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Abstract We study a chiral Yukawa model mimicking the
Higgs—top—bottom sector of the standard model. We re-
analyze the conventional arguments that relate a lower bound
for the Higgs mass with vacuum stability in the light of exact
results for the regularized fermion determinant as well as
in the framework of the functional renormalization group.
In both cases, we find no indication for vacuum instability
nor meta-stability induced by top fluctuations if the cutoff is
kept finite but arbitrary. A lower bound for the Higgs mass
arises for the class of standard bare potentials of ¢* type
from the requirement of a well-defined functional integral
(i.e., stability of the bare potential). This consistency bound
can, however, be relaxed considerably by more general forms
of the bare potential without necessarily introducing new
metastable minima.

1 Introduction

Long before the recent discovery of a comparatively light
standard-model Higgs boson [1,2], estimates and bounds on
this mass parameter have been derived from renormaliza-
tion arguments [3-9]. Assuming the validity of the standard
model over a wide range of scales up to an ultraviolet (UV)
cutoff scale A, together with mild assumptions on the micro-
scopic action at the scale A, typically leads to a finite range
of possible low-energy values for the Higgs mass, the so-
called infrared (IR) window [6,10]. Similar arguments can
also be applied to models beyond the standard model of
particle physics [11-17]. It has been suggested that Higgs
masses below the lower bound necessarily require the effec-
tive potential of the standard model to develop a further
minimum beyond the electroweak minimum [18-24]. Since
the measured value of the Higgs mass near myg = 125GeV
appears to be near if not below the lower bound, the standard-
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model vacuum could be unstable or at least metastable. In the
latter case, the metastability has to be sufficiently long-lived
compared to the age of the universe to allow for our existence
[25-34].

While the occurrence of the vacuum instability is often
attributed to the fluctuation of the top quark (and therefore
sensitively depends on the top mass), the conventional pertur-
bative analysis of determining the instability has been ques-
tioned by non-perturbative methods. Within the toy model of
a top—Higgs—Yukawa system with discrete symmetry, lattice
simulations have revealed that the full effective potential in
this model with the cutoff kept finite does not develop an
instability [35-37]. By contrast, the perturbative treatment
of the same model in the limit A — oo exhibits an instabil-
ity in disagreement with the simulation results. Within the
same model and using functional methods, the occurrence of
the erroneous instability has been traced back to an implicit
renormalization condition that contradicts the underlying
assumption of a well-defined functional integral [38—40].

In a series of recent lattice simulations using chiral Higgs—
Yukawa models, imposing the criterion of a stable bare poten-
tial (typically of ¢* type) has lead to a number of quantitative
results for the lower bound on the Higgs mass [37,41-44]
without the need to require low-energy stability. The same
line of argument can in fact be used to put strong constraints
on the existence of a fourth generation of flavor in the light of
the Higgs boson mass measurement [45—49]. These results
have also been substantiated by conventional analytical meth-
ods [50].

In a recent work, we have been able to show that the sole
consideration of bare potentials of ¢* type is actually too
restrictive [51]. In fact, if the standard model is viewed as
a low-energy effective theory, there is no reason to exclude
higher-dimensional operators from the bare potential. Their
occurrence is actually expected. Whereas Wilsonian renor-
malization group (RG) arguments of course suggest that low-
energy observables remain almost completely unaffected by
the higher-dimensional operators, we have demonstrated that
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Higgs-mass bounds can in fact exhibit a significant depen-
dence on the bare potential. This may seem counter-intuitive
at first sight, since the Higgs mass is clearly an IR observ-
able. However, a Higgs-mass bound formulated in terms of
a function of the cutoff, my pound (A), can be strongly influ-
enced by a non-trivial RG running of the couplings near the
cutoff. In [51], we have identified a simple RG mechanism
that leads to a lowering of the conventional lower bound for
the case of a Z,-symmetric Yukawa toy model.

Our findings of a “lowering” of the lower bound have been
confirmed in the chiral Yukawa models studied on the lattice
[52] as well as in a model involving an additional dark-matter
scalar [53].

In view of the latent controversy about the (non-)existence
of a top-fluctuation induced vacuum in-/meta- stability of the
electroweak vacuum, the purpose of this work is twofold:
first, we demonstrate on the basis of exact results for the
fermion determinant in the presence of a scalar vacuum
expectation value that the interaction part contribution to
the effective potential is positive if the UV cutoff is kept
finite but arbitrary. By contrast, a removal of the cutoff by
taking the naive limit A — oo makes the fermionic contri-
bution to the effective potential unstable. Second, we gener-
alize our results of [51] to the chiral Yukawa model, which
is also used in lattice simulations. Using the functional RG,
we demonstrate that the conventional lower bound can be
relaxed considerably by more general forms of the bare
potential without necessarily introducing new metastable
minima.

The paper is organized as follows: in Sect. 2, we intro-
duce our model and all relevant notation. Section 3 is
devoted to an analysis of exact properties of the fermion
determinant in order to explore the origin of the appar-
ent instability of the standard-model vacuum. The non-
perturbative RG flow equations of the present model are
summarized in Sect. 4. These are used in Sect. 5 to com-
pute the Higgs-mass bounds of the model non-perturbatively
for various bare potentials. Conclusions are presented in
Sect. 6.

2 Chiral Higgs-top-bottom model

In order to illustrate our main points in a transparent fashion,
we investigate a chiral Higgs—Yukawa model forming a self-
contained subset of the standard model. The field content
consists of a scalar field which is a complex SU(2)-doublet

_ 1 (i +id
=75 <¢>4 +i¢3>’ M

and two Dirac fermions which represent the top and bottom
quark. The left-handed components of the bottom and top
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transform as a doublet under SU(2) while the right-handed
components are singlets.

)
YL = (bL), R, br.
L

The classical euclidean action of the model is given by

s =/d4x 8,606 + U )
+iyLdyL + ifr¥tr + ibr¥br
+ihy (YLpbR + bre VL)
il (e +iReGyL)). @)

where ¢p¢ = iop¢™ denotes the charge conjugated scalar.
The scalar field couples to the fermions via a chiral Yukawa
interaction where 4 and /1, are the (bare) Yukawa couplings
for the top and bottom respectively. Furthermore, we include
scalar self-interactions encoded in the scalar potential which
depends on the field invariant

p=¢'¢. 3)

The action (2) is invariant under the following global sym-
metry transformations:

iai%i i(xi%i b b
¢ —>e ¢, YL—e YL, 1R —> R, br — bR,

where o are the Pauli matrices acting on the SU(2) doublet
structure and

. - at
¢ — ePsg, R — Preg,

YL — eiﬂLKl’L, br — eiﬂRbR.

Here, the § angles are related to a single angle by the
usual hypercharge assignments, s = %ﬂ, BL= %,8, ,81[2 = %,B,
and ,3}'{ = — % B. Thus, the model has a global SU(2)xU(1)
symmetry. The symmetry can be spontaneously broken
down to a global U(l) by a nonzero vacuum expec-
tation value of the scalar field ¢ — v, giving rise
to Dirac masses for the fermions and the Higgs boson
mass.

The classical action is already equipped with a potential
for the scalar field U (p). Symmetry breaking in the quantum
theory occurs, if the corresponding renormalized potential U
develops a nonvanishing minimum pg. In this case, we can
write the masses' in terms of this minimum and the renor-
malized Yukawa couplings A and Ay,

I For the derivative expansion used below, these mass definitions
already agree with the pole masses.
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where we already accounted for a wave function renormal-
ization Zy to be defined together with the other renormalized
quantities below.

Apart from the missing further matter and flavor content,
our model also ignores the gauge sectors of the standard
model. This avoids not only technical complications and sub-
tle issues arising from the gauge-Higgs interplay [54-56] in
the standard model. But it will, of course, also lead to decisive
differences to standard-model properties, which will be com-
mented on in the course of this work. Nevertheless, the gauge
sector is less important for the main points of the present
work. In order to make closer contact with the standard-
model language, we fix v = 246GeV, m; = 173GeV and
myp = 4.2GeV for illustrative purposes, but leave the Higgs
mass as a free parameter for the moment.

For the following discussion it is important to note that the
standard model in its conventional form (as well as the present
model) may not be extendible to arbitrarily high momentum
scales. The problem of triviality [S7—63]-where substantial
evidence has been accumulated for ¢*-type theories—is likely
to extend to the full chiral-Yukawa sector as well. If so, the
definition of the model unavoidably requires a UV cutoff A
which physically plays the role of the scale of maximum
UV extent up to which a quantum field theory description is
appropriate. If the cutoff scale is sufficiently large, Wilsonian
renormalization guarantees that the IR physics essentially
depends only on a finite number of relevant and marginal
parameters, rendering the theory predictive (in spite of our
ignorance about the physics beyond A).

In fact, the strategy of perturbative renormalization man-
ifestly allows one to implicitly or explicitly take the limit
A — oo for certain physical observables. For the general
definition of the theory, it is, however, important to accept
the fact that the cutoff A may unavoidably have to be kept
finite.?

Fixing physical parameters such as v, my, and my, is tech-
nically implemented by renormalization conditions. Phe-
nomenologically, it is useful to fix these conditions at obser-
vational IR scales. Conceptually, however, it is equally well
possible to impose suitable renormalization conditions at the
UV cutoff A. A perturbative study of possible Higgs-mass
values for partly randomized UV initial conditions at the
Planck scale has, for instance, been performed for the stan-

2 In principle, perturbative predictions for A — oo may differ from
those with a finite cutoff. However, let mops denote the scale of a typical
IR observable; then this difference is typically of order (mops/ A)EP),
where p is some integer. For sufficiently large A, this difference hence
becomes insignificant.

100

Aa.A

Fig. 1 Higgs mass my as a function of the bare quartic coupling A2
for fixed cutoff A = 107 GeV for various approximations. Dashed lines
depict leading order results in the derivative expansion while solid lines
show the next-to-leading order. Also the convergence of the polynomial
truncation of the scalar potential is illustrated. Red lines with squares
arise from N, = 2 whereas blue lines with circles are derived for N = 4
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Fig. 2 Higgs mass my as a function of the cutoff A for various bare
quartic couplings. The black solid line represents a lower mass bound
(A2.o = 0) within ¢* theory. Dashed lines depict Higgs masses for
A A = 1 (red), 10 (blue), 100 (green) from bottom to top

dard model in [64]. For the present model, we can fix hy, hy,
and the scalar potential U in terms of their bare quantities at
the cutoff, ha = Ay, hoa = hp, and U, In practice, the fix-
ing can be done such that the constraints set by the physical
values of v, m¢, and my, are satisfied.

From this viewpoint, the Higgs boson mass as the remain-
ing free parameter becomes a function of the unconstrained
combinations of the UV couplings. Now, bounds on the Higgs
boson mass arise, if all permissible choices of UV couplings
result in a finite range of Higgs boson masses. Examples
for such finite ranges of possible Higgs masses, so-called IR
windows, are shown in Figs. 1 and 2. Before we derive these
results from the functional RG, let us specifically pay atten-
tion to the lower bound that has been associated with vacuum
stability.

3 Fermion determinant and (in-)stability

The current state of the art is a next-to-next-to-leading order
analysis of the standard-model effective potential, in order
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to study its stability properties; see, e.g., [31,65-67]. How-
ever, the stability issue is already visible at one-loop order.
In a nutshell, the argument goes as follows; see, e.g., [68].
First, standard renormalization conditions on the effective
potential are imposed in such a way that a first non-trivial
minimum occurs at v >~ 246 GeV. This involves in partic-
ular to choose the counterterm ~ ¢'¢ appropriately. Then
one assumes based on RG-improvement arguments that the
effective potential for large field values ¢ > v is well approx-
imated by

M)
Uefi(p) = TP2’

where the RG scale p then should be identified with the field
amplitude & ~ |¢|. The dependence of the ¢* coupling on
the scale p can be computed by integrating its 8 function
from the IR (where the boundary condition is fixed in terms
of the Higgs mass) upwards to higher scales. For the present
model, the 8 function reads,

1

fr=rs [_hf — i AR+ hD) + 3A2] . )

p=0¢"0, )

(This agrees with the corresponding standard-model sectors
if a color factor of N, is included for each fermion loop.)
Obviously, the pure fermion-loop contributions ~ hf, hﬁ
come with a negative sign, implying that they tend to deplete
A towards the UV. In particular for a heavy top (large h¢)
and a light Higgs (small A), the integrated coupling A(u)
can drop below zero at high scales. Identifying u with |¢|
and inserting this result into Eq. (4) leads us to the stan-
dard conclusion that the effective potential seems to develop
an instability towards large field values. (NB: In the present
model, this line of argument actually results in an effective
potential being unbounded from below for |¢| — oo. In the
full standard model, electroweak fluctuations eventually sta-
bilize this effective potential again by turning A(u) back to
positive values for scales typically far above the Planck scale;
see, e.g. [69]).

With hindsight, the arguments underlying Eq. (4) rely on
the assumption that the field amplitude ¢ provides for the only
relevant scale at large values. It is precisely this assumption
that fails in the presence of a finite cutoff independently of
the size of the cutoff. In order to see this, let us start from
the (for simplicity Euclidean) generating functional for the
scalar correlation functions of the model

Z1) = / DODI D8 T 14/ 19, o
A

where the appearance of A at the functional integral shall
remind us of the fact that the theory requires a regularization

3 In this section, we do not distinguish between bare and renormalized
scalar fields, as this is not relevant at this order.
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procedure as part of its definition. As the action is a quadratic
form in the fermion fields, the corresponding fermionic inte-
gral can be carried out and yields

Z[J] =/D¢detA(,C(¢))e—SB[¢]+fJ¢
A

:/D¢6*SB[¢]*SF,A[¢]+I«I¢’ (7)
A

where Sp is the purely bosonic part of the action and L(¢)
denotes the Dirac operator in the presence of the scalar field.
In the second line of Eq. (7), we have introduced the effec-
tive action Sg, A [¢] arising from integrating out the fermion
fluctuations. As the fermion determinant and thus also Sg A
corresponds already to a loop-integration, it suffices for the
present purpose to investigate its properties for a homoge-
neous mean field ¢. Deviations from this mean field con-
tribute to the full effective potential only in terms of fluc-
tuations at higher-loop order. Therefore, we concentrate on
the fermion-fluctuation induced contribution to the effective
potential

1
Ur(p) = — Indeta (L(e)), ®)

where Q = f d*x denotes the spacetime volume, and where
we have used the fact that the dependence on ¢ must occur
in terms of the SU(2) invariant variable p. Incidentally, Eq.
(8) corresponds to the leading contribution to the effective
potential at large Ns.

Upon a global SU(2) rotation, the mean field can be rotated
into the ¢4 component of the scalar field. The Dirac operator
then becomes block diagonal in top-bottom space, reading
La(p) =id+i %ﬁham where a = {t, b} in the top or bottom
subspace respectively. Because of the hermiticity of ys, i is
isospectral to —i d, which allows us to write

dety (—92 + h2p)

detp(—d2) ©)

1
Ur(p) = —— 1
F(p) = =72 a_%jb} n

where p = %gbf for our choice of mean field. In proceeding
from Eq. (8) to Eq. (9), we also used the freedom of choos-
ing the normalization of the generating functional such that
the fermion-induced effective potential is normalized to the
zero-field limit, i.e., Up(p = 0) = 0. This resulting ratio of
determinants can be evaluated straightforwardly, once a reg-
ularization procedure has been chosen. The final result will
of course depend on the regularization for any finite value of
the cutoff A. As argued above, we should not expect that the
cutoff can be sent to infinity, since our model is likely to have
a scale of maximum UV extent. In order to understand this
regulator dependence, it is therefore instructive to compute
Eq. (9) for different choices of the regularization.
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3.1 Sharp cutoff

As the contributions from both quarks are formally identical
up to a different value of the Yukawa coupling, it is sufficient
to study Ur , and take the sum over a = {t, b} afterward. A
straightforward regularization is provided by a sharp cutoff
in momentum space, such that Eq. (9) translates into

a* h2
wﬂm=—{AQ£unQ+£§> (10)

where we have used the fact that we work here with 4-
component Dirac spinors. As expected, the integral contains
quadratic and logarithmic “divergencies”, which can be made
explicit by writing the analytic exact result of the integral as

2

AT,
Ur,a(p) = —Whap (11)
+ h4,021n 1+A—2 +hz,oA2
1672 | ¢ hZp “
hZ
—A*In <1 n Af)} . (12)

Here observe that the quadratic divergence ~ A has been
isolated in the first line. The remaining term in square brack-
ets contains only logarithmic divergencies ~ In A. Itis, how-
ever, more important to note that the first line also isolates the
only term proportional to p ~ ¢7¢ and thus contributes to
the mass parameter of the scalar field. The remaining terms
represent the interacting part of the fermion-induced effec-
tive potential.

Most importantly: whereas the contribution to the mass
term is negative, as it should be, since fermion fluctuations
tend to induce chiral symmetry breaking, the whole interac-
tion part in square brackets is strictly positive for all p > 0.
This follows immediately from the inequality In(1 + x) < x
(for x > 0) applied to the last term. Similarly, it can be shown
that also the derivative of the interacting part with respect to
p is strictly positive for any finite value of p, h,, and A.

We conclude that the fermion determinant—apart from its
contribution to the scalar mass term—is strictly positive and
monotonically increasing in its interacting part. Therefore,
once the scalar mass term has been fixed by a renormal-
ization condition, the remaining contributions from the top
fluctuations to the interacting part of the bosonic potential are
strictly positive. This excludes the possibility that an instabil-
ity beyond the electroweak vacuum is induced by fermionic
fluctuations. This can also be phrased in terms of a more rig-
orous statement: if the potential of the purely bosonic part
Sp of the action in Eq. (7) is bounded from below by a func-
tion of the form Ug(p) > c¢| + cap'™€ with an arbitrary
finite constant ¢ and finite positive constants ¢z, € > 0, then
also the full potential including the fermionic fluctuations is
bounded from below.

This result is in obvious direct disagreement with the stan-
dard perturbative reasoning outlined above, cf. Egs. (4) and
(5). Nevertheless, it is in fact possible to “rediscover” this
seeming instability of the standard reasoning from the stable
contribution (12) by trying to take the limit A — oo. The
leading-order terms in this limit read

A? 1 A2
U, =—— i h* % In —
F,a(lo) 87'[2 ap + 167T2 [ ap n hg,o
hgp® (hzp)?
T Lo« . 13
=t 2 (13)

From this, it is tempting to isolate the divergencies ~ A>
and In A, combine them with the bare scalar mass and ¢* cou-
pling parameters, and trade them for renormalized parame-
ters mé(uo) and A(ug). Here wg is some arbitrary (typically
low-energy) renormalization scale. Ignoring the mass term
for a moment, the renormalized interaction contribution to
the effective potential would then read

9 1 h2
Ur,a(p) — —16—2}13;)2 (ln sz + const.) s (14)
T Mo

where the constant depends on the details of the renormaliza-
tion scheme. This is precisely the fermion-loop contribution
to the effective action, which we would obtain from inte-
grating the first two terms of the 8, function (5) from ug to
w and identifying 4> ~ p. Hence, we have “rederived” the
contribution with the characteristic minus sign that seems to
indicate the presence of an instability at large values of p,
while the cutoff A seems to have disappeared completely.

The problem of this line of argument becomes obvious
once we go back to the cutoff-dependent leading order terms
in Eq. (13). It is straightforward to work out that also these
leading-order terms seem to have an instability: the inter-
action part of the potential in square brackets first devel-
ops a maximum and then eventually turns negative for large
fields p. However, the location of the maximum is in fact at
hg p = AZ%.In other words, these seeming instability features
appear precisely at those field values, where the expansion in
terms of the parameter hAgf <« 1 breaks down. We conclude
that the instability “discovered” in Eq. (14) is an artifact of
having tried to send the cutoff to infinity A — oo together
with a problematic choice of the renormalization conditions.
In fact, it has been shown in [38-40] for the Z,-Yukawa
model that the renormalization conditions needed to arrive
at Eq. (14) require an unstable bare bosonic potential with
negative bare ¢* coupling, AL(A) < 0.

Some additional comments are in order:

(1) Our conclusions are identical to those of [35,36], where
essentially the same results have been found for the Z,-
Yukawa model. In these works, fully non-perturbative
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lattice simulations have been compared with the one-
loop effective potential with a cutoff kept finite, matching
the lattice data almost perfectly. By contrast, the effective
potential with the cutoff removed a la Eq. (14) shows an
artificial instability in strong disagreement with the non-
perturbative simulation. This work has been criticized
[68,70] also because it is generically difficult on the lat-
tice to bridge wide ranges of scales, in particular to sepa-
rate the cutoff from the long-range mass scales by many
orders of magnitude. As is clear from the above discus-
sion, this problem does not exist for the present line of
argument; the cutoff can be arbitrarily large in the above
discussion of the fermion determinant. As long as it is
finite, the interaction part of the determinant does not
induce any instability.

(2) For the above discussion and the comparison to the stan-
dard line of arguments at one-loop order, it has been
sufficient to evaluate the determinant for a homoge-
neous mean field. Though this does not interfere with
our argument, one might ask whether the determinant
behaves qualitatively differently for non-homogeneous
fields. Some exact results are known for d = 1 + 1
dimensional determinants, where the Peierls instability
at a finite chemical potential can lead to inhomogeneous
ground states with lower free energy [71,72]. However,
the vacuum ground state is generically homogeneous as
no mechanism exists that can “pay” for the higher cost
in kinetic energy. Absolute lower and upper bounds for
fermion determinants have been found, e.g., for QED
[73].

(3) The fact that the interaction part of the fermion contribu-
tion to the scalar potential is positive does not imply that
the full theory cannot have further potentially (meta-)
stable vacua. The conclusion rather is that such further
vacua have to be provided by the bosonic sector. In par-
ticular, the bare bosonic potential Ug can in principle
be chosen such that it has several vacua.* As a further
special case, it is even possible to construct somewhat
special examples such that the bare bosonic potential has
one minimum, but the sum of U and Uy has two minima.
This is still very different from the perturbative reasoning
which for the present model seems to suggest a global
instability due to the fermionic fluctuations, whereas a
global instability of Up + Ur in our analysis would have

4 Let us illustrate this with an extreme example: if the bare bosonic
potential U with several minima is chosen such that the global mini-
mum occurs at field values pgm > A withalocal curvature U” (dgm) >>
A?, the fluctuations with momenta p < A can be expected to essentially
renormalize only the inner part of the potential. The dynamics near the
global minimum ¢, would completely decouple from all fluctuation
physics of such a model. Hence, this global minimum of the bare poten-
tial is likely to remain the global minimum of the full potential, such
that further minima at smaller field values would be metastable.

@ Springer

to be seeded from the choice of Ug. The fact a second
global minimum of the effective potential could be gen-
erated by physics in the UV has also been emphasized in
[70]. To summarize, our arguments do not exclude that
our electroweak vacuum is unstable, but they suggest
that such an in/meta-stability would have to be provided
by the microscopic underlying theory; see [74] for a spe-
cific example from string phenomenology. In this case,
however, the Higgs-mass bounds from metastability as
well as the life-time estimates of the electroweak vacuum
would be very different from the conventional estimates;
see e.g. [75].

(4) As mentioned above, the result for the fermion deter-
minant is regulator dependent, as long as the cutoff is
kept finite. The preceding results have been derived for
a sharp cutoff in momentum space. These results in
fact generalize to arbitrary smooth cutoff shape func-
tions in momentum space as they can be implemented
straightforwardly within the functional RG framework;
see below and Appendix B. Though this is not an issue
for the present model, one might be concerned about
the fact that such regularizations are not gauge invariant.
Hence a gauge-invariant regularization is studied in the
remainder of this section.

3.2 ¢ function regularization

It is illustrative to study the fermion determinant also using
¢ function regularization which can be used to interpolate
between proper-time and dimensional regularization. For
this, we write Ur of Eq. (9) for one of the quark flavors
as

1 [ dT .
Ur 4(p) = _/ dr (e*hﬁﬂ — 1) Tre?T, (15)
’ 29 1/A2 T

where T is a proper-time parameter, being introduced via
Frullani’s formula for a representation of the logarithm.
Here the lower bound of the T integral serves as a (gauge-
invariant) momentum cutoff. Furthermore, we now evaluate
the momentum trace in d dimensions and introduce an arbi-
trary dimensionful scale o in order to implement the cor-

4
rect dimensionality of the potential, Tr — tr, Q [ ((2171)’4 —

Q dd p .
try W f W . We Obtaln,

UF,a()O) =

4—d
2Ho /Oo ar (e 1), a6

(471)d/2 1/A2 T1+(d/2)

In the limit d — 4, we have the standard proper-time
regularization, whereas in the limit A — oo, we end up with
dimensional regularization. Separating the mass term ~ p as
before, we get
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4—d
_ 4ieg h2p A2
(d —2)(4m)d/2 "¢

2pg ™ [ AT
(4n)d/2 1/A2T1+(d/2)

Ura(p) = a7)

(e‘”gPT +h2pT — 1) .
(18)

Again, we observe that the mass term (first line) con-
tributes with the minus sign as expected, whereas the inter-
action part (second line) is a strictly positive function for all
finite values of A, h,, p,d > 0. The conclusions are there-
fore identical to the ones for the sharp cutoff. Incidentally,
the proper-time integration can be carried out analytically, the
result can be written in terms of an incomplete I" function
with the positivity properties of course remaining unchanged.

As the mass term will become part of the renormalized
scalar mass term by means of a renormalization condition,
let us now focus on the interaction part Eq. (18). In order
to take the limit towards dimensional regularization, we first
take the limit A — oo, and then expand aboutd = 4 — ¢, as
is standard. We then find for the interaction part

2t
Ura(p) = 4;;[, 7 (hep)!PT(=d/2) (19)
_ htp? 1
© 8n2 e
h4 2 h2
_ 1;52 (ln ML;O + const.) + O(e). (20)
0

Following the standard recipes, we would absorb the pos-
itive 1/¢ divergence in the bare ¢* term by means of a renor-
malization condition. The finite part in Eq. (20) is identical to
that of the sharp cutoff in Eq. (14) in the limit A — oo (apart
from the scheme-dependent constants), seemingly indicating
an instability at large field values. With dimensional regular-
ization, we would therefore arrive at the standard conclusion
that fermionic fluctuations can induce an instability of the
vacuum at large fields.

Whereas for the sharp cutoff, this was an obvious artifact
of the A — oo limit, the failure is less obvious here. Never-
theless, as we have derived this misleading result of a neg-
ative contribution from a strictly positive expression given
in Eq. (18), it is clear that the standard strategies of dimen-
sional regularization fail to describe the global behavior of the
fermion determinant properly. The reason is that dimensional
regularization is not only a regularization but at the same time
a projection solely onto the logarithmic divergencies. It has
in fact long been known that the use of dimensional regular-
ization in the presence of large fields can become delicate;
procedures to deal with this problem typically suggest to go
back to the dimensionally continued proper-time/¢ -function
representation that we started out with [76,77].

There is another perspective that explains why the stan-
dard perturbative argument of integrating the S function

of the ¢* theory is misleading as far as vacuum stabil-
ity is concerned: the B functions are typically derived
in mass-independent regularization schemes (though mass-
dependent schemes have recently also been studied [78]),
and it is implicitly assumed that the discussion can be per-
formed in the deep Euclidean region where all mass scales
are much smaller than any of the involved momentum scales
of the fluctuations. The latter assumption is in fact not valid,
as both scales the value of the field as well as the cutoff
A can interfere non-trivially with each other. This is illus-
trated rather explicitly in the sharp-cutoff calculation given
above.

4 Renormalization flow

Independently of the validity of the perturbative arguments
about vacuum stability, the comparatively small mass of the
observed Higgs boson [1,2] poses a challenge: the fermionic
fluctuations (dominated by top loops) contribute to the cur-
vature of the effective potential which determines the Higgs
boson mass. Even in the absence of any bosonic interactions,
this appears to lead to a lower bound on the value of the Higgs
mass which are in tension with the measured value. This
line of argument has been used in quantitative lattice studies
[37,41-44]. For rendering simulations on a Euclidean lat-
tice well defined, the bosonic action has to be bounded from
below; in practice, lower bounds on the Higgs mass thus
arise in the limit of the bare ¢* coupling approaching zero,
A — 0.

While it is debatable whether this criterion could be
relaxed for a Minkowskian functional integral in the con-
tinuum, we have already provided first examples in the Z;-
symmetric Yukawa toy model that these conventional lower
bounds can be relaxed by allowing for more general forms
of the bare potential [51]. These results have recently been
confirmed in lattice simulations [52]. In particular, no state
of meta-/instability is required for relaxing the lower bound.
In the following, we generalize these results to the chiral
top—bottom—Higgs Yukawa model.

For this, we use the functional RG as a non-perturbative
tool. Though our results for the lower Higgs-mass bound
can in principle also be derived within a perturbative frame-
work, the functional RG allows one to discuss weak-coupling
limits (lower bounds) as well as the large-coupling region
(upper bounds) in a unified setting. Also, more generalized
bare actions can be dealt with more conveniently, the pre-
ceding fermion determinant results arise in a specific limit,
and higher-loop effects as well as RG improvement are auto-
matically included. Starting from a bare microscopic action
S defined at a UV cutoff A (which may or may not be sent
to infinity), the RG flow of a corresponding scale-dependent
action 'y is determined by the Wetterich equation [79],
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1
9T = —STr[ r=In—, 1)

2

which interpolates smoothly between microscopic physics,
['r=a = S, and the full quantum effective action, I'y—o = I".
F,Ez) in Eq. (21) denotes the second derivative of I'y with
respect to the fluctuating fields (¢, 7., 7L, . . .) and the super-
trace includes a minus sign for fermionic degrees of freedom.
The regulator Ry in the denominator acts as an IR cutoff for
modes with momenta smaller than k. The derivative 9; R;, at
the same time provides for a UV regularization. For instance,
for a suitable choice of Ry in terms of a sharp cutoff, taking
only the fermion loops of Eq. (21) into account reproduces
the fermion determinant results given above. For detailed
reviews of the functional RG, see [80-86].

We compute the effective average action at next-to-leading
order (NLO) in a derivative expansion, corresponding to the
following truncation:

M = / (Z610,91 + U@'®) + Zuduidyn + Ziiidig
+ ZRbridbr + iy (JLpbR + bre' Y1)
il (e +iRefyL)). (22)

Here the scalar potential, both Yukawa couplings and the
wave functionrenormalizations Zg, Zy , and Zﬁb for the fields
depend on the RG scale k (U = Ui, hy = hgk, ...). For
compactness of notation, this dependence is suppressed.

Inserting this truncation into the Wetterich equation leads
to the B functions, i.e., the flow equations for the effec-
tive potential, the Yukawa couplings as well as for the wave
function renormalizations. The latter will be encoded in the
anomalous dimensions of the fields,

n; = —0,InZ;,

where i labels the different fields. Furthermore, it is useful
to define dimensionless renormalized quantities, such as

p=Zsk> ¢
2 1 =1yt =1, d—472
hi=Z5 Zy Zy ki,
2 —1,—1,b—1,4-472
hb = th ZL ZR k hb

Here and in the following, we work in d dimensional
spacetime for reasons of generality. Accordingly, the dimen-
sionless potential simply reads

u=kU.

In the following, we list the flow equations for the vari-
ous quantities, as they follow from the Wetterich equation,
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using standard calculation techniques; see, e.g., [87]. The
flow equation for the potential can be written as
du = —du+ (d -2+ ng)pu’

+ua (3@ + 1w+ 20u")

—dwoa (1§ 12 p) + 1 ()

HiR! (h2p) + lé?f(hﬁp)) : 23)
where primes denote derivatives with resﬂ;/)ect to p. The

threshold functions lg s l(()li)d, lé?‘d, and l(()?b governing the

decoupling of massive modes can be found in the appendix
for the convenient choice of a linear regulator. Here, v;l =
24+174/21(d/2) and dyy is the dimension of the spinor rep-
resentation of the Weyl fermions. We will specialize tod = 4
and dw = 2 for quantitative calculations. The flow equations
for the Yukawa couplings are
Oh? = (d — 4+ ng + L+ Mkt

—4vdhf[(6/<u” + 4K2uw)l§’F§)d(ht2/<, u + 2kcu’”)

—2/<u”lf,F2B)d(h2K, u')

+2h2k (lgf)d(htzlc, u' + 2kcu’)

—1F P e, u)) — 1P (e, !+ 20cu”)

I i)

—8vdh3h§[ - 2Ku”lf§)d(h2/c, u')

—2h3 P e,y + 1P (e, ||

pP=K
dhi = (d —4+4ny +nL+nQ)hd

—dvght [(@m” + dic2u

(hike, u' + 2ucu”)
FB)d
—2icu" {3 (W, u')
+2hiK (léiB)d (hiic, u' 4 2icu’)
5P (e, ') = TP (e, '+ 20w’
—Hﬂ%d (hix, u’)]

—8vdh§ht2[ - 2/<u”lf,pf)d(h2/<, u')

~22e P e, ) TP 0 ) ]| @4

p=x

where « denotes the minimum of the potential. Finally, the
anomalous dimensions are given by

8
Ny = %K[&t”mgz(u’) + Gu” + 2cu” ) m, (' + 2«cu’”)]
8d
—=u [ichtm$ i) = nEm ™ i o

d d
+Khﬁm§F) (h%/c) — h%m‘(f) (htz,/c; nb)]‘pﬂ{,
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4
ny = —4 [hz( D en?, u'y + mTP ch?, u! +2/<u”))

+2hbm(FB)d (h?, u )]‘ ,
p=K

Nk = 4Udh Z[m (FB)d(h2 )—l—m(FB)d(th u' + 2ku”)
om (FB)d(hb ’ )]) B
e = 4:ldh2[ (FB)d(h )—i—m(FB)d(h i, u' + 2kcu’”)
+2m (FB)d(hZ /)” (25)
p=k

Again, the definition of the threshold functions can be
found in the appendix. Furthermore it is useful to define
anomalous dimensions of the top and bottom quark via

= %(nL +0R). = %(nL +1R). (26)

The flow equations agree with those for the Z;-symmetric
Yukawa model [51,88] in the limit of a vanishing bottom
sector, hy, = 0, and ignoring the terms arising from the addi-
tional scalar contributions.’ The reliability of the derivative
expansion can be monitored with the aid of the anomalous
dimension, providing a rough measure for the importance of
the higher-derivative terms. In practice, we study the con-
vergence of the derivative expansion by comparing leading-
order results (; = 0) to the full NLO calculation; see below.

5 Non-perturbative Higgs-mass bounds

The flow equations listed above enable us to take a fresh look
at Higgs boson mass bounds possibly arising from the RG
flow of the model. For this, it is useful to think of the RG flow
as a mapping from a microscopic theory defined at some high
scale A onto the effective long-range theory governing the
physics observed in collider experiments. For this mapping,
we use the standard-model-type parameters v = 246 GeV,
m¢ = 173 GeV and mp = 4.2GeV as constraints. The range
of all possible Higgs boson masses resulting from the remain-
ing UV parameters for a given cutoff then defines the IR win-
dow and correspondingly puts bounds on the Higgs boson
mass as a function of the cutoff scale A.

In full generality, constructing this mapping is a complex
problem, since the microscopic theory at scale A is a priori
unconstrained to a large extent. At first sight, it seems natural
to allow only the renormalizable terms in the bare action. For
the present model, this has been successfully implemented

5 As further cross-checks, we note that our flows also agree with those
of [89-91] for N1, = 2 and hp, = 0 (apart from a missing factor of 1/2
in LR as also noted in [92]). We also observe agreement with the flows
of [93] for hp = 0 and upon dropping the gauge sector in that work.

in extensive lattice simulations [37,41-46] yielding quanti-
tative results for the Higgs-mass bounds. In particular, the
lower bound arises from the lowest possible value for the
Higgs selfinteraction 1¢*, i.e., 2 — 0, for which the lattice
theory remains well defined. The resulting bounds should
therefore not be viewed as vacuum stability bounds, but as
consistency bounds arising from the requirement that the
underlying lattice partition function is well defined.
However, there is no need at all to confine the bare theory
to just the renormalizable operators. On the contrary, generic
underlying theories (UV completions) are expected to pro-
duce all terms allowed by the symmetries, such that the search
for Higgs-mass bounds corresponds to finding extrema of
a function (the Higgs mass) depending on infinitely many
variables (the bare action). Formulated in terms of this gen-
erality, it is actually unclear whether these extrema and thus
a universal consistency bound would exist at all. We there-
fore confine our study to a much simpler question: given the
lower mass bound arising within the conventional class of ¢*
potentials, can we find more general bare potentials, which
(a) lower the mass bounds and (b) do not show an instability
towards a different vacuum neither in the UV nor in the IR?
While (a) is obviously inspired by the fact that the measured
Higgs boson mass seems to lie below the conventional lower
bound, an answer to (b) can serve as an illustration that no
meta-stability is required in order to relax the lower bound.
While these two questions have been answered in the affir-
mative for the Z,-Yukawa model in [51] with functional RG
methods as well as for the present chiral model with lat-
tice simulations up to cutoff scales on the order of several
TeV [52], the present flow equation study can elucidate the
underlying RG mechanisms in more detail and can bridge
a wide range of scales. Furthermore, it is straightforward to
deal with two distinct quark masses, #; # hy, in our func-
tional approach, whereas simulations with the physical ratio
my/myp = 40 would be rather expensive on the lattice.
Before we turn to a quantitative analysis of the RG flow,
we have to cure a deficiency of the chiral Yukawa model in
comparison with the full standard-model top—bottom—Higgs
sector. Since chiral symmetry breaking in the present model
breaks a global symmetry, our present model has massless
Goldstone bosons in the physical spectrum. This is differ-
ent from the standard model where the would-be Goldstone
bosons due to their interplay with the gauge sector are ulti-
mately absent from the physical spectrum, the latter finally
containing massive vector excitations. In order to make con-
tact with the standard-model physics, we therefore have to
modify our chiral Yukawa model, otherwise the massless
Goldstone modes have the potential to induce an IR behav-
ior which is very different from that of the standard model.
This modification of the model is not unique and could be
done in various ways. For instance on the lattice, the influ-
ence of the unwanted Goldstone bosons is identified by their
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strong finite volume effects and subtracted accordingly [41—
46]. Similarly, we could study the onset of Goldstone dynam-
ics in the limit £ — 0 and perform a similar subtraction.

In the present work, we model the decoupling of Gold-
stone bosons more physically as inspired by the Higgs mech-
anism in the fully gauged version of the theory: generically
all dependencies on the particle masses and their decoupling
is contained in the threshold functions of the flow equations.
For the linear regulators used below, this dependence occurs
in the form

k2

—_— 27
k* + m? 27

to some power. For k — 0, all these functions vanish for
finite particle masses m, whereas massless modes such as
Goldstone modes withm = mg = 0 contribute equally on all
scales k. (For other regulators, the functional dependence on
k and m may look differently, but behaves analogously in the
various limits.) The Goldstone modes can therefore directly
be identified in our flow equations. They contribute to those
threshold functions that contain an argument ~ u’(p) in the
SSB regime. As soon as we enter the broken regime, the cor-
responding mass argument mé /k? ~ u' (k) vanishes at the
running minimum « of the potential. We thus can dynami-
cally remove the Goldstone modes by the replacement

k2 k2

N mg=0 kz
K2+ m}

k2+mé+g”§ k2+g§

in the broken regime. Here, vy is the running vacuum expec-
tation value approaching vy — v in the long-range limit
k — 0, and g is an a priori free parameter. Inspired by
the decoupling of massive vector bosons in the full standard
model, we choose g in such a way that the resulting masses
for the Goldstone bosons have the same order of magnitude
as the W boson mass scale, e.g. g = 2(80/246)2. It turns
out that the result for the lower Higgs-mass bound is only
slightly affected by different choices of g, as well as differ-
ent choices of removing the Goldstone mode contributions,
cf. Appendix C.

As a result, all fluctuations acquire a mass in the regime
of spontaneous symmetry breaking (SSB) and the whole
flow freezes out, similarly to the Z, Yukawa model and as
expected in the full standard model.

Now that we have amended our model with a dynamical
removal of the unwanted Goldstone bosons, the RG flow of
the model is technically similar to the simpler Z; invariant
Yukawa model extensively studied in [51]. In the follow-
ing, we therefore focus on the new features induced by the
additional degrees of freedom of the chiral model such as
the bottom quark and the three additional real scalar fields.
Further technical details follow those of [51].
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The relevant information to compute Higgs-mass bounds
can be extracted from the shape of the scalar effective poten-
tial near its minimum. We extract this information from a
power series expansion of the potential about this flowing
minimum. In the symmetric (SYM) regime, we expand about
the zero field amplitude

Np N
— ~noon

"= Z n! P

n=1
in which A is a mass term and A, the quartic coupling. Ny
defines the order of this polynomial expansion. In practice,
all results studied in this work converge rather rapidly in this
expansion. The expansion point in the SSB regime is set by
the nonvanishing vev

The flow equations for the couplings Ap, ..., Ay, (SYM)
ork, Az, ..., An, (SSB) can be read off from Eq. (23).

5.1 Bare potentials of ¢* type

First, we determine mass bounds for the Higgs boson arising
from microscopic bare potentials of ¢* type,

A
Un = hap + 2 p? (SYM) (28)

2
un= "2 00— kn)? (SSB). 29)
For small 1, o a physical flow typically starts in the SYM
regime. Near the electroweak scale the system is driven into
the SSB regime by fermionic fluctuations. Mathematically
speaking, we switch from the flow equation for the SYM to
the SSB couplings at the scale, where A crosses zero. In the
SSB regime a nonzero vev builds up, inducing masses for
all particles in the theory including the would-be Goldstone
bosons as discussed above. This results in a decoupling of
all modes in the IR and therefore all dimensionful quantities
freeze out.

By contrast: for large A 4, the theory already starts in the
SSB regime with a small value for k5. The flow still runs
over many scales, depending on the initial conditions, until
k eventually grows large near the electroweak scale. As a
result, all modes decouple and we can read off the long-range
observables.

The flow equation provide us with a map of the UV param-
eters to physical parameters such as the mass of the Higgs,
the top or the bottom quark. In the following, we fine tune
either A1 5 if we start in the SYM regime or k4 in the SSB
regime, in order to arrive at a vev of vy = 246GeV in
the IR. Further, we vary the bare top /; A and bottom %, A
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Yukawa coupling such that we obtain the desired top and
bottom quark mass, m; >~ 173 GeV and my, >~ 4.2 GeV. For
this reduced class of bare ¢* potentials, the Higgs mass is
only a function of the bare quartic coupling A,  for a fixed
cutoff. In order to start with a well-defined theory in the UV,
A2, must be strictly nonnegative.

We find that the Higgs mass is a monotonically increasing
function of the bare quartic coupling, which can be seen in
Fig. 1. Here, the Higgs mass my is plotted as a function of the
bare quartic coupling Ay, 4 for a fixed cutoff A = 107 GeV.
The lower bound is approached for A o — 0, where the
Higgs mass becomes rather independent of A o. This was
also shown in lattice simulations for the Z, model [35] as well
as for a chiral Yukawa theory [41—44]. For large bare quartic
couplings the Higgs mass reaches a region of saturation.

To test the convergence of our expansion and trunca-
tion, we plotted the Higgs mass in various approximations
in Fig. 1. The derivative expansion is tested by compar-
ing leading-order (LO) (dashed lines) to NLO results (solid
lines). At LO, we drop the running of the kinetic terms in
Eq. (22), achieved by setting the anomalous dimensions to
zero in the flow equation (23) and (24). These differ by at
most 12 % for small as well as for large couplings. The dif-
ference for small couplings is somewhat larger than in the
Z,-symmetric Yukawa model because of the larger number
of fluctuating scalar components.

Furthermore, we varied N, to check the convergence of
the polynomial expansion of the potential. The simplest non-
trivial order is given by N, = 2 and plotted as red lines with
squares in Fig. 1. For N, = 4 (blue lines with circles) there
are only small deviations for small A o (~ 2GeV) and devi-
ations of 5 % for large A A compared to N, = 2. Beyond
this, we find no deviations between the Higgs masses for
Np = 4,5, 6,8, 10 within our numerical accuracy, demon-
strating the remarkable convergence of the polynomial trun-
cation for the present purpose.

In Fig. 2, the resulting Higgs masses are plotted as a func-
tion of the UV cutoff for different bare quartic couplings
for a wide range of cutoff values A = 103,...,10°GeV.
The lower black line is derived for A o = 0 and indicates
a lower bound for my within the ¢* type bare potentials.
Incidentally, it agrees comparatively well with the results of
a simple mean-field (“large-N;”) calculation sketched in the
appendix. Dashed lines depict upper Higgs-mass bounds if
one restricts the bare quartic coupling to A o < 1, 10, 100
(from bottom to top). Artificially restricting the coupling A2 A
to the perturbatively accessible domain, say, 22 o S 1, the
upper bound is obviously significantly underestimated.

By comparing the chiral Yukawa model to the Z, Yukawa
model, we are able to study the influence of the addi-
tional standard-model degrees of freedom on the Higgs-mass
bounds. As expected, the bottom quark has no significant
influence on the Higgs-mass values, due to its substantially

1000
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my[GeV]
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200 1

r/f-—/f"ﬂ',r‘—r’_j

0 . . .
1000  10* 10 10° 107 108 10°
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Fig. 3 Higgs mass my as a function of the cutoff A for the chiral
Higgs—Yukawa model (black solid lines) as well as for the simple Z;-
symmetric Higgs—Yukawa theory (red dashed lines) as studied in [51].
For the lower mass bound no significant difference is observed between
the two models. By contrast, a strongly coupled scalar sector (Ap =
100) leads to significantly lower masses in the present model which is
a consequence of the additional scalar degrees of freedom in the chiral
model; see main text

smaller Yukawa coupling. Higgs-mass values only differ by
less than 1 GeV if one neglects the coupling of the bottom to
the Higgs. The main new contributions to the scalar poten-
tial and thus to the Higgs mass are induced by the additional
scalar degrees of freedom. For the lower bound A2 » = 0
the scalar sector is weakly coupled, hence the Higgs mass is
mainly build up by top fluctuations (apart from mutual RG
backreactions). Therefore, the deviations between the two
models are small for the lower Higgs-mass bounds. For a
strongly coupled scalar sector in the UV, Ay o > 1, the sit-
uation is different. There, the additional scalar degrees of
freedom have a significantly larger impact. This results in
smaller Higgs masses, since scalar fluctuations generically
tend to drive the system into the SYM regime. The conse-
quence of this is a flattening of the scalar potential near its
minimum and hence a smaller value for the Higgs mass,
which is visualized in Fig. 3.

Finally, we should emphasize once more that the use of
standard-model-like parameters is only for the purpose of
illustration. The quantitative difference becomes obvious,
e.g., from Fig. 2 where the “channel” of Higgs mass values
that allow for a large cutoff is centered near myg ~ 200 GeV.
The same channel-like behavior in the full standard model
occurs near my =~ 130GeV. This quantitative difference is
mainly due to the influence of the gauge sectors, in partic-
ular the strong interactions. But also the electroweak gauge
sector can take a conceptually (if not quantitatively) impor-
tant influence on mass bounds: e.g., recent non-perturbative
lattice simulations of the Yang—Mills—Higgs system suggest
that the Higgs mass has to be larger than the weak gauge-
boson masses in certain parameter regimes, otherwise the
electroweak sector would rather be in a QCD-like domain
[94].
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Fig. 4 Higgs mass my as a function of the cutoff A. The black dashed
curve again corresponds to the lower bound derived within the class of
¢*-type bare potential. The red solid line shows an example of Higgs
boson mass values derived from a more general class of bare potentials
of Eq. (30) with the initial UV values A» o = —0.1 and A3, o = 3. This
demonstrates both that the lower bound can be significantly relaxed and
that no in- or metastability is required to occur for Higgs masses below
the conventional lower bound

5.2 Generalized bare potentials

Motivated by previous continuum calculations in the Z,
model [51] and by lattice studies in the chiral version [52],
we study whether more general bare potentials can modify
the phenomenologically relevant lower Higgs-mass bound.
The main purpose of this study is to demonstrate that the
lower bound can be relaxed without the occurrence of an in-
or metastability of the potential. An analysis of all conceiv-
able bare potentials is a numerically challenging problem and
beyond the scope of this work.

In fact, already the simplest extension including a ¢° term
in the bare potential,

A A3
un = hiap + 00 (30)

suffices to illustrate our main point. Here, negative values for
the bare quartic coupling A 4 are permissible if the potential
is stabilized by a positive A3 4. Precisely choices of this type
indeed lead to the desired features.

In Fig. 4 we illustrate this generic feature by a simple
example. The black dashed line depicts the lower bound
within ¢4 theory (A2 o = A3,ao = 0), whereas the red solid
line shows Higgs masses for the initial dataiy o = —0.1 and
A3, a = 3. This example flow shows that the lower Higgs-
mass bound can be significantly relaxed if the restriction to
bare potentials of ¢* type is dropped. We emphasize that this
restriction to renormalizable operators is meaningless for the
bare action as Wilsonian renormalizability arguments do not
apply to the bare field theory action that might be generated
from an unknown underlying UV complete theory.

Similarly to the Z, invariant model, this phenomenon of
a relaxed bound as a consequence of a modified bare theory
can be understood by the RG flow itself [S1]. First note that
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the parameters for the generalized bare potential are chosen
in such a way that the potential is initially in the SYM regime;
this is also true for the lower bound within ¢* theory. In the
present case of the generalized bare potential, the negative
quartic coupling A, flows quickly to positive values whereas
A3 becomes small as expected in the vicinity of the GauBian
fixed point. Therefore, the system essentially flows back into
the class of ¢*-type potentials. In other words, the system
defined for a fixed cutoff A with Ao o < Oand A3 4 > 0
can be mapped to a system with A o > O and A3 4 ~ 0
for an effectively smaller cutoff A < A. Roughly speaking
some RG time is required to flow from the beyond-¢*-type
potentials back to the class of standard ¢*-type potentials.
Thereby, the red dashed line can be interpreted as a horizon-
tally shifted variant of the Higgs mass curve derived from ¢*
potentials for effectively larger cutoffs.

We emphasize that the effective potential is stable at all
scales with one well-defined minimum for the present choice
of parameters.® Finally, we would like to point out that the
non-perturbatively computed effective potential for a finite
cutoff is of course regularization scheme dependent much in
the same way as the fermion determinant presented above.
Choosing different regulator shape functions would also lead
to (typically slightly) different Higgs mass curves in Figs. 1,
2,3 and 4. We expect that this scheme change could be com-
pensated for by a corresponding change of the bare action.
Hence, it suffices to vary only the bare action for a fixed
regulator in order to illustrate our main points.

6 Conclusions
6.1 Summary

We have analyzed a chiral Yukawa model featuring the inter-
actions of a scalar SU(2) Higgs field with a chiral top-bottom
quark sector similar to the Higgs sector of the standard model.
We have critically re-examined conventional perturbative
arguments that relate a lower bound for the Higgs mass with
the stability of the effective potential. Based on exact results
for the regularized fermion determinant, we have shown that
the interacting part of the fermion determinant contributes

© As we compute the effective potential by means of a polyno-
mial expansion about the minimum, these polynomials can seemingly
develop new minima or instabilities at extremely large field values as we
vary the truncation order Np. In [51], we have therefore carefully esti-
mated the convergence radius of this expansion. For all examples pre-
sented here, the effective potential does not show any instability or sec-
ond minimum within this radius of convergence where the polynomial
expansion can be trusted. This is confirmed by numerical integrations
of the flow equation for the full effective potential as performed in [40]
using pseudo-spectral methods (Chebyshev expansion). For more gen-
eral bare potentials possibly featuring further minima, the polynomial
expansion appears insufficient and numerical precision computations
for the full effective potential become mandatory.



Eur. Phys. J. C (2015) 75:68

Page 13 0of 20 68

strictly positively to the effective scalar potential for any
finite field value — as long as the UV cutoff A is kept finite.
We have shown that this result holds for a variety of regu-
larization schemes including the sharp momentum cutoff as
well as (gauge-invariant) ¢ -function/proper-time regulariza-
tion schemes.

Furthermore, we have shown that the conventional pertur-
bative conclusion of a vacuum in-/metastability of the effec-
tive potential due to top fluctuations can be rediscovered if the
cutoff is forced to approach infinity together with standard
ad hoc recipes to project onto the finite parts. For the exam-
ple of the sharp cutoff, we have shown explicitly that this
corresponds to an illegitimate order of limits, as the resulting
instability occurs at scalar field values where the supposedly
small expansion parameter of the A — oo limit is actually
of order 1. A similar failure occurs for dimensional regular-
ization where the standard procedures of projecting onto the
finite parts violate the positivity properties of the interacting
part of the effective potential. Our findings corroborate earlier
results from non-perturbative lattice simulations [35,36], but
in addition allow for a large separation of the UV cutoff from
the Fermi scale and an analytic control of the corresponding
limits.

Because of the presumable triviality of the present model
as well as the Higgs sector of the full standard model, the
cutoff most likely cannot be removed from the theory — at
least not within a straightforward manner. The cutoff as well
as a corresponding regularization scheme should rather be
viewed as part of the definition of our particle physics models
that parametrize the embedding of this field-theory descrip-
tion into a possibly UV complete theory. Still, as long as the
cutoff is large compared to the Fermi scale, Wilsonian renor-
malization arguments guarantee that the low-energy observ-
ables are largely insensitive to the details of this embedding.
We have demonstrated that a counter-example to this generic
rule is given by bounds on the mass of the Higgs boson.

In this work, we have not performed an exhaustive analysis
of different bare actions or potentials, but simply focused
on a constructive example that leads to Higgs boson masses
below the conventional lower bound. Most importantly, this
example exhibits no vacuum in-/metastability.

This together with our basic line of argument involving
exact results for the fermion determinant demonstrate that
there is no reason for concern arising from top-quark fluctu-
ations as far as false vacuum decay in our universe is con-
cerned, despite the comparatively light value of the measured
Higgs mass. This does not mean that there might be no rea-
son for concern at all. For instance, if the bare scalar potential
itself features an instability induced by the underlying UV
complete theory, our standard model could still live in an un-
or metastable vacuum. Our arguments only exclude instabil-
ities caused by the fluctuations of the fermionic matter fields
within the standard model.

6.2 Vacuum stability vs. consistency bounds

Our results suggest arevision of the standard picture of Higgs
mass bounds as a function of the UV cutoff. Depending on
the implicit assumptions made to derive mass bounds, this
revision might be more or less significant.

From our results on fermion determinants, it is clear
that the conventional interpretation that top-quark fluctua-
tions induce a vacuum instability is not tenable; this inter-
pretation is a result of taking an inconsistent A — oo
limit. Still, the top-quark fluctuations play, of course, a
decisive role for the value of the Higgs mass. In order
to reconcile these observations, we propose a UV-to-IR
viewpoint: the Higgs-mass bounds should be understood
as a mapping from initial conditions set at the UV cut-
off given in terms of a microscopic bare action S onto
all IR values accessible by the RG flow of the system,
my = my[A; Sa]. In this manner, Higgs-mass bounds arise
from consistency conditions imposed on the bare action. For
instance, in order to start from a well-defined (Euclidean)
partition function, the action needs to be bounded from
below.

The conventional vacuum stability bounds then are approx-
imately equivalent to such a consistency bound arising within
a restricted class of bare actions, e.g., bare potentials of ¢>4
type; here, the bare ¢* coupling is required to be positive
for consistency of the generating functional. However, as the
bare action is not at our disposal but generally a result of the
underlying UV embedding, there is no reason to make such
restrictive assumptions. Already for slightly more general
bare actions, we have been able to show that the conventional
lower mass bounds can be substantially relaxed in the present
chiral Yukawa model. The reason is that a more general bare
action can modify the RG flow near and below the cutoff. As
aresult, the consistency bound lies below the vacuum stabil-
ity bound. In particular, we have given an explicit example
with a Higgs boson mass below the “stability bound” but an
in fact stable effective potential on all scales; our results are
in agreement with lattice simulations [52] and extend them
to a much wider range of scales.

Determining the consistency bound remains an open prob-
lem, the solution of which requires further assumptions. One
natural but not necessary assumption could be that the effec-
tive action should feature a unique minimum on all scales.
The consistency bound would then arise from a complicated
extremization problem in the space of all consistent bare
actions subject to the unique-minimum constraint (to be satis-
fied on all scales). Even in this case, it seems unclear whether
the bound remains finite. Therefore, it appears reasonable to
add another physical assumption: since the bare action is
expected to be provided by an underlying (UV complete)
theory at scale A, it is natural to assume (in the absence of
any concrete knowledge about the underlying theory) that
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the couplings of all possible operators are of order O(1) if
measured in terms of A. For future studies, it is one of the
most pressing questions to quantitatively estimate the result-
ing consistency bound under such a set of assumptions.

Of course, it appears equally legitimate to give up the cri-
terion of a unique minimum at all scales, but instead allow for
further minima in the bare action. If the resulting IR effective
action turns out to have one unique minimum again (to be
identified with the electroweak minimum), such bare actions
can lead to a further relaxation of the consistency bound
described above. In the general case, it should be possible
to construct bare actions with multiple local minima such
that the full effective action has a global minimum differ-
ent from the local electroweak minimum. Since such bare
actions are less constrained than those of the preceding sce-
narios, we expect the resulting lower Higgs mass consistency
bounds to be even more relaxed to smaller values. Again, a
quantitative estimate of such consistency bounds including
metastable scenarios remains an urgent question.

Comparing the conventional stability bounds with the
present consistency bounds, the overall picture seems to be
qualitatively similar. The primary main difference is of quan-
titative nature, since the unique-minimum consistency bound
lies below the stability bound. Wilsonian RG arguments,
however, suggest that this difference could become small
for large UV cutoffs, as is also reflected by the example of
Fig. 4. Nevertheless, the size of this quantitative difference
substantially depends on the assumptions imposed on the
size of the couplings in the bare action. Also, the consistency
bound is necessarily regularization scheme dependent. As
the regularization actually should model the details of the
embedding into the underlying UV completion, this depen-
dence has a physical meaning. Even larger differences are
expected between the conventional meta-stability bound and
the consistency bound including metastable scenarios. The
reason is that the metastable features are expected to arise
from the bare action and thus are largely unknown. The size
of the metastable region and corresponding life-time esti-
mates will be even more subject to assumptions on the bare
action.

6.3 Outlook

Independently of whether the measured value of the Higgs
boson mass eventually turns out to lie slightly above or below
the conventional lower bound, it is remarkable that the Higgs-
and top-mass parameters appear to lie close to a region in the
IR parameter space that can be connected to a bare UV effec-
tive potential that could exhibit almost vanishing scalar self-
interactions. In this sense, a precise measurement of these
mass parameters is relevant beyond the pure goal of preci-
sion data. These measurements can impose requirements that
any UV embedding has to satisfy. The viewpoint of consis-
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tency bounds presented above provides a means to quantify
these requirements. Therefore, a comprehensive quantitative
exploration of these bounds appears most pressing.

One scenario appears particularly interesting: if the Higgs
mass eventually turns out to be exactly compatible with a
UV flat potential (apart from a possible mass term), a corre-
sponding embedding would have to explain this rather partic-
ular feature. It is interesting to note that such scenarios exist
even within purely quantum field theory approaches as, for
instance, in models with asymptotically safe gravity [95,96].

Recently, an asymptotically safe/free scenario in a gauged
chiral Yukawa model has been identified [93], the UV limit
of which corresponds to a flat scalar potential also allowing
for comparatively light Higgs masses in the IR. In order to
explore this option of a UV complete limit, we perform an RG
fixed-point search also within this model along the lines of
[89,90] in Appendix E. However, in this ungauged model, we
find no reliable indication for the existence of a non-Gaufian
fixed point. Still, our present findings should serve as a strong
motivation to further search for asymptotically free gauged
chiral models with viable low-energy properties.
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Appendix A: Threshold functions

The threshold functions /, m in the flow equations for the var-
ious couplings parametrize the decoupling of massive modes.
As a function of their mass-type arguments, they approach
zero in the limit of large masses and tend to a constant value
in the zero-mass limit. The explicit form of these threshold
functions depends on the regulator, characterizing the details
of the momentum—shell integration. In this work, we use the
linear regulator [97,98] which allows one to work out the
threshold functions analytically. For the bosonic modes, this
regulator is given by

Ri(p) = Zyp* r(p?/k%) = Zy(k*> — pHO K> — p?).

The corresponding chirally symmetric fermionic regula-
tor Ry (p) = Zv,ﬁrp(pz/kz) is chosen such that p%(1+r) =
p2(1 + VF)Z. For reasons of completeness, we list the thresh-
old functions appearing in the main text for the linear regu-
lator:
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These threshold functions agree with those given in [99].

Appendix B: Mean-field effective potential

Let us generalize our results for the fermionic determinant
obtained for a sharp cutoff in the main text to a wider class of
regulator shape functions in this section. This corresponds to
amean-field analysis of the effective scalar potential for gen-
eral momentum—space regularization schemes. More tech-
nically speaking we integrate Eq. (23) for fixed Yukawa
couplings, h, — hg n (@ = {t,b}), as well as fixed wave
function renormalizations, Z; — 1, where the subscript i
labels the different fields, from k = A to k = 0. In addi-
tion we also neglect the bosonic contributions on the right-
hand side of Eq. (23). The resulting mean-field potential
reads

o) =Us@rtdy [ 3

P a={t,b}

pr(4rp )2 +h2 \p
PPU4rER)2+hS A p
(B.1)

where the regulator shape function rg depends on the momen-
tum as well as on the RG scale, gy = rF(pz/kz). In order
to provide for a regularization, rg(x) should vanish for large
argument and diverge sufficiently fast to positive infinity for
x — 0. Apart from analyticity for all finite x > 0, no fur-
ther requirements on rg are needed; however, for an inter-

pretation of a physical regularization, we assume rg to be
positive for finite x. The second derivative of the mean-field
effective potential with respect to p encodes the fermionic
contributions to the interacting part of the effective poten-
tial:

UME" (p) = US(p) + o

a={t,b}
© 1P +rEa)’ = pp* (L4rra) +p7 +203 0]
x / dp p 2 212 o PR :

0 [P (1415, 0)2+hy \ 1P [P* 15 5 p]

The integrand is strictly positive for rg > 0 and so is the
integral. This corroborates the conclusion in the main text
that the interaction part of the fermion determinant is strictly
positive for a wide class of regulators.

Furthermore it is instructive to calculate the Higgs boson

mass in this simple approximation. For the linear regulator
the mean-field effective potential for k = 0 reads

A2
<y |:—h§’ApA2 + (h% Ap)*In (1 + )}
a={tb) a, AP

where the decomposition into a negative mass-like term ~ p
and a positive interaction part is manifest. The Higgs boson
mass is now given as the second derivative of the potential at
the nonvanishing minimum v = 246 GeV (UMF' (v) = 0):

aZUMF
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1Y ,0=U2/2
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where we have used dyw = 2 for 2-component Weyl fermions.
Here it is obvious that the restricted class of quartic bare
potentials (U X = Ap > 0) gives rise to a lower bound for
the Higgs mass for A = 0, nonetheless no instability is
induced by the fermionic fluctuations.

Appendix C: Cutoff mechanism for the Goldstone
modes

In the main text, we have amended the chiral Yukawa model
with a dynamical mechanism that effectively removes the
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Goldstone bosons from the low-energy spectrum by provid-
ing them with a mass of the order of the gauge-boson mass in
the full standard model. Conceptually, this mechanism can
be viewed as an IR deformation of our model and is nei-
ther universal nor unique. Here, we explore the sensitivity of
our results for the Higgs boson mass on the details of this
mechanism.

Within our deformation, let us vary the parameter g, which
controls the size of the effective mass for the Goldstone
bosons proportional to the vev, mQG = (1 /2)gv,§. Figure 5
shows the Higgs mass depending on the effective Goldstone
mass at A = 107 GeV. For a weakly coupled scalar sector,
Aa = 0 (blue squares), the impact of g on my is insignif-
icant. Even if the Goldstone mass changes by an order of
magnitude the influence on the Higgs mass is less than 2
GeV. The situation is different for a strong scalar coupling,
e.g., An = 10 (red circles). For large effective Goldstone
masses (mg > my), we observe again only small deviations
from the case mg = 80 GeV. This is because the Goldstone
modes decouple roughly at the same scale as the top and the
Higgs. However, if we choose smaller values of mg the devi-
ations become larger, e.g., we observe a deviation of 20 %
for mg = 20 GeV compared to the case of mg = 80 GeV.
Now, the Goldstone modes contribute over a wider range of
scales to the flow equations than the Higgs or the top quark.
This results in a smaller Higgs mass. For vanishing mg we
observe alog-like running of A, (which is presumably an arti-
fact of our definition of this coupling in terms of a Cartesian
field decomposition). As aresult, my approaches smaller and
smaller values in the limit g — 0.

Of course, beyond the deformation of the model chosen
in this work, other methods are conceivable to effectively
remove the massless Goldstone bosons to mimic the physics
of the fully gauged standard model. One option is to choose
an arbitrary scale k,g within the SSB regime of the flow,
below which all Goldstone boson contributions to the flow
equations for RG scales smaller than k,g. This corresponds
to switching on a source at kyg, which gives the Goldstone
modes an infinitely large mass and leads to an ad hoc decou-
pling. Another possibility is to introduce a source term J“¢*
on the level of the Lagrangian. This would leave the flow
equations unchanged because only the Hessian of the effec-
tive average action I IEZ) contributes to the Wetterich equation.
Still, the shape of the scalar potential would be changed by
this explicit symmetry breaking term. As a result, source-
dependent mass terms for all scalar degrees of freedom are
induced, and also the vev as well as the couplings become
source dependent, k = «(J), A, = A,(J). In any case, each
of these different IR deformations of the model leads to sim-
ilar results. They parametrize a decoupling of the Goldstone
modes removing the contamination of the IR flow by parti-
cle degrees of freedom which would not be present in the
standard model.
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Fig. 5 Higgs mass my as a function of the modeled mass of the would-
be Goldstone bosons for a weakly coupled (A2, = 0, blue squares)
as well as for a strongly coupled (2, o = 10, red circles) scalar sector.
The filled characters mark the Higgs masses computed for the value
mg = 80 GeV, which we have used in the main text to derive our
quantitative results

Appendix D: Impact of the top-quark mass on Higgs
mass values

The top mass plays an important role in the study of the lower
Higgs mass bound within ¢* theory. Within the perturbative
line of reasoning, a change of the top mass by 1 GeV goes
along with a change of the Higgs-mass bound by approxi-
mately 2 GeV in standard-model calculations. As the Higgs
mass is near (or presumably below) the conventional lower
bound, an accurate determination of the mass of the top quark
in the appropriate renormalization scheme [32] is crucial for
a discussion of the consequences of this “near criticality”
[34].

In this appendix, we study the values for the Higgs boson
mass for a given initial bare potential of ¢* as a function
of the top quark mass in order to analyze the top-quark
mass dependence in the present model. Within our trunca-
tion of the effective action, our top-mass IR parameter auto-
matically coincides with the pole mass, the latter being the
phenomenologically relevant quantity. Differences (straight-
forwardly computable) between these mass parameters only
arise at next-to-next-to-leading order in the derivative expan-
sion.

For the class of ¢*-type bare potentials, Table 1 summa-
rizes our results for the Higgs mass for the lower mass bound
(A2,o = 0) as well as for a strongly coupled scalar sector
(A2,A = 10) as a function of the top-quark mass for A = 107
GeV. For the weakly coupled scalar sector, A, o = 0, the
Higgs mass is generated essentially through top-quark fluc-
tuations. Therefore, the resulting Higgs mass values are most
sensitive to the precise mass of the top quark. In the present
model, the Higgs mass is shifted by approximately 3 GeV
for a change in the top mass by 2 GeV using a cutoff of
A = 107 GeV. With increasing cutoff the deviation of the
Higgs mass is larger. This phenomenon is illustrated in Fig. 6
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Table1 Higgs masses for the lowerbound (A3, 4 = 0)and forastrongly
interacting scalar sector (A2, o = 10) for a cutoff of A = 107 GeV as a
function of the top-quark mass. Bold numbers indicate the standard top
mass of 173 GeV

my [GeV] my [GeV] (A2,a = 0) my [GeV] (A2, 4 = 10)
163 115.6 264.2
165 118.5 264.6
167 121.4 264.8
169 124.2 265.0
171 127.1 265.2
173 130.1 2654
175 133.1 265.7
177 136.1 265.9
179 139.3 266.2
181 142.2 266.4
183 145.4 266.7
180 — , . . , C
160 F ]
140 ]
= 120} ]
S ool ]
g
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Fig. 6 Higgs mass my as a function of the cutoff A for different values
of my. The black solid line is the lower bound for m; = 173 GeV using
A2.a = 0 for a ¢*-type bare potential. In addition lower Higgs-mass
bounds for m; = 163 GeV (red dashed lower curve) and m; = 183
GeV (blue dotted upper line) are plotted

where the spread of the lower bound for larger cutoff scales is
shown.

By contrast, we find only a slight impact of the top mass
on the Higgs mass for the case of a strongly coupled scalar
sector. This illustrates that the Higgs mass is rather dominated
by scalar fluctuations in this regime.

Appendix E: Fixed-point structure

As the flow equation provides us with information about the
system beyond perturbative limitations, we can explore the
properties of the model also at stronger coupling. In particu-
lar, it is worthwhile to search for possible RG fixed points at
finite values of the couplings (non-Gaufian fixed points), as
these offer the chance to evade the triviality problem. Pure
field-theory UV completions are possible within the asymp-
totic safety scenario, where the UV limit A — oo can be

taken safely by means of a UV stable RG fixed point [100],
as is even explored for quantum gravity [101-106]; see [107—
109] for reviews and examples. Provided such a fixed point
exists and has suitable properties the theory remains inter-
acting (non-trivial) in the long-range limit and has predictive
power.

The search for such fixed points in Yukawa systems has
recently been revived with systematic studies in the frame-
work of the functional renormalization group. A general
mechanism for inducing asymptotic safety in such systems
has been identified in [88], relying on a dynamical bal-
ance between boson and fermion fluctuations. Chiral Yukawa
models have successively been studied in this context [89,90]
providing hints for the possible existence of such fixed points,
but also indicating that fully gauged models may be required
for a stable asymptotic safety scenario of standard-model
like theories. Gauged models indeed appear to offer different
routes to UV complete theories either in the weak-coupling
asymptotically free limit [93], at fully interacting fixed points
(including the loss of asymptotic freedom) [110], or even
in combination with quantum gravity [111-113]. In fact,
asymptotic safety has become a viable concept of consis-
tently quantizing gravity in the recent years. Also nonlinear
chiral models have been explored along this direction [114].

Here, we concentrate again on the pure chiral Yukawa
sector, performing an analysis much in the spirit of [89,90],
paying particular attention to the additional bottom quark
degree of freedom.

E.1 Symmetric regime

Whereas the mechanism identified in [88] operates in the
regime of spontaneous symmetry breaking, it is instructive
to start the fixed-point search in the symmetric regime, where
the flow equations are less complex.

The flow equations for the Yukawa couplings using the
linear regulator read in this regime

dh? = hf[% + 21
N¢
_h216vd l_d%_i_ l-75
by l+x  (A+ap2) ]
dhi = hi [w» +2p
N¢
_ 2 l6va l_dn%_i_ l-75 }
td 1+x  A+ap?2) )
where A1 > 0 corresponds to the mass-like term in the effec-
tive potential in the SYM regime. Let us start with resolving

the fixed-point conditions ;4> = 0 and 8,2 = 0 in leading
order in the derivative expansion: for n; = 0, both conditions
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can be satisfied for either A, = 0 and A arbitrary or vice
versa. Without loss of generality, let us assume that sy = 0,
leaving us with a free parameter %}, labeling a potential line
of fixed points. Now it is easy also to solve the fixed-point
condition for the effective potential, d,u = 0, cf. Eq. (23),
with an arbitrarily chosen value for A; at least within a poly-
nomial expansion of u(p). We do not pursue this any further,
since this line of fixed points does not exist beyond leading
order.

Atnext-to leading order it is necessary to include the equa-
tions for the anomalous dimensions, which read for the linear
regulator in the SYM regime

vy
ng = 7[h%<4 — 10+ hp(4 —nv)],

_ dvg 3hi + L e
”‘_7(1“1)2( _d+1)’
_ Avg hi +3hE L e
%_7(1+k1)2< _d+1)'

It is useful to study a linear combination of the two fixed-
point conditions, 0 = %a,h% — éa,h%, assuming that h; #

0 # hy,
1

1
0= —9h%— —3h
TR
6w [1=gh  1=gh ] o
(e +m0) — — |:1+A1 T |
dng
8 -2 =i
L dH G |\ (2 —pd). (B
d |7 1+a (14+2)

In order to justify the use of the derivative expansion of the
effective action, we demand for the anomalous dimensions
n; to remain sufficiently small also at a possible fixed point,
n{ < 1. As a consequence, the term in the square bracket
of Eq. (E.1) is positive. This condition can only be solved
by h? = h%. Therefore the system of algebraic fixed-point
equations reduces to

Ui Ng
16vdhz[‘—ﬁ+ 1—m]

0= 2n¢ —
ot A T M T T U a2

Ul
16vs 5 1 — 7
N =

d "(4+r)?*
16Ud 2
=~ hi (4 —no). (E2)

The constraints on the anomalous dimensions n; < 1
imply that also n; > 0 holds, as the negative terms lin-
ear in n; on the right-hand sides of Eq. (E.2) remain sub-
dominant compared with the positive terms. Expressing the
constraints 0 < ny < 1l and 0 < n, < 1 through a
constraint on the top Yukawa coupling via the last two
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Table 2 Fixed-point values for the various parameters in the SSB
regime to leading order in the derivative expansion

Kt 25 hi? h?
0.006749086 14.6058 6942.84 0
0.000934843 270.652 661.201 0

lines of Eq. (E.2) leads to a constraint on h%: 0 < ht2 <
472051 4+ A1) = V5V + A% — (1 + A1)?] for d = 4.
Within this constraint, a solution for the fixed-point equation
(first line of Eq. (E.2)) does not exist independently of any
permissible value of A;. Hence, we do not find a non-trivial
fixed point within our present truncation in the symmetric
regime in four spacetime dimensions.

E.2 SSB regime

Because of the couplings of the fluctuating fields to the con-
densate the structure of the flow equations in the SSB regime
is much richer than in the symmetric case. As a starting point
we analyze the beta functions to leading order in the deriva-
tive expansion and expand the potential to the lowest non-
trivial order in the field invariant, u = A—zz (p—K)?%. Therefore,
we have to solve the following nonlinear system of equations:

Ok = B (™, 25, hi, hy) =0,

dha = B, (K™, A5, hi, b)) =0,
dhe = B (™, 25, i, hy) =0,
dho = By, (™, A3, h:ﬁ, hi) =0,

where the flow equations can be read off from Eqs. (23) and
(24). For the linear regulator, this system can be solved ana-
lytically resulting in two inequivalent fixed points for admis-
sible physical parameters (x > 0, h[2 >0, h% > 0,1 > 0).
The values of the fixed-point couplings are listed in Table 2.
First of all note that there are two additional fixed points
by exchanging the numerical values for 4{ and A}, due to the
fact that the flow equations are symmetric under an exchange
of the Yukawa couplings. Of course, these additional fixed
points are physically equivalent to those given in Table 2,
corresponding to a mere renaming of the couplings.

Furthermore, the flow equations of the Yukawa couplings
are proportional to the Yukawa couplings themselves, athg 4
htzl, which leads to a decoupling of the bottom quark at all
scales. Therefore the system reduces to that studied in [89,
90].

In order to check if these fixed points persist beyond the
leading order, we have to include the anomalous dimensions
of the fields. As long as these quantities, which measure the
influence of higher-derivative terms in our truncation, remain
small, the derivative expansion appears legitimate. For a first
impression of the size of the anomalous dimensions, we insert
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the leading order fixed-point values listed in Table 2 into the
right-hand sides of Eqgs. (25)—(26). Similar to the results of
[89,90] the anomalous dimensions of the fields at the fixed
points are large, especially 71, is much larger than 1 (n; >~ 22
for the first fixed point and n; 2~ 4 for the second one). This
casts serious doubts on the existence of these fixed points
in the full theory. In fact, it has been shown numerically in
[89,90] that the fixed points do not persist as soon as back-
reactions of the anomalous dimensions are included. This can
be traced back to large contributions of massless modes, such
as the Goldstone and bottom quark modes near the would-be
fixed point.

To summarize, we find no indications that the present
chiral model in its pure form supports physically accept-
able fixed points within the validity domain of the derivative
expansion of the effective action.
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