference between the two formulations is that in the metric
case we have

√

1/6 in the exponent, and in the Palatini case we have
√
ξ ≫

√

1/6. We
will not use these asymptotic forms, and instead write the potential in terms of the original
non-minimally coupled Higgs field h, using (2.2) when taking derivatives with respect to χ.

In the minimally coupled Einstein frame, in terms of the metric g̃ and scalar field χ,
the action (2.1) reads

S =

∫

d4x
√

−g̃

(

1

2
R̃− 1

2
g̃αβ∇αχ∇βχ− U(χ)

)

, (2.4)

where R̃ is the Ricci scalar formed from g̃αβ and we have denoted U(χ) ≡ V [h(χ)]Ω[h(χ)]−4.
As the action has the Einstein–Hilbert form, it makes no difference (apart from whether the
York–Gibbons–Hawking boundary term has to be included) whether the connection is taken
to be an independent variable. The distinction between the metric and Palatini formulations
is encoded in the form of the potential U via the field transformation (2.2).

At the classical level, the actions (2.1) and (2.4) are physically equivalent, as long as
physical quantities are properly identified [95–97]. If we consider inflation with a fixed poten-
tial, then the predictions for the quantized perturbations are also independent of the frame
[26, 27, 29, 68, 98–100]. However, when loop corrections to the effective potential are con-
sidered, it is not obvious whether the conformal transformation and quantisation commute.8

Various arguments have been presented for frame-independence of quantisation, and no clear
evidence for frame-dependence has been found [61, 68, 70, 101–104]. Differences have been
found between treatments where renormalisation prescriptions are applied in different frames
[46, 47, 49, 51], but this may be due to not matching the renormalisation scales and integra-
tion measures in the different frames consistently [54, 61, 96, 104]. One possibility to account
for this is to use explicitly frame-invariant variables [69, 70, 96, 102, 103]. Also, as pointed
out in section 4.2 of [54], in practice the cosmological perturbations have been calculated
by quantising the same field, namely the Sasaki–Mukhanov variable [16], just expressed in
different frames. It is also argued in [54] that the Einstein frame results should be more
reliable than Jordan frame results.9

8Note that there is a continuum of conformal frames, defined by the choice of Ω(h). Even if the model is
defined in the minimally coupled frame to begin with, we could make a conformal transformation to a new
classically equivalent frame and quantise there. So this issue is present for any scalar field model of inflation,
though it is more explicit in Higgs inflation and other models that are originally formulated in a non-minimally
coupled frame.

9Note that when quantum effects from the other three modes of the Higgs field are considered [54, 59, 66,
92, 93], it is not possible to simultaneously go to the Einstein frame and get a canonical kinetic term for all
of the scalar fields of the Higgs doublet.
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The field redefinition from the Jordan frame to the Einstein frame mixes the scalar field
and gravitational degrees of freedom, so if the latter are neglected (as has mostly been the
case, with the exception of [60, 105]), calculations in different frames correspond to different
approximations. However, as the dominant loop contributions are from the gauge bosons
and the top quark, not from the scalars and gravity, this is not expected to make a large
difference. The question of frame equivalence could be settled by doing a full loop calculation,
including gravity, separately in the Jordan and Einstein frames, and comparing the results,
although the situation is complicated by the fact that the theory is non-renormalisable.

We simply assume, following [56], that the loop corrections calculated for the Standard
Model in Minkowski spacetime, neglecting gravitons, can be applied in the Einstein frame,
with the appropriate choice of field-dependent renormalisation scale. We do not attempt
to relate the parameter values that are relevant during inflation with large field values to
electroweak scale observables.

Potential and slow-roll parameters. In slow-roll inflation, the power spectrum is de-
termined by the shape of the potential. For field values h ≫ v = 246 GeV, the quadratic
term can be neglected, so the Jordan frame Higgs potential can be approximated as V (h) ≃
1
4λ(h)h

4, with loop corrections being approximated by the field-dependence of λ(h). The
effective potential is gauge-dependent, but the presence of extrema and the field values there
are not. As derivatives of the potential are small in slow-roll inflation, gauge-dependence is
small, particularly for inflation near an extremum [2, 4, 6, 106]. Following [19, 56, 63, 73,
107], we use the approximation

λ(h) = λ0 +
b

4
ln2
(

ξh2

κ2(1 + ξh2)

)

, (2.5)

which is valid at least near the minimum of λ(h), where the logarithm is small (in particular,
this holds for ξh2 & 1 and κ . 1). We have used the renormalisation prescription I of [46].

The Einstein frame potential is

U(χ) =
1

4

[

λ0 +
b

4
ln2
(

ξh2

κ2(1 + ξh2)

)](

ξh2

1 + ξh2

)2

≡ λ0κ
4

4ξ2
(

1 + c ln2 x
)

x2 , (2.6)

where h(χ) is given by (2.2) and we have defined c ≡ b
4λ0

, x ≡ ξh2

κ2(1+ξh2)
and ln2 x ≡ (lnx)2.

For the constant b we use the Standard Model value b = 2.3×10−5, following [56]. For κ < 1,
the parameter λ0 is the value of λ at its minimum, and κ sets the location of the minimum.
For κ ≥ 1, the minimum moves to infinite field values. If we could relate the electroweak
scale parameters to the parameters in the inflationary regime, the values of λ0 and κ would
be fixed; we consider them free parameters. As we will see, the inflationary behaviour can
be quite sensitive to the value of κ. For large values of ξh2 the coupling approaches the
constant λ0 + b ln2 κ, and U is asymptotically flat; in terms of the minimally coupled χ field,
it is exponentially flat. We only consider the case when the electroweak vacuum is absolutely
stable, and take λ0 > 0. We consider two possibilities for κ. The first is κ ∼ 1, corresponding
to the treatment of [56, 63]. The second is κ ≡ κ̄

√
ξ with κ̄ ∼ 1, the choice used in [73].

In slow-roll inflation, the power spectrum of curvature perturbations is approximately

PR(k) = As

(

k

k∗

)ns−1+ 1

2
αs ln

k
k∗

+ 1

6
βs ln

2 k
k∗

(2.7)
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where we use the pivot scale k∗ = 0.05 Mpc−1; the amplitude As, the spectral index ns, the
running of the spectrum αs and the running of the running βs are constant at this level of
approximation. They are, to leading order, given by

As =
1

24π2

U

ǫ
(2.8)

ns = 1− 6ǫ+ 2η (2.9)

αs = −24ǫ2 + 16ǫη − 2σ2 (2.10)

βs = −192ǫ3 + 192ǫ2η − 32ǫη2 − 24ǫσ2 + 2ησ2 + 2σ3 , (2.11)

and the tensor-to-scalar ratio r is

r = 16ǫ , (2.12)

where the slow-roll parameters are

ǫ =
1

2

(

U ′

U

)2

, η =
U ′′

U

σ2 =
U ′

U

U ′′′

U
, σ3 =

(

U ′

U

)2 U ′′′′

U
, (2.13)

where prime denotes derivative with respect to χ; when calculating the slow-roll parameters
from (2.6), we use (2.2) to convert to derivatives with respect to h. The lowest order slow-roll
parameters and the amplitude are

ǫ =
8

(1 + αξh2)h2

(

1 + c lnx+ c ln2 x

1 + c ln2 x

)2

η =
4

(1 + αξh2)2h2
1

1 + c ln2 x

(

3 + [2α− 1]ξh2 − 2αξ2h4 + 2[1 + αξh2]c

+[7 + (6α− 1)ξh2 − 2αξ2h4]c lnx+ [3 + (2α− 1)ξh2 − 2αξ2h4]c ln2 x
)

U

ǫ
=

λ(h)

32
h6

1 + αξh2

(1 + ξh2)2

(

1 + c ln2 x

1 + c lnx+ c ln2 x

)2

, (2.14)

with λ(h) = λ0(1 + c ln2 x). In slow-roll, ǫ < 1 and |η| < 1. Also, from (2.9) and the
observational value ns = 0.9569±0.0077 [18]10 we know that 3ǫ∗−η∗ = (2.155±0.39)×10−2 ≈
2 × 10−2, where star denotes the value at the time when the pivot scale exits the Hubble
radius. The observational upper limit r∗ < 0.07 (assuming no running of ns) [110] implies
ǫ∗ < 5×10−3. (We quote error bars as 68% confidence intervals and limits as 95% confidence
intervals.)

If c < 4, the only minimum of the potential is at h = 0. At c = 4, corresponding to
λ0 =

b
16 = 1.4× 10−6, there is an inflection point (with U ′′ = 0, and also U ′ = 0). For c > 4,

a new minimum appears at large field values, and there is a hilltop between this false vacuum
and the electroweak vacuum. (The inflection point requires κ < e1/4, while the hilltop can
exist for κ < e1/4 . . . e1/2, depending on the value of c.) In figure 1 we show the form of the

10This value of ns is based on the Planck TT+lowP dataset, assumes the ΛCDM model and includes running
and running of the running. The central value and error bars of ns depend slightly on which datasets and
parameters are considered [18, 108]. The spectrum is close to featureless and almost scale-invariant, with a
red tilt, even in a parameter-free reconstruction, still assuming the ΛCDM model [109].
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Uλ0 κ4  4 ξ2

Figure 1. The potential as a function of x for c = 2, 4, 6 (solid green, dashed blue, dotted red). The
top curve is relevant for hilltop and false vacuum inflation, middle curve for critical point inflation
and the bottom curve for plateau inflation.

potential for different values of c. Note that the potential is plotted as function of x, so its
curvature cannot be readily estimated by eye, requiring conversion from x to h, and from h
to χ via (2.2). For example, the short upturn at values x ≈ 1 corresponds to an exponentially
flat plateau extending to infinite values in terms of χ.

In addition to the plateau, inflation is possible at the critical point, at the hilltop and
in the false vacuum. The approximation (2.5) for the coupling is optimised to be accurate
near the minimum of λ, and may not be accurate at the hilltop. Nevertheless, we consider
also the hilltop case, to get an understanding of the differences between the metric and the
Palatini formulations, as the potential (2.6) has qualitatively the right shape. In the false
vacuum case, non-minimal coupling is not needed to sustain inflation, and our approximation
for the potential is not valid. However, new physics is required for graceful exit, which may
involve the non-minimal coupling of another scalar field to gravity [76]. We will consider the
difference the Palatini formulation makes for the dynamics of that field.

There are two ways for ǫ to be small. Either (1+αξh2)h2 ≫ 1 or |1+c lnx+c ln2 x| ≪ 1.
The first possibility corresponds to plateau inflation, the second to critical point inflation and
hilltop inflation (in false vacuum inflation the potential has a qualitatively similar shape as
in hilltop inflation). Let us consider them in turn.

2.2 Plateau inflation

Metric formulation. Let us first consider the case (1 + αξh2)h2 ≫ 1 in the metric for-
mulation. We assume 6ξ ≫ 1; if this condition is not satisfied, the results of the metric
formulation agree with those of the Palatini formulation, which we consider next. The con-
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dition (1 + αξh2)h2 ≫ 1 then reduces to 6ξ2h4 ≫ 1, and we have

ǫ ≃ 4

3(ξh2)2

(

1 + c lnx+ c ln2 x

1 + c ln2 x

)2

≃ 3

4
η2

η ≃ − 4

3ξh2
1 + c lnx+ c ln2 x

1 + c ln2 x

U

ǫ
≃ 3λ(h)

16ξ2
(ξh2)2

(

1 + c ln2 x

1 + c lnx+ c ln2 x

)2

≃ λ(h)

3ξ2
η−2 . (2.15)

The condition 3ǫ∗ − η∗ = 0.02 gives (taking into account ǫ∗ < 5 × 10−3) ǫ∗ = 3 × 10−4 and
η∗ = −0.02, so we have r = 5 × 10−3. The observed amplitude U/ǫ = 24π2As = 5 × 10−7

[18] is reproduced for λ∗/ξ
2 = 6 × 10−10. If the running of the quartic coupling from the

measured electroweak scale value λ(100 GeV) = m2/(2v2) = 0.13 is neglected, this implies
ξ = 1 × 104. These are the results of the original Higgs inflation proposal [8]. If loop
corrections are taken into account, ξ can in principle be made as small as desired by adjusting
λ∗ = λ0(1+c ln2 x∗) ≃ λ0(1+4c ln2 κ) to be small. If we want to avoid having a false vacuum,
we must have c ≤ 4 and thus λ∗ ∼ λ0 & 1.4 × 10−6, giving ξ & 50. For κ ≤ 1, the false
vacuum is at smaller field values than the inflationary plateau, preventing the field from
slowly rolling to the electroweak minimum. However, with κ > 1, it is possible to push the
false vacuum beyond the inflationary plateau to avoid this constraint; see the discussion of
critical point inflation in section 2.3.

The non-minimal coupling ξ is a free parameter, but η depends on the number of e-folds
N . Therefore if we calculate N∗ independently, the value of η∗ provides a consistency check.
The relation between ξh2 and N is given by

N =

∫ χ

χend

dχ
U

U ′ =
1

4

∫ h

hend

dh
1 + αξh2

1 + ξh2
h

1 + c ln2 x

1 + c lnx+ c ln2 x

≈ α

8
(h2 − h2end)−

3

4
ln

1 + ξh2

1 + ξh2end

≈ 3

4
ξh2 , (2.16)

where end refers to the end of inflation, on the first line we have used (2.2) to change the
integration variable to h, on the second line we have assumed that the loop contribution can
be dropped and on the third line applied 6ξ & 1, ξh2 ≫ ξh2end and ξh2 ≫ 1. Note that if
4 − c ≪ 1 so that there is a critical point, a significant number of the total e-folds can be
accumulated there even if inflation happens on the plateau, changing this mapping between
N and h.

The number of e-folds at the pivot scale k∗ = 0.05 Mpc−1 is

N∗ = 61−∆Nreh +
1

4
ln

U∗
Uend

+
1

4
lnU∗

= 52 +
1

4
ln

r

0.07
, (2.17)

where ∆Nreh is the number of e-folds between the end of inflation and the end of preheating
(defined as the time when energy density starts to scale like radiation). On the second line we
have taken into account that for Standard Model field content ∆Nreh = 4 [35–37] (although
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see [39]), written U = 3π2

2 Asr, inputted the observed value 24π2As = 5× 10−7, inserted the
maximum value r∗ = 0.07 allowed by observations as a point of comparison, and dropped the
term due to the change of the potential between the pivot scale and the end of inflation (it
gives a correction that is < 1). The pivot scale thus corresponds to N∗ = 50 (or ξh2∗ = 70), so
we get η∗ = − 1

N = −0.02, ǫ∗ =
3

4N2 = 3× 10−4. The spectral index ns = 1− 2
N − 9

2N2 = 0.96
and the tensor-to-scalar ratio r = 12

N2 = 5×10−3 are thus predictions without free parameters.
As ξh2∗ is fixed, making ξ smaller correspondingly increases h∗, which in principle im-

poses stronger constraints on the observed top and Higgs masses to keep the potential posi-
tive; however, this assumes that we would know how to run the electroweak scale parameters
to the inflationary scale. For ξ . 70, the field value will be larger than the Planck scale,
which, as discussed in section 2.1, is not necessarily problematic. (The value of the minimally
coupled field χ becomes trans-Planckian as well.) If ξ is small, 6ξ ≪ 1, the above approx-
imations do not hold. However, in that case, the metric and Palatini results agree, so it is
included in our discussion of the Palatini formulation.

Palatini formulation. In the Palatini case, discussed in [91], the e-fold relation (2.16)
gives N∗ =

1
8h

2
∗ (taking into account h ≫ hend), so N∗ = 50 corresponds to h∗ = 20, and

ǫ∗ = 2× 10−2 1

1 + ξh2∗

(

1 + c lnx∗ + c ln2 x∗

1 + c ln2 x∗

)2

η∗ = 10−2 1

(1 + ξh2∗)
2

1

1 + c ln2 x∗

(

3 + ξh2∗ − 2ξ2h4∗ + 2[1 + ξh2∗]c

+[7 + 5ξh2∗ − 2ξ2h4∗]c lnx∗ + [3 + ξh2∗ − 2ξ2h4∗]c ln
2 x∗

)

U∗
ǫ∗

= 2× 106λ∗
1

1 + ξh2∗

(

1 + c ln2 x∗

1 + c lnx∗ + c ln2 x∗

)2

. (2.18)

Without the loop correction, we would have r∗ = 0.32/(1 + ξh2∗), the result of λh4

inflation suppressed by the factor 1 + ξh2∗. Getting the scalar power spectrum amplitude
right requires λ∗/(1 + ξh2∗) ∼ 10−13. While the quartic coupling can be arbitrarily small at
high field values due to loop corrections (as it can reach zero), its dependence on the field
value spoils the flatness of the potential. Also, the potential must be such that the field will
end up in the electroweak vacuum from the inflationary region. Because of this, successful
inflation is not possible if ξh2∗ ≪ 1 and the non-minimal coupling does not contribute [19–21].
Because we then have ξ ≪ 1, the metric and Palatini formulations behave in the same way.
If ξh2∗ ∼ 1 there can be cancellations in the numerator of η, so we consider this case only
numerically. In the limit ξh2∗ ≫ 1, we have

ǫ∗ = 5× 10−5 1

ξ

(

1 + c lnx∗ + c ln2 x∗

1 + c ln2 x∗

)2

η∗ = −2× 10−2 1 + c lnx∗ + c ln2 x∗

1 + c ln2 x∗

U∗
ǫ∗

= 5× 103
λ∗
ξ

(

1 + c ln2 x∗

1 + c lnx∗ + c ln2 x∗

)2

. (2.19)

The spectral index condition 3ǫ∗ − η∗ = 0.02 gives c lnx∗ = −8× 10−3/ξ ≪ 1. The running
at the inflationary scale is thus small, and the normalisation condition gives λ∗/ξ = 10−10, as
found in [91]. We thus require an even larger ξ than in the metric formulation for the same
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λ∗. For λ∗ = 0.1 we would have ξ = 109 and r = 10−12. (In this case, the second term in the
number of e-folds (2.16) is −6, so N = 46; as in the metric formulation, for 4− c ≪ 1 there
can be a contribution to N from the critical point.) The condition λ0 > 10−6 to avoid a false
vacuum gives ξ > 104. The tensor-to-scalar ratio is r = 8× 10−4/ξ = 8× 10−14/λ∗ . 10−7.
In terms of N we have η∗ = − 1

N = −0.02 and ǫ∗ = 1
8ξN2 ≪ |η∗|. So, to leading order in N ,

ns is the same as in the metric case, but r is suppressed by 6ξ, r = 2
ξN2 .

Before reporting on the numerical study of the full parameter space in section 3, let us
consider inflation away from the plateau.

2.3 Critical point inflation

Critical point condition. We now look at the possibility that ǫ is small not because (1+
αξh2)h2 is large, but because loop corrections are significant, so that |1 + c lnx+ c ln2 x| ≪ 1.
This is possible only if c & 4. In the case when 1 + c lnx + c ln2 x = 0 (possible for c ≥ 4),
the potential (2.6) has another extremum (in addition to the one at h = 0). The second
slow-roll parameter (2.14) shows that there is an inflection point at lnx = −1

2 if and only
if c = 4 [19]. This case is illustrated in figure 1 with a dashed blue line. This means that
ξh2 = e−1/2κ2/(1−e−1/2κ2) ≡ ξh2c and λ = 2λ0 = b/8 = 2.9×10−6 ≡ λc. Let us first consider
the case κ ∼ 1. For κ = 1 we have ξh2 = 1.5, whereas for κ → e1/4 ≈ 1.3. the inflection
point is pushed to infinitely large values of ξh2. This means that in the case κ = κ̄

√
ξ, we

must have ξ < e1/2κ̄−2, so the demand that there is an inflection point restricts ξ to small
values.

Inflation near an inflection point was first studied in the context of Minimal Supersym-
metric Standard Model [111, 112], and subsequently also in the context of a string-inspired
model [113]. Inflection point Higgs inflation was also recently studied in the context of a
B−L extended Standard Model [114]. The possibility of Higgs inflation at the critical point
was first considered in [51]. It was studied in detail in [56–58, 73] (see also [61–63]) to ac-
commodate the claimed detection of inflationary gravitational waves with r ≈ 0.2 by the
BICEP2 telescope (the signal was since shown to be due to foregrounds [115]).

As the loop corrections are important, the potential is a bit complicated, and the nu-
merical results in section 3 are essential for fully investigating the parameter space. However,
to get some understanding of the results, let us look analytically at the lowest order slow-roll
parameters close to the critical point. Let us fix x = e−

1

2 ≡ xc and write c ≡ 4(1− δc). The
first two slow-roll parameters and the amplitude are

ǫ =
2

(1 + αξh2c)h
2
c

δ2c
(1− 1

2δc)
2

(2.20)

η =
2

(1 + αξh2c)
2h2c

(

3 + [2α− 1]ξh2c − 2αξ2h4c
) δc

1− 1
2δc

(2.21)

U

ǫ
=

λc

8
h6c

1 + αξh2c
(1 + ξh2c)

2

(1− 1
2δc)

2

δ2c
. (2.22)

Metric formulation. Let us first consider the metric case that has been studied in the
literature. As before, we take 6ξ & 1; if this condition is not satisfied, the results agree with
the Palatini formulation. Let us first consider κ ∼ 1. If we take κ = 1, we have ξh2c = 1.5, and
further assuming δc ≪ 1 we have (assuming that ξ & 1, otherwise there can be a cancellation
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in the numerator of η)

ǫ∗ = 0.14δ2c (2.23)

η∗ = −0.15δc (2.24)

U∗
ǫ∗

= 2× 10−6 1

ξ2δ2c
. (2.25)

From the spectral index condition we get δc = 0.1, and U∗/ǫ∗ = 5× 10−7 then gives ξ = 20.
The tensor-to-scalar ratio is r∗ = 0.02.

If we instead tune κ so that ξh2c ≫ 1, and keep δc ≪ 1, we have

ǫ∗ =
1

3

δ2c
ξ2h4c

(2.26)

η∗ = −2

3

δc
ξh2c

(2.27)

U∗
ǫ∗

= 2× 10−6 ξ
2h4c
δ2c

1

ξ2
. (2.28)

Now the spectral index condition gives ξh2c/δc = 35, so r = 4 × 10−3, and the correct
amplitude is reproduced for ξ = 70. (Note that there is some tension between the assumptions
ξh2c = 35δc ≫ 1 and δc ≪ 1.)

In the case κ = κ̄
√
ξ, we must have κ̄ = 1/

√
20 ≈ 0.2 or κ̄ = e1/4/

√
70 ≈ 0.2 to get the

same results as above.
We see that r can be much larger than in the plateau inflation case and its value depends

sensitively on κ. However, we also have to check that the number of e-folds is correct, and
also take into account that the field may not be exactly at the critical point. We will do this
numerically, reproducing the results of [56, 73]. Before presenting the numerical plots, let us
look at critical point inflation analytically in the Palatini case, which has not been considered
before.

Palatini formulation. Taking first κ = 1 and δc ≪ 1, we have

ǫ = 0.51ξδ2c (2.29)

η = −0.04ξδc (2.30)

U

ǫ
= 5× 10−7 1

ξ3δ2c
. (2.31)

Now the spectral index and amplitude conditions give δc = 0.02 and ξ = 14, leading to
r∗ = 0.05. It seems possible, as in the metric formulation, to have r at the level of the
current observational limit, though we have to check that the number of e-folds comes out
correct.

If we instead tune κ to get ξh2c ≫ 1, we have

ǫ = 2
δ2c
h4c

1

ξ
(2.32)

η = −4
δc
h2c

(2.33)

U

ǫ
= 4× 10−7h

4
c

δ2c

1

ξ
, (2.34)
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from which we get h2c/δc = 160 and ξ = 2× 104, which give r∗ = 6× 10−8.
In the case κ = κ̄

√
ξ, the first example implies κ̄ = 1/

√
14 ≈ 0.3, while the second

would require a very small κ̄ = e1/4/
√
2× 104 ≈ 9 × 10−3. In any case, the results have to

be checked by numerical calculation, which we present in section 3.

Slow-roll hierarchy in the Palatini formulation. In plateau inflation, in the metric
formulation we have U∗/ǫ∗ ∼ λ∗/(η

2
∗ξ

2) ∼ 10−6. Because η∗ ∼ 10−2, we have λ∗/ξ
2 ∼ 10−10.

In the Palatini formulation we instead get λ∗/ξ ∼ 10−10. In critical point inflation, we have
roughly the same result for ξh2c ≫ 1, and because λ∗ ∼ λc ∼ 10−6 is fixed, in the metric case
we get ξ ∼ η−1

∗ ∼ 100 and in the Palatini case ξ ∼ η−2
∗ ∼ 104. (For ξh2c ∼ 1, cancellations

in the numerator of η can change these order of magnitude estimates, as we have seen.)
This difference between the metric and Palatini formulations is related to the fact that for
ξh2 ≫ 1, each derivative of the potential with respect to χ brings down a factor of

√

1/6 in
the metric case and

√
ξ in the Palatini case.

The fact that every derivative with respect to χ brings down a factor of
√
ξ in the

Palatini case may raise concerns about whether the slow-roll hierarchy holds when ξ ≫ 1.
However, in the l:th order slow-roll parameter the l+1:th order derivative of H(χ) is always

accompanied by the factor 1
(2H)l−1

dl−1H
dχl−1 = ǫ(l−1)/2 [116]. (The argument is formulated in

terms of derivatives of the Hubble parameter H, but it works similarly for U , as in our slow-
roll parameters σ2 and σ3 in (2.13).) Therefore the slow-roll hierarchy is not disturbed if√
ξǫ ≪ 1. From (2.18) and (2.20) we see that this condition is satisfied (assuming the relation

between h∗ and N is not drastically altered by the loop corrections). However, as the Palatini
first order slow-roll parameters are amplified by ξ compared to the metric formulation, the
field has to be nearer the critical point to reach the same slow-roll parameters, as we have
seen. Similarly, the running of the spectral index is enhanced in the Palatini case.

2.4 Hilltop inflation

Hilltop condition. Let us now consider hilltop inflation [117, 118]. For c > 4 the potential
develops a false vacuum, as depicted in figure 1 with a red dotted line. In this case inflation
can happen near the top of the hill [61]. This setup is sensitive to initial conditions, because
the field has to start close to the top of the hill and roll down to the side of the electroweak
vacuum after inflation. We have used an approximation for λ(h) that is optimised around a
minimum of λ(h), which may not be valid close to the hilltop. The shape of the potential is
nevertheless qualitatively correct, so we use it to illustrate the differences between the metric
and Palatini formulations, a detailed analysis of loop corrections at the hilltop being outside
the scope of this paper.

Assuming c > 4, the potential (2.6) has a maximum at x = xmax, with

lnxmax = −1

2
− 1

2

√

1− 4/c . (2.35)

This condition implies that we must have κ < e1/4 . . . e1/2, depending on the value of c.
Writing x = xmax(1 − δx) and assuming that the field is on the side of the electroweak
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vacuum near the maximum, 0 < δx ≪ 1, we get

ǫ =
32

(1 + αξh2)h2
1− 4/c

(1 +
√

1− 4/c)2
δ2x (2.36)

η = − 16

(1 + αξh2)h2

√

1− 4/c

1 +
√

1− 4/c
(2.37)

U

ǫ
=

b

1024
h6

1 + αξh2

(1 + ξh2)2
(1 +

√

1− 4/c)3

1− 4/c
δ−2
x . (2.38)

The tensor-to-scalar ratio is suppressed, but being near the hilltop (unlike being near the
critical point) does not automatically guarantee |η| ≪ 1. For that, we need either c− 4 ≪ 1
(i.e. the hilltop has to be close to being an inflection point) or ξh2 ≫ 1. In either case, we
have an another small parameter in addition to δx (also, ξh2 and h2 occur separately), so the
spectral index and the amplitude are not enough to determine the tensor-to-scalar ratio. The
results are also sensitive to getting the right number of e-folds, which has to be determined
numerically, so we will not discuss the analytical approximation in the hilltop case further.

2.5 False vacuum inflation

Graceful exit and non-minimal coupling. Let us now consider false vacuum Higgs
inflation [4, 21, 76–80]. The qualitative shape of the potential is again illustrated in figure
1 with a dotted red line. During inflation the Higgs field rests in the second minimum and
dominates the energy density. Note that non-minimal coupling of the Higgs field is not needed
to get a false vacuum, it can be achieved with loop corrections in the Standard Model without
gravity. However, physics beyond the Standard Model is needed to lower the potential barrier
to allow for a graceful exit. Possible mechanisms include an extra scalar field, which does not
directly couple to the Higgs field [76] (similar to the model studied in [119] in a non-Higgs
context), and a hybrid inflation scenario [21, 78]. In the former case, non-minimal coupling of
the extra field plays an important role. In [80] a non-minimal coupling was also added for the
Higgs field to make the minimum more shallow. However, there the potential is written in
terms of a Higgs field whose kinetic term has not been transformed to the canonical form, in
which case there is no difference between the metric and Palatini formulations. To compare
the two, the effects of this transformation on the analysis in [80] would have to be worked
out. This is outside the scope of the present paper, and we will just consider the model of
[76].

The probability for the Higgs field to tunnel from the false vacuum grows with decreasing
H. In [76], an extra field non-minimally coupled to gravity is used to decrease H and trigger
the tunnelling. The action is

S =

∫

d4x
√−g

(

1

2
f(φ)gαβRαβ(Γ, ∂Γ)−

1

2
gαβ∇αφ∇βφ

−1

2
gαβ∇αh∇βh− V (h)

)

, (2.39)

where h is the Higgs field as before, φ is the extra field and f is a positive function; note
that the Higgs is minimally coupled. As discussed in section 2.1, the action can be brought
to the minimally coupled form by the conformal transformation

gαβ = Ω−2g̃αβ = f−1g̃αβ . (2.40)
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The canonical kinetic term is restored by transforming the field as

dΦ

dφ
=

√

2f + α−1
2ξ f ′2

2f2
, (2.41)

where Φ has a canonical kinetic term and prime denotes differentiation with respect to the
auxiliary field φ. The term α−1

2ξ is 3 in the metric case and 0 in the Palatini case. The Higgs
potential becomes

U(h,Φ) =
V (h)

f [φ(Φ)]2
. (2.42)

In [76] it is assumed that inflation begins at small values of φ, where the observed part
of the spectrum is also generated, and ends at large values. It is assumed that the function
f can be expanded as a power series

f(ϕ) = 1 +
∑

n

γnφ
n (2.43)

where γn are constants. When φ ≪ 1, the field transformation agrees to leading order in
the metric and Palatini formulations, but when the field is large, the situation is different.
In the metric case, if the function f grows faster than φ2, the field transformation becomes
approximately

dΦ

dφ
=

√

3

2

f ′

f
, (2.44)

so the Einstein frame potential is completely independent of the specific form of f (note that
h is constant during inflation),

U(h,Φ) = V (h)e
−2

√

2

3
Φ
. (2.45)

As Φ rolls to larger field values, U and therefore H decrease, and the Higgs can tunnel
out, ending inflation. In the Palatini case, the field transformation does not involve f ′ and
depends on the form of f . Taking f(φ) = 1 + ξφ2 gives

U(h,Φ) =
V (h)

cosh4(
√
ξΦ)

≃ 16V (h)e−4
√
ξΦ , (2.46)

Unlike in the metric case, it is possible to adjust the steepness of the potential, but this has
no effect on the small-field stage, only the end of inflation. Although the details are different
from the metric case, the overall picture is the same: as Φ grows, H decreases and the Higgs
eventually tunnels out. Any coupling of the form f(φ) = 1 + γnφ

n leads to qualitatively
the same kind of evolution. As the potential (2.42) is the same in both cases, the slow-roll
parameters are the same in terms of the number of e-folds, but the number of e-folds can be
different due to different evolution in the late stages of inflation and after it.
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3 Numerical results

3.1 Setup

Critical point inflation. In order to investigate the entire parameter space we use the
slow-roll equations without any further assumptions on the parameters, and calculate the
amplitude, spectral index and its running, and running of the running, numerically. Overall
we have five parameters: ξ, κ, λ0, h∗ and hend. We have three constraint equations: the
normalisation condition (2.8), the constraint on the number of e-folds (2.17) and the condition
ǫ = 1 or |η| = 1 at the end of inflation. This leaves two free parameters, which we choose
to be ξ and κ, from which we convert to the (ns, r) plane for comparison with observations
and previous studies. For κ, we consider two possibilities. Either we take 0.1 < κ < 10, or
κ =

√
ξκ̄ with 0.1 < κ̄ < 10, corresponding to the choices in [56, 63] and [73], respectively.

Since this parameter range includes inflation near an almost inflection point, which we are
particularly interested in, we put it under the label of critical point inflation, although it also
includes inflation far from the critical point.

We determine h∗ from the normalisation condition (2.8). For some regions of the param-
eter space the normalisation condition can be degenerate with up to three solutions. Usually
we have only one solution, but when λ0 is near the critical value, then ǫ is close to zero near
the critical point. As the amplitude is inversely proportional to ǫ, it has a peak, which can
lead to additional solutions. The derivative of the amplitude with respect to the field is

dAs

dχ
= (1− ns)

As√
2ǫ

, (3.1)

so the spectrum is blue (red), when the derivative of the amplitude is negative (positive). The
derivative must change its sign between solutions, because we are comparing the theoretical
value with the measured constant value, and this leads to alternating red and blue solutions.
We have checked numerically that the smallest field value does not give enough e-folds and
is hence excluded. The middle one gives a blue spectrum, and is excluded by observations.
The largest field value is the only one to meet the observational criteria and we choose it
whenever the normalisation condition is degenerate.

We determine hend from the condition ǫ = 1 or |η| = 1, whichever is reached first. As
with the normalisation condition, the end condition can have up to three solutions, so there
can be disjoint slow-roll regions with fast-roll regions in between. In particular, there can
be a fast-roll region between the inflationary plateau and the critical point. We choose the
smallest field value to be the end point of inflation and disregard any fast-roll regions between
the pivot scale and the end of inflation (the effect of this on the number of e-folds is minimal).

Finally, we determine λ0 by demanding that the number of e-folds after the pivot scale
leaves the Hubble radius agrees with the constraint (2.17), with ∆Nreh = 4, following [35–37].
Taking r into account, this leads to between 45 and 51 e-folds. We have also studied the
effect of changing the duration of reheating, and comment on how the results would change.

Hilltop inflation. For hilltop inflation the field has to start below the hilltop on the side
of the electroweak vacuum, and we must have c > 4. This guarantees a unique solution
for both the normalisation condition and the end of inflation condition. As in critical point
inflation, we use the number of e-folds to determine λ0. We use the same limits for κ and
the same range of e-folds as in the critical point case.
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Figure 2. Spectral index in the metric formu-
lation for critical point inflation as a function
of ξ and κ.

Figure 3. Tensor-to-scalar ratio in the met-
ric formulation for critical point inflation as a
function of ξ and κ.

Figure 4. Spectral index in the metric formu-
lation for critical point inflation as a function
of ξ and κ̄.

Figure 5. Tensor-to-scalar ratio in the met-
ric formulation for critical point inflation as a
function of ξ and κ̄.

3.2 Critical point inflation

Metric formulation. Our results in the metric case are presented in figures 2 to 7. In
figures 2 and 3 we show ns and r as a function of ξ and κ. In figures 4 and 5 we show the
case with κ̄ instead. We only show values ns > 0.8, which gives the bottom boundary. The
top boundary comes from the constraint on the number of e-folds.

Figures 3 and 5 show that the tensor-to-scalar ratio grows with decreasing ξ. The
largest value of r shown corresponds to ξ ≈ 5. By choosing ξ and κ (or κ̄) we can adjust
r independently from ns to obtain larger r than in the plateau case, as discussed in [56–58,
73].

From figures 6 and 7 we see that large r corresponds to large αs and βs. The boundary
on the right corresponds to the constraint on the number of e-folds. If reheating were to last
longer than four e-folds, the boundary would move to the left, decreasing ns but not affecting
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Figure 6. Running of the spectral index αs in
the metric formulation for critical point infla-
tion. The purple dot corresponds to plateau
inflation.

Figure 7. Running of the running βs in the
metric formulation for critical point inflation.
The purple dot corresponds to plateau infla-
tion.

r. The cut-off in the possible values of κ (or κ̄) has no effect on the plots. The current limits
from Planck temperature and low multipole polarisation data are −0.015 < αs < 0.039 and
−0.003 < βs < 0.059 (assuming no tensor modes) [18]. The precise limits depend on the
datasets considered [18, 108]

The limit on αs together with the Planck spectral index limit 0.94 < ns < 0.97 [18]
gives r < 0.2, which is weaker than the direct observational bound on r. The observational
βs constraint does not add extra information. The ns limit leads to the lower bound αs >
−2 × 10−3. For large values ξh2 ≫ 1, the parameter space reduces to the bottom line of
figures 6 and 7, the one parameter along the line corresponding to the value of δ2c/(ξ

2h4∗), as
discussed in section 2.3. The purple dot marks the plateau case, to which the results reduce
to for all allowed values of κ when ξ > 500.

Let us compare to the analytical estimates of section 2.3. For κ = 1 and ξ = 20 the
numerical calculation gives r = 0.03 and ns = 0.92, which roughly agree with the analytical
result. However, this is something of a coincidence, because the field value at the pivot scale
h∗ = 1.1 is actually far from the critical point value hc = 0.28. This is related to the fact
that we did not consider the constraint on the number of e-folds. In the case ξh2 ≫ 1, we
recover the values ns = 0.96 and r = 4×10−3 with ξ = 70 and κ = 0.8, practically coinciding
with the plateau result. In the case κ = κ̄

√
ξ, we instead need κ̄ = 0.1.

Let us then compare to the results of [56, 62, 73]. We recover the result of [73], and
a detailed comparison shows that we recover the results of [56], with the exception that
our constraint on the number e-folds cuts off values of ns & 0.97. Our results for ns, r
and αs shown in figure 6 agree well with the results in figure 1 of [62], despite our simpler
approximation for the loop corrections. (In [62] the running of the quartic coupling was
calculated with Standard Model and chiral Standard Model renormalisation group equations,
with a jump as a free parameter to account for the intermediate region.) The main difference
is our boundary on the right from the number of e-folds, cutting off values ns & 0.97.

Let us now see how the results change in the Palatini formulation.

Palatini formulation. The Palatini formulation results are shown in figures 8 to 13. In
figures 8 and 9 we plot ns and r as a function of ξ and κ. In figures 10 and 11 we use κ̄
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Figure 8. Spectral index in the Palatini for-
mulation for critical point inflation as a func-
tion of ξ and κ.

Figure 9. Tensor-to-scalar ratio in the Pala-
tini formulation for critical point inflation as
a function of ξ and κ.

Figure 10. Spectral index in the Palatini for-
mulation for critical point inflation as a func-
tion of ξ and κ̄. (Note that the range for ns

is different than in the metric case.)

Figure 11. Tensor-to-scalar ratio in the Pala-
tini formulation for critical point inflation as
a function of ξ and κ̄.

instead of κ. Unlike in the metric case, the observationally allowed range is just a small sliver
at the top of the plot, bounded from above by the constraint on the number of e-folds. (We
have cut off the plot at ns < −1 for clarity.) Figures 9 and 11 show that the tensor-to-scalar
ratio decreases with growing ξ, as in the metric case. The spectral index decreases as κ and
κ̄ decrease, as figures 8 and 10 show. As in the metric case, we can tune κ (or κ̄) and ξ in
this region to match r and ns with observations. We could obtain tensor-to-scalar ratio as
large as 0.1, were it not for the constraints on the running of ns.

When we use κ, as in [56, 63], the results reduce to the plateau case for ξ & ×106.
When we use κ̄, following [73], there are no solutions with κ > 0.1 for 200 < ξ < 6× 106, as
inflation does not last long enough. For ξ > 6× 106 the results reduce to the plateau case.

In figures 12 and 13 we show αs and βs in the case with κ as a function of ns and r. As
in the metric case, the boundary on the upper right comes from the constraint on the number
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Figure 12. Running of the spectral index αs

in the Palatini formulation for critical point
inflation with κ. The purple line corresponds
to ξh2 ≫ 1, when the results reduce to the
plateau case.

Figure 13. Running of the running βs in the
Palatini formulation for critical point inflation
with κ. The purple line corresponds to ξh2 ≫
1, when the results reduce to the plateau case.

of e-folds, and changing the duration of reheating shifts it horizontally, affecting the allowed
values of ns, without much effect on r. Unlike in the metric case, in Palatini case, the values
of κ have a drastic effect on the allowed parameter region. The bottom boundary comes from
our (somewhat arbitrary) cut-off κ > 0.1; decreasing the cut-off would move the boundary
down. Figures 12 and 13 show that large r leads to large running, as in the metric case,
but because r is suppressed, the Planck constraint αs < 0.039 is more important. Taking
also the Planck constraint on the spectral index into account reduces the allowed range of r
to 1 × 10−13 < r < 7 × 10−5. The maximum value corresponds to ξ = 540. This range is
sensitive to the precise observational limit on ns and the closely related number of e-folds:
increasing the duration of reheating from ∆Nreh = 4 would further reduce r.

The running of the running is suppressed, we have −5 × 10−5 < βs < 0.059 after the
ns constraint is imposed, compared to the metric case range −2 × 10−4 < βs < 0.059. The
Palatini formulation does not allow r as large as the metric formulation on the plateau (let
alone at the critical point). The one-dimensional purple line extending to small r in figures 12
and 13 corresponds to the fact that for ξh2 ≫ 1 (in this case corresponding to ξ > 106) the
results are independent of κ, there is only one free parameter and we recover the plateau
results.

In the case of κ̄, the limit κ̄ > 0.1 essentially removes the possibility of critical point
inflation with spectral index and running compatible with observations, except when the
situation reduces to the plateau case.

As in the metric case, the analytical estimates of section 2.3 are correct only for ξh2 ≫ 1.
The reason is again that the field value at the pivot scale is far from the critical point value,
because we did not consider the constraint on the number of e-folds. For the case κ = κ̄

√
ξ,

we would need the too small value κ̄ = 8 × 10−3, in agreement with the estimate in section
2.3.

3.3 Hilltop inflation
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Figure 14. Spectral index in the metric for-
mulation in hilltop inflation as a function of ξ
and κ.

Figure 15. Tensor-to-scalar ratio in the met-
ric formulation in hilltop inflation as a func-
tion of ξ and κ.

Figure 16. Spectral index in the metric for-
mulation in hilltop inflation as a function of ξ
and κ̄.

Figure 17. Tensor-to-scalar ratio in the met-
ric formulation in hilltop inflation as a func-
tion of ξ and κ̄.

Metric formulation. Our results for inflation at the hilltop in the metric formulation are
shown in figures 14 to 19. In figures 14 and 15 we plot ns and r as a function of ξ and κ. For
ξ < 215, the boundary on the left and bottom is determined by the upper bound λ0 < b/16
and the existence of the hilltop. For larger ξ, the bottom boundary is determined by the
constraint on e-folds. The top boundary comes from λ0 > 0. We see that r and ns grow when
ξ decreases or κ (or κ̄) grows; the behaviour of ns is opposite to the critical point case, where
it goes down with decreasing ξ. However, unlike in the critical point case, r is suppressed,
not enhanced, with regard to inflation on the plateau. The trends are the same for the κ̄
case, shown in figures 16 and 17. The left boundary comes from upper bound λ0 < b/16 and
the existence of the hilltop, and the right boundary comes from the cut-off λ0 > 0.

In figure 18 we show the allowed region in the (ns, r) plane for the κ case. The right
boundary is the same as the left and bottom boundary in figures 14 and 15, and the left
boundary comes from λ0 > 0. Unlike in critical point inflation, the maximum value of r is
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Figure 18. Running of the spectral index
αs in the metric formulation for hilltop point
inflation with κ.

Figure 19. Running of the spectral index
αs in the metric formulation for hilltop point
inflation with κ̄.

below the plateau case; taking into account the Planck constraint on ns and αs, we have
2× 10−5 < r < 1× 10−3. Both αs and βs are well below the Planck upper limits and almost
constant; accounting for the Planck constraint on ns, we have −1× 10−3 < αs < −7× 10−4

and −3× 10−4 < βs < −1× 10−4.
Figure 19 shows the allowed region in the κ̄ case, which is now reduced to a small sliver,

with values in agreement with observations. The top-right boundary is the same as the
left-side boundary in figures 16 and 17. The bottom right boundary comes from the cut-off
κ̄ > 0.1 and the left boundary from the cut-off λ0 > 0. Again, the running and running of
the running are small, αs = −7× 10−4, βs = −(1 . . . 2)× 10−4.

Changing the duration of reheating has a more complicated effect than in critical point
inflation. In the κ case the main effect of longer reheating would be to slightly decrease the
allowed value for ns, keeping it within the observationally allowed region. In the κ̄ case, the
maximum value of r would grow by about a factor of 2 for ∆Nreh = 10.

Let us briefly compare these results with the ones given in table 1 of [61], where the
loop corrections were evolved with renormalisation group running, not applying threshold
corrections. The values are compatible with the κ case shown in figure 18, and show the
same trend that large ns values correspond to large values of r. They are not compatible
with the κ̄ case due to our cut-offs λ0 > 0 and κ > 0.1. We remind that our approximation
for the loop corrections may not be accurate in the hilltop case.

Palatini formulation. Our results in the Palatini formulation are shown in figures 20
to 22. In figures 20 and 21 we plot ns and r as a function of ξ and κ. The top boundary
results from the cut-off λ0 > 0. For ξ > 2× 105 the bottom boundary is determined by the
constraint on e-folds. Otherwise the boundary results from the upper bound of λ0 < b/16
and the existence of the hilltop. As in the metric case, ns and r grow with increasing ξ and,
to a lesser extent, κ. Unlike in critical point inflation, where the required values of ξ are
similar, at the hilltop the Palatini case requires a much larger non-minimal coupling than
the metric case, ξ > 2 × 105, and r is even more suppressed. It is possible to get the same
ns and r for multiple pairs of ξ and κ.

In figure 22 we show the allowed region on the (ns, r) plane. After accounting for the
Planck limit on ns, we have 1 × 10−10 < r < 2 × 10−9. We do not show αs or βs, as their
projection onto this plane is not single-valued, and the variations are small. After accounting
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Figure 20. Spectral index in the Palatini
formulation in hilltop inflation as a function
of ξ and κ.

Figure 21. Tensor-to-scalar ratio in the Pala-
tini formulation in hilltop inflation as a func-
tion of ξ and κ.

for the Planck constraint on ns, we get αs = −(8 . . . 9) × 10−4 and βs = −(2 . . . 3) × 10−5,
the latter being suppressed by one order of magnitude compared to the metric case. Both
are well below current observational limits. The right boundary corresponds to the left and
bottom boundaries in figures 20 and 21. The left boundary comes from the fact that for
a constant r there is a minimum for ns as can be seen from figures 20 and 21. Increasing
∆Nreh has a similar effect as in the metric case, lowering ns and slightly increasing r, which
however remains suppressed.

Figure 22. Allowed parameter region on the
(ns, r) plane in the Palatini formulation for
Hilltop inflation with κ. The running and the
running of the running are not single-valued
on this plane.

In the case of κ̄, the limit κ̄ > 0.1 re-
moves the possibility of hilltop inflation with
spectral index and running compatible with
observations.

4 Conclusions

Inflationary signatures of gravitational

degrees of freedom. We have studied the
differences in the Higgs inflation predictions
in the metric and Palatini formulations of
general relativity. We have used a simple
approximation for loop corrections to get
analytical understanding in addition to nu-
merical results, considering the two different
parametrisations of [56, 63] and [73]. We
have considered inflation on the plateau and
away from there, in particular at a critical
point, at a hilltop and in a false vacuum.
The tensor-to-scalar ratio is different for in-
flation in different parts of the potential, and Higgs inflation outside the plateau has been
considered particularly for the possibility of obtaining a tensor-to-scalar ratio larger than the
plateau result r = 5× 10−3.
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In the metric case, inflation at the critical point can enhance the tensor amplitude from
the plateau value up to r = 0.2, while in hilltop inflation it is suppressed to 2× 10−5 < r <
1× 10−3, after accounting for Planck observational constraints on the spectral index ns and
the running αs. The running cannot be strongly negative in either case, αs > −2 × 10−3.
These metric case results agree with previous work, when the different approximation schemes
are taken into account [56, 61, 62, 73].

In the Palatini formulation, we find that both critical point and hilltop inflation are
viable in the parametrisation of [56, 63], but not in that of [73]. (For false vacuum infla-
tion, there is no major difference between the metric and Palatini formulations.) As in the
plateau case studied in [91], r is highly suppressed for the Palatini formulation, with the
value 1× 10−13 < r < 7× 10−5 in the critical point case and 1×10−10 < r < 2×10−9 at the
hilltop, once observational constraints on the spectral index and its running are taken into
account. (For large values of the non-minimal coupling ξ, the results approach the tree level
plateau case, in agreement with general arguments [64].) These values are sensitive to the
precise observational value of the spectral index and to changes in reheating. For the r (and
ns) values that overlap between the metric and Palatini cases, the running and the running of
the running set them apart. So if Higgs is the inflaton, observations of the cosmic microwave
background and large-scale structure can be used to determine whether the metric or the
Palatini formulation is correct.

The precise numbers depend on our treatment of the loop corrections. In particular,
the approximation we have used may not be valid at the hilltop. It should also be checked
whether the parametrisation of [56, 63] or [73] (or neither) is more appropriate. Following the
renormalisation group equation running in detail would give more accurate results, provided
the effects of the mid-field regime ξh2 ∼ 1 where the loop corrections are not under control
is properly parametrised [49, 52, 54, 56–64]. Inflation in the mid-field regime ξh2 ∼ 1 is
particularly sensitive to the unknown corrections to the shape of the potential, but even the
predictions of the large field regime ξh2 ≫ 1 can be modified through a change in the total
number of e-folds due to possible features, such as a critical point.

The possible dependence on the particle physics UV completion has been much discussed
in the literature [43, 48–50, 54–64]. We have focused on a less appreciated ambiguity: the
predictions of Higgs inflation are also sensitive to the choice of the gravitational degrees of
freedom (presumably ultimately determined by the UV completion of the gravity sector).
Uncertainties of the quantum corrections notwithstanding, the suppression of the tensor-to-
scalar ratio is a robust signature of the Palatini formulation, originating in the different field
transformation to obtain a canonical kinetic term for the Einstein frame Higgs field in the
metric and Palatini formulations, tracing to the different structure of the Ricci tensor in the
two cases.

If r is detected at a level that is within the reach of next generation experiments, the
Palatini case will be ruled out, if our approximative treatment is valid. Turning this around,
if r at the level predicted by the metric formulation r > 2 × 10−5 is not seen, this will not
rule out Higgs inflation, only Higgs inflation in the metric formulation (with caveats about
the treatment of the quantum corrections). In the context of Higgs inflation, inflationary
predictions can thus distinguish between different gravitational degrees of freedom. Such
tests can also be extended to other formulations of general relativity that are equivalent
for the Einstein–Hilbert action plus a minimally coupled scalar field, but distinct in Higgs
inflation, where non-minimal coupling plays a central role.
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