Higgs singlet as a diphoton resonance in a vector-like quark model

Takaaki Nomura (KIAS)

Based on : Chuan-Hung Chen, T. N. arXiv:1512.06028 and work in progress

2016-01-31 3rd KIAS-NCTS Joint Workshop at High1

1. Introduction

- 2. A model & diphoton excess
- 3. Checking constraint
- 4. VLQ production
- 5. Summary

1.introduction

How we can interpret the diphoton excess?

It could be new particle : spin 0 or 2

Let us consider scalar particle S with m_s = 750 GeV

Cross section to produce a new particle S

 $\sigma(pp \rightarrow S)BR(S \rightarrow \gamma\gamma) \approx 3-10 \text{ fb}$

➤ Width of S?

Best fit value by ATLAS : Γ~45 GeV

CMS : Narrow width is preffered

ightarrow S \rightarrow other modes : not observed

1.introduction

Properties of the diphoton excess

final	σ at $\sqrt{s} = 8 \mathrm{TeV}$		implied bound or	n	
state f	observed	expected	ref.	$\Gamma(S \to f) / \Gamma(S \to \gamma \gamma)$	$\gamma)_{\rm obs}$
$\gamma\gamma$	< 1.5 fb	< 1.1 fb	[6, 7]	$< 0.8 \ (r/5)$	
$e^+e^- + \mu^+\mu^-$	< 1.2 fb	< 1.2 fb	[8]	$< 0.6 \ (r/5)$	
$\tau^+\tau^-$	< 12 fb	$15 \mathrm{fb}$	[9]	< 6 (r/5)	
$Z\gamma$	$< 4.0 \; {\rm fb}$	< 3.4 fb	[10]	< 2 (r/5)	$r = \sigma_{13T_{eV}} / \sigma_{8T_{eV}}$
ZZ	< 12 fb	< 20 fb	[11]	< 6 (r/5)	
Zh	< 19 fb	< 28 fb	[12]	< 10 (r/5)	$\Gamma / M \approx 0.06$
hh	< 39 fb	< 42 fb	[13]	< 20 (r/5)	
W^+W^-	< 40 fb	< 70 fb	[14, 15]	$< 20 \ (r/5)$	
$tar{t}$	< 550 fb	-	[16]	$< 300 \ (r/5)$	
invisible	< 0.8 pb	-	[17]	< 400 (r/5)	
$b\overline{b}$	$\lesssim 1 \mathrm{pb}$	$\lesssim 1 \mathrm{pb}$	[18]	< 500 (r/5)	
jj	$\lesssim 2.5 \; \mathrm{pb}$	1999 - 199 1997 - 199	[5]	$< 1300 \ (r/5)$	

From Table 1 of arXiv:1512.04933 (Franceschini et. al.)

> S \rightarrow other modes : not observed

BRs of S are constrained

1.introduction

We consider a simple scenario to explain the excess

SM+Vector-like triplet quarks(VLTQ) + scalar singlet(S)

Our strategy

*****S does not mix with SM Higgs

 $\$ gg \rightarrow S and S $\rightarrow \gamma \gamma$ are induced by VLTQ loop

***VLTQs** are heavy as O(1) TeV : S does not decay into them

Sizable Yukawa coupling of S and VLTQ enhance the process

*****Two triplet give # of quark = $6 \rightarrow$ enhance Sgg and Syy coupling

1. Introduction

2. Model & diphoton excess

- 3. Checking constraint
- 4. VLQ production
- 5. Summary

Our Model

SM + vector-like triplet quarks (F₁,F₂)+singlet scalar (S)

VLTQ

$$F_1: (3,3)(2/3), F_2: (3,3)(-1/3)$$
 {(SU(3),SU(2))(U(1)_Y)}
 $F_1 = \begin{pmatrix} U_1 / \sqrt{2} & X \\ D_1 & -U_1 / \sqrt{2} \end{pmatrix}, F_2 = \begin{pmatrix} D_2 / \sqrt{2} & U_2 \\ Y & -D_2 / \sqrt{2} \end{pmatrix} \begin{pmatrix} Q_X = 5/3 \\ Q_Y = -4/3 \end{pmatrix}$
(Y.Okada, L.Panizzi (2013))

Yukawa couplings of VLTQ

 $L^{Yukawa}_{_{VLTQ}} = Y_1 \overline{Q}_L F_{1R} \widetilde{H} + Y_2 \overline{Q}_L F_{2R} H + y_1 Tr(\overline{F}_{1L} F_{1R}) S + y_2 Tr(\overline{F}_{2L} F_{2R}) S + h.c.$

Our Model

SM + vector-like triplet quarks (F₁,F₂)+singlet scalar (S)

VLTQ

$$F_1 : (3,3)(2/3), F_2 : (3,3)(-1/3)$$
 {(SU(3),SU(2))(U(1)_Y)}
 $F_1 = \begin{pmatrix} U_1 / \sqrt{2} & X \\ D_1 & -U_1 / \sqrt{2} \end{pmatrix}, F_2 = \begin{pmatrix} D_2 / \sqrt{2} & U_2 \\ Y & -D_2 / \sqrt{2} \end{pmatrix} \begin{bmatrix} Q_x = 5/3 \\ Q_Y = -4/3 \end{bmatrix}$
(Y.Okada, L.Panizzi (2013))
Yukawa couplings of VLTQ
 $L_{VITQ}^{Yukawa} = \underline{Y_1 \overline{Q}_L F_{1R} \widetilde{H} + Y_2 \overline{Q}_L F_{2R} H} + \underline{y_1 Tr(\overline{F}_{1L} F_{1R})S} + \underline{y_2 Tr(\overline{F}_{2L} F_{2R})S} + h.c.$
 $gg \rightarrow S \text{ and } S \rightarrow \gamma \gamma$
It induces decay of F_i & mixing of VLQ and SM quarks
*We assume $Z_2: S \rightarrow S, F_{iL} \rightarrow -F_{iL}$ to forbid S-H mixing (softly broken by F mass term)

Gauge interactions of VLTQs

$$L_{VFF} = -g \Big[(\bar{X}\gamma^{\mu}U_{1} + \bar{U}_{1}\gamma^{\mu}D_{1} + \bar{D}_{2}\gamma^{\mu}Y + \bar{U}_{2}\gamma^{\mu}D_{2})W_{\mu}^{+} + h.c. \Big] \\ - \Big[\frac{g}{c_{W}} \bar{F}_{1}\gamma^{\mu}(T^{3} - s_{W}^{2}Q_{1})F_{1} + e\bar{F}_{1}\gamma^{\mu}Q_{1}F_{1}A_{\mu} + (F_{1} \to F_{2}, Q_{1} \to Q_{2}) \Big]$$

$$F_1^T = (X, U_1, D_1); \ F_2^T = (U_2, D_2, Y)$$

Isospin of VLTQ is different from the SM quarks

$$\sum_{Wud} = -\frac{g}{\sqrt{2}} \bar{u}_L \gamma^{\mu} V_{CKM}^L d_L W_{\mu}^+ - \frac{g}{\sqrt{2}} \bar{u}_R \gamma^{\mu} V_{CKM}^R d_R W_{\mu}^+ + h.c.$$

$$\mathcal{L}_{Zqq} = -\frac{g}{c_W} C_{ij}^{q_L} \bar{q}_{iL} \gamma^{\mu} q_{jL} Z_{\mu} - \frac{g}{c_W} C_{ij}^{q_R} \bar{q}_{iR} \gamma^{\mu} q_{jR} Z_{\mu}$$

$$C_{ij}^{q_L} = (I_3 - s_W^2 Q_q) \delta_{ij} + \frac{1}{2} \left(-V_{Li4}^q V_{Lj4}^{q_*} + V_{Li5}^q V_{Lj5}^{q_*} \right)$$

$$V_{CKM}^L = V_L^u \begin{pmatrix} (V_{CKM})_{3\times 3} & 0_{3\times 2} \\ ---- & ---- \\ 0_{2\times 3} & | \sqrt{2} 1_{2\times 2} \end{pmatrix} V_{CKM}^{d\dagger} = V_R^u \begin{pmatrix} 0_{3\times 3} & 0_{3\times 2} \\ ---- & 0_{2\times 3} & | \sqrt{2} 1_{2\times 2} \end{pmatrix} V_{CKM}^{d\dagger} = V_R^u \begin{pmatrix} 0_{3\times 3} & 0_{3\times 2} \\ ---- & 0_{2\times 3} & | \sqrt{2} 1_{2\times 2} \end{pmatrix} V_R^{d\dagger}$$

Gluon fusion and decay modes of S

Gluon fusion and decay of S via VLTQ loop

$$gg \to S \to VV \qquad L_{sgg} = \frac{\alpha_s}{8\pi} \left(\sum_{F_i} \frac{3y_i}{2m_{F_i}} A_{1/2}(\tau_{F_i}) \right) \phi G^{a\mu\nu} G^a_{\mu\nu}$$

Decay widths

$$\begin{split} \Gamma(S \to gg) &= \frac{\alpha_s^2 m_s^3}{32\pi^3} \left| \sum_i \frac{y_i}{2m_{F_i}} A_{1/2}(\tau_i) \right|^2 \\ \Gamma(S \to \gamma\gamma) &= \frac{\alpha^2 m_s^3}{256\pi^3} \left| \sum_i \frac{3y_i Q_{F_i}^2}{m_{F_i}} A_{1/2}(\tau_i) \right|^2 \\ \Gamma(S \to Z\gamma) &= \frac{9m_s^3}{32\pi^3} |A_F|^2 \left(1 - \frac{m_z^2}{m_s^2} \right)^3 \quad \Gamma(S \to WW) = \frac{\alpha^2 m_s^3}{256\pi^3} \left| \sum_i \frac{6y_i}{m_{F_i} s_W^2} A_{1/2}(\tau_i) \right|^2 \\ \Gamma(S \to ZZ) &= \frac{\alpha^2 m_s^3}{256\pi^3} \left| \sum_i \frac{3y_i (T_{F_i}^3 - s_W^2 Q_{F_i})^2}{m_{F_i} s_W^2 c_W^2} A_{1/2}(\tau_i) \right|^2 \end{split}$$

Total decay width of S and BR

The with is mostly less than 1 GeV : narrow width

BRs are almost independent of VLTQ mass

(Djouadi Phys. Rep. 457, 1)

 $K_{s \rightarrow qq} = 1.35$

Gluon fusion production cross section at 13 TeV

- The VLTQ masses are universal for simplicity
- Cross section is estimated with CalcHEP
- $K_{gg \rightarrow s}$ =1.35 (Djouadi Phys. Rep. 457, 1)
- The cross section can be O(1) pb with O(1) Yukawa

~5 fb cross section is possible with O(1) TeV m_F and O(1) Yukawa couling

1. Introduction

2. Model & diphoton excess

3. Checking constraint

4. VLQ production

5. Summary

3. Checking constraints

Checking constraints: 8TeV data

final	$\sigma \text{ at } \sqrt{s} = 8 \text{ TeV}$				
state f	observed	expected	ref.		
$\gamma\gamma$	$< 1.5 { m fb}$	< 1.1 fb	[6, 7]		
$e^+e^- + \mu^+\mu^-$	< 1.2 fb	< 1.2 fb	[8]		
$\tau^+\tau^-$	< 12 fb	$15 \mathrm{fb}$	[9]		
$Z\gamma$	< 4.0 fb	< 3.4 fb	[10]		
ZZ	< 12 fb	< 20 fb	[11]		
Zh	< 19 fb	< 28 fb	[12]		
hh	< 39 fb	< 42 fb	[13]		
W^+W^-	< 40 fb	< 70 fb	[14, 15]		
$tar{t}$	< 550 fb	-	[16]		
invisible	< 0.8 pb	-	[17]		
$b\overline{b}$	$\lesssim 1 \mathrm{pb}$	$\lesssim 1\mathrm{pb}$	[18]		
jj	$\lesssim 2.5 \ { m pb}$	820 1	[5]		

From Table 1 of arXiv:1512.04933

Our scenario can satisfy all constraints!

$$\sigma(gg \to S)_{13TeV} BR(S \to \gamma\gamma) \approx 6 fb$$

$$BR(S \to \gamma\gamma) \approx 0.017$$

$$\implies \sigma(gg \to S)_{13TeV} \approx 350 fb$$

$$\left[\sigma(gg \to S)_{13TeV} / \sigma(gg \to S)_{8TeV} \approx 5\right]$$

$$\sigma(gg \to S)_{8TeV} BR(S \to gg) \approx 49 fb$$

$$\sigma(gg \to S)_{8TeV} BR(S \to W^+W^-) \approx 10 fb$$

$$\sigma(gg \to S)_{8TeV} BR(S \to ZZ) \approx 7.0 fb$$

$$\sigma(gg \to S)_{8TeV} BR(S \to Z\gamma) \approx 2.8 fb$$

$$\sigma(gg \to S)_{8TeV} BR(S \to \gamma\gamma) \approx 1.2 fb$$

 $BR(S \rightarrow gg) \approx 0.67$ $BR(S \rightarrow W^+W^-) \approx 0.15$ $BR(S \rightarrow ZZ) \approx 0.095$ $BR(S \rightarrow Z\gamma) \approx 0.039$ $BR(S \rightarrow \gamma\gamma) \approx 0.017$

3. Checking constraints

Checking constraints: FCNC

∜t→ch

$$\mathcal{L}_{hQq} = \frac{Y_{1i}}{\sqrt{2}} (v+h) \left(\frac{1}{\sqrt{2}} \bar{u}_{Li} U_{1R} + \bar{d}_{Li} D_{1R} \right) + \frac{Y_{2i}}{\sqrt{2}} (v+h) \left(\bar{u}_{Li} U_{2R} - \frac{1}{\sqrt{2}} \bar{d}_{Li} D_{2R} \right)$$

- SM Higgs mediated FCNC induces t→(u,c)h
- > Y_{11}, Y_{21} contribute to D-D, K-K, $B_{d_1}\overline{B}_d$ mixing → we assume $Y_{11}=Y_{21}=0$
- > $Y_{12}, Y_{13}, Y_{22}, Y_{23}$: constrained by $B_s \overline{B}_s$ mixing
- $\blacktriangleright \text{ When we assume } Y_{12} \sim Y_{13} \sim Y_{22} \sim Y_{23}$ $\mathcal{L} = -C_{sb}\bar{s}P_Rbh \frac{m_t}{m_b}C_{sb}\bar{c}P_Rth + H.c. \quad \left[C_{sb} = \frac{m_b}{4v}(2\zeta_{12}\zeta_{13} + \zeta_{22}\zeta_{23}) \quad \varsigma_{ij} = \frac{vY_{ij}}{m_F}\right]$
- → Assuming Δm_{Bs} =1.1688×10⁻¹¹GeV, we get $|C_{sb}|$ <5.2×10⁻⁴ → ζ²<0.036

$$\Gamma(t \to ch) = \frac{m_t}{32\pi} \left| \frac{m_t}{m_b} C_{bs} \right|^2 \left(1 - \frac{m_h^2}{m_t^2} \right)^2 \implies BR(t \to ch) < 1.1 \times 10^{-4}$$
$$\Gamma_t = 1.41 \text{ GeV}$$

3. Checking constraints

Checking constraints: $h \rightarrow \gamma \gamma$

Flavor mixing effect \mathbf{Y}_{1j} and \mathbf{Y}_{2j} contribute $\sigma(gg \rightarrow h)BR(h \rightarrow \gamma\gamma)$

$$\mu_{\gamma\gamma} = \frac{\sigma(pp \to h)_{\rm VLTQ}}{\sigma(pp \to h)_{\rm SM}} \frac{BR(h \to \gamma\gamma)_{\rm VLTQ}}{BR(h \to \gamma\gamma)_{\rm SM}}$$
$$\approx \left|1 + \frac{3}{4}\zeta_{gg}\right|^2 \left|1 + \frac{N_c A_{1/2}(x_F)\zeta_{\gamma\gamma}}{A_1(x_W) + 4/3A_{1/2}(x_t)}\right|^2$$

$$\begin{split} \zeta_{gg} &= \zeta_{12}^2 + \zeta_{13}^2 + \zeta_{22}^2 + \zeta_{23}^2, \\ \zeta_{\gamma\gamma} &= \frac{Q_u^2 + 2Q_d^2}{4} (\zeta_{12}^2 + \zeta_{13}^2) + \frac{2Q_u^2 + Q_d^2}{4} (\zeta_{22}^2 + \zeta_{23}^2) \end{split}$$
 We assume $\zeta_{12} = \zeta_{13} = \zeta_{22} = \zeta_{23} = \zeta_{23} = \zeta_{23}$

(*)

$$m_t, m_F >> m_h, x_W = 4m_W^2 / m_h^2, x_t = 4m_t^2 / m_h^2$$

 $x_F = 4m_F^2 / m_h^2, A_1(x_W) \approx -8.3, A_{1/2}(x_t) \approx 1.38$

- 1. Introduction
- 2. Model & diphoton excess
- 3. Checking constraint
- 4. VLQ production
- 5. Summary

4.VLQ signature

Production of VLTQs at LHC 13 TeV

Signature of our model: VLTQ production VLTQ components: $U_{1,2}$, $D_{1,2}$, X, Y

X, Y production would be interesting

(work in progress)

 $\varsigma_{11} = \varsigma_{21} = 0.02$

 $\varsigma_{12} = \varsigma_{13} = \varsigma_{22} = \varsigma_{23} \equiv \varsigma = 0.2$

✤X, Y pair production cross section

 $Q = X_{5/3}, Y_{-4/3}.$

$m_F [{ m GeV}]$	800	900	1000	1100	1200
$\sigma(pp \to Q\bar{Q})$ [fb]	88	42	22	11	6

X, Y single production cross section via QCD process

TABLE III: Production cross section for $X_{5/3}W^-$ and $Y_{-4/3}W^+$ with various values of m_F , where

$\sqrt{s} = 13$ TeV, $\zeta_{11,21} = 0.02$, and $\zeta = 0.2$ are used.					
$m_F \; [{ m GeV}]$	800	900	1000	1100	1200
$\sigma(pp \to X_{5/3}W^-)$ [fb]	0.72	0.38	0.21	0.12	0.07
$\sigma(pp \to Y_{-4/3}W^+)$ [fb]	1.4	0.73	0.40	0.23	0.13

4.VLQ signature

Production of VLTQs at LHC 13 TeV

(work in progress)

X,Y single production through electroweak process

s, c initial states are also important We find large cross section can be obtained 4.VLQ signature

Production of VLTQs at LHC 13 TeV

(work in progress)

X,Y single production through electroweak process

s, c initial states are also important We find large cross section can be obtained

Summary and Discussions

- Diphoton excess can be explained by singlet scalar + VLTQ
- Production and decay processes from one-loop
- ♦ Specific pattern of BRs
- ♦ It can be consistent with other experimental constraints
- ♦ Width of S is narrow in our model
- ♦ The model would be tested by searching for VLTQs

Thank you !

Loop functions in the partial decay widths

$$\begin{split} A_{1/2}(\tau) &= 2\tau [1 + (1 - \tau)(\sin^{-1}(1/\sqrt{\tau}))^2] \quad (\tau \ge 1) \\ A_F &= \frac{\alpha}{2\pi s_W c_W} \sum \frac{-4y_F Q_F}{m_F} (T_F^3 - s_W^2 Q_F) [I_1(\tau, \lambda) - I_2(\tau, \lambda)] \\ &\quad \tau_i = \frac{4m_{F_i}^2}{m_S^2}, \quad \lambda_i = \frac{4m_{F_i}^2}{m_Z^2} \\ I_1(a, b) &= \frac{ab}{2(a - b)} + \frac{a^2 b^2}{2(a - b)^2} [f(a)^2 - f(b)^2] + \frac{a^2 b}{(a - b)^2} [g(a) - g(b)], \\ I_2(a, b) &= -\frac{ab}{2(a - b)} [f(a)^2 - f(b)^2], \\ g(t) &= \sqrt{t - 1} \sin^{-1}(1/\sqrt{t}). \end{split}$$