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Abstract The program HiggsSignals confronts the

predictions of models with arbitrary Higgs sectors with

the available Higgs signal rate and mass measurements,

resulting in a likelihood estimate. A new version of the

program, HiggsSignals-2, is presented that contains

various improvements in its functionality and applicabil-

ity. In particular, the new features comprise improvements

in the theoretical input framework and the handling of

possible complexities of beyond-the-SM Higgs sectors, as

well as the incorporation of experimental results in the

form of simplified template cross section (STXS) measure-

ments. The new functionalities are explained, and a thor-

ough discussion of the possible statistical interpretations of

the HiggsSignals results is provided. The performance

of HiggsSignals is illustrated for some example analy-

ses. In this context the importance of public information on

certain experimental details like efficiencies and uncertainty

correlations is pointed out.HiggsSignals is continuously

updated to the latest experimental results and can be obtained

at https://gitlab.com/higgsbounds/higgssignals.
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1 Introduction

Elucidating the mechanism that controls electroweak sym-

metry breaking (EWSB) is one of the main goals of the

LHC. The spectacular discovery of a Higgs boson with a mass

around 125 GeV by the ATLAS and CMS experiments [1,2]

marks a milestone of an effort that has been ongoing for

almost half a century and has opened a new era of parti-

cle physics. In the eight years since the discovery of the

new particle at the LHC, its mass has been measured with

a few-per-mil accuracy, Mobs
H = 125.09 ± 0.24 GeV [3].1

The measured properties are, within current experimental

and theoretical uncertainties, in agreement with the predic-

tions of the Standard Model (SM) [4]. Together with the lim-

its on beyond-the-SM (BSM) particles that were obtained at

the LHC with center-of-mass energies of up to 13 TeV and

elsewhere, the requirement that the particle spectrum should

include an essentially SM-like Higgs boson at about 125 GeV

imposes important constraints on the parameter space of pos-

sible extensions of the SM.

In order to test the predictions of BSM models with

arbitrary Higgs sectors consistently against all the available

experimental data, on the one hand the compatibility with

existing BSM Higgs-boson searches has to be checked. This

can be done with the public tool HiggsBounds [5–9]. On

the other hand, any BSM model should furthermore be tested

against the measured mass and rates of the observed scalar

state. Confronting the predictions of an arbitrary Higgs sector

with the observed Higgs signal2 (and potentially with other,

future, signals of additional Higgs states) is the purpose of

the public computer program HiggsSignals [10]. Here

we present the new version HiggsSignals-2 and update

1 This is the latest ATLAS and CMS combined result. More recent data

is in agreement with this value.

2 Here and in the following, Higgs signal refers to any measurement

in analyses at the LHC or the Tevatron that can be associated with the

observed state at 125 GeV, regardless of the statistical significance of

each individual measurement.

the description of the program w.r.t. version1.0 as presented

previously in Ref. [10].

HiggsSignals evaluates a χ2 measure to provide a

quantitative answer to the statistical question of how com-

patible the Higgs data (in particular, measured signal rates

and masses) is with the model predictions. The χ2 evalu-

ation can be performed with various methods [10]. Among

those the peak-centered χ2 method (see Sect. 2) is the default

method implemented inHiggsSignals. In this χ2 method

the (neutral) Higgs signal rates and masses predicted by the

model are tested against the various signal rate measure-

ments published by the experimental collaborations for a

fixed hypothetical Higgs mass. This hypothetical Higgs mass

is typically motivated by the signal peak seen in the channels

with high mass resolution, i.e. the searches for H → γ γ and

H → Z Z (∗) → 4ℓ. In this way, the model is tested at the

observed peak’s mass position.

With theoretical input provided by the user in form of

Higgs masses, production cross sections, and decay rates

in the same format as used in HiggsBounds, the code

HiggsSignals evaluates the corresponding χ2 to test the

compatibility of any BSM model with the full set of experi-

mental Higgs-boson data. The experimental data from LHC

(and – if needed – Tevatron) Higgs analyses is provided with

the program, so there is no need for the user to include these

values manually. However, it is possible for the user to mod-

ify or add to the dataset at will.

The usefulness of a public tool such asHiggsSignals3

has become apparent in the past years, given the intense work

by theorists to use the latest Higgs measurements as con-

straints on the SM and theories for new physics. The χ2

output of HiggsSignals can directly be used as input

to global fits. Some example applications can be found in

Refs. [14–21]. Performance tests of the HiggsSignals

implementation of experimental results within selected bench-

mark models have occasionally revealed shortcomings in

the presentation of the publicly available experimental data.

These have been reported to the experimental collaborations,

which – in a joint effort between experiment and theory –

have often led to an improved usability of the experimental

results.

We begin Sect. 2 with a short overview of the rele-

vant changes made to the shared Higgs-Bounds and

HiggsSignals theoretical input framework. We then dis-

cuss the calculation of the χ2 measure in HiggsSignals

including a review of the peak-centered χ2 method. We

also describe in this context the χ2 contributions arising

from the LHC Run-1 ATLAS and CMS Higgs combina-

tion and the newly added simplified template cross section

(STXS) observables. Furthermore, we discuss the handling

3 Other programs that perform likelihood calculations from Higgs mea-

surements are Lilith [11,12] and HEPfit [13].
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of potential issues that can arise in BSM Higgs sectors,

in particular effects from non-SM-like kinematical proper-

ties of the Higgs candidate, theoretical uncertainties of the

mass predictions, and the possibility of overlapping signals

from multiple Higgs bosons. We provide a short overview

of the technical user operation instructions in Sect. 3 and

refer to the online documentation [22] for details. We then

discuss the options for exploiting the χ2 result returned by

HiggsSignals for several different applications in BSM

model testing. In Sect. 4 we present detailed performance test

of the HiggsSignals implementations for several analy-

ses in comparison with official results from the experimental

collaborations. In this context we point out the importance of

sub-channel and correlation information that should be pro-

vided by the experimental collaborations in order to allow

an accurate reinterpretation of their results. We close the

section with a list of recommendations for the publication

of Higgs signal measurements. We conclude in Sect. 5. The

Appendix includes details on the implementation and the for-

mat of STXS observables as well as a listing of all currently

included experimental measurements.

2 HiggsSignals-2: basic concepts and new

developments

2.1 Extension of the theoretical input framework

A detailed description of the extensions and modifications of

the HiggsBounds input framework for the theory predic-

tions is given in Ref. [9]. In this section we only highlight

the relevant changes affecting HiggsSignals.

With the enlarged experimental program of precision

Higgs rate measurements at the LHC during Run 2 more of

the sub-dominant Higgs-boson production and decay modes

came under consideration. While HiggsSignals-1

included only the five main LHC Higgs-boson production

modes (single Higgs production, vector boson fusion (VBF),

W - and Z -boson associated Higgs production, top-quark pair

associated Higgs production), the code now also accounts

for processes with smaller cross sections. The upper part of

Table 1 lists all Higgs processes currently implemented in

HiggsSignals-2. Furthermore, the input of some of the

inclusive production processes is supplemented by input for

their dominant exclusive subprocesses: First, the gluon fusion

production and bb̄ associated Higgs production processes are

now treated separately, while in HiggsSignals-1 they

were always taken together as inclusive single Higgs produc-

tion. This is required in order to properly implement experi-

mental analyses that exhibit sensitivity to the b-jet multiplic-

ity. Second, the quark-initiated and gluon-initiated Z -boson

associated Higgs production processes are now treated sep-

arately. Further additions to the available production modes

Table 1 Production and decay mode identifiers, p and d, for the various

Higgs production and decay processes included in HiggsSignals-2

Identifier p Production mode

0 No production mode

1 Single Higgs production, pp → φ

2 Vector boson fusion, pp → qqφ

3 W -boson associated Higgs production, pp → W ±φ

4 Z -boson associated Higgs production, pp → Zφ

5 t t̄ associated Higgs production, pp → t t̄φ

6 Gluon fusion Higgs production, gg → φ

7 bb̄ associated Higgs production, gg → bb̄φ

8 Single top associated Higgs produc-

tion (t-channel), pp → tφ

9 Single top associated Higgs produc-

tion (s-channel), pp → tφ

10 Quark-initiated Z -boson associated

Higgs production, qq̄ → Zφ

11 Gluon-initiated Z -boson associated

Higgs production, gg → Zφ

12 Single top and W -boson associated

Higgs production, gb → tW ±φ

Identifier d Decay mode

0 No decay mode

1 φ → γ γ

2 φ → W +W −

3 φ → Z Z

4 φ → τ+τ−

5 φ → bb̄

6 φ → Zγ

7 φ → cc̄

8 φ → μ+μ−

9 φ → gg

10 φ → ss̄

11 φ → t t̄

in the HiggsSignals input are the single top-quark asso-

ciated Higgs production channel in the t- and s-channel and

Higgs production in association with a single top quark and

a W boson. The lower part of Table 1 lists all implemented

Higgs-boson decay modes.

A Higgs signal channel composed of one production mode

and one decay mode is specified by the channel identifier

(ID) c, given by the string construct c = "p.d", where p

(d) is the production (decay) mode identifier given in Table

1.4 In rare cases the collider process is specified only as a

4 In HiggsSignals-1 the channel ID was given by a two-digit inte-

ger composed of p and d as first and second digit, respectively. With the

larger amount of production and decay modes this is no longer possible.

For compatibility, two-digit channel IDs without a period in between

are still supported in HiggsSignals-2.
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Table 2 Examples for processes encoded by the HiggsSignals

channel IDs

Channel ID (c) Collider process

1.1 pp → φ, φ → γ γ

7.10 gg → bb̄φ, φ → ss̄

11.0 gg → Zφ

0.2 φ → W +W −

production or decay mode. In such cases, the unspecified

mode has the identifier 0. Some examples are given in Table

2.

Per default,HiggsBounds andHiggsSignals employ

the narrow width approximation, i.e. we assume that the pro-

duction cross section and the branching ratio can be factor-

ized, so that the signal rates can simply be calculated from

the user input of the cross sections and branching ratios.

However, within HiggsBounds-5 (and thus also within

HiggsSignals-2) it is also possible to set the rate directly

for each signal channel via dedicated Fortran subroutines

(see Ref. [9]), which allows treating cases where the narrow

width approximation is not applicable (as e.g. relevant in the

case of a hypothetical or future signal in the high mass range).

2.2 The χ2 calculation and individual contributions

In the previous version, HiggsSignals-1, three differ-

ent run modes were supported: (1) the peak-centered χ2

method which uses the signal strength measurements, μ̂, per-

formed for one specific Higgs boson mass value, m̂ (e.g. at

m̂ = 125 GeV); (2) the mass-centered χ2 method which

uses the signal strength measured as a function of a hypothe-

sized Higgs boson mass as experimental input, thus enabling

a χ2-test using the signal strength measured at the model-

predicted Higgs boson mass, m; (3) a combination of both

methods. Furthermore, an additional, separate χ2 contribu-

tion arises from the comparison of the mass measurements

with the model-predicted Higgs boson mass.

However, soon after the Higgs boson signal was estab-

lished at a Higgs mass ≃ 125 GeV, the LHC experi-

ments ceased to provide signal strength measurements for

an extended Higgs boson mass interval. Without updated

experimental input, the mass-centered χ2 method quickly

became irrelevant, and the peak-centered χ2 method became

the main run mode of HiggsSignals. Hence, the current

version HiggsSignals-2 only uses the peak-centered χ2

method while the other run modes have been removed. Yet,

different contributions to the total χ2 arise according to the

experimental input the user chooses to apply. The different

types of χ2 contributions are listed in Table 3.

The χ2 calculation using the so-called peak observables

(first row in Table 3) closely follows the peak-centered χ2

method employed in HiggsSignals-1. A brief review

and a description of relevant modifications will be given

in Sect. 2.3. The experimental input to this calculation is

specified by the user by selecting an “observable set” which

may contain measurements performed by the Tevatron exper-

iments, as well as by the LHC experiments at center-of-mass

energies of 7, 8 and 13 TeV. Predefined observable sets

are provided with the HiggsSignals program, but the

users can also create their own observable sets with selected

observables. We stress, however, that the user needs to avoid

a statistical overlap with other observables contributing to the

total χ2 (see below) when compiling an observable set that

differs from the ones that are predefined inHiggsSignals.

After the completed LHC runs at 7 and 8 TeV the two

experiments ATLAS and CMS released combined measure-

ments of the signal rates [4] and the Higgs boson mass [3].

The signal rates were presented as unfolded inclusive mea-

surements in 20 pure channels, i.e. one production process

combined with one decay process (see Tab. 8 and Fig. 7 of

Ref. [4]), accompanied with a 20 × 20 correlation matrix.

The Higgs boson mass was determined to m̂LHC Run-1 =
125.09 ± 0.21(stat.) ± 0.11(syst.) GeV [3]. These experi-

mental results give rise to a separate χ2 contribution in

HiggsSignals-2 (second row in Table 3); more details

will be given in Sect. 2.4.

Another experimental input format that became available

during Run-2 of the LHC are the simplified template cross

section (STXS) measurements [23] (third row in Table 3).

Higgs-Signals-2 features a new Fortran module to

handle this input. While the treatment of these measurements

in HiggsSignals is similar to the usual peak observables,

the new module allows for a more versatile handling and addi-

tional features, as will be discussed in Sect. 2.5. In the long

run, the HiggsSignals framework handling the STXS

observables will supersede the peak-centered χ2 method also

when the conventional (inclusive) signal strength measure-

ments are used. In the meantime, STXS and peak observables

can be used in parallel within one “observable set”, each type

giving rise to a separate χ2 value which can be added if there

is no statistical overlap in the corresponding measurements.

As the Higgs mass measurements are always implemented

in association with a signal rate measurement of the relevant

experimental channel within the HiggsSignals program,

the new STXS observables can also handle accompanying

mass measurements.

2.3 The peak-centered χ2 method in HiggsSignals-2

Within a given BSM model, the Higgs boson signal strength

μ predicted for a specific bin or category of an experimental
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Table 3 Individual χ2 contributions in HiggsSignals-2. The total χ2 (left column) is defined as the sum of the χ2 contribution from the rate

measurements (second column) and the χ2 contribution from the mass measurements (third column)

Total χ2 Rate contribution Mass contribution Experimental input

χ2
peak χ2

peak,μ χ2
peak,m User-selected “peak observables”

χ2
LHC Run-1 χ2

LHC Run-1,μ χ2
LHC Run-1,m LHC Run-1 ATLAS and CMS combined measurements

χ2
STXS χ2

STXS,μ χ2
STXS,m Simplified Template Cross Section (STXS) observables

Higgs analysis is defined as

μ =
∑

i ǫi [σ × BR]i
∑

j ǫSM,j[σSM × BRSM] j

, (1)

where the sums run over all contributing channels i , which

by definition consist of one Higgs production and one decay

mode (see above). The numerator contains the experimen-

tally observable signal rate predicted by the model, where ǫi

is the experimental signal efficiency5,6 and [σ × BR]i is the

model-predicted signal rate (i.e., in the narrow width approx-

imation, the production cross section, σ , times the branching

ratio, BR) for channel i . The denominator contains the corre-

sponding quantities for a SM Higgs boson. Hence, the signal

strength μ is a SM-normalized signal rate. The signal effi-

ciencies in the model, ǫi , can be different than those in the

SM, ǫSM,i , if the Higgs candidate has different kinematical

properties, e.g., arising from higher-dimensional operators.

Per default, we assume ǫi = ǫSM,i , but the user can directly

set ǫi if desired, see Sect. 2.6.1 for further details.

On the experimental side, in an analysis of the Higgs signal

at 125 GeV, the measurement of the signal strength μ in a

specific bin or category is performed by assuming SM Higgs

properties for the observed particle, ǫi = ǫi,SM. The signal

strength is determined by rescaling the SM-predicted signal

rate for all involved channels i by a universal factor μ̃,

[σ × BR]i = μ̃ · [σSM × BRSM]i .. (2)

The scale factor μ̃ that best fits the observation is the cen-

tral value of the measurement, which we shall denote as

μ̂ = μ̃|best-fit. Furthermore, the fitting procedure provides the

upper and lower 68% C.L. uncertainties, 	μ̂up and 	μ̂low,

respectively.

5 Experimentally, one distinguishes between the efficiency (related to

the detector performance and object reconstruction) and signal accep-

tance A (i.e. the analysis-specific fraction of signal events passing the

full signal selection). Here, the signal efficiency ǫ refers to the product

of the experimental efficiency and signal acceptance.

6 Without loss of generality, the normalization of the signal rate to the

SM expectation in Eq. (1) allows us to redefine all ǫi and ǫSM,i such

that ǫSM,1 ≡ 1. In this way, the ǫi and ǫSM,i describe the relative model

and SM signal efficiency, respectively, of the channel i with respect to

the first (i = 1) channel in the SM.

In some analyses the measurements in experimental bins

or categories are unfolded onto pure production and decay

channels by fitting the corresponding signal strengths to all

measurements simultaneously. This results in signal strength

measurements of pure channels, however, with often signif-

icant correlations induced by the unfolding process. These

types of measurements are special cases of the above defini-

tion, Eq. (1) (without a sum over i), and can be treated analo-

gously in this method. However, it is then very important that

a correlation matrix is provided by the experiments and prop-

erly included in the χ2 calculation in HiggsSignals.7

More details and discussions will be given in the following

subsections and in Sect. 4.

As it will be useful in the following, we decompose μ, Eq.

(1), as

μ =
∑

i

ζi ωSM
i ci , (3)

with relative efficiency modifiers ζi ≡ ǫi/ǫSM,i , as well as

the SM channel weights, ωSM,i , and individual channel signal

strengths, ci , given by

ωSM
i = ǫSM,i [σSM × BRSM]i

∑

j ǫSM, j [σSM × BRSM] j

, (4)

ci = [σ × BR]i

[σSM × BRSM]i

. (5)

As explained in the HiggsSignals-1 documenta-

tion [10] the aim of the peak-centered χ2 method is to per-

form a χ2 test for the hypothesis that a local excess, “signal”

(or “peak observable”), in the observed data at a speci-

fied mass is generated by the model. The experimental input

for this method are the signal strength measurements per-

formed at a specified mass, m̂, as well as measurements of

the Higgs boson mass from the γ γ and Z Z (∗) → 4ℓ final

states. Of course, ideally, the mass measurements and the

specified mass of the signal strength measurements should

at least approximately coincide (assuming the signals orig-

inate from the same Higgs boson). In this way, each signal

7 Even in the case of signal strength measurements in experimental bins

or categories there are correlated systematic uncertainties which can be

incorporated in HiggsSignals.

123



145 Page 6 of 36 Eur. Phys. J. C (2021) 81 :145

strength measurement μ̂ is intertwined with a specific Higgs

mass value, which plays either the role of just a reference

point or an actual measurement (that will contribute to the

χ2 test). Thus, a peak observable p̂ is defined as one μ̂ mea-

surement at a mass value m̂ (with mass resolution 	m̂). If

m̂ ± 	m̂ is furthermore treated as a measurement, we call it

a mass-sensitive peak observable.8

2.3.1 The χ2 calculation from the signal rates

We now briefly review the χ2 evaluation in the peak-centered

χ2 method of HiggsSignals. As already mentioned in

Sect. 2.2, Table 3, the total χ2 value obtained in this method

is composed of a χ2 part from the signal strength observables

and a χ2 part from the Higgs mass observables, χ2
peak =

χ2
peak,μ+χ2

peak,m . For N peak observables, the signal strength

part is given by

χ2
peak,μ = (µ̂ − µ)

T
Cµ

−1(µ̂ − µ) , (6)

where µ̂ and µ are N -dimensional vectors of the mea-

sured and predicted signal strength, respectively. The signal

strength covariance matrix Cµ describes the signal rate uncer-

tainties and incorporates correlations of the major uncertain-

ties between the peak observables using publicly available

information from the experimental analyses and theory pre-

dictions. For all peak observables, we include the correlation

of the luminosity uncertainty (in % of the measured μ) for

each experiment and center-of-mass energy, as well as the

correlations of theoretical rate uncertainties. For the latter,

we use the predictions from the LHC Higgs cross section

work group (LHC HXSWG) Yellow report 4 [23] for the

parametric and theoretical rate uncertainties of each produc-

tion and decay process. Assuming a SM Higgs boson with

mass 125.09 GeV, we construct relative covariance matri-

ces for the production cross sections and branching ratios of

the processes listed in Table 1, denoted as C
SM
σ and C

SM
BR ,

respectively.9 For instance, correlations are induced by com-

mon error sources, e.g. the uncertainty in the strong coupling

constant αs , or – for the branching fractions – through the

division of the partial decay widths by the total decay width.

As the theoretical rate uncertainties in the tested model can be

8 Observables handled via the new HiggsSignals-2 module for

STXS measurements are treated analogously, i.e. among STXS observ-

ables we again distinguish between rate measurements at a hypothesized

mass value and measurements of both the rate and mass (see Sect. 2.5).

However, none of the STXS observables implemented in the current

version HiggsSignals-2.6.0 includes a mass measurement.

9 We neglect correlations of theoretical/parametric uncertainties

between production and decay rates. These correlations cannot be unam-

biguously reconstructed from the information given in Ref. [23]. Fur-

thermore, these correlations are expected to be subdominant, at least

for the main experimental channels. See also Ref. [24] for a discussion.

different, we define analogous matrices, C
model
σ and C

model
BR ,

for the tested model. Per default, these are assumed to be the

same as in the SM, but can be changed by the user.10

In the construction of the signal strength covariance matrix

Cµ the theoretical rate uncertainties enter as

(Cµ)αβ =

⎛

⎝

kα
∑

a=1

kβ
∑

b=1

[

(Cσ
model)p(a)p(b) + (CBR

model)d(a)d(b)

]

·ωmodel
α,a ωmodel

β,b

⎞

⎠μαμβ , (7)

where the notation is as follows (see also Ref. [10]): The

index a (b) runs over the kα (kβ ) contributing channels of

the peak observable p̂α ( p̂β ). The index mappings p(x) and

d(x) project onto the production and decay mode identifier

(cf. Table 1), respectively, for the channel x . The model chan-

nel weights ωmodel
α,a for the peak observable p̂α are defined in

analogy to Eq. (4) as

ωmodel
i = ǫi [σ × BR]i

∑

j ǫ j [σ × BR] j

, (8)

i.e. the relative contribution of the channel i to the total sig-

nal rate, as predicted by the model. Through the multiplica-

tion with the channel weight and the signal strength mod-

ifier, the relative squared theory uncertainties encoded in

C
model
σ and C

model
BR are converted into absolute squared signal

strength uncertainties, as required for the covariance matrix.

The theoretical rate uncertainties in the SM, which are typ-

ically already included in the signal strength measurement

and therefore need to be subtracted from the μ̂ uncertainty

beforehand (see Ref. [10] for more details), are evaluated in

a similar way using C
SM
σ and C

SM
BR .

In addition to the luminosity and theoretical rate uncer-

tainties, other correlations between the peak observables can

be included in HiggsSignals if the relevant information

is available. This can be done by providing a corresponding

correlation matrix within the observable set which is then

loaded into HiggsSignals.11 Ideally such matrices are

published by the experiment along with the measurements.

Indeed, as we will discuss in Sect. 4, including the correla-

tion matrix in general drastically improves the accuracy of

the χ2 test, in particular if the μ measurements correspond

to pure channels obtained after an unfolding process.

10 Instructions for how these matrices can be evaluated and incorporated

in HiggsSignals are given in the online documentation [22].

11 Such correlation matrices are loaded automatically with the observ-

able set during the initialization of the program. Each matrix should be

given as three column data (index1, index2, correlation coefficient) in

a separate file with extension .corr in the observable set directory.
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2.3.2 The χ2 calculation from the Higgs mass

In the calculation of theχ2 contribution from the Higgs boson

mass measurements, χ2
peak,m , HiggsSignals allows three

different choices to model the probability density function

(pdf) of the Higgs boson mass: (1) as a uniform (box) dis-

tribution; (2) as a Gaussian, or (3) as a box with Gaussian

tails. For the Gaussian pdf, the theoretical mass uncertainty is

treated as fully correlated among mass sensitive peak observ-

ables to which the same Higgs boson has been assigned.

If a Higgs boson hi with mass mi and theoretical mass

uncertainty 	mi is assigned to a mass-sensitive peak observ-

able p̂α with mass measurement m̂α ± 	m̂α , its χ2 contri-

bution is given by12

χ2
α =

{

0 for |mi − m̂α| ≤ 	mi + �	m̂α

∞ otherwise ,
(9)

for a uniform (box) pdf, and

χ2
α =

⎧

⎪

⎨

⎪

⎩

0 for |mi−m̂α| ≤ 	mi ,

(mi − 	mi−m̂α)
2
/(	m̂α)

2 for mi−	mi > m̂α,

(mi + 	mi−m̂α)
2
/(	m̂α)

2 for mi+	mi < m̂α,

(10)

for a box-shaped pdf with Gaussian tails. In both cases, the

total χ2 contribution from the Higgs mass measurements is

given byχ2
peak,m = ∑M

α χ2
α , withα running over the M mass-

sensitive peak observables. The parameter � appearing in Eq.

(9) is the Higgs assignment range which will be discussed

in detail in Sect. 2.6.3. Note that the uniform (box) pdf is a

rather poor description of the Higgs mass pdf (in particular,

of the experimental uncertainty) and is included mostly for

illustrative purposes. In the (default) case of a Gaussian pdf,

the total χ2 contribution from the Higgs mass reads

χ2
peak,m = (m̂ − mi )

T
Cm

−1(m̂ − mi ). (11)

Here, m̂ and m are M-dimensional vectors and contain the

measured and predicted Higgs mass for the mass-sensitive

peak observables, respectively. The diagonal elements of

the Higgs mass covariance matrix, Cm, contain the squared

experimental uncertainty, (	m̂α)
2, while the squared theory

mass uncertainty, (	mi )
2, enters all matrix elements (Cm)αβ

(including the diagonal) where the Higgs boson hi is assigned

to both peak observables p̂α and p̂β .

12 We suppress in the following the subscript ’peak, m’ for the individ-

ual χ2 contributions from the peak observables.

2.4 The χ2 contribution from the LHC Run-1 combination

In Ref. [4] the ATLAS and CMS collaborations have pub-

lished a combined analysis of their datasets at
√

s =
7 and 8 TeV center-of-mass energy. In its most general

form, the results were presented as signal rate measure-

ments for the five dominant production modes (pp → H ,

VBF, W H , Z H , t t̄ H ) times the five dominant decay modes

(H → γ γ, Z Z , W W, τ+τ−, bb̄). Five channels – for which

the sensitivity for a measurement had not been reached

in Run-1 – were omitted resulting in a total of 20 mea-

sured channels. The analysis was performed for a Higgs

mass of m H = 125.09 GeV. The correlations of all the-

oretical uncertainties (assuming the SM Higgs boson) and

experimental systematic uncertainties were provided in the

form of a 20 × 20 correlation matrix. In addition to the

signal rate measurements, the Higgs mass was determined

to m H = 125.09 ± 0.21(stat.) ± 0.11(syst.) GeV from the

combined ATLAS and CMS Run-1 data [3].

HiggsSignals incorporates the 20 Run-1 signal rate

measurements (including their correlations) via a dedicated

run routine (see online documentation [22]). Furthermore,

a χ2 contribution from the Higgs mass measurement, taken

to be 125.09 ± 0.24 GeV in HiggsSignals, arises, if a

Higgs boson in the tested model is assigned to these measure-

ments. The resulting χ2 contributions from the LHC Run-1

signal rates and mass measurements can then be added to

other χ2 values obtained by the HiggsSignals runs (e.g.

using 13 TeV results).

As such, the ATLAS and CMS combined analysis repre-

sents the benchmark of
√

s = 7 TeV and 8 TeV results. For

the validation of the HiggsSignals methodology, repro-

ducing these results from the signal strength measurements

of the individual analyses at 7 and 8 TeV provides an excel-

lent cross-check, as will be shown in Sect. 4.1.

2.5 Simplified template cross section (STXS)

measurements

During Run 2 of the LHC the experimental collabora-

tions started to employ the STXS framework [23] for the

presentation of Higgs rate measurements. These measure-

ments comprise a different type of input observables in

HiggsSignals, resulting in an additional χ2 contribution

(see Table 3) that is evaluated in a new module. Although

the basic information given for STXS measurements is very

similar to the conventional peak (or “μ”) measurements, we

choose to treat them separately in order to provide and enable

a more flexible handling and additional features for the STXS

observables. It should be noted that – although we denote the

new module and the observables as STXS – any signal rate

measurement can be handled via this framework, regardless

whether this measurement fulfills the official definitions of
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an STXS bin. For instance, inclusive measurements or fidu-

cial differential cross section measurements can be treated, as

long as the necessary information is provided. Furthermore,

if the peak-centered χ2 method and the STXS method are

simultaneously used, each measurement can only be imple-

mented either as peak or STXS-observable in order to avoid

double-counting.

The STXS framework was designed in order to (i) provide

commonly-defined exclusive phase-space regions for Higgs

production processes facilitating the incorporation of infor-

mation on differential cross sections, (ii) maximize the mea-

surement’s sensitivity to the underlying physical process(es)

while minimizing its dependence on theory assumptions, (iii)

isolate possible BSM contributions by defining bins that have

an enhanced sensitivity to BSM effects. By addressing these

targets, the STXS framework has the goal to simplify the

procedure of BSM model testing against the experimental

data.

The defined exclusive regions of phase space, called

“bins” for simplicity, are specific to the different Higgs pro-

duction modes. With increasing amounts of data, measure-

ments of differential distributions of the various Higgs pro-

cesses become possible. Therefore, STXS bins have been

defined for three stages (“stage 0”, “stage 1”, “stage 2”, and

substages thereof) to allow a transition from more inclusive

to more differential measurements, see Ref. [23] for details.

This transition can be performed independently for each pro-

duction mode. In order to maximize the sensitivity of the

current data, various decay modes can be combined in the

determination of the STXS bins, assuming the SM Higgs

boson as a kinematic template.

Within HiggsSignals each experimental measure-

ment of an STXS bin enters the χ2 calculation as an individ-

ual observable. It should be noted, however, that many of the

STXS bins (in particular at Stage 0) do not represent “pure”

Higgs signal channels but instead are comprised of differ-

ent production channels (similar to the conventional “peak”

observables, see Sect. 2.3). This is because the STXS defini-

tions are driven by the particle level objects produced in asso-

ciation with the Higgs boson, whereas the signal channels

within HiggsSignals are distinguished by the topology

and Higgs coupling dependence. For instance, the two dis-

tinct production channels of vector boson fusion, pp → qq̄h,

and Higgs-strahlung with a hadronically decaying vector

boson, pp → V h (with V → qq̄), are considered together

in one Stage-0 STXS bin, as they lead to the same final state

particles. Only at a later stage the STXS framework aims

to separate these processes into exclusive bins by employ-

ing dedicated cuts. Therefore, HiggsSignals in general

treats the STXS observables as multi-channel measurements,

and – if no further information is given – assumes that the

combined processes have similar signal efficiency (using the

SM Higgs boson as a kinematic template). Furthermore, the

STXS measurements are implemented in HiggsSignals

preferably as absolute rates, along with corresponding rates

for the SM prediction as an important reference value (see

below). This avoids the complication or peak observables that

the implemented SM-normalized rates (i.e. signal strengths

μ) have to be adjusted in case an updated SM prediction for

the signal rate becomes available.

The STXS framework provides a smooth transition

from more inclusive to more exclusive, i.e. differential,

Higgs rate measurements, as more data is collected. In

HiggsSignals however, the standard user input – handled

via the HiggsBounds framework – are the predictions for

the inclusive (SM-normalized) cross sections and decay rates.

In order to enable tests of non-trivial new physics effects on

differential distributions of Higgs boson processes, the user

can specify independent predictions individually for every

STXS observable. This is done by providing rate modifica-

tion factors r
j

i for each STXS bin, defined as

r
j

i ≡ σ
j

i (STXS-bin)/σ
j

i (incl.)

σSM,i (STXS bin)/σSM,i (incl.)
, (12)

where the index i labels the signal channels of the STXS bin,

and the index j labels the neutral Higgs bosons in the model.

The prediction for the exclusive STXS bin rate (inclusive

rate) for channel i and Higgs boson h j in the model is denoted

σ
j

i (STXS-bin) (σ
j

i (incl.)), whereas the corresponding SM

predictions are given by σSM,i (STXS-bin) (σSM,i (incl.)).

Using the inclusive signal strength modifier from the con-

ventional input, μ
j
i = σ

j
i (incl.)/σSM,i (incl.), the model-

predicted signal rate for the STXS bin is internally calculated

as

σ
j

i (STXS-bin) = μ
j
i r

j
i σSM,i (STXS-bin). (13)

This quantity then enters the χ2 test. Note that the knowledge

of the SM prediction for the STXS-bin is essential here and

is taken from the experimental analysis along with the corre-

sponding measurement. The rate modification factors can be

set using the subroutineSTXS::assign_modification

_factor_to_STXS (see online documentation [22]). Per

default, r i
i = 1, i.e. the SM Higgs boson is used as a kine-

matic template. Note that the quantities σSM,i (STXS bin) and

σSM,i (incl.) in Eq. (12) can in principle be extracted from

HiggsSignals, i.e. only the model-specific numerator of

Eq. (12) needs to be evaluated externally. However, we rec-

ommend to also evaluate the denominator (i.e., the SM pre-

dictions) of Eq. (12) with the same computing setup in order

to provide predictions for both the model and SM at the same

level of accuracy.

The STXS functionality in HiggsSignals and the

associated χ2 test can be employed with measurements of
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individual cross sections, or branching ratios, or cross sec-

tion times branching ratios, or even ratios of branching ratios,

either given in absolute numbers, or in terms of a SM-

normalized quantity. In particular, as mentioned above, any

peak observable could in principle be implemented as an

STXS observable (despite of generally not being consis-

tent with the definition of STXS bins). More information

on the technical implementation of STXS observables in

HiggsSignals can be found in Appendix A.

2.6 Handling the potential complexity of BSM Higgs

sectors

When testing the Higgs sector predictions of a BSM theory

with Higgs measurements some issues that affect the cal-

culation of the predicted signal strength μ, Eq. (1), warrant

special consideration.

2.6.1 Non-trivial signal efficiencies ǫi �= ǫi,SM

Per default, HiggsSignals assumes ǫi ≡ ǫi,SM for all

experimental analyses and channels. If significant modi-

fications of the signal efficiencies ǫi with respect to the

SM expectation ǫi,SM are anticipated in the model, these

should be evaluated externally by the user for every relevant

experimental analysis and every contributing channel i , for

instance, by running a Monte-Carlo simulation of the BSM

Higgs signal and processing it through the experimental anal-

ysis. In addition, the SM Higgs boson signal should also be

simulated and processed for comparison, such that relative

efficiency modifiers ζi ≡ ǫi/ǫi,SM can be determined. These

can then be fed into HiggsSignals in order to account for

the modified signal efficiencies in the χ2 test (through the

subroutine assign_modelefficiencies_to_peak,

see also Sect. 3). The usage of the relative efficiency mod-

ifiers ζi has the advantage that uncertainties related to the

recasting method largely cancel, as they typically affect both

the model’s Higgs signal and the SM Higgs signal in a similar

way. For the STXS observables these effects are captured by

the usage of rate modification factors, r
j

i , described in Sect.

2.5. For a recent study of the CP properties of the Higgs–top-

quark interaction in which these features have been employed

see Ref. [20].

2.6.2 Different predicted and observed mass with theory

uncertainties

If the Higgs signal candidate’s mass m is a free parameter

of the model, it can be chosen to exactly match the observed

Higgs mass m̂, for which the signal strength measurements

have been performed. However, this is not always possible

for all observables simultaneously, as often subsets of signal

strength measurements have been performed at slightly dif-

ferent hypothesized Higgs masses by ATLAS and CMS. If

m �= m̂, the mass dependence should be taken into account

in the signal strength calculation, Eq. (1), by evaluating the

model predicted signal rate at the predicted mass m, while

evaluating the SM signal rate at m̂.

In contrast, if the Higgs signal candidate’s mass m is not

a free parameter, but instead a model-prediction with a non-

negligible theoretical uncertainty 	m, there are two reason-

able choices: First, one could neglect the uncertainty of the

mass prediction and do the same as above by taking into

account the mass dependence of the model-predicted sig-

nal rate in Eq. (1); second, one could factor out the mass

dependence of the rates and calculate both the model- and

SM-predicted signal rates at the predicted mass value m.13

In HiggsSignals-2 the default option is a combination

of both: If the difference between observed and predicted

mass is less than the theoretical uncertainty, |m − m̂| ≤ 	m,

HiggsSignals evaluates both the numerator and denom-

inator in Eq. (1) at m. Otherwise, if m > m̂ + 	m or

m < m̂ − 	m, it takes into account the mass dependence by

evaluating the numerator at m and the denominator at m̂+	m

or m̂ − 	m, respectively. In this way, the mass value chosen

for the reference SM rate is considered to be the nearest mass

value to m allowed by the theoretical mass uncertainty. Fur-

thermore, this choice leads to a smooth transition between

the different mass regimes. This behavior can be controlled

through the setup_rate_normalization subroutine,

and the theoretical mass uncertainties 	m can be given as

optional input by the user, see the online documentation [22]

for details.

2.6.3 Multiple overlapping Higgs-boson candidates

A prime application of HiggsSignals are BSM mod-

els with an extended Higgs sector, i.e. scenarios where more

than one neutral Higgs boson can potentially contribute to the

observed Higgs signal. HiggsSignals therefore employs

a dedicated algorithm – the assignment procedure – in order

to determine which Higgs bosons are contributing in the sig-

nal strength evaluation, Eq. (1), and thus enter the χ2 test

against the observed signal. If a Higgs boson is assigned to

an observable, then its signal rate enters Eq. (1). If no Higgs

boson is assigned to an observable, the χ2 contribution from

the signal rate measurement is evaluated for zero predicted

signal rate, μ = 0, which typically results in a large χ2

penalty. The assignment procedure of a Higgs boson hi to an

observable p̂α depends on the experimental mass resolution,

13 Here, an implicit assumption is made that the relative variation of

the Higgs boson candidate’s cross sections and branching ratios with

its mass are the same in the model and the SM.
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	m̂α , as well as on the theoretical Higgs mass uncertainty,

	mi . As a general rule, if

|mi − m̂α | ≤

⎧

⎨

⎩

�

√

(	mi )
2 + (	m̂α)2 for a Gaussian Higgs mass pdf,

	mi + �	m̂α otherwise,

(14)

then the Higgs boson hi is assigned to the observable p̂α .

Here, � is a control parameter called assignment range, with

default value � = 1. A few exceptions to this rule exist in

the case where the observable p̂α contains a mass measure-

ment that enters the χ2 contribution from the Higgs mass,

or in the case that several peak observables are collected

in an assignment group [10]. In particular, for the former

case, a Higgs boson assignment is also possible even if Eq.

(14) is not fulfilled. This happens when the total χ2 con-

tribution from the peak observable in the case of assign-

ment is lower than the χ2 contribution in the case where

the Higgs boson is not assigned (see Ref. [10] for details).

Two different assignment range parameters are introduced

for the two kinds of observables: � for all observables

(peak, STXS and Run-1) that do not have an associated

mass measurement, and �m for mass sensitive observables

(which are currently available in the γ γ and Z Z → 4ℓ

channels). This provides the user with more flexibility to

specify the mass range that is regarded as phenomeno-

logically viable using the setup_assignmentrange

and setup_assignmentrange_massobs subroutine,

respectively (see online documentation [22] for details). The

default choice is � = 1 and �m = 2.

Before we move on to cases with multiple Higgs bosons,

we illustrate the assignment procedure with a simple exam-

ple. Figure 1 displays the total χ2 as a function of the mass

of a Higgs boson that has couplings that are identical to

those of the SM Higgs boson, for the three possible choices

of the Higgs mass pdf (box, Gaussian, box+Gaussian). The

left panels (right panels) assume zero (a 1 GeV) theoreti-

cal mass uncertainty. The step-like shape originates from the

Higgs assignment procedure, where at every step the assign-

ment of the Higgs boson to some observables changes. For

instance, in the top left panel, the χ2 distribution for all mass

pdfs features a jump at m = 124.61 GeV and at 125.57

GeV. Here, the assignment to the LHC Run-1 observables

changes due to the implemented Higgs mass measurement

of m̂ = 125.09 ± 0.24 GeV and the default setting �m = 2.

If 	m �= 0 the mass interval in which the Higgs boson is

assigned to the LHC Run-1 observables is larger. Outside

this range, the χ2 rises steeply, rendering these mass values

as highly disfavored. Two more features are illustrated in this

example. First, the differences between the three Higgs mass

pdf choices, Eqs. (9)–(11), becomes apparent, in particular

in the case of non-zero theoretical mass uncertainty. Second,

the plots display the treatment of the mass dependence of

the signal rate prediction, as discussed above, resulting in

an asymmetric χ2 shape around the minimum for all three

Higgs mass pdf choices. The way such plots can be obtained

from HiggsSignals is illustrated in the HS_mass exam-

ple program.

We now continue with the case of multiple neutral Higgs

bosons. If N > 1 Higgs bosons are assigned to an observable

p̂α , Eq. (1) is generalized to μα = ∑

j μα, j , where j runs

over all N assigned Higgs bosons h j .
14,15 If the observable

contains a mass measurement, m̂α±	m̂α , the predicted mass

value and its uncertainty are determined from the masses of

the assigned Higgs bosons, m j , and their uncertainties, 	m j ,

through a signal-strength weighted average,

mα =
∑

j μα, j m j
∑

j μα, j

, 	mα =
∑

j μα, j	m j
∑

j μα, j

, (15)

respectively. These averaged quantities in Eq. (15) then enter

the χ2 test against the Higgs mass measurement. In other

words, we assume that multiple Higgs bosons overlapping

within the experimental mass resolution (according to Eq.

(14)) would show up as a single signal peak approximately

located at m. In case of a Gaussian pdf the theoretical mass

uncertainties are still treated as fully correlated uncertainties

among the observables p̂α and p̂β , if the same Higgs boson h j

has been assigned (denoted by the symbol ‘⊲⊳’ below). The

diagonal and off-diagonal entries in the covariance matrix

are then given by

covαα = (	m̂α)
2 + (	mα)

2
, (16)

covαβ =
∑

j ⊲⊳ α,β

μα, j

μα

μβ, j

μβ

	mα	mβ , (17)

respectively, where the relative signal strength contributions

μα, j/μα of the assigned Higgs boson act as uncertainty

weights in Eq. (17).

The described procedure is well-motivated and accurate

in the case that the individual signals cannot even partially

be resolved by the experimental analysis, or in other words,

the predicted mass differences between the assigned Higgs

bosons hi and h j are small compared to the experimental

mass resolution, |mi − m j | ≪ 	m̂α (for all i, j). How-

ever, the procedure becomes inaccurate if |mi − m j | �

	m̂α , i.e. when the individual signals are at least partially

resolved. In order to accommodate this limitation, we intro-

duce another χ2 contribution for the mass separation of the

assigned Higgs bosons with respect to the mass average,

which for the three mass pdf choices reads as

14 The observable index α is made explicit here, whereas in Eq. (1) it

was omitted.

15 Note that the procedure described in Sect. 2.6.2 is applied to the μα, j

calculation, i.e. for each assigned Higgs boson h j individually.
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Fig. 1 Total χ2 as a function of the Higgs mass, m H , for the case

of no theoretical mass uncertainty (left panels) and a theoretical mass

uncertainty of 1 GeV (right panels). The Higgs couplings are set to the

SM prediction, and the assignment range parameters (�,�m ) are set to

their default values (see text). The top panels show the χ2 function in

the full mass interval, whereas the bottom panels show a zoom to the

region of the lowest χ2 values

χ2
sep,α =

∑

j

�(μα, j − cμμα) ·
{

0 if |m j − mα| ≤ 	m j + 	m̂α ,

∞ else,
(box pdf) (18)

χ2
sep,α =

∑

j

μα, j

μα

(m j − mα)2

(	m j )
2 + (	m̂α)

2
, (Gaussian pdf) (19)

χ2
sep,α =

∑

j

μα, j

μα

·

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(m j +	m j −mα)2

(	m̂α)
2 if m j + 	m j < mα ,

(m j −	m j −mα)2

(	m̂α)
2 if m j − 	m j > mα ,

0 else,

(box+Gaussian) (20)
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Fig. 2 Individual χ2 contributions from the averaged mass, χ2
m̄ , the

mass separation, χ2
sep, the signal rates, χ2

μ, and the resulting total χ2

for a toy example with two Higgs bosons of masses M1,2, theoretical

mass uncertainties 	M1,2 = 0.5 GeV, and universal signal strengths

μα;1,2 = 0.5. A Gaussian pdf is used, and all � are at their default

values

where � is the Heaviside function. In order to avoid artificial

penalties in the box-pdf case, Eq. (18), only h j that contribute

at least a fraction of cμ (with a default value of 1%) to the

total signal strength μα are assigned to the peak observable

p̂α .

As a result, the total χ2 value is composed of the sig-

nal rate part, χ2
μ, the averaged Higgs mass part, χ2

m , and the

Higgs mass separation part, χ2
sep. Note that the above formu-

las include the “standard” case with only one assigned Higgs

boson. Moreover, due to the signal strength weighted aver-

aging, a (technically) assigned Higgs boson with zero signal

strength does not contribute to the χ2.

A simple example for the total χ2 and its individual con-

tributions is shown in Fig. 2 for a toy example with two Higgs

bosons H1,2 with masses M1,2, theoretical mass uncertainties

	M1,2 = 0.5 GeV and universal signal strengths μα; j = 0.5

(for all α and j = 1, 2). The current default observable set is

used as experimental input, i.e., the only mass measurement

included is 125.09 ± 0.24 GeV from the LHC Run-1 combi-

nation. The χ2 contribution from the averaged mass m̄ (top

left panel) shows four distinct regions. In the corner squares

neither of H1,2 is assigned, and the χ2
m̄ is zero. In the central

square both scalars are assigned, and χ2
m̄ has a flat direc-

tion along the diagonal of constant m̄. In the four rectangular

regions at the sides only one of the scalars is assigned, and

the χ2
m̄ profile corresponds to the one-particle case discussed

in Fig. 1. The flat direction along constant m̄ is resolved by

the χ2
sep contribution (top right panel). This penalizes large

mass splittings and is only non-zero in the region where both

scalars are assigned. The χ2
μ contribution from the signal

rates (bottom left panel) is minimal and almost constant,

	χ2 ≈ 0, as long as both scalars are assigned since their

rates sum to the SM rates. As soon as one of the scalars drops

from assignment, the rates are only half the SM rates, or zero

if neither of H1,2 is assigned. In both cases 	χ2
μ incurs a

very large penalty. The resulting total 	χ2 is shown in the

bottom right panel with the 68% C.L. (95% C.L.) contour

indicated by a black solid (dashed) line. The resulting profile

has no flat direction and favors M1 ≈ M2 ≈ m̂α . Figure 2

was generated with the example program HS_2Higgses

that is provided with the HiggsSignals package.

3 User operating instructions

HiggsSignals-2 incorporates a number of moderniza-

tions to the source code with respect toHiggsSignals-1.

Furthermore, the project has moved the HiggsSignals-2

development to the GitLab repository

https://gitlab.com/higgssbounds/higgssignals

where the source code is available. Additionally, we are now

using CMake as build system such that HiggsSignals is

now compiled by

mkdir build && cd build

cmake ..

make

This will compile the HiggsSignals library, the main

executable, as well as a number of example programs that

illustrate different use cases. HiggsSignals depends on

the HiggsBounds library which has to be available on

the system and will be automatically found and used by

CMake. More detailed information on building and linking

HiggsSignals can be found in theReadme on the above-

mentioned web-page.

3.1 Fortran subroutines

The Fortran subroutine interface provides access to all of

the functionality in HiggsSignals. Up-to-date, detailed

documentation for the subroutines is available online at

https://higgsbounds.gitlab.io/higgssignals.

The most important interface change in HiggsSignals-2

stems from the separation of the observable set into three

parts – the peak observables, the STXS observables, and

the LHC Run-1 combination – as discussed in the pre-

vious section. These can be separately accessed through

the subroutines run_HiggsSignals (for the 13 TeV

LHC peak observables), run_HiggsSignals_STXS,
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and run_HiggsSignals_LHC_Run1_combination

that return the corresponding χ2 values defined in Table 3, the

number of observables, and the p-value. In most applications,

a combined result including all of these observable sets is

required. In this case the subroutine run_HiggsSignals

_full can be used or the three subroutines can be run sep-

arately and the resulting χ2 values can be summed.

HiggsSignals-2 also includes a C interface to all of

the Fortran subroutines to make them more accessible

from C or C++ codes. This interface automatically handles

the necessary type conversions and is included in the online

documentation.

3.2 Command-line version

Compiling HiggsSignals generates a main executable

that can be run as

./HiggsSignals <expdata> <pdf>

<whichinput> <nHzero> <nHplus> <prefix>

where the arguments specify the following: expdata

selects which experimental dataset of peak and STXS observ-

ables is used. The default value is latestresults which

refers to the latest available experimental results included

in your version of HiggsSignals. Alternatively, any of

the folders in data/Expt_tables/ can be named, and

the observables in that folder will be used. The param-

eter <pdf> specifies the probability density function as

discussed in Sect. 2.3.2. The input method is selected by

<whichinput>, while <nHzero> and <nHplus> spec-

ify the number of neutral and charged Higgs bosons in

the model, respectively. These parameters are passed to the

HiggsBounds framework in order to handle the theoretical

input, see the HiggsBoundsmanual for further details [9].

The <prefix> path specifies the longest common path to

the input data files.

HiggsSignals can use files in the SLHA format

for input and output. The input blocks are described in

detail in the HiggsBounds manual [9]. In SLHA for-

mat HiggsSignals produces an output block called

HiggsSignalsResults containing the resulting χ2 val-

ues.

3.3 Interpretations of the χ2 for model testing

The main application of the HiggsSignals χ2 result is

the statistical discrimination between models on the basis

of Higgs boson signal observables (mass and rates, partly

in kinematical bins). This is achieved by statistically testing

either a particular hypothesis or two hypotheses against each

other. Three typical applications can be distinguished:

1. Within a given model with model parameters �p = pi

(i = 1, 2, . . . , N ) one may wish to determine the param-

eter regions that are preferred at a specific confidence

level (C.L.) by the observation. Or, as a related issue, one

may consider the question which parameter regions are

excluded at a specific C.L., given the fact that the model

contains other regions that are in better agreement with

the data. This can be answered by calculating two-sided

confidence intervals (C.I.) for the parameters �p. These

C.I. are typically presented in one or two dimensions

(with the remaining parameters profiled or marginalized),

but can in general be of higher dimension D ≤ N . Exam-

ples for typical applications of this kind can be found in

Refs. [8,16,17,19,20,25]. These global fit studies often

combine the HiggsSignals χ2 with other relevant

constraints and observables. This hypothesis test will be

described in Sect. 3.3.1;

2. If one is interested only in the lower or upper boundary

of the C.I. of the model parameter(s), the calculation of

one-sided confidence intervals can be appropriate. This

is called limit setting. It may be of use if the parameter(s)

represent so-far unobserved phenomena. For instance,

one could ask the following questions: How large can the

branching ratio for Higgs boson decays into invisible final

states be? What is the maximally allowed value of the

CP-violating phase of the Higgs-top-quark interaction?

How low can the masses of the additional MSSM Higgs

bosons be? How large can a Higgs doublet-singlet mixing

be? While a lower or upper limit on a single parameter

can be derived unambiguously, this is no longer true in

a higher dimensional parameter space. However, in such

cases a suitable mapping onto a one-dimensional param-

eter (e.g., a common signal strength modifier) may still be

found to enable the derivation of a one-sided C.I.. Details

on this hypothesis test are given in Sect. 3.3.2.

In both applications the calculation of the two-sided or

one-sided C.I. is a hypothesis test based on a likelihood ratio

(LR), which quantifies the (dis-)agreement of two competing

statistical models based on the ratio of their likelihoods. Two

categories need to be distinguished in the hypothesis test:

First, which models are actually compared, and second, for

which model comparison is the choice of LR optimal? For

reasons beyond the scope of this discussion, these two cate-

gories do not necessarily coincide. In the analyses of the LHC

experiments, both for limit setting and for fitting, the LR is

constructed such that one of these models is typically deter-

mined by maximizing the likelihood over the entire param-

eter space, defining the best-fit (BF) scenario, and the other

represents a specific model parameter point under study. If

the likelihood of the alternative hypothesis (i.e. the non-BF

model point under study) is significantly lower than the like-

lihood of the null hypothesis (i.e. the BF point), the alterna-
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tive hypothesis can be rejected (see Sects. 3.3.1 and 3.3.2 for

details). The Neyman–Pearson lemma [26] shows that the LR

test is the most powerful test among all possible statistical

tests in this case.

The full likelihood of the model parameters �p given

the observed data �x , denoted as L( �p|�x), as evaluated by

the LHC experiments, is not publicly available. Based on

the publicly available information on the measurements the

HiggsSignals χ2 approximates the full log-likelihood,

χ2( �p|�x) ≈ −2 ln L( �p|�x). The log-likelihood ratio (LLR)

can therefore be constructed as

t ( �p) = −2 ln
L( �p|�x)

L( �̂p|�x)
= −2

(

ln L( �p|�x) − ln L( �̂p|�x)

)

≈ χ2( �p|�x) − χ2( �̂p|�x) ≡ 	χ2 . (21)

Here, �̂p denotes the parameter point at which the χ2 is min-

imized (or the likelihood L( �p|�x) is maximized), the “BF

point”. The likelihood ratio is also denoted as a test statis-

tics t ( �p). In the presence of additional nuisance parameters �θ ,

corresponding to all possible systematic or parametric uncer-

tainties, the test statistics generalizes to

t ( �p) = −2 ln
L( �p,

ˆ̂�θ |�x)

L( �̂p, �̂θ |�x)

. (22)

In the numerator the nuisance parameters are optimized for

each tested parameter point �p in the nuisance parameter

space, with the optimum denoted by
ˆ̂�θ , while in the denomi-

nator �p and �θ are optimized simultaneously to find the global

likelihood maximum at the point �̂p and �̂θ .

In a few cases, likelihood distributions are given for sin-

gle observables or model parameters by the LHC experi-

ments (see e.g. Refs. [27,28] for one-dimensional likelihood

functions of κ parameters, the Higgs decay rate to invisible

final states, the total decay width, and Higgs CP-sensitive

parameters). However, this is not generally the case for many

Higgs signal rate measurements, which are usually only pre-

sented in terms of central values and 1σ uncertainties, ideally

accompanied by a correlation matrix. Based on this infor-

mation, the χ2 calculated by HiggsSignals is the clos-

est possible approximation to the full likelihood for many

observables.

3. The third application is the goodness-of-fit test which

is different to the above choices in that it typically tests

only one statistical model, i.e. it does not compare two

different model parameter points, but is evaluated for a

single parameter point. Typically, this test is performed

for specific scenarios, e.g., the BF scenario that has been

identified in a preceding global model fit (case 1). Cer-

tain caveats apply, however, if the user wants to exclude

a model purely on grounds of a goodness-of-fit test (see

below).

An approximation to the hypothesis test using the LR

(as discussed above) can be constructed based on the

goodness-of-fit test. This simpler implementation can be

used to compare, for instance, the BF scenarios of differ-

ent models. In particular, with a so-called F-test, one can

determine whether model A leads to a significantly better

description of the observation than model B, despite the

fact that model A has more free parameters than model

B. The F test is recommended to analyze which of the

models under study delivers a better fit, but it is not recom-

mended as a means to exclude models or model parameter

ranges. More details on goodness-of-fit test are given in

Sect. 3.3.3.

HiggsSignals can be used for all three applications.

The most common hypothesis test employed in phenomeno-

logical studies with HiggsSignals is certainly the model

fit (case 1). In the following sections we elaborate on the three

choices and discuss how in each case the χ2 value calculated

by HiggsSignals is used in practice. A decision chart for

choosing the appropriate statistical treatment for a variety

of common applications is given in Fig. 3. The chart also

includes the possible attempt to exclude the SM hypothesis

in favor of an alternative model (“discovery mode”). Here,

the user must be aware of some important caveats in such an

interpretation before making any far-reaching claims. These

will be discussed in Sect. 3.3.4.

3.3.1 Usage in a fit

When fitting the parameters of a given model to the observa-

tion one employs the calculation of two-sided confidence

intervals, as one is generally interested in the lower and

upper boundaries of the allowed parameter intervals. This

is illustrated in the left panel of Fig. 4. The plot shows a one-

dimensional probability density function f (p) of a parameter

p, the best-fit value p̂ and the lower and upper boundaries

of the C.I. of probability 1 − β, denoted plow
1−β and p

up
1−β ,

respectively.16 The dark-shaded area (i.e. the integral over

the pdf f (p)) corresponds to the probability of 1 − β. For

instance, for a 1σ C.I. in a one-dimensional parameter p,

we choose β ≈ 0.32, and plow
0.68 (p

up
0.68) is the corresponding

lower (upper) boundary of the 68% C.I..17

It is well-known that in the so-called Gaussian limit –

where near the best fit point the uncertainties of the observ-

ables are approximately independent of the parameters, the

16 For illustration the pdf is Gaussian-shaped, but can in general have

an arbitrary shape as long as it is properly normalized,
∫

f (p)dp = 1.

17 The other two panels of Fig. 4 are described in Sect. 3.3.2.
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Fig. 3 Decision chart for the

statistical interpretation of the

HiggsSignals χ2 result

Fig. 4 Illustration of a two-sided confidence interval (left panel), a one-sided confidence interval with a lower bound (middle panel) and a one-sided

confidence interval with an upper bound (right panel), for a given probability density function f (p) of a parameter p

relation between parameters and observables are approxi-

mately linear, and the uncertainties are approximately Gaus-

sian – for one-dimensional parameter spaces the two-sided

confidence interval corresponding to a 1σ (2σ ) C.L. is given

by the ensemble of model parameter points with 	χ2( �p) ≤
1 (4) above the best fit point at 	χ2( �̂p) = 0. In two-

dimensional parameter spaces, the 1σ and 2σ confidence

regions are found at 	χ2( �p) ≤ 2.30 and 	χ2( �p) ≤ 6.18,

respectively. For these values, it does not matter how many

additional parameters of interest or nuisance parameters are

free in the fit, as long as all other parameters apart from those

for which the C.I. is determined are profiled (marginalized)

in the frequentist (bayesian) interpretation. An overview of

the 	χ2 values for different C.L. and different values of

the number of parameters under study (also called degrees

of freedom ν) are given in Table 4. While there is no logical

necessity to restrict the number of parameters for whose com-

mon variation a C.I. is given to one or two, it is uncommon to

determine the C.I. for more than two parameters at a time, as

this becomes difficult to visualize. If it is important to con-

vey information about the relation between many different

parameters, one usually provides a covariance matrix based

on linear correlation factors and on the 1σ one-dimensional

uncertainties. These confidence intervals and covariances

based on profiling can be established numerically using tools

like MIGRAD in MINUIT [29] or by using methods like

Markov Chain Monte Carlo techniques or other numerical

optimizers.

Caution is required for cases where the requirements for

the Gaussian limit are not reached, i.e. where the χ2 pro-

file around the minimum is not parabolical. This situation

appears in many examples of model fits. It is common prac-

tice to use the 	χ2 ranges given here also in such a situa-

tion, albeit it cannot be guaranteed that they still correspond
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Table 4 	χ2 as function of confidence level (C.L.) and degree of freedom (ν). The values for ν > 2 are rarely used and only given for completeness

C.L. (s.d.) ν

1 2 3 4 5 6

68.27% (1σ ) 1. 2.30 3.53 4.72 5.89 7.04

95% 3.84 5.99 7.81 9.49 11.07 12.59

95.45% (2σ ) 4. 6.18 8.02 9.72 11.31 12.85

99% 6.63 9.21 11.34 13.28 15.09 16.81

99.73% (3σ ) 9. 11.83 14.16 16.25 18.21 20.06

99.99994% (5σ ) 25. 28.74 31.81 34.55 37.09 39.49

to the quoted frequentist coverage of e.g. 68% for the one-

dimensional 1σ C.I. Furthermore, linear correlations might

not describe the interdependence of the parameters properly.

We emphasize that the user should treat these cases with cau-

tion and discuss possible implications, or instead use a Toy-

Monte-Carlo based technique. Reference [15] gives such an

example for determining the parameter range for the actual

C.L. instead of using the profiling technique.

It is strongly recommended to use the likelihood-ratio

based fitting technique to find the uncertainty range of

the model parameters. We discourage from calculating the

(approximate) goodness-of-fit for each model parameter

point and then combine those parameter points with accept-

able goodness-of-fit to form an “allowed region”. The reason

for this recommendation is explained in Sect. 3.3.3.

3.3.2 Usage in limit setting

The main difference between limit setting and fitting is the

choice of a one-sided confidence interval for the former. As

discussed above, limit setting and fitting are subclasses of

hypothesis testing, which can be used for both discoveries

or exclusions. For discoveries, hypothesis testing addresses

the question “How unlikely is the observed pattern of data

if the null hypothesis is true?” where the null hypothesis is

typically the assumption of the SM without any additional

signal, s = 0. In contrast limit setting is a hypothesis test

where exclusions of an alternative hypothesis at a pre-defined

C.L. are sought. Exclusions are related to the question “How

unlikely is the data if the alternative hypothesis is true?”.

It is practically often implemented using a one-dimensional

parametrization of the strength of the model predictions. In

the HiggsSignals case, each model prediction of observ-

ables �x( �p) can be parametrized as

�x(s, �p) ≡ �xSM + s (�x( �p) − �xSM) . (23)

Here, we introduced s as a global rescaling parameter of the

model-predicted deviations in the observables �x from the SM

prediction, which we further abbreviate as �d( �p) ≡ �x( �p) −

�xSM. The true model prediction at �p is retained when the

rescaling parameter – also called strength of BSM effects –

is s = 1. Under a change of parameters �p → �p′ two possible

changes of �d need to be distinguished: First, the case where

the parameter transformation leads to a different pattern of

deviations in the observables �x from the SM prediction, i.e.

�d( �p)
�p→ �p′

−−−→ �d ′( �p′) �= α �d( �p), (24)

with a scalar constant α. Second, the case where the parame-

ter transformation leaves the pattern of deviations invariant,

�d( �p)
�p→ �p′

−−−→ �d ′( �p′) = α �d( �p). (25)

Here the scalar multiplicative factorα can simply be absorbed

into the transformed strength of deviations,

s �d �p→ �p′
−−−→ s′ �d ′ = sα �d, (26)

i.e. only the strength of BSM effects s changes to s′ = αs

under the change of parameters.

Using these definitions, limits on model parameter points

can be derived from measurements of the Higgs mass and

rates in HiggsSignals by employing a limit setting pro-

cedure on s. Depending on the two possible transformation

properties under a change of parameters described above,

two statistical tests are often performed in experimental and

phenomenological analyses in the absence of a significant

deviation of the data from the SM:

1. Is the alternative model with parameters �p excluded at a

given C.L.? In this case, the C.L. for s = 1 needs to be

calculated. If the C.L. falls below a pre-defined cut, the

model point �p is regarded as excluded. This is the rec-

ommended application for all models where the parame-

ters of interest cannot be mapped onto a single rescaling

parameter s that only affects the strength of the model-

predicted deviation from the SM, i.e. for the first case

of parameter transformation properties, Eq. (24). This
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is typically the case in relatively complicated parame-

ter spaces, e.g. in the (MA, tan β) parameter plane of the

2HDM or MSSM.

2. What is the maximum signal strength sup at which the

pattern of deviations from the SM defined by �x( �p) is

allowed? In this case, s is varied until the set of predic-

tions of observables �x(sup, �p) is found which is excluded

exactly at the pre-defined C.L.. This is the recommended

application for models where a (sub)set of parameters

leaves – at least to a sufficiently accurate approxima-

tion – the shape of the pattern of deviations invariant and

only affects the strength s according to Eq. (26). This

applies, for instance, when constraining an additional

Higgs branching ratio into an invisible final state, or a

singlet-doublet-mixing angle in a Higgs singlet exten-

sion model. In this case, only the parameters which do

affect the shape of the pattern of deviations need to be

tested separately, while the (sub)set of parameters only

affecting the strength can directly be tested against sup.

For illustration we discuss an explicit example in Fig. 5

below.

In the following, we will describe the two tests on the C.L.

of s = 1 and of the determination of sup.

The C.L. is chosen by defining the desired power of the

test, β. In particle physics, for exclusions typically β = 0.05

is used, such that the required C.L. is 1 −β = 95%. In order

to find the observed C.L., the test statistics t is chosen in

complete analogy to Eq. (22), but this time parametrized as

a function of the signal strength s for a fixed parameter point

�p. Such a test can then be done for each choice of fixed �p.

The commonly used choice of test statistics t in LHC related

analyses is based on

t (s) = −2 ln λ(s) = −2 ln
L(s,

ˆ̂�θ |�x)

L(ŝ, �̂θ |�x)

≈ χ2(s, �̂θ)−χ2(ŝ,
ˆ̂�θ) ≈ χ2(s) − χ2(ŝ), (27)

which optimally distinguishes the alternative hypothesis s

from the best-fit hypothesis ŝ, under consideration of all

possible uncertainties (systematic, parametric etc.) using the

vector of nuisance parameters �θ . The same convention for

the definition of �̂θ and
ˆ̂�θ as in Eq. (22) applies. The second

approximation, omitting the nuisance parameters θ , relates

to the fact that the nuisance parameters are not fitted explic-

itly in HiggsSignals, since the experimental systematic

errors are not reported separately by their source in the exper-

imental input to HiggsSignals. Hence, correlated and

uncorrelated systematic errors are only treated in the covari-

ance matrix entering the χ2 calculation. This similarity in the

choice of test statistics between limit setting and fitting exem-

plifies the convergence of the consistent statistical treatment

of one-sided confidence limits and two-sided confidence lim-

its in the LHC era. This approach goes back to the ideas dis-

cussed in Ref. [30], but was not used in high energy physics

at earlier major experiments. The discussion of the likeli-

hood ratio based hypothesis test in this section follows the

discussion in Ref. [31].

A detailed discussion of model exclusions based on

model-independent likelihood values, as employed in

HiggsBounds, has been presented in Ref. [9].18 The dif-

ference between the HiggsBounds and HiggsSignals

approach lies on the one hand in the approximation to

the likelihood, which in HiggsBounds is based on pub-

lished observed and expected likelihood values, while in

HiggsSignals the likelihood ratio is approximated from

the 	χ2. On the other hand, the approaches differ in the

parametrization of the model, where physical parameters

are applied for HiggsBounds, and the signal strength s

is used in the HiggsSignals example discussed here. In

the following, we will focus on the aspect of limit setting as

we strongly discourage from using HiggsSignals for an

attempted discovery. See Sect. 3.3.3 for detailed considera-

tions on this issue.

When setting a limit on s, Eq. (27) is not used directly.

Instead, several separate cases are considered: First, in order

not to hold an overshoot of the data above the signal hypoth-

esis against the signal, and still allowing s < 0, the test

statistics from Eq. (27) is further modified in the following

way:

qχ2

s =
{

t (s) ≈ 	χ2(s) = χ2(s) − χ2(ŝ) for ŝ ≤ s,

0 for ŝ > s,
(28)

where we have introduced the notation q
χ2

s to distinguish this

modified test statistics from the test statistics t ( �p) employed

in the fits described in Sect. 3.3.1 as given in Eq. (22). The

superscript χ2
refers to the χ2 approximation of the LR. The

difference between the two test statistics further lies in the

case separation of Eq. (28): for ŝ > s, q
χ2

s = 0 is used in

order to prevent the signal hypothesis s from being excluded

if an even larger signal ŝ would actually better describe the

experimental results.

Often, s > 0 is required from physical considerations19,

in which case a negative best-fit-value ŝ should be interpreted

18 In HiggsBounds, likelihoods are parametrized for a few search

limits, e.g. from the LEP experiments [32] and for searches for addi-

tional Higgs bosons decaying into τ+τ− final states at the LHC [7,8].

19 In the example given here, where s parametrizes the relative strength

of the deviation from the SM prediction as given by the parameter point

�p, negative values of s usually have no physical meaning.
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as “The no-signal hypothesis fits data the best”. Then,

qχ2

s =

⎧

⎪

⎨

⎪

⎩

χ2(s) − χ2(0) for ŝ < 0

	χ2(s) for 0 ≤ ŝ ≤ s

0 for ŝ > s

(29)

is used,20 where χ2(0) denotes the χ2 obtained for the null

hypothesis, typically the SM.

In order to derive the desired C.L. for s = 1 or find sup,

the calculation of a probability density function f (q
χ2

s |s) is

needed to compare the range of possible expected outcomes

for q
χ2

s (the random variable, i.e. the quantity which would

show a different outcome for each simulated repetition of

all measurements) with the observed q
χ2

s in the case of an

assumed signal strength s. For calculating the C.L. at s =
1, only the pdfs f (q

χ2

s |1) and f (q
χ2

s |0) are required. For

the calculation of sup, s needs to be varied, and eventually

pdfs need to be calculated for several choices of s, until the

desired C.L. at 1 − β is found at sup. Details are given in

Ref. [31]. In this reference, for the case discussed here, the

correspondence between the observed test statistics q
χ2

s and

the observed C.L. of the signal plus background hypothesis

CLs+b
21 is approximately found using

�−1(1 − CLs+b) =
√

q
χ2

s , (30)

where � is the cumulative normal distribution function.

As discussed above, the power 1 − β is typically chosen

such that β = 0.05 holds for a one-sided confidence level

which is usually called a “2 σ” C.L..22 This case is exem-

plified in the right panel of Fig. 4. The desired upper limit

on the allowed signal rate sup (corresponding to p
up
1−β in Fig.

4) is adjusted such that its CLs+b corresponds to the chosen

C.L. of 1 − β = 0.95. Then, �−1(0.05) = 1.64 can be used

to determine the 95% C.L. upper limit

sup = ŝ + 1.64 σs . (31)

The standard deviation σs on the signal hypothesis s (as con-

strained by the test statistics) can be determined numerically

20 We do not consider the case of possible discoveries here, which

would employ a dedicated test statistics q0 for refuting the s = 0

hypothesis. See Ref. [31] for details.

21 It should be noted that in the brief discussion presented in this paper,

every C.L. and C.I. is described as an observed result corresponding to

the observed data. In order to obtain the expected quantities, the statis-

tical treatment is exactly the same, apart from replacing the observed

data with the measurements expected under the s = 0 hypothesis.

22 While β = 0.05 is not the exact value corresponding to a 2 σ exclu-

sion, it is so close to it that it has become a commonly used term.

from the Wald approximation [33] using the same minimiza-

tion and profiling techniques as in case of a fit (see Sect.

3.3.1). The approximate uncertainty σs on the parameter s

in a simple one-dimensional fit is σs = |ŝ − s(	χ2 = 1)|,
where s(	χ2 = 1) is the signal strength below or above ŝ

for which 	χ2 = 1 is obtained. This uncertainty connects

the two-sided limit calculated for a fit to the one-sided limit

discussed here. This connection can be shown as follows: In

the Wald approximation, near the optimum the 	χ2 forms a

parabola and hence can be parametrized as

	χ2(s) =
(

s − ŝ

σs

)2

. (32)

Using 1.64 = �−1(0.05) =
√

q
χ2

sup =
√

	χ2(sup) = (sup −
ŝ)/σs in the allowed range of ŝ, we can solve for sup and find

Eq. (31). In this case, the model parameter point �p can be

regarded as excluded if sup ≤ 1 is found, and as allowed if

sup > 1 is observed.

It is important to note that the above confidence level

construction yields CLs+b, i.e. the confidence level of the

signal plus background hypothesis at the signal rate sup. In

most experimental applications of signal exclusions, CLs =
CLs+b/CLb is used in order to avoid accidental exclusion of

parameter points for which the search has no sensitivity [34].

Based on Ref. [31] and the example in Ref. [9], we find for

the notation of the latter reference q
exp
s (s) ≡ ((s − ŝ)/σs)

2

and qobs
s (ŝ) ≡ ((ŝ − ŝ)/σs)

2 = 0. Here, q
exp
s (s) in the nota-

tion from Ref. [9] is the square of the separation between the

tested value s and the best fit ŝ in units of the uncertainty

σs , while qobs
s (ŝ) is the test statistics of the observed best

fit point, ŝ, which in the definition of this section is always

0.23 For the confidence levels, from inverting Eq. (30) and

inserting into Eqs. (25) and (26) of Ref. [9], we thus find

CLs+b = 1 − �
(

(s − ŝ)/σs

)

, (33)

CLb = 1 − �
(

−(s − ŝ)/σs

)

, (34)

23 The equivalence of using the squared relative separation of s from

ŝ as an “expected” value, which may seem surprising at first, arises

from the fact that only differences between χ2 values have a meaning

in this interpretation, and not absolute values. This is analogous to the

definition of the likelihood, where only ratios of likelihoods (or dif-

ferences of log-likelihoods) have a physical meaning. Fundamentally,

s/σs parametrizes the expected distance (in units of σs ) of the median

of the pdf of the test statistics of the signal plus background hypothesis

from the median of the pdf of the s = 0 hypothesis, and ŝ/σs is the rel-

ative observed distance from s = 0. However, we define q
χ2

s such that

q
χ2

s (s = ŝ) = 0. Thus, in contrast to an implementation as in Ref. [9],

where the test statistics qobs at the best fit point is not defined to be 0, the

χ2 based input to the limit calculation applied here is shifted by ŝ/σs ,

and thus s/σs − ŝ/σs parametrizes the relative distance of the expected

result from the background-only result, and ŝ/σs − ŝ/σs = 0 always

holds for the observed result.
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Fig. 5 The HiggsSignals	χ2 profile in a toy model with a global

Higgs-coupling scale factor κ and an additional Higgs decay into invis-

ible final states with decay rate BR(h125 → inv). The contour lines

indicate the borders of the 95% C.L. allowed regions derived from a

fit (dashed) and a limit setting procedure using CLs+b (dotted), which

corresponds to sup = 1, and CLs (solid)

where the symmetry stems from the symmetry of the

parabolic approximation to the likelihood. In order to find

the limit sup for the CLs case, the above procedure has to

be repeated iteratively by varying s until it is adjusted to the

value sup such that CLs = 0.05 (for a 95% confidence level)

is found. For testing the exclusion of a model point at s = 1,

no iteration is required. CLs can be calculated using the equa-

tions above, and if CLs < β is found, the parameter point �p
in the model can be regarded as excluded.

Figure 5 illustrates the difference between a limit setting

and a fitting interpretation in a toy model with a single SM-

like Higgs boson at 125.09 GeV that is modified by a global

coupling scale factor κ ≤ 1 and an additional decay into

invisible final states with a branching ratio BR(h125 → inv).

For instance, this toy model can directly represent parts of

the parameter space of models with additional scalar sin-

glet(s) [35,36]. The figure shows three different ways to

determine the allowed parameter region. The dashed line

indicates the 2σ favored region in a fit (compare Table 4).

The dotted line is the limit derived from CLs+b using sup

from Eq. (31), and the solid line indicates the 95% C.L. limit

based on CLs . Both of the limit setting approaches lead to

a less aggressive limit than the fit since they use one-sided

instead of two-sided confidence intervals. For this simple

example the difference between CLs+b and CLs is small, but

in general the CLs based limit should be used whenever pos-

sible. This example is implemented in the HSLimitEffC

example code.

3.3.3 Usage in a goodness-of-fit test

The third typical application of the HiggsSignals χ2 is

the goodness-of-fit test. Fundamentally, it aims to determine

the consistency of the model compared to the data only, in

contrast to the comparisons between different (parameter)

hypotheses in the above two cases. In practice, there are only

very few cases where a goodness-of-fit test is preferential

over a hypothesis test. One example is a case where the null

hypothesis is deprecated by the data in a similar way as the

alternative hypothesis, which contains the null hypothesis

within its parameter range. This seemingly paradox situation

can happen for example when comparing a supersymmetric

model to the SM (see e.g. Ref. [15]). The SM as a null hypoth-

esis is so well established that a very tight requirement on its

rejection is placed – typically 5 σ significance corresponding

to p0 < 2.7×10−7. On the other hand, the alternative hypoth-

esis shall be rejected at the level ps < 0.05. In this case, if

a hypothesis test is performed following Sect. 3.3.2, in this

hypothetical example the alternative hypothesis can never be

refuted because in the decoupling limit it would fit the data at

least as well as the SM, even though the SM would provide

a bad fit to the data at the level of 2.7 × 10−7 < p0 < 0.05.

In such a case a careful goodness-of-fit test can be used to

refute a model.

The simplest application of a goodness-of-fit test is to cal-

culate the probability P(χ2
min|ndf)of the observedχ2

min under

the assumption that it follows a χ2 distribution after the min-

imization in the fit, as described in Sect. 3.3.1, for the given

number of degrees of freedom (ndf). In the construction of

the HiggsSignals χ2 it is assumed that the uncertainties

are Gaussian, all correlations are linear and that the relation

between observables and parameters is approximately linear

around the minimum. In this case, the analytic form of the

χ2 distribution can be used to calculate the χ2 probability,

and the user can require a certain confidence level for an

allowed model. Often, the ratio χ2
min/ndf is used to estimate

the goodness-of-fit, and it is expected that it is around 1 for

a model that provides a good fit to the data. The variance of

the χ2 distribution
√

Vχ2 =
√

2 ndf can be taken as a rough

guideline for the expected range of deviation from 1 for a

good fit.

However, this popular approach, while not generally

invalid, comes with two caveats. First, in many fits of

BSM models, two different parameter regimes are within

the allowed parameter ranges in 1 or 2σ C.I.: parameter

ranges where the observables effectively do not depend on the

parameters (the decoupled regime) as well as regions where

the observables depend strongly on the same parameters. In

such a case, the construction of the analytic χ2 probability

in the Gaussian approximation is invalid because it assumes

a purely linear relation between parameters and observables.

The user should handle such a situation with care, e.g. by

using toy Monte Carlo simulations to obtain the true proba-

bility density function of the χ2.

The second caveat is that there is a notable difference

between the goodness-of-fit and the confidence interval cal-
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culation (see Sects. 3.3.1 and 3.3.2): By construction, the

confidence interval cannot increase (or in other words, the

constraint on the allowed parameter space cannot get looser)

if the data is presented in an increased number of sub-

channels.24 Splitting the measurement in many individual

measurements can only decrease the confidence interval or

leave it unchanged. However, if the measurements are split

up in many individual results which the model can only

vary together, but not individually, the goodness-of-fit in the

average of all statistical tests in an ensemble of possible

experimental outcomes increases if the separate measure-

ments are statistically consistent with each other. This sta-

tistical increase of the goodness-of-fit on average buries the

tension between the physical variations and the data under

the expected statistical variations of the individual measure-

ments. Therefore, using many experimental subchannels as

implemented in HiggsSignals can artificially increase

the goodness-of-fit. The consequences of this effect will also

clearly appear in the validation of the LHC Run 1 combi-

nation in Sect. 4.1. Note that this statement about the prob-

able outcome of such a test assumes statistical consistency

amongst all observables. The situation is different if separate

measurements of the same or a similar physical quantity do

not agree with each other at a significant level, and thus are not

at all or only marginally consistent with each other. A notable

occurrence of such a case is the electroweak fit [37], where

different individual measurements for the forward-backward

and left-right asymmetries at the Z pole are in disagreement

with each other while their average agrees with the SM pre-

diction. In this case, the goodness-of-fit of course increases

when fitting to physically meaningful averages instead of fit-

ting to the separate measurements of the physical quantity

which the SM cannot vary independently. As a consequence,

the result for the goodness-of-fit depends on whether indi-

vidual measurements are directly used as input for the fit or

whether instead certain averages of individual measurements

are used as input. For a discussion of both of these caveats

see Ref. [15].

Due to the latter caveat we further discourage using the

goodness-of-fit on multiple parameter points in order to find

an allowed area. The result would strongly depend on the

structure of the experimental data and not only on the genuine

predictions of a model parameter point. The goodness-of-fit

should be evaluated with care, and the effort needed to do so

is typically only warranted for the best-fit point. If it has an

acceptable goodness-of-fit, the preferred parameter regions

are much more robustly determined using the fit procedure

described in Sect. 3.3.1. Generally, for all the above reasons,

we advise to treat all goodness-of-fit test results as acceptable

as long as each of them lies within the range deemed accept-

24 Assuming that systematic uncertainties do not grow with smaller

subchannel size.

able by the analyzer, and we advise against excluding models

based on a comparison of the goodness-of-fit between mod-

els. However, while models should not be excluded based on

a relative comparison of their goodness-of-fits, it is a valid

question to ask whether models with different numbers of

degrees of freedom provide a better or worse description of

the data. This is often of interest if a more general model with

a large number of parameters contains a more constrained

model with less parameters.

In order to achieve this comparison between models of

different complexity, a generalization, called the F-test, can

be derived [38]. In practice, the F-test might be easier to

implement than the hypothesis test described in detail in the

limit setting description of Sect. 3.3.2. However, it is not as

statistically stringent.

The F-test is a possibility to quantify how much a model

B improves over the description of the data compared to

model A with a different number of free parameters. This is

particularly useful if one of the two models is a special case

of the other model. If B contains A, as in extensions of the

SM, B will always provide a better or equal fit to the data

than A. The F-test weighs the higher complexity of B over

A against the improvement in the fit. The test statistic f is

calculated as

f = χ2
A

νA

/

(

χ2
B

νB

)

, (35)

with the number of degrees of freedom νA,B = nobs −
npar, A, B, where nobs denotes the number of measurements,

and npar, A, B corresponds to the number of parameters in

the two models. The χ2 values refer to the minimal χ2

value found in the parameter space (i.e. the best-fit value).

For instance, we can consider the SM as the restricted

model A, and a BSM model that extends the SM as model

B. Since for the expectation value E[χ2] = ν and thus

E[χ2/ν] = 1 holds if the model truly describes the data,

and since E[χ2/ν] > 1 if the model does not truly describe

the data, E[ f ] < 1 is expected if the restricted model A

describes the data better, and E[ f ] > 1 is expected if B

describes the data better.

The cumulative probability F quantifies the significance

of the χ2 improvement found in the more general model,

while accounting for the larger number of parameters. It is

found by integrating the probability density function of the

test statistic f from zero to the f -value determined by the

data via the fit. The null hypothesis, which is that model B

does not provide a significantly better fit to the data than

model A (i.e. the SM), can be rejected, for instance, at the

68% (95%) confidence level if F > 0.68 (0.95).
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3.3.4 Caveats on rejections of the Null Hypothesis

The decision chart in Fig. 3 also contains the case where a

combination of measurements available inHiggsSignals

could be used to reject the SM hypothesis in favor of a spe-

cific model of New Physics. We urge for a lot of caution

in such an application. For instance, consider the combina-

tion of ATLAS and CMS results via HiggsSignals. On

a purely statistical basis, this test is more sensitive than a test

using experimental results from a single experiment, and thus

it is possible that such a phenomenological analysis might be

the first to claim a rejection of the null hypothesis (i.e. the

hypothesis that the observed Higgs boson has precisely the

properties predicted by the SM) in favor of a specific alter-

native hypothesis (e.g. a model where the 125 GeV Higgs

boson has a modified coupling structure with respect to the

SM). As long as the model of New Physics is not constructed

to specifically fit the observed deviations of the data from the

SM prediction, it is in principle statistically viable to perform

such a test. However, if the sensitivity of the single experi-

ments is not sufficient to reject the null hypothesis, it is very

likely that the exclusion derived in a combination of mea-

surements from both experiments is statistically marginal,

making the numerical outcome strongly dependent on fac-

tors like the treatment of systematics and their correlations.

While these are implemented with care in HiggsSignals,

they contain the relevant correlations only for the theory

uncertainties and the luminosity, and the published exper-

imental correlations within one analysis. Experimental cor-

relations between different analyses, which could arise e.g.

from particle reconstruction effects or common selection cuts

are usually not published and hence cannot be taken into

account in HiggsSignals. Therefore, it is not advisable

to claim a statistically meaningful rejection of the SM based

on HiggsSignals alone. In addition, as explained in Sect.

3.3.3, one should also consider the custom to place a much

more stringent criterion of 5 σ significance, corresponding

to p0 < 2.7 × 10−7, on the C.L. required for the exclusion

of the null hypothesis.

Furthermore, the rejection of the null hypothesis always

depends – to a varying degree, depending on the definition

of the likelihood ratio – on the signal hypothesis. This is

also true for the profile likelihood technique employed at the

LHC [31], where a discovery is claimed if the likelihood of

the background only (or SM) hypothesis compared to the best

fit hypothesis of an alternative model is sufficiently small. It

is conceivable that a model of New Physics is tested as an

alternative hypothesis which was specifically and intention-

ally constructed to describe known deviations of the mea-

surements from the SM. Testing such a model against the

same data as was used for its construction in order to claim a

rejection of the SM is obviously not statistically meaningful.

4 Performance tests

In this section we discuss the performance of HiggsSignals

for a few selected experimental analyses by comparing offi-

cial and HiggsSignals-reproduced results for various

models that parametrize Higgs couplings or certain pro-

duction rates. We first present the HiggsSignals perfor-

mance for the ATLAS and CMS Run-1 combination [4] of

Higgs boson measurements, either using the officially com-

bined measurements or measurements from the individual

Run-1 analyses. We then discuss example results for Run-2

analyses, either using signal strength (μ) measurements or

STXS measurements as input. We conclude this section with

a recommendation for the presentation of future Higgs signal

rate measurements.

4.1 Reproduction of the ATLAS and CMS Run-1

combination

ATLAS and CMS published results for the production cross

sections and decay rates of the observed Higgs boson from

a combined analysis of the LHC pp collision data at
√

s =
7 and 8 TeV [4]. For the reproduction of the results with

HiggsSignals we use two different experimental inputs:

1. The combined ATLAS and CMS results for production

cross section, σi , times decay branching ratio, BR(H →
f ), of the various signal channels together with the pro-

vided correlation matrix from Ref. [4]. This input and the

associated χ2 calculation is described in Sect. 2.4.

2. The signal strength measurements published in individ-

ual Run-1 analyses by ATLAS [39–44] and CMS [45–

53].

We consider several generic parametrizations based on Higgs

coupling scale factors and compare the HiggsSignals

results for both input methods to the official experimental fit.

4.1.1 Parametrization through coupling scale factors

In the κ framework [54] we parametrize BSM effects

through seven independent Higgs coupling scale factors – the

generation-independent fermionic scale factors for up-type

and down-type quarks κu and κd , respectively, for leptons κℓ,

as well as the heavy gauge boson scale factors κZ , κW , and the

loop-induced gluon and photon scale factors κg and κγ . Since

the total width of the Higgs boson cannot be constrained at the

LHC with sufficient precision in a model-independent way,

an additional assumption is necessary. Possible assumptions

to overcome the degeneracy induced by the unknown total

width are the following [14]:

123



145 Page 22 of 36 Eur. Phys. J. C (2021) 81 :145

1. There are no BSM decays of the Higgs boson, i.e.

BR(H → NP) = 0.

2. New physics decays are allowed, i.e. BR(H → NP) ≥ 0

but the scale factors for the Higgs-Gauge boson couplings

are required to be |κW,Z | ≤ 1. This assumption breaks

the degeneracy introduced by the unknown total width

by limiting the VBF and V H Higgs production chan-

nels [55,56].

3. All additional Higgs decay modes are required to yield an

invisible final state, BR(H → NP) = BR(H → inv.).

Such decay models can then be constrained by direct

searches at the LHC which exploit the Higgs boson recoil

when produced in association with other objects (Z or W

boson, quarks, etc.).

In the following, we only consider the first two scenarios.

The second one is compatible with a wide range of BSM

physics. In particular, it is valid for models that contain only

singlet and doublet Higgs fields. By including the branching

fraction into states of new physics

BR(H → NP) = 1 − κ2
H ŴH

SM

ŴH
, (36)

as additional free parameter in the fit we have eight free

parameters in the second scenario. In this equation a new

modifier, κH , defined as

κ2
H =

∑

j

BR
j
SMκ2

j , (37)

is introduced to characterize modifications to the sum of the

partial widths of decays of the Higgs boson into SM final

states. Here, BR
j
SM = Ŵ

j
SM/ŴH

SM is the branching ratio as

predicted for a SM Higgs boson. In both fits, it is assumed

that the coupling scale factor κu is positive, without loss of

generality.

Figure 6 shows the fit results for the two scenarios. The

HiggsSignals-2 fit results with the ATLAS and CMS

combination input and the results with the individual sig-

nal strength input are shown in blue and red, respectively.

The results obtained from HiggsSignals with the differ-

ent input datasets agree well with each other, and both results

are consistent with the official results shown in black. Differ-

ences in the sign of the best fit point in the HiggsSignals

results are typically due to χ2 distributions that are exactly

(e.g. for κW in the BR(H → NP) = 0 case) or almost insen-

sitive to the sign.

For BR(H → NP) = 0 (Fig. 6, left panel) in the case

of the individual signal strength input the best-fit point has a

goodness-of-fit of χ2
min/ndf = 52.6/69 which leads to a p-

value compatibility between the data and the predictions of

the SM of 92.87%. In the case of the ATLAS and CMS com-

bination input we find χ2
min/ndf = 14.95/13 and a p-value

estimate of 31.0%. The reason for this large difference is the

sensitivity of the goodness-of-fit to the structure of the exper-

imental data discussed in Sect. 3.3.3. When many separate

measurements are included, the p-value mostly measures

the agreement between the separate measurements instead of

quantifying the agreement of the model with the data [15].

For this reason we refrain from quoting the goodness-of-fit

for the remainder of this section.

For the |κV | ≤ 1 assumption in Fig. 6 (right panel), the

largest differences between the HiggsSignals-2 and the

official results appear in the contributions of BSM decays.

The HiggsSignals analysis returns BR(H → NP) <

0.37 (< 0.28) as the 68% C.L. region using the combined

(individual) ATLAS and CMS signal strength input. Both are

notably larger than the official results BR(H → NP) < 0.16.

We suspect that the assumption of Gaussian uncertainties is

not fully applicable in all parts of the parameter space and

therefore causes the observed discrepancy.

4.1.2 Parameterization using ratios of coupling scale

factors

We now turn to a Higgs coupling parametrization in terms

of ratios of κ scale factors. The gg → H → Z Z channel

serves as reference channel for the normalization because its

overall uncertainties and background contamination are very

small. It is parameterized as a function of κgZ = κg ·κZ/κH ,

with κH defined in Eq. (36).25 The ratios λZg = κZ/κg

and λtg = κt/κg are probed by taking the ratios of mea-

surements of VBF and Z H production and measurements

of t t̄ H production, respectively, to the measured rate for the

gg → H → Z Z channel. Similarly, the ratios obtained from

gluon fusion production with the decay modes H → W W ,

H → ττ , H → bb and H → γ γ probe the four

ratios λW Z = κW /κZ , λγ Z = κγ /κZ , λτ Z = κτ/κZ and

λbZ = κb/κZ . Without loss of generality, κZ and κg are

assumed to have the same sign, constraining λZg and κgZ to

be positive.

Figure 7 compares the official fit results with the ones

obtained from HiggsSignals-2, displaying the corre-

sponding best-fit values for the different λ parameters. We

find very good agreement between the results obtained from

HiggsSignals-2 and the official results, though the

HiggsSignals fits tend to have slightly larger 68% and

95% C.L. intervals. There are two reasons for these differ-

ences. Firstly, the Gaussian approximation may not be valid

for the experimental uncertainties in all regions of parame-

25 This definition of κgZ implicitly assumes the absence of Higgs

decays to new physics, BR(H → NP) = 0. However, the fit results

can be generalized to the case BR(H → NP) �= 0 if κgZ is redefined

to κgZ = κg · κZ /κ̃H with κ̃2
H = κ2

H /(1 − BR(H → NP)).
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Fig. 6 Official and reproduced ATLAS and CMS combined Run-1

results in the Higgs coupling scale factor parametrization, assuming no

new BSM Higgs decay modes (left panel) or κV ≤ 1 (right panel). The

HiggsSignals-2 results have been obtained using as input either

the combined measurements (blue) or measurements from individual

analyses (red). The official results are included in black. The gray areas

indicate that κu > 0 is assumed without loss of generality. Only abso-

lute values are shown for sign-insensitive parameters. The error bars

indicate the 1σ (thick lines) and 2σ (thin lines) intervals

ter space. Secondly, the parameterization in terms of ratios

should lead to partial cancellations of common theoretical

uncertainties which are not expected to be entirely captured

in the HiggsSignals results. While our result with the

individual signal strength input reproduces the positive sign

of the best-fit value for λtg , the HiggsSignals-2 fit with

the ATLAS and CMS combination input appears to prefer

negative values. However, the 	χ2 between the negative and

the positive best-fit value is tiny and thus there is no clear

preference for one particular sign.

4.1.3 Parametrization using ratios of cross sections and

branching fractions

Using the narrow-width approximation, the signal strength

μ
f
i can be decomposed into the signal strength for production

μi = σi/σi,SM and the signal strength for the decay, μ f =
BR f /BR

f
SM, with the short-hand notation BR f ≡ BR(H →

f ).

Choosing the gg → H → Z Z channel as reference, the

product of the production cross section σi and the branching

fraction BR f can be expressed as

σi ·BR f = σ(gg → H → Z Z) ·
(

σi

σggF

)

·
(

BR f

BRZ Z

)

. (38)

In accordance with the ATLAS and CMS analysis [4], we

assume that the gluon fusion (ggF) and the bbH production

signal strengths are equal, μggF = μbbH , the H → Zγ and

H → γ γ decay signal strengths are equal, μZγ = μγ γ , and

the H → gg, H → cc, and H → bb decay signal strengths

are equal, μgg = μcc = μbb.

Figure 8 shows the fit results from the combined ATLAS

and CMS analysis and the fit to individual signal strength

measurements in blue and red, respectively. The fit result

from the official ATLAS and CMS combination is shown in

black. While the result obtained with HiggsSignals-2

using the combined input agrees well with the official result,

we observe some larger discrepancies for various parame-

ters when using individual measurements, most strikingly

for σZ H /σggF and BRbb/BRZ Z which are strongly anti-

correlated. Furthermore the central values of σt t H /σggF and

σVBF/σggF are shifted towards the SM prediction. We mainly

relate these features to the fact that some analyses – in par-

ticular in CMS – have been improved for the combined
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Fig. 7 Official and reproduced ATLAS and CMS combined Run-1

results for ratios of Higgs coupling scale factors. The results obtained

withHiggsSignals-2 using the combined ATLAS and CMS data as

input and the results using the individual signal strength measurements

as input are shown in blue and red, respectively, while the official results

are shown in black. The error bars indicate the 1σ (thick lines) and 2σ

(thin lines) intervals. The gray areas indicate the parameters that are

assumed to be positive

result, but no updated individual measurements have been

released. Figure 9 shows a comparison between the offi-

cial ATLAS-only [57] (left panel) and CMS-only [58] (right

panel) fit results and the corresponding results obtained

with HiggsSignals-2 when using the individual sig-

nal strengths from ATLAS and CMS. HiggsSignals-2

reproduces the official ATLAS-only fit result very well. How-

ever, for the CMS-only fit we observe similar discrepancies as

for Fig. 8, namely smaller values for σVBF/σggF, σZ H /σggF,

and σt t H /σggF as well as a larger value for BRbb/BRZ Z .

In summary, the performed comparisons in all three

model parametrizations have demonstrated very good agree-

ment between the HiggsSignals implementation of the

LHC Run-1 measurements – both using the individual

and the combined experimental input – and the official

ATLAS/CMS fit results. The agreement between the two

possible HiggsSignals implementations is on the one

hand a successful closure test of the HiggsSignals peak-

centered χ2 method, and on the other hand motivates our

choice of using the LHC-Run-1 combined experimental mea-

surements as default input for the LHC Run-1 legacy χ2

evaluation in HiggsSignals-2, as described in Sect. 2.4.

Fig. 8 Results obtained with HiggsSignals-2 in comparison with

the official fit results for the σ(gg → H → Z Z) cross sec-

tion and for ratios of cross sections and branching fractions. The

HiggsSignals-2 results using the combined ATLAS and CMS data

and the results using the individual signal strength measurements as

experimental input are shown in blue and red, respectively. Also shown

are the official results from ATLAS and CMS (black). The error bars

indicate the 1σ (thick lines) and 2σ (thin lines) intervals. The results

are normalised to the respective SM predictions

Computationally, this implementation is much faster. How-

ever, for very specific applications where the assumptions

underlying the LHC Run-1 combination are not fulfilled,

the experimental input from the individual Run-1 analy-

ses is still available as the LHC7+8 observable set in the

HiggsSignals package.

4.2 Examples for Run 2 analyses in HiggsSignals-2

During Run 1 of the LHC, Higgs rate measurements were

mainly represented in terms of signal strengths, μ = σ/σSM,

and coupling modifiers, κi . For LHC Run 2 the experimental

collaborations increasingly made use of the STXS framework

to present their results (see Sect. 2.5). In some analyses, both

STXS measurements and conventional signal strengths mea-

surements in various event categories were presented, along

with the correlation matrices, which are necessary to allow

a comparison of the performance of the two experimental

input formats.

In this section we discuss the performance of

HiggsSignals-2 on the provided experimental input for

a selection of LHC Run-2 analyses. These examples are pri-

marily chosen to illustrate the level of agreement of the recon-

structed HiggsSignals result with official results from

ATLAS and CMS, and to highlight difficulties in the usage
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Fig. 9 Results obtained with HiggsSignals-2 in comparison with

the official ATLAS-only (left panel) and CMS-only (right panel) fit

results for the σ(gg → H → Z Z) cross section and for ratios of cross

sections and branching fractions. The HiggsSignals-2 results and

the official results are shown in red and black, respectively. The error

bars indicate the 1σ (thick lines) and 2σ (thin lines) intervals. The results

are normalised to the respective SM predictions

of the experimental results, which are often related to incom-

plete information in the public documentation of the exper-

imental analysis. With the increasing amount of data during

Run-2 the statistical uncertainty can be assumed to be Gaus-

sian to very good approximation in most Higgs boson search

channels. However, a decreasing statistical uncertainty also

entails the fact that systematic uncertainties and their cor-

relations among different measurements become more rele-

vant. Therefore, it has become common practice for ATLAS

and CMS to provide a correlation matrix of the experimental

(statistical and systematic) uncertainties for the Run-2 mea-

surements.

In the following we discuss the performance of the two

input types (signal strength modifiers and STXS measure-

ments) for a few selected Run-2 examples that illustrate what

experimental information is needed to enable a successful

application of the results to BSM models. Unless otherwise

noted, a Higgs boson mass of m H = 125.09 GeV is assumed.

The chosen examples do not necessarily represent the lat-

est measurements implemented in HiggsSignals-2. The

complete list of the ATLAS and CMS Run-2 Higgs signal

rate measurements are summarized in Tables 6 and 7, respec-

tively.

4.2.1 Input given in terms of signal strength modifiers

We discuss the CMS measurements in the H → W +W −

channel at the LHC Run-2 as an example for analyses imple-

mented in terms of signal strength modifiers. First Run-2

results were released based on 2015 and early 2016 data with

integrated luminosities of 2.3 fb−1 and 12.9 fb−1, respec-

tively [59]. The results of this early analysis are given in

terms of sub-channel signal strength modifiers, where the

different channels are tailored towards different Higgs pro-

ductions modes (gluon fusion, VBF, Z H and W H ). How-

ever, no signal efficiencies that would allow a better estimate

of the signal composition in the different channels were pro-

vided.

The plot in the left panel of Fig. 10 illustrates the perfor-

mance achieved by HiggsSignals with the limited infor-

mation available for the analysis of Ref. [59]. The comparison

is performed in the parametrization of signal strength modi-

fiers, with μggF and μV H/VBF rescaling the SM cross section

prediction for the fermionic and bosonic production modes,

respectively. The Higgs boson decay rates are fixed to their

SM prediction. The colormap represents the 	χ2 profiles

reconstructed by HiggsSignals, and the 68% (95%) C.L.

regions are highlighted as black solid (dashed) lines. The cor-

responding official contours published by CMS are overlaid

as gray solid (dashed) lines. We find reasonable agreement

between the reconstructed and official intervals and the cor-

responding best-fit point for μggF. However, the size of the

allowed μV H/VBF intervals and the observed anti-correlation

between μggF and μV H/VBF is not reproduced. The reason

for this discrepancy is the lack of public information on sig-

nal efficiencies for the sub-channel rate measurements. The
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Fig. 10 Comparison of the reconstructed fit results for the signal

strength modifiers for fermionic (μggF) and bosonic (μV H/VBF) pro-

duction modes with the official results for different CMS analyses

in the H → W W decay channel at 15.2 fb−1 [59] (left panel) and

35.9 fb−1 [60] (right panel). The stars indicate the best fit points, and

the solid (dashed) contours correspond to the 68% C.L. (95% C.L.)

regions. The HiggsSignals results are shown in dark and the offi-

cial results in light shades. The diamonds indicate the SM prediction

anti-correlation observed by CMS in the left panel of Fig.

10 indicates that these sub-channels are composed of signal

contributions from both fermionic and bosonic production

modes.

Information on sub-channel signal efficiencies was made

available in the CMS H → W +W − analysis at 35.9 fb−1 [60].

The right panel of Fig. 10 shows the performance compari-

son for this analysis using the sub-channel signal strength

results and the corresponding efficiencies. We find very

good agreement between the reconstructed 	χ2 and the

official likelihood results. This demonstrates the importance

of publicly available detailed sub-channel information on

signal strengths and signal efficiencies. The analysis per-

formed by CMS with 35.9 fb−1 also includes first results

for H → W +W − in the stage-0 STXS framework. How-

ever no information on the correlations between the STXS

bins was provided for this analysis, which severely limits the

usefulness of those STXS results. The performance achieved

using this partial STXS input (not shown in the figure) is sig-

nificantly worse than for the signal strength results in the

right panel of Fig. 10.

A further update in the H → W +W − channel to

137 fb−1 [61] has since been released by CMS and is imple-

mented in the current HiggsSignals datasets. The results

of this analysis are given in terms of n-jet differential cross

sections in the STXS framework. Per-bin signal efficiencies

and inter-bin correlations are available as well. This analy-

sis provides the most complete input to date, and we expect

its implementation in HiggsSignals to be the best per-

forming one. However, the analysis presented in Ref. [61]

does not include any interpretations that could be used for a

performance comparison with HiggsSignals.

4.2.2 Input given in terms of simplified template cross

sections (STXS)

We have seen that detailed information on sub-channel signal

strengths and signal efficiencies are important when Higgs

coupling measurements are given in terms of signal strengths.

We now discuss some example applications for which the

input to HiggsSignals-2 is given in the STXS frame-

work instead.

As a first example we study the HiggsSignals per-

formance for ATLAS measurements in the H → Z Z∗ →
4ℓ channel with 139 fb−1 of data [62] as STXS observ-

ables. These experimental results were given in 12 reduced

Stage-1.1 STXS bins along with the correlation matrix for

the experimental uncertainties (Fig. 10 of Ref. [62]). The

HiggsSignals 	χ2 distribution in the (κV , κF ) parame-

ter plane based on this input, neglecting correlations of theo-

retical uncertainties on the STXS bin predictions, is shown in

the left panel of Fig. 11 in comparison to the official ATLAS

result (shown as gray contours). The agreement at lower val-

ues of κV and κF with the ATLAS results is very good. How-

ever, at larger values we find a small mismatch between the

reproduced and official confidence region contours. In these

regions the agreement can be improved if correlations of the-

oretical uncertainties on the gluon fusion STXS bin predic-

tions are included in the χ2 calculation, as shown in the right

panel of Fig. 11. These correlations were evaluated by the

ggF-subgroup of the LHC HXSWG and have been taken

from Ref. [63] (“2017 scheme”). The evaluation of similar

correlations for the STXS bins of other production modes is

still in progress. As can be seen these correlations lead to a

flattening of the likelihood at large coupling scale factors, i.e.
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Fig. 11 Performance test in the (κV , κF ) parameter plane using

the STXS measurements of the ATLAS H → Z Z analysis with

139 fb−1 [62] as HiggsSignals input. Correlations of experimental

uncertainties are included in both figures, while the correlations of the-

oretical uncertainties on the STXS bin predictions are neglected (left

panel) or taken into account (right panel). The stars indicate the best

fit points, and the solid (dashed) contours correspond to the 68% C.L.

(95% C.L.) regions. The HiggsSignals results are shown in dark

and the official results in light shades. The diamonds indicate the SM

prediction

Fig. 12 Performance test in the (μggF,bb̄H , μV H,VBF) (left panel)

and (κV , κF ) parameter plane (right panel) using the STXS mea-

surements of the CMS H → ττ analysis with 77 fb−1 [64] as

HiggsSignals input. The stars indicate the best fit points, and the

solid (dashed) contours correspond to the 68% C.L. (95% C.L.) regions.

The HiggsSignals results are shown in dark and the official results

in light shades. The diamonds indicate the SM prediction

in the regions where the corresponding cross sections (and

thus their uncertainties) are larger than the SM prediction.

The next analysis that we consider here is the CMS mea-

surement in the H → ττ decay channel at 77 fb−1 [64].

CMS provides cross section measurements for nine different

kinematic regions together with the expected acceptances,

the SM predictions and the correlations between the bins.

Figure 12 shows the comparison between the official and

the reproduced 	χ2 contours in the (μggF,bb̄H , μV H,VBF)

(left panel) and (κV , κF ) (right panel) parameter planes. We

find reasonable agreement in the former but a substantial dis-

agreement in the latter. The source of this discrepancy can

be traced back to the fact that CMS included the contribution

from H → W W to the eμ final state to remove an uncon-

strained direction along κV . As the H → W W contribution

is not accounted for in the presented STXS measurements it

is not possible to properly implement it in HiggsSignals.

We therefore find this open direction. However, in a global

picture where H → ττ and H → W W are simultaneously

taken into account in HiggsSignals, the flat direction is

lifted. This is already the case when adding only the mea-

surements in the eμ final state e.g. from the dedicated CMS

H → W W analysis [60].

As a final example in this context we discuss the ATLAS

combination of Higgs analyses in the γ γ , Z Z∗, W W ∗,

τ+τ−, bb̄ and μ+μ− final states based on up to 79.8 fb−1

of Run-2 data [65]. Within the STXS framework – under the

assumption that the observed signals are associated with a
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single particle – the various measurements are combined to

determine the cross sections in various STXS bins. These

bins represent a production process in a specific kinematic

regime, e.g. gluon fusion in association with one additional

jet, and a Higgs boson transverse momentum of 60 GeV ≤
pH

T ≤ 120 GeV, times the branching fraction of the Higgs

boson to Z bosons, BR(H → Z Z∗). In addition, ratios of

branching ratios are determined for the various final states,

with BR(H → Z Z∗) taken in the denominator. Here we use

these measurements (given in Fig. 9 of Ref. [65]) and the

corresponding correlation matrix as experimental input for

HiggsSignals.

The performance of HiggsSignals for the results of

the ATLAS Higgs combination is shown in Fig. 13, where the

left panels display the results in the (κV , κF ) parameter plane

and the right panels display the results in the (κg , κγ ) plane.

For illustration, the top panels show the resulting likelihood

profile if correlations both between experimental and theoret-

ical uncertainties are neglected. We observe a clear mismatch

in size, shape and location of the allowed regions with respect

to the official ATLAS result (shown as gray contours). Once

we include the correlations of experimental uncertainties the

agreement of the reproduced and official confidence regions

strongly improves, as shown in the middle panels of Fig. 13.

Finally, the bottom panels show the result when correlations

of theoretical uncertainties in the gg → H STXS bins [63]

are also included (see above for details). From the compari-

son of the middle and bottom panels in Fig. 13, we find that

these correlations have a rather small impact, giving rise to

a further slight improvement of the agreement between the

HiggsSignals result and the official result.

It should again be noted here that combination results

with a separate determination of production and (ratios of)

decay rates rely on the assumption that the signals are

associated with a single Higgs boson. Thus, these com-

bined experimental results cannot be directly treated as

peak or STXS observables in HiggsSignals, where per

default a signal can be composed of any superposition of

Higgs bosons in the model (see Sect. 2.6.3). Therefore, in

the officially provided observable sets we instead use the

individual (uncombined) measurements as default experi-

mental input. If only one Higgs boson is present in the

model (or the other Higgs bosons have masses far away

from 125 GeV), the combined measurements can still be

safely used as experimental input (provided as observable set

ATLAS_combination_Run2 in the HiggsSignals

package).

4.3 Recommendations for the presentation of future Higgs

signal rate measurements

Based on our past experiences and the observations in the

above performance tests we summarize in this section the

essential experimental information needed to enable an accu-

rate reproduction of the model interpretations of the data

(e.g. in the κ framework) provided by ATLAS and CMS

and thus a reliable application of the experimental measure-

ments in BSM model tests. This concurs with and partly

extends recent recommendations on the presentation of LHC

measurements provided in a joint effort by the experimental

and theory community [66], as well as similar recommenda-

tions that we recently provided in the context of BSM Higgs

limits [9]. We furthermore discuss the issue of the remain-

ing model dependence in Higgs signal rate measurements,

and some ideas for a possible reduction of the model depen-

dence.

Early LHC results on the Higgs signal rates have been

presented as signal strength modifiers (μ) in specific signal

channels – often binned in various experimental categories –

targeted by the experimental analysis. These measurements

assume the kinematic properties of the SM Higgs boson, rely-

ing on a SM MC simulation of the inclusive signal process.

The result – the signal strength modifier, μ – is defined as the

observed signal rate normalized to the expected signal rate

for a SM Higgs boson.

The complexity of calculating the expected signal rate in a

BSM model depends on whether the Higgs boson candidate

has – exactly or to a sufficiently accurate approximation –

the same kinematic properties as the SM Higgs boson. If so,

the signal rate can be predicted within the BSM model easily

without MC simulation if the signal efficiencies (or signal

compositions) for the corresponding experimental measure-

ment are known. This is the approach pursued per default in

HiggsSignals, see Eq. (1). It is therefore essential that

the signal efficiencies (or signal compositions) expected for

a SM Higgs boson are provided for all μ measurements. In

contrast, if the Higgs boson candidate has significantly differ-

ent kinematic properties compared to the SM Higgs boson,

the signal needs to be processed through the full experimen-

tal analysis, which includes a full MC simulation (including

detector simulation) of the signal and the application of anal-

ysis cuts. Given the high complexity of most experimental

analyses (using, for instance, machine learning techniques)

this is often impossible for theorists (who do not have access

to full simulations for the LHC detectors) and should prefer-

entially be carried out by the experimental collaborations.

In order to ameliorate this situation, i.e. to allow a proper

application of measurements also to Higgs boson candidates

with different kinematic properties than in the SM, the STXS

framework has been introduced. An STXS observable is

defined on a specific region in phase space at the MC par-

ticle level. The experimental unfolding process only relies

on the kinematic properties of the SM Higgs boson within
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Fig. 13 Performance test in the (κF , κV ) plane (left panels) and the

(κg, κγ ) plane (right panels) using the STXS measurements of the

ATLAS Run-2 Higgs combination with 80 fb−1 as HiggsSignals

input. The contours and best fit points are indicated as in Figs. 10, 11

and 12. Correlations of experimental uncertainties are neglected in the

top panels but included in the middle and bottom panels. Theoretical

rate uncertainties for the gg → H process are treated as uncorrelated

in the top and middle panels and as correlated in the bottom panels, see

text for further details

this specific phase space.26 The model-dependence is there-

fore reduced, which, in turn, allows a wider application of

these measurements to BSM models. At the moment, STXS

26 While this is true for the central measurement, uncertainty corre-

lations also depend on the SM Higgs boson predictions (and thus the

assumed SM Higgs boson kinematics) in other phase space regions.

observables are typically binned in jet multiplicity and/or

Higgs boson transverse momentum (pH
T ), depending on the

Higgs boson production process. As more LHC data is accu-

mulated a finer STXS binning as well as binning in additional

kinematic variables (e.g. angular observables) becomes pos-

sible, hence various STXS stages have been defined (or are
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still being defined). In this way, the model assumptions can

be further reduced with increasing amounts of data.

As the STXS observables are defined for specific par-

ticle level topologies of the Higgs boson production pro-

cess, these can incorporate several production processes that

depend on different Higgs couplings. For instance, gg →
H(+jets) STXS observables target the gluon fusion pro-

duction mode including gg-induced EW corrections. These

are composed of virtual EW corrections to the gg → H

form factor as well as real EW corrections, corresponding

to gg → (Z → qq̄)H . In HiggsSignals, gluon fusion

and gg → Z H are, however, treated as separate processes,

as their dependences on the Higgs coupling properties are

different. Another example are the STXS observables of the

class “EW qqH” composed of the vector boson fusion (VBF)

as well as qq → (V → qq)H (with V = W, Z ) pro-

cesses, which all three are treated as separate processes in

HiggsSignals. While higher STXS stages aim at sepa-

rating these subprocesses, the earlier stages must be regarded

as inclusive in these processes.27 For such STXS measure-

ments it would be beneficial to publicly release the signal

efficiencies (or signal compositions) for the involved pro-

cesses, analogous to the case of μ measurements, see above.

Unfortunately, this has not been done by the experiments so

far.

For both the inclusive (μ) and STXS measurements, the

correlations of uncertainties – preferably given separately for

experimental and theoretical sources – need to be included

in the χ2 test in order to achieve a good performance. As

the unfolding to pure production channels and/or STXS bins

often induces large correlations, experimental measurements

of this kind are nowadays always accompanied by the corre-

sponding correlation matrix. However, even μ measurements

in experimental categories (which are therefore composed of

various Higgs processes) have correlated experimental and

theoretical uncertainties. Therefore it would be useful if the

experiments could provide correlation matrices also for such

cases, which so far has rarely happened.

We would furthermore like to encourage the experiments

to accompany all signal strength and STXS measurements

with a reference value for the signal rate expected for a SM

Higgs boson. In case the measurement is quoted as a normal-

ized signal strength, this allows one to recalculate the abso-

lute observed signal rate. Furthermore, the signal strengths

predicted in BSM models can in many cases be approximated

by a simple rescaling of the SM reference value.

27 The general claim for early STXS stage measurements is that, at the

present level of precision, these processes cannot be resolved. However,

we want to remark that this claim relies on the assumption of SM signal

strengths for all involved processes, and may not be true if a BSM model

predicts a strong enhancement in one or more of these processes.

Lastly, we want to emphasize that the two-dimensional

toy model interpretations – (κV , κF ) and (κg, κγ ) in the κ

framework, as well as the production rate rescaling models –

have proven extremely valuable for validation checks. Unfor-

tunately, we have recently experienced that these interpreta-

tions are sometimes not performed when new experimental

results are released, see e.g. Ref. [61,67].

5 Summary

We have presented a new version of the public computer pro-

gram HiggsSignals for confronting the predictions of

arbitrary BSM models with the measured mass and rates of

the Higgs boson that has been detected at about 125 GeV. The

description of HiggsSignals-2 provided in the present

paper has focussed on the improvements of the functionality

and applicability of the program with respect to version 1.0

that was presented in Ref. [10]. Besides the confrontation

with the properties of the detected Higgs signal, the phe-

nomenological viability of BSM Higgs sectors should also

be tested against the limits that have been obtained from the

searches for additional Higgs bosons – a task that can be per-

formed using the related public tool HiggsBounds [5–9].

On the basis of theoretical model input from the user – in

the form of predicted Higgs-boson masses, production cross

sections, and decay rates in the HiggsBounds input for-

mat – HiggsSignals evaluates a χ2 measure to quan-

tify the compatibility of the measured Higgs properties with

the model predictions as discussed in Sect. 2. The peak-

centered χ2 method is used to evaluate the χ2 contribu-

tion from signal strength (μ) measurements, while STXS

measurements give rise to a χ2 contribution that is sepa-

rately calculated in a newly introduced module. In addition,

the LHC Run-1 results give rise to another χ2 contribution,

employing the legacy ATLAS and CMS combination of the

Run-1 results. Lastly, the Higgs mass measurement(s) lead

to another contribution to the total χ2. In total, the current

version HiggsSignals-2.6.0 includes 86 Run-2 sig-

nal rate measurements, 20 Run-1 measurements, and one

(combined) Higgs mass measurement as default experimen-

tal input.

The description in this paper has addressed the calculation

of the various χ2 parts, comprising as new feature the incor-

poration of experimental results in the form of STXS mea-

surements as well as further improvements that have been

highlighted. We have discussed possible features of BSM

Higgs sectors that can have an important impact in the com-

parison with the data. This includes cases where the signal

efficiencies differ significantly from the ones of a SM-like

Higgs boson, the treatment of theoretical uncertainties in the

Higgs mass predictions, and scenarios where the signal is
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composed of overlapping contributions from several Higgs

bosons.

In order to give some guidance on possible applica-

tions of HiggsSignals-2 we have thoroughly discussed

the different interpretations of the χ2 output provided by

HiggsSignals and spelled out the involved assump-

tions. In particular, we have explained the application of the

obtained χ2 output in fits, for limit setting, and for goodness-

of-fit tests. We furthermore discussed possible attempts of

using HiggsSignals for ruling out the SM on the basis of

possible deviations between the measurements and the SM

predictions, and stressed important caveats in this context.

The experimental results used byHiggsSignals-2 are

either signal strength modifiers, μ̂, in the various search chan-

nels and experimental categories, or measured signal rates

provided in the simplified template cross section (STXS)

framework. In both cases the results have to be supple-

mented by their experimental uncertainties, 	μ̂ and 	σ̂ ,

respectively. As performance tests of HiggsSignals-2

we have presented several detailed validations against pub-

lished ATLAS and CMS results in Sect. 4. These compar-

isons illustrate that the achievable agreement with the official

results published by ATLAS and CMS strongly depends on

the information made available by the experiments. As a first

step, we compared to the ATLAS/CMS combination of the

full Run-1 data within the κ framework for different assump-

tions regarding the total width of the Higgs boson and found

very good agreement. Second, in our validations of Run-

2 results against κ fits performed by ATLAS or CMS, we

found the best agreement if the sub-channel signal strength

modifiers are given together with the corresponding signal

efficiencies. If signal strengths are given in terms of the tar-

geted production processes, the best-fit point is typically well

reconstructed by HiggsSignals-2while the correlations

cannot be correctly reproduced. Therefore, we expect fur-

ther improvements from additional information about corre-

lations of experimental uncertainties. In case of STXS mea-

surements we have seen that information about experimental

correlations is crucial in order to obtain reconstructed results

that are close to the ones published by ATLAS and CMS.

If STXS measurements are not given in terms of pure sig-

nal channels, for example by using intermediate stage-1 bins,

additional information about production processes could fur-

ther improve the reconstruction (e.g. the W H and Z H com-

position in the leptonic V H bin for the considered ATLAS

H → γ γ analysis). On the basis of those findings we have

formulated some recommendations for the presentation of

future Higgs signal rate measurements.

The HiggsSignals source code is available at

https://gitlab.com/higgsbounds/higgssignals

together with continuously updated technical documentation

of the program’s subroutines, compilation and interfacing

procedures.
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Appendix A: Implementation of STXS observables in

HiggsSignals

Each STXS observable is defined by an individual file with

the extension ‘.stxs’ located in the observable set folder.

The observable set can contain signal strength (μ) observ-

ables and STXS observables simultaneously, however, the

user should avoid statistical overlap of the included mea-

surements. The structure of the .stxs files is exemplified in

Table 5. The integer observable ID has to be unique among all
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Table 5 Structure of an STXS observable implementation file for

HiggsSignals. Note that line 7 is only present if the mass observ-

able flag on line six is equal to 1. L denotes the integrated luminosity

with uncertainty 	L, while m is the measured mass value and 	m the

corresponding experimental 1σ uncertainty

Line Content Example

Lines starting with # are comments # A fictitious STXS measurement

1 Unique observable ID 123456789

2 Reference arXiv:1234.56789

3 Collider, collaboration, experiment LHC, ATL, ATL

4 Channel description (pp)->h->gamma gamma (1j, pTH<60)

5 Center-of-mass energy (TeV), L, 	L 13 36.1 0.032

6 Mass-observable flag, SM-normalized-rate flag 1 0

7 m̂, 	m̂ (line only exists for mass observable) 125.23 0.56

8 Reference mass 125.09

9 Mass resolution 2.5

10 Nc, reference mass for the efficiencies 1 125.09

11 Channel IDs (Nc entries) 1.3

12 Channel efficiencies (Nc entries) 1.0

13 Observed rate (lower 1σ , central, upper 1σ ) 0.022 0.037 0.052

14 SM predicted rate (lower 1σ , central, upper 1σ ) 0.047 0.063 0.080

STXS observables. As mentioned earlier, the STXS frame-

work also allows one to evaluate a χ2 contribution from

potential Higgs mass measurements. The mass measurement

must be associated with one STXS observable and is spec-

ified on line 7 of the .stxs file. It is activated by setting

the mass-observable flag on line 6 to 1. Independently of this

mass measurement m̂ and its quoted 1σ uncertainty 	m̂,

line 8 and 9 of the .stxs file always specify a reference

mass, for which the rate measurement has been performed,

as well as an estimate of the mass resolution. The latter is

decisive on whether a Higgs boson in the model is assigned

to the observable, i.e. whether its signal rate is assumed to

contribute to the observable or not (see Sect. 2.6.3). Line

10 of the .stxs file specifies the number of relevant sig-

nal channels, Nc, and another reference mass for the quoted

efficiencies (which usually coincides with the previous refer-

ence mass for the measurement). Line 11 lists the Nc chan-

nel IDs (separated by white spaces), see Table 1, and line

12 the corresponding relative channel efficiencies in the SM,

ǫSM,i . The last two lines (13, 14) quote the observed and

SM-predicted signal rate and the lower and upper 1σ range,

as quoted in the experimental result. If the rate is given in

SM-normalized form (SM-normalized-rate flag set to 1), the

last line is ignored.

The STXS correlation matrix should be given in an addi-

tional file (.stxscorr) in the same folder. The file contains

three columns,

observable ID 1 observable ID 2

correlation coefficient,

such that each line encodes the correlation between two

observables.

Appendix B: Experimental input

Tables 6 and 7 list all LHC Run-2 Higgs signal measurements

from ATLAS and CMS, respectively, which are implemented

as the default observable set in HiggsSignals-2.6.0.
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Table 6 ATLAS Higgs rate measurements from LHC Run-2 included in the default observable set LHC13_Apr2020 inHiggsSignals-2.6.0

Channel Luminosity [fb−1] Signal strength μ References

VBF, H → bb̄ 30.6 3.0+1.7
−1.8 [68]

t t̄ H , H → bb̄ (1ℓ) 36.1 0.67+0.71
−0.69 [69]

t t̄ H , H → bb̄ (2ℓ) 36.1 0.11+1.36
−1.41 [69]

t t̄ H , multilepton (2ℓss) 79.9 0.38+0.57
−0.54 [70]

t t̄ H , multilepton (3ℓ) 79.9 0.93+0.58
−0.52 [70]

t t̄ H , multilepton (4ℓ) 79.9 0.52+0.93
−0.72 [70]

t t̄ H , multilepton (1ℓ + 2τh) 79.9 0.30+1.01
−0.90 [70]

t t̄ H , multilepton (2ℓ + 1τh) 79.9 0.49+0.94
−0.82 [70]

t t̄ H , multilepton (3ℓ + 1τh) 79.9 0.43+1.10
−0.85 [70]

σobs [pb] σSM [pb]

gg → H , H → W +W − 36.1 11.4+2.2
−2.1 10.4 ± 0.6 [71]

VBF, H → W +W − 36.1 0.50+0.29
−0.28 0.81 ± 0.02 [71]

VBF, H → Z Z (pT,H high) 139.0 0.0005+0.0079
−0.0048 0.00420 ± 0.00018 [62]

VBF, H → Z Z (pT,H low) 139.0 0.15+0.064
−0.052 0.1076+0.0024

−0.0035 [62]

V (had)H , H → Z Z 139.0 0.021 ± 0.035 0.0138+0.0004
−0.0006 [62]

V (lep)H , H → Z Z 139.0 0.022+0.028
−0.018 0.0164 ± 0.0004 [62]

gg → H , H → Z Z (pT,H high) 139.0 0.038+0.021
−0.016 0.015 ± 0.004 [62]

gg → H , H → Z Z (0 j, pT,H high) 139.0 0.630 ± 0.110 0.55 ± 0.04 [62]

gg → H , H → Z Z (0 j, pT,H low) 139.0 0.17 ± 0.055 0.176 ± 0.025 [62]

gg → H , H → Z Z (1 j, pT,H high) 139.0 0.009+0.016
−0.012 0.020 ± 0.004 [62]

gg → H , H → Z Z (1 j, pT,H low) 139.0 0.05 ± 0.08 0.172 ± 0.025 [62]

gg → H , H → Z Z (1 j, pT,H med.) 139.0 0.17 ± 0.05 0.119 ± 0.018 [62]

gg → H , H → Z Z (2 j) 139.0 0.040 ± 0.075 0.127 ± 0.027 [62]

t t̄ H , H → Z Z 139.0 0.025+0.022
−0.013 0.0154+0.0010

−0.0013 [62]

gg → H , H → γ γ (0 j) 139.0 0.039 ± 0.006 0.0382+0.0019
−0.0018 [67]

gg → H , H → γ γ (1 j) 139.0 0.0162+0.0031
−0.0022 0.0194+0.0018

−0.0019 [67]

gg → H , H → γ γ (2 j , 	� j j ∈ [−π,− π
2
]) 139.0 0.0023 ± 0.0007 0.0024 ± 0.0002 [67]

gg → H , H → γ γ (2 j , 	� j j ∈ [− π
2
, 0]) 139.0 0.0011 ± 0.0004 0.0020 ± 0.0002 [67]

gg → H , H → γ γ (2 j , 	� j j ∈ [0, π
2
]) 139.0 0.0014 ± 0.0004 0.0020 ± 0.0002 [67]

gg → H , H → γ γ (2 j , 	� j j ∈ [ π
2
, π ]) 139.0 0.0021 ± 0.0007 0.0024 ± 0.0002 [67]

t t̄ H , H → γ γ 139.0 1.59+0.43
−0.39 1.15+0.09

−0.12 [67]

VBF, H → τ+τ− 36.1 0.28+0.14
−0.13 0.237 ± 0.006 [72]

gg → H , H → τ+τ− 36.1 3.10+1.90
−1.60 3.05 ± 0.13 [72]

W H , H → W +W − 36.1 0.67+0.36
−0.30 0.293 ± 0.007 [73]

Z H , H → W +W − 36.1 0.54+0.34
−0.25 0.189 ± 0.007 [73]

W H , H → bb̄ (pT,V ∈ [150, 250] GeV) 139.0 0.0190 ± 0.0121 0.0240 ± 0.0011 [74]

W H , H → bb̄ (pT,V ≥ 250 GeV) 139.0 0.0072 ± 0.0022 0.0071 ± 0.0030 [74]

Z H , H → bb̄ (pT,V ∈ [75, 150] GeV) 139.0 0.0425 ± 0.0359 0.0506 ± 0.0041 [74]

Z H , H → bb̄ (pT,V ∈ [150, 250] GeV) 139.0 0.0205 ± 0.0062 0.0188 ± 0.0024 [74]

Z H , H → bb̄ (pT,V ≥ 250 GeV) 139.0 0.0054 ± 0.0017 0.0049 ± 0.0005 [74]
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Table 7 CMS Higgs rate measurements from LHC Run-2 included in the default observable set LHC13_Apr2020 in HiggsSignals-2.6.0

Channel Luminosity [fb−1] Signal strength μ References

pp → H , H → μ+μ− 35.9 1.0+1.1
−1.1 [75]

W H , H → bb̄ 35.9 1.7+0.7
−0.7 [76]

Z H , H → bb̄ 35.9 0.9+0.5
−0.5 [76]

pp → H (boosted), H → bb̄ 35.9 2.3+1.8
−1.6 [77]

t t̄ H , H → bb̄ (1ℓ) 35.9 ⊕ 41.5 0.84+0.52
−0.50 ⊕ 1.84+0.62

−0.56 [78,79]

t t̄ H , H → bb̄ (2ℓ) 35.9 ⊕ 41.5 −0.24+1.21
−1.12 ⊕ 1.62+0.90

−0.85 [78,79]

t t̄ H , H → bb̄ (hadronic) 41.5 −1.69+1.43
−1.47 [78]

t t̄ H , multilepton (1ℓ + 2τh) 35.9 ⊕ 41.5 −1.52+1.76
−1.72 ⊕ 1.4+1.24

−1.14 [80,81]

t t̄ H , multilepton (2ℓss + 1τh) 35.9 ⊕ 41.5 0.94+0.80
−0.67 ⊕ 1.13+1.03

−1.11 [80,81]

t t̄ H , multilepton (2ℓss) 35.9 ⊕ 41.5 1.61+0.58
−0.51 ⊕ 0.87+0.62

−0.55 [80,81]

t t̄ H , multilepton (3ℓ + 1τh) 35.9 ⊕ 41.5 1.34+1.42
−1.07 ⊕ −0.96+1.96

−1.33 [80,81]

t t̄ H , multilepton (3ℓ) 35.9 ⊕ 41.5 0.82+0.77
−0.71 ⊕ 0.29+0.82

−0.62 [80,81]

t t̄ H , multilepton (4ℓ) 35.9 ⊕ 41.5 0.57+2.29
−1.57 ⊕ 0.99+3.31

−1.69 [80,81]

σobs [pb] σSM [pb]

gg → H , H → W +W − (0 j) 137.0 0.0423+0.0063
−0.0059 0.0457+0.0029

−0.0018 [61]

gg → H , H → W +W − (1 j) 137.0 0.0240+0.0057
−0.0051 0.0217+0.0023

−0.0022 [61]

gg → H , H → W +W − (2 j) 137.0 0.0151+0.0051
−0.0046 0.0100+0.0020

−0.0011 [61]

gg → H , H → W +W − (3 j) 137.0 0.0050+0.0045
−0.0042 0.0033+0.0002

−0.0004 [61]

gg → H , H → W +W − (4 j) 137.0 0.0064+0.0039
−0.0034 0.0018+0.0001

−0.0002 [61]

VBF, H → Z Z 137.1 0.279+0.211
−0.162 0.450 ± 0.010 [82]

gg/bb̄ → H , H → Z Z 137.1 5.328 ± 0.611 5.550+0.600
−0.650 [82]

V H , H → Z Z 137.1 0.305+0.243
−0.194 0.270 ± 0.010 [82]

t t̄ H, t H , H → Z Z 137.1 0.0078 ± 0.0552 0.060+0.011
−0.012 [82]

gg → H , H → γ γ (0 j) 77.4 0.072 ± 0.0122 0.0610+0.0037
−0.0031 [83]

gg → H , H → γ γ (1 j, pT,H high) 77.4 0.0029+0.0017
−0.0012 0.0017 ± 0.0002 [83]

gg → H , H → γ γ (1 j, pT,H low) 77.4 0.021+0.0090
−0.0075 0.015 ± 0.0015 [83]

gg → H , H → γ γ (1 j, pT,H med.) 77.4 0.0076 ± 0.0040 0.010 ± 0.001 [83]

gg → H , H → γ γ (2 j) 77.4 0.0084+0.0066
−0.0055 0.011 ± 0.002 [83]

gg → H , H → γ γ (BSM) 77.4 0.0029 ± 0.00104 0.0013 ± 0.0003 [83]

VBF, H → γ γ 77.4 0.0091+0.0044
−0.0033 0.0011 ± 0.002 [83]

t t̄ H , H → γ γ 137.0 0.00156+0.00034
−0.00032 0.0013+0.00008

−0.00011 [28]

V (had)H , H → τ+τ− 77.4 −0.0433+0.057
−0.054 0.037 ± 0.001 [64]

VBF, H → τ+τ− 77.4 0.114+0.034
−0.033 0.114 ± 0.009 [64]

gg → H , H → τ+τ− (0 j) 77.4 −0.680+1.292
−1.275 1.70 ± 0.10 [64]

gg → H , H → τ+τ− (1 j , pT,H high) 77.4 0.108+0.071
−0.061 0.060 ± 0.010 [64]

gg → H , H → τ+τ− (1 j , pT,H low) 77.4 −0.139+0.562
−0.570 0.410 ± 0.060 [64]

gg → H , H → τ+τ− (1 j , pT,H med.) 77.4 0.353+0.437
−0.420 0.280 ± 0.040 [64]

gg → H , H → τ+τ− (2 j) 77.4 0.0987+0.1911
−0.1806 0.210 ± 0.050 [64]

gg → H , H → τ+τ− (1 j , p
j1
T > 200 GeV) 77.4 0.0199+0.0145

−0.0148 0.0141 ± 0.0004 [64]

gg → H , H → τ+τ− (Rest) 77.4 −0.195+0.506
−0.491 0.184 ± 0.005 [64]
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