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High-Accuracy Circuits for On-Chip Capacitor Ratio Testing
and Sensor Readout

Chapter 1. Introduction

The precise measurement of a capacitance difference or ratio in a digital form is

very important for capacitive sensors, for CMOS process characterization as well as for the

realization of precise switched-capacitor (SC) data converters, amplifiers and other circuits

utilizing ratioed capacitors. Capacitive sensors are widely used in automation of process

and manufacturing industries, in experimental engineering, in non-manufacturing areas

such as environmental control (air, noise, water), in cars and household machines, etc. The

development of sensor technology made high sensitivity sensors available, which need

high-accuracy sensor interfaces. On the other hand, in SC circuit design, it is often

necessary to obtain information about capacitor matching on the chip since circuit

performance usually depends on how good the matching is. Thus, the accurate

measurement of on-chip capacitor matching is necessary for the correct characterization of

process. In circuit design, it is very helpful in determining design approaches and

performance. Capacitor matching errors as small as 0.1% or better [1] have been achieved

in some processes. It is obvious that the accuracy of the measuring system needs to be better

than that.

This thesis introduces design techniques for high-accuracy on-chip capacitor ratio

testing and sensor interfaces that utilize sigma-delta modulation. Several single-ended

circuits are introduced, and the correlated-double-sampling (CDS) technique is used in the

circuits to reduce the non-ideal effects of opamps. Simple calibration schemes for clock-

feedthrough cancellation are also introduced and discussed. A fully-differential

implementation is also introduced and various common-mode feedback schemes are

discussed and analyzed. Simulation results show that these circuits can provide extremely
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accurate results even in the presence of non-ideal circuit effects such as finite opamp gain,

opamp input offset and noise, and clock feedthrough effect from the switches. One single-

ended and one fully-differential prototype have been developed and tested. The

measurement results confirmed the highly accurate results obtained from the simulations.

1.1 Motivation

In high-performance SC circuit design, knowing the matching error of capacitors is

usually required before the real design begins. For example, in SC filter design, the

matching of capacitors affects the passband ripple, passband edge, stopband attenuation

and other filter performance. In Nyquist-rate SC analog-to-digital (A/D) and digital-to-

analog (D/A) converters, imperfect matching of capacitors causes integral nonlinearities

(INL) and differential nonlinearities (DNL), and hence, generates harmonic distortions.

The matching of capacitors then determines the best achievable signal-to-distortion ratio

(SDR) without using calibration or dynamic matching techniques. Even in SC sigma-delta

modulators, which are usually less sensitive to circuit imperfections, capacitor mismatch

causes errors in realizing the noise transfer functions, and can greatly reduce the signal-to-

noise ratio (SNR) in multi-stage modulators. Capacitor mismatch also causes gain errors in

SC amplifiers. Hence, the accurate measurement of capacitor mismatches can help the

designer to evaluate the potential of a certain circuit configuration to meet its goal or to

decide if extra calibration or dynamic matching techniques are needed for a given

specification.

The major advantages of capacitive sensors are high sensitivity, simplicity of

construction, high frequency response, small size, and small mechanical loading effect [2].

Capacitive sensors are used in many applications, such as liquid-level gauge, pressure

measurement, accelerometers, microflowmeters in medical industrial process control, shaft

torque measurement, capacitive person detector, etc. Accurate sensor readout makes it
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possible to achieve accurate control of processes, and to provide crucial information on the

working condition of devices or machines, so that proper actions may be taken before

problems occur. In some applications, extremely high accuracy is needed.

Normally, the mismatch between two matched capacitors with the same nominal

values is obtained by measuring the ratio of the two capacitors and seeing how much it

deviates from 1.0, or by measuring the ratio of the capacitance difference and the total

capacitance. In sensor applications, usually one sensor capacitor is measured against a

reference capacitor, or both sensor capacitors may change and the mismatch between the

two capacitors is measured. The sensor is usually connected to an interface circuit so that

the data can be collected and analyzed. It is advantageous if the sensor and the interface are

integrated together, so that no external connections are needed, and the noise is reduced.

Oversampling sigma-delta modulation has been well known as a technique to

achieve high resolution converters without requiring high-accuracy components. Over 18-

bit accuracy A/D converters have been reported [3][4][5] without using expensive laser

trimming or calibration processes. Higher accuracy may be achieved by using a high-order

modulator or by increasing the oversampling ratio. Since for fixed capacitor measurements

the signal is at DC, while the signal bandwidth for sensors is usually below 1 kHz, the

oversampling technique is very suitable for signal conditioning. This thesis introduces

design techniques for high-accuracy on-chip capacitor ratio testing and sensor readout,

utilizing oversampling sigma-delta modulation. Several circuits have been developed and

simulation results are presented. Experimental results for two IC implementations are also

shown.
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1.2 Thesis Organization

Chapter 2 introduces some characteristics of capacitor ratio measurements and

capacitive sensor readouts. Some existing techniques for capacitor ratio measurement are

discussed.

In Chapter 3, the fundamentals of oversampling delta-sigma modulation are briefly

reviewed. Then the design of high-accuracy circuits for capacitor ratio testing and sensor

readout utilizing sigma-delta modulation is presented. Several structures are introduced

and analyzed. Simulations results are also shown.

In Chapter 4, some non-ideal circuit effects are discussed and analyzed. The

influence of these non-ideal effects on high-accuracy sensor readout is also discussed and

some solutions are presented.

Chapter 5 introduces a single-ended implementation suitable for fixed capacitor

ratio testing or differential capacitive transducer readout. Design approaches to minimize

non-ideal effects are presented. Simulation and measurement results obtained from the

prototype are also shown.

In Chapter 6, a fully-differential implementation is presented. Existing and new

common-mode feedback schemes are discussed and analyzed. Simulation and

experimental results are also described.

Finally, Chapter 7 summarizes the work and suggests some future work for this

research.
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Chapter 2. Background: Capacitor Ratio Testing and Sensor Readout

In this chapter, a review of the characteristics of capacitive sensors is given.

Following that, the limitations for high-accuracy capacitor ratio measurement are

discussed. Existing techniques for capacitor ratio measurement and sensor readout are

illustrated and analyzed.

2.1 Introduction to Capacitive Sensors

Accurate measurement of capacitor ratios is very important for capacitive sensor

interfaces. The measurement for fixed capacitors can be performed measuring DC signals,

while the continuous varying of sensor capacitors requires readout circuits that can work

for a certain bandwidth. Thus, the technique for measuring on-chip capacitor mismatches

which usually measures DC signals may not be suitable for capacitive sensors. On the other

hand, usually sensor readout circuits can be used for fixed capacitor ratio testing. Next,

structures and characteristics of capacitive sensors will be discussed.

A capacitive sensor is often called a capacitive transducer because it usually

converts a signal from one physical form to a corresponding signal, which is the variation

of capacitance here. In this thesis, we use both terms. A capacitive transducer provides a

usable electrical output for a specified measurand. The term measurand stands for the

quantity, property, or condition that is to be measured; for example, the pressure in a

manifold, the roughness of a surface, or the number of parts on a conveyer [2]. The

transducers can be divided into two categories: input transducer (physical signal to electric

signal) and output transducer (electric signal to display or actuation). The trend,

particularly in robotics, is toward using the term "sensor" to refer to the input transducer

while "actuator" refers to the output transducer [6]. A capacitive transducer converts a

change in the position of the electroconductive plates forming a capacitor, or a change of
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the properties of a dielectric between the plates, into an electrical signal. An illustration is

shown in Figure 2.1. The capacitance of such an element is written as follows

C= EA
, (2.1)

where c is the permittivity of the dielectric, A is the area and d is the distance between the

plates. Alternation of any of the three physical parameters causes a change of the

capacitance. For instance, the top plate can be displaced along the x- and y-axes, providing

a signal proportional to the displacement. If c is affected by temperature or moisture, the

magnitude of C responds to these variables. The displacement of plates parallel to their

planes gives the change of the overlapping area (A). It is usually used to measure big

displacements (>1 mm). A shift in longitudinal position with a variation of d is typical for

measurements of small displacements (<<1 mm). With mechanical elements linked to the

moving plate or with a special substance placed between the plates, the element can be

adapted for measuring displacement, size, proximity to a target, velocities, forces,

accelerations, vibrations, sound intensity, pressure, and levels of liquid [2]. It is widely

used in microelectronic sensors due to its simple structure and ease of microfabrication.

Two recent examples are micromotors [7] and accelerometers [8].

Figure 2.1: Model of capacitive element.
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There are many different structures of capacitive transducers. For simplicity, only

a few are illustrated in Table 2.1. The differential structures allow the reduction of the

nonlinearity of the transfer characteristic and electrostatic force on the moving part. It is

also helpful in the compensation for temperature drift [2].

Table 2.1: Structures of capacitive transducers.

Index
Variable

Parameter
Structure Capacitance

(a) Gap d

Hff ± Ad

EA
C =

d ± Ado)
d

I-0

-40

(b)

Gap d for a

differential scheme

--11

° Cl

1-40-- ± M

C2

d ..!:-

EA
C

1
=

1d -Ad
2

C2 =
EA

d
1

d T
2-

A d

(c) Area A

--i-- ±A

E(A ± AA)
oj

d

Lio d

(d)

Area A for a

differential scheme

i ± A
E(A ± Af4)

C
Ci0-1rr

ar 0

=
1 d

C = E(A T AA)

Hil

0

d
2 d
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2.2 Limitations on High-Accuracy Capacitor Ratio Measurement

Capacitive transducers have many features which make them suitable for a wide

range of applications. A capacitive transducer may have high sensitivity, wide bandwidth,

small size and small mechanical loading effect. It can operate at high temperatures and it is

insensitive to permanent fields, A capacitive transducer can have good linearity,

repeatability, stability and resolution. However, a capacitive sensor/transducer itself does

not provide any useful information without a readout interface which detects the change of

capacitance and converts it into electric signals for measurement and processing. In order

to get accurate representation of the measurand, both the capacitive transducer and the

readout interface need to have high accuracy. Since the accuracy of the capacitive sensor is

not the topic of this thesis, it is assumed that only the interface is the limiting component

for high-accuracy capacitor ratio measurement.

The capacitive sensor may be separate, or the sensor and the interface may be

together on the same chip. The development of silicon technologies has made possible the

integration of microsensors and even micromotors with electronic circuits. A monolithic

solution for a capacitive sensor and its interface is advantageous because it has no outside

interconnects which usually introduce noise, and the cost can be greatly reduced. We will

mainly address the case when the sensor is in a separate part, because then the sensor is

usually more accurate, and the interface tends to have more noise because of the

interconnections.

There are many factors that can reduce the accuracy of the sensor interface. There

are also several dominant factors. The first one comes from the interconnects between the

sensor and the interface circuit. The interconnects act as antennas and can pick up

interference from the outside environment. Since the signal is also transmitted through the
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interconnects, any noise pickup reduces the accuracy. By using shielded matching cables,

the interference can be greatly reduced. But using cables does not solve the problem of

parasitics; in fact, cables tend to generate more parasitic capacitance. The parasitic

capacitance is 10 pF/cm for a typical shielded cable [9]. The parasitic capacitances

associated with a cable are shown in Figure 2.2. Because of the shielding of the cable, Cpar

is greatly reduced [10]. However, Ccable 1 and Ccable2 are usually of the same order as the

sensor capacitor Cs and can usually cause errors in the measurement, unless the interface

circuit is insensitive to parasitic capacitances.

The noise generated by the interface circuit may be the dominant factor in reducing

the measurement accuracy. Since usually opamps and comparators are used as building

blocks in the sensor interface, the noise generated by them affects the accuracy of the

circuit. If only a single transistor is used, as in the floating gate test structure shown in the

next section, the performance of the transistor and its parasitic gate capacitance limit the

precision. In switched-capacitor implementations, the switches generate thermal noise and

noise due to clock-feedthrough and charge injection [11], and that is usually the dominant

noise source in the interface circuit. In order to achieve very high accuracy, the noise due

A

Cpar.

0

B

Cs

Ccable2

0

Figure 2.2: Cable parasitic capacitance.
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to these components must be kept very low. This leads to larger area which increases the

cost. The influence of the noise due to the opamps and switches in switched-capacitor

realizations will be discussed and analyzed in Chapters 4 and 5.

The noise coupling to the interface circuit also affects the performance. In addition

to the noise generated by the interface circuit itself, there might be noise coupled from

various noise sources. One example is the power-supply-coupled noise. The power supply

is usually noisy and if the designer is not careful enough, the noise from the power supply

might greatly reduce the accuracy. The noise may also come from the substrate if the

interface circuit is on a noisy substrate, such as in a big chip with a large amount of digital

circuitry. For high-precision readout, the capacitively coupled interference should also be

considered [12]. Between any pair of conductors there is a finite capacitance. The

interference may come from the output path to the input path, or from the other path in a

differential circuit.

In addition to the factors discussed above, some other effects also need to be

considered. Magnetic field, for example, might cause interference. An induced

electromotive force in the conductors due to the alternating magnetic field can create a

spurious signal. The electric field from a close-by power generator may also cause a 60

Hz/50 Hz spurious signal. Shielding from electromagnetic fields is usually needed to

reduce this interference. Last, but not the least, it should be noted that in order to get a high-

accuracy readout, the test setup needs to be carefully designed so that noise coupling is

minimized. The testing which involves human body interference may be the limiting factor

too. Data averaging is necessary to minimize the short term random errors. Temperature

control during the testing is also important since the capacitive sensor has a certain

temperature coefficient. In Chapter 5, issues for high-precision testing are addressed and

techniques for reducing the noise in the printed circuit board (PCB) are presented.
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2.3 Existing Techniques for Capacitor Ratio Testing and Sensor Readout

The techniques for capacitor ratio measurements differ in various applications.

Many results have been reported, and the accuracy of the measurement varied from 104

ppm to 35 ppm.

2.3.1. Direct Measurements

The immediate solution to measure capacitor ratios is to use capacitance meters.

The ratio between two capacitors can be obtained by simply measuring the capacitances

with the meter. This method is only suitable to measure discrete capacitors and when the

capacitors to be measured are large capacitances, usually bigger than 10 pF. It is very

sensitive to the parasitic capacitances due to the probes, and the parasitic capacitance

strongly depends on the length of capacitor leads and where the probes are connected to the

leads. Hence, large random errors exist and in order to get a precise result, a lot of data are

needed for averaging. Usually, an LCR bridge is used for direct measurement since it

provides a balance and reduces the effect of parasitics [13]. Capacitor bridges can also be

used [14]. The accuracy of direct capacitor measurements is normally limited to 0.1% and

calibration is usually needed [13].

The direct measurement method is not well suited for small on-chip capacitor

measurement when the parasitic capacitance due to the leads or probes is much larger than

the tested capacitors.

2.3.2. Floating Gate Technique

The floating gate technique [15] was introduced as a method for capacitor ratio

measurement in a DC parametric test environment. Figure 2.3 shows the structure. C1 and

C2 are the tested capacitors, M1 is a PMOS transistor and I is a DC current source. Cpar is
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the parasitic capacitance at the gate of the MOS1-ET. n is a DC voltage source and Cl and

C2 form a voltage divider. M1 is configured as a source follower and the output Vout is

monitored. Assuming that the voltages at the gate and source of M1 are big enough so that

M1 is in its saturated strong inversion region, the current-voltage (I-V) characteristics of M1

can be approximated by the following equation [15]

I = 1 CoxW(VsG IVTI)22 n (1 + XVsD) (2.2)

Here, Cox, W, L and X may be considered fixed for a given transistor M1. VGs is the

gate voltage and VDS is the voltage across the drain and source. VT is the threshold voltage

and it may vary when VDS changes. To show the relationship between V0s and VDS,

Eq. (2.2) can be rewritten as

VSG = VSVG =

Vs = VG+

21
-4-1v7,1 , and

t0CoxL(1 +XVSD)

21
TI

Ian(' ox-E(1 + XV sD)

out

Figure 2.3: Floating gate capacitance measurement technique.

(2.3)

(2.4)



For the circuit shown in Figure 2.3, Eq. (2.4) becomes

V C1 V + 2/
+ IVTIout

ox7(1 + AY out)

(2.5)
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where Cpar is ignored. If the length L of M1 is large, X is very small and may be ignored for

simplicity. Also VT may be considered as constant if the variation of VSD is small. Then it

can be see that there is a linear relationship between Vout and Vin, and the slope is

C1 /(Co-C2). The capacitor ratio can be measured by applying at least two different input

voltages and obtaining the slope of the output characteristic.

The accuracy of the floating gate method is usually around 0.1% [15] because of

some fundamental limitations. One problem is the leakage current through the gate of the

PMOS transistor. The leakage current can cause error in the voltage divider and may

greatly reduce the readout accuracy. The leakage current can be reduced by using small size

transistors. Another one is the effect of Cpar, which makes the effective C2 bigger and

generates systematic error. To make Cpar smaller, the top plates of the capacitors should be

connected to the gate. The third limitation is the channel modulation effect of the MOS

transistor. As shown in Eq. (2.5), non-zero X causes a nonlinear factor and it causes the

slope to become nonlinear. By increasing L, X may become smaller, but this also increases

Cpar. One way to reduce this channel modulation effect is to reduce the change of Vout by

applying smaller current I. But then the accuracy of reading the output voltage will be

reduced. The fourth limitation is the voltage-dependent characteristics of the capacitors

because the two capacitors are biased in opposite polarity. Thus, this method is only

suitable for measuring low voltage-coefficient capacitors. The variation of VT due to the

change of Vout is also a limiting factor. Another limitation is that Eq. (2.5) is only an

approximation and the actual characteristic differs in different bias conditions. That limits

the accuracy fundamentally.
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The basic floating gate method can be modified to a so-called double-slope

algorithm [15]. In fact, it can be regarded as the floating gate method with a calibration

scheme to cancel the systematic errors. By switching the location of C1 and C2, two

different slopes (S1 and S2) are obtained, each corresponding to a different capacitor ratio.

The capacitor ratio can be calculated from the following equation

SI -S2 CI-C2 AC
2S

1
+ S2

= 2
C1 + C

2

= C, (2.6)

where C = (C1 + C2)/2 is the nominal value of two matched capacitors and AC is their

difference. Hence, this method is suitable for measuring capacitor mismatches. It was

reported in [15] that by taking 144 observations, the measured standard deviation was 50

parts per million (ppm).

2.3.3. Capacitor Ratio Represented by Charge-to-Voltage and A/D Binary Codes

This technique [16] uses an A/D to represent the capacitor ratio. The reference input

to an A/D is related to the sum of two capacitances, while the signal input to the A/D is

proportional to one capacitor. The block diagram is shown in Figure 2.4. It is designed for

i

R

0
0
15a

Digital Output

t
Vs

V
A/D

,

Controller

Iv,

Figure 2.4: Block diagram of the circuit using A/D to represent the capacitor ratio.
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the differential capacitive transducers as shown in Table 2.1(b) and (d). The first stage is

the capacitance-to-voltage (C/V) converter. When the controller output voltage Vc is high,

both C1 and C2 are connected to Vin and the opamp output is

V1 = -s(C1 + C2)RVin (2.7)

On the other hand, when Vc is low, only C1 is connected to 17,n and the opamp output

becomes

V1 = -sCIRVin (2.8)

The detector converts the opamp output to a DC voltage. When Vc is high, the detector

output is sampled-and-held and connected to the reference input of a n-bit A/D converter.

When is low, the sampled-and-held detector output is connected to the signal pin of the

A/D converter as the DC input voltage. Thus, the A/D converter binary output b is

appoximately

C1
2n = 2nb

-(C1 + C2)R1 C
1

+ C2 (2.9)

Hence, the output binary data of the A/D is directly proportional to the capacitor ratio.

Rearranging Eq. (2.9), the following equation is obtained

CI C2 2C1
1 1

C + C2 CI + C2 2n -1

From Table 2.1(b), it can be derived that

C1 C2 Ad

CI + C2 2d.

and from Table 2.1(d), a similar equation can also be derived:

C1 C2 AA
=

CI + C2 2A.

(2.10)

(2.11)

(2.12)

Thus, there is a linear relationship between the displacement in length or area and the A/D
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output binary code. The method shown in Figure 2.4 is then suitable for use in differential

capacitive transducers similar to those shown in Table 2.1(b) and (d).

The measurement accuracy strongly depends on the accuracy of the CN converter,

of the detector, and of the sample-and-hold circuit. The effects of several error sources were

discussed in [17]. The accuracy of the A/D should be chosen so that it is better than the

desired accuracy of the measurement. A 16-bit A/D converter was used in the discrete

realization. The measured standard deviation was 0.21 fF for 6 pF capacitors, which is

equivalent to a relative error of 35x10-6 (35 ppm).

Another approach to realize the CN converter is to use SC circuitry. A simple CN

converter may be just a SC amplifier, as depicted in Figure 2.5. The input to the amplifier

is a DC signal, and the output is given by

C2

Vout = --,--17in
1

(2.13)

Therefore, by measuring the output voltage, the capacitor ratio C2/C1 can be determined.

Figure 2.5: A SC amplifier with gain and offset compensation.
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This structure is stray insensitive and allows the tested capacitors to be off -chip. The

accuracy of the readout is also insensitive to some non-ideal effects of the opamp, such as

1/f noise, input offset voltage and finite-gain effect.

SC integrators are another alternative to realize the CN converter. Figure 2.6

illustrates an example [18]. The transfer function can be derived as the following

yout C2
H(z) = =

yin C1(1 z )C f

Hence, in steady state, C2 /Ci /V:= Vout in.

(2.14)

From Eq. (2.13) and Eq. (2.14), it can be seen that the SC CN converters can be

used for capacitor mismatch measurement or for capacitive sensors, where C1 is a reference

capacitor and C2 is the sensor capacitor. By using gain-and-offset compensation schemes,

the accuracy of SC C/V converters can be as good as 80 dB (100 ppm). An A/D converter

is usually needed for data analysis and processing. One of the main limitations on the

C2

01/

Figure 2.6: A SC integrator for capacitor ratio testing.

Vout
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accuracy of the SC realization is the clock-feedthrough effect which will be discussed in

detail in Chapter 4.

2.3.4. Measurement Based on Capacitance-to-Frequency Conversion

The capacitor ratio can also be measured by incorporating the tested capacitors in a

oscillator and measure the output frequency or period. This technique can be regarded as

capacitance-to-frequency conversion. A switched-capacitor relaxation oscillator was

introduced by Martin [19] and is shown in Figure 2.7. The oscillation frequency is given by

C f clic2

j ° C
1

4 (2.15)

where folk is the clock frequency and Vdd = Vss is assumed. Hence, the capacitor ratio

C2/C1 can be obtained by measuring the oscillating frequency TheThe circuit is

insensitive to stray capacitances so that C1 and C2 can be off-chip and large parasitic due

to the shielding cable can be allowed. However, the above equation is based on the

assumption that C2 >> > C1 [19]. Thus, this circuit can be used only when C2 » C1,

C2

is

IS

If

Al A2

02

0 1

Vout

Figure 2.7: A SC stray insensitive relaxation oscillator.
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otherwise, the accuracy will be greatly reduced. It is not suitable for measuring the

differential capacitive transducers shown early in this chapter because the capacitors C1

and C2 in this circuit do not have a common node. The oscillator shown in Figure 2.7 can

be modified and the switched capacitor C2 replaced by a resistor, as shown in Figure 2.8.

C1 and C2 are the two capacitors tested and Coll is the parasitic capacitance. When

"select" outputs of the microcontroller are 0, the NAND gates are disabled and the

oscillator has a period Toff [20], where

Toff = 4RCoff. .

When the NAND gate associated with C1 is selected, the period becomes

T1 = 4R(Coff + CO = 4RC1 + T off

When the NAND gate associated with C2 is selected, the period is

T2 = 4R(Coff + C2) = 4RC2 + Toff

From Eq. (2.17) and Eq. (2.18), it can be shown that

Al A2

(2.16)

(2.17)

(2.18)

Microcontroller

IMeasure

Select

0

}

Figure 2.8: Modified Martin oscillator with microcontroller.
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The microcontroller is used to select the different capacitors. It also measures the period

and calculates the capacitor ratio according to Eq. (2.19). One drawback of this scheme is

that it requires all three measurements to be performed in exactly the same way. This

means that the total parasitic capacitance as seen from A 1 must not change during the

measurements. This problem can be solved by using the so-called double-sided

multiplexing scheme. In order to get an accurate measurement of the period, averaging of

a large number of oscillator periods is needed. Measured standard deviation was 50 aF for

a 2 pF capacitor and the total measurement time was 300 ms in [20].

2.3.5. Techniques Based on Charge Balancing

This technique converts the capacitance of the sensor into a charge, and uses

successive approximation to achieve charge balancing. It combines the conditioning circuit

and the A/D converter, and the output is similar to that of a regular successive

approximation A/D converter.

Figure 2.9 shows the simplified diagram of an capacitive sensor interface using a

sample/hold circuit and a charge balancing A/D converter [21]. The first stage is just a SC

amplifier which provides an output charge Q(x) = -VrC(x), where C(x) is the capacitive

sensor and Vr is the reference voltage. Qc is used to compensate for the DC charge in Q(x)

due to any constant offset in C(x). Assuming that (say) a change of pressure causes C(x) to

increase by AC(x), then during each clock cycle a negative charge Q = Q(x) Qc = -VrAC(x)

is transferred to Cf and causes the integrator output Vout to increase. When the integrator

output goes from negative to positive, Oc changes from 0 to 1 and a positive charge Qr =

VrCr flows to Cf and make Vout negative again. This process repeats for 2n clock cycles
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(duration of the hold state) and the counter output number becomes m at the end of the hold

state. Then it can be derived [21] that

m = m12
-1

+ m22-2 + + mn2-n =
AC(x)

2" . (2.20)

Thus, there is a linear relationship between the variance of sensor capacitance and the

digital number. However, a lookup table is needed to get a linear relationship between the

digital number and the measurand when the sensor capacitance does not change linearly as

the pressure changes.

Another scheme for capacitive sensor measurement is shown in Figure 2.10 [22].

Its operation relies on the charge redistribution and balancing. A preamp is placed before

the comparator to help detect small voltage difference. The switching sequence starts with

grounding all the nodes, and the capacitors are discharged. The DAC output is also set to

ground. Then the switch S3 is closed and Si is switched to Vref. So the total charge at the

top plate of the capacitors is -VrefCs. Next, S3 is opened, and subsequently Cs is connected

C(x)

V

SC

Amplifier

Q(x)

Qc (1)

Qr=VrCri

vout

Figure 2.9: A capacitive pressure sensor interface.

n-bit

counter

n
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to ground and Vref is applied to Cr. This causes the charge redistribution between Cs and

C, and Vx changes from 0 to

CrCs
Vx Cs+Cr+ Cp. (2.21)

Then the successive approximation (SAR) process begins and the operation is the same as

for a SAR A/D converter. Hence, at the end of the conversion, Vx is close to 0 and the

output voltage of the DAC becomes

Cs Cr
V DAC = c ref . (2.22)

Since VDAC is the analog representation of the digital data, the digital data has the same

relationship scaled with Vref. This technique can be used to measure capacitance

difference between Cs and Cr, and it can also be used for capacitor ratio testing where Cs

is the sensor capacitor and Cc is the reference capacitor. Cr can be regarded as an offset

capacitor which compensates for the constant part of the sensor capacitor C.

Vref

Microprocessor

Comparator

(SAR

V s
-40-001Control circuits + memory

Figure 2.10:Charge-redistribution capacitance difference detection topology.
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By using analog calibration, the effect of clock feedthrough due to S3 and thermal

noise of S3 can be reduced [22]. During the power-up period, the error due to the clock

feedthrough of S3 and input offset of the preamp is measured and stored in the memory.

Then during the measurement period, the output of the DAC is preset to the error voltage

instead of ground and by doing this the error is removed from the final output data. A digital

calibration scheme was introduced [23] to cancel the input offset and 1/f noise of the

preamp. The kT /C noise of the switch S3 can also be reduced by averaging the data.

Capacitance resolution of 31 aF out of 100 IF capacitors was achieved using the digital

calibration technique [23].

2.4 Conclusions

Capacitive sensors are widely used in industry, as well as in environmental control

and consumer products. Usually sensor interfaces are needed to convert the physical

variations into electric form so that the variations can be accurately observed. In the past,

various interface circuits have been introduced to provide capacitor ratio or difference

measurement. However, the accuracy of most of the interface circuits is limited by the

noise from the circuit components, and demand for higher accuracy requires new

techniques. Oversampling sigma-delta modulation has been well known to be effective in

achieving high-resolution A/D converters under low frequency range. By using

oversampling, the sensitivity to noise from circuit components, as well as the errors due to

component matches can be greatly reduced. This leads to the design of interface circuits

that utilize oversampling sigma-delta modulation to achieve very high accuracy in

capacitive sensor interface circuits.
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Chapter 3. Capacitor Ratio Readout Circuits Using Oversampling Delta-Sigma
Modulation

In the last chapter, various techniques for capacitor ratio or difference measurement

have been discussed. Some techniques are only good for fixed capacitor ratio measurement,

and some are suitable for capacitive sensor interfaces where the sensor capacitors vary

continuously. This chapter introduces new techniques for very high-accuracy capacitor

ratio measurements. Utilizing oversampling delta-sigma modulation, several new

structures with 1-bit digital output are presented. They are suitable for both on-chip

capacitor mismatch testing or capacitive sensor readout. Some background of

oversampling delta-sigma modulation is reviewed first. Then the SC realization of the

delta-sigma modulator is briefly discussed. That is followed by the introduction of new

structures for capacitor ratio measurements based on first-order modulation. Structures

based on higher-order modulations are also presented and simulation results in SWITCAP2

are shown.

3.1 Oversampling Delta-Sigma Modulation: Background

Oversampling delta-sigma modulation has become popular in recent years because

it avoids many of the difficulties encountered with conventional methods for analog-to-

digital (A/D) and digital-to-analog (D/A) conversion. Oversampling A/D converters can

use very simple and high-tolerance analog components and achieve high-resolution

representation of relatively low-frequency analog signals. In instrumentation applications

such as the sensor interfaces, the band of interest is usually at low frequencies, thus by

incorporating delta-sigma modulation into the sensor interfaces very high-accuracy

interface circuit can be obtained. Here, the basic principle is discussed as a background for

the new structures proposed for capacitor ratio measurements. More description and

analysis on the theory and design of delta-sigma data converters can be found in [24][251.
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3.1.1. Quantization and Oversampling

Quantization of amplitude and sampling in time are at the heart of all A/D

converters [25]. Periodic sampling at rates more than twice of the signal bandwidth need

not introduce distortion, but quantization does. Usually a smart sensor interface needs to

provide digital output for calibration, analysis and control, and many interface circuits use

A/D converters. Quantization noise is one of the dominant noise sources in A/D converters.

The most commonly used quantization is uniform quantization, which has equal

quantization steps denoted as A. An example is shown in Figure 3.1(a), where the

Input range Over-load
11.1.0

I

I

(a)

I Input range
1-141 II.

(b)

Figure 3.1: (a) An example of uniform multi-level quantization
characteristic. (b) Single-bit quantization.
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continuous amplitude signal x is rounded off to 8 discrete levels and e is the quantization

error. It is useful to represent the quantized signal y by

y = Gx+e, (3.1)

where the gain G is the slope of the straight line that passes through the center of the

quantization characteristic. Other non-ideal effects, such as DC offset and non-linear gain

error, can be taken into account in Eq. (3.1). The above consideration remains applicable

to a 1-bit quantizer, as illustrated in Figure 3.1(b), but in this case the choice of gain G is

arbitrary.

If there are total 2n quantization levels, we talk about an n-bit quantization. For

example, the one shown in Figure 3.1(a) is a 3-bit quantizer. If the range of the output

amplitude is normalized to ±1 , the quantization step, or the value of the least-significant-

bit (LSB) is then given by A = 2/(2n 1) . The error e is completely defined by the

input, but if the input changes randomly between samples by amounts comparable to or

greater than A, and without saturating the quantizer, then e can be regarded as a random

variable uniformly distributed in the range ±A /2 . Under these assumptions, the

quantization error e can be treated as white noise, and its mean-square value, i.e. the power

of the quantization error is given by

2

A

A26 = 1
f

e
2de

=
e A

2

(3.2)

As can be shown by simple calculation, the peak signal-to-noise ratio (SNR) of an ideal n-

bit linear quantizer with a full-scale sine-wave input is approximately 6n dB.

In conventional Nyquist rate ADCs or DACs, higher resolution is achieved by using

smaller step sizes (i.e. increasing n) which requires precisely matched analog components.
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As a result, the practical limit with current (untrimmed) circuit techniques is about 14 bits

of resolution. Trimmed circuits can achieve 16 or more bits of resolution, but are expensive.

Oversampling [25] is simply the process of sampling faster than the Nyquist

criterion requires. If the signal occupies the band from DC to fB and the sampling rate is

fs, the oversampling ratio (OSR) R is defined as R = fl(2fB). For quantizers with

broadband quantization noise, oversampling reduces the amount of in-band quantization

noise. Oversampling also eases the anti-alias filter design, since a wide transition band is

created by the increased separation between the signal band and its first alias.

Oversampling also reduces the sensitivity of circuit performance to wideband noise

sources, such as the thermal noise of the switches and opamps in SC circuits. This allows

the conversion to be much more accurate than the resolution of the quantizer. Specifically,

each octave increase in the OSR results an increase in resolution of 3 dB (0.5 bit). As the

next Section will show, delta-sigma modulation improves significantly this trade-off.

3.1.2. First-Order Delta-Sigma Modulator

A more efficient oversampling quantizer is the delta-sigma modulator. Figure 3.2

shows a first-order delta-sigma (As) modulator with a single-bit quantizer. The loop

performs two operations: subtraction of the feedback signal from the output through the

DAC (delta) and accumulation of the difference (sigma). The modulator has four major

building blocks: the subtractor, the integrator, the quantizer and the 1-bit DAC. Assuming

that the modulator is stable, the operation may be briefly described as follows: for the

integrator output to be bounded, the DC component (or the low-frequency components) of

the DAC output must be very close to the input signal, due to the high gain of the integrator

at low frequencies. Hence, the 1-bit output is a good digital representation of the analog

input signal at low frequencies. For input signals very close to DC, the gain of the integrator
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is extremely high, thus, the baseband components of the feedback signal will be nearly the

same as the input signal, and the first-order modulator will provide very high resolution.

Assuming that the gain of the quantizer is 1, the z-domain description of the

modulator is

V(z) = z-1 U(z) + ( 1 z-1 )E(z), (3.3)

where V is a discrete-time binary-valued signal, U is a discrete-time continuous-amplitude

signal and E is the quantization error [26]. According to Eq. (3.3), the quantization error is

frequency-shaped by the function H(z) = 1 z-1 . H(z) is called the noise transfer

function (NTF) which, in this example, has a zero at DC and thus suppresses the

quantization noise in the vicinity of DC.

Assuming that E is white with total power of 6e , the in-band noise power for the

first-order modulator is given by

cy2 n G2 7E

,2 effi jol2d0) el/20)2de)
lv 0 0 In

IC 0

2

ae2 R

3R3
(3.4)

A2 1
where Ge = = if e is uniformly distributed in [-1, 1] . Eq. (3.4) indicates that an

octave increase in R will increase the SNR by 9 dB. In principle, the in-band quantization

noise can be made as small as desired, simply by making R large enough. Generally, the

Figure 3.2: A first-order delta-sigma modulator.
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resolution of a delta-sigma converter can be improved by clocking faster, and not by using

larger, more sensitive analog circuitry.

The primary disadvantage of first-order AZ modulators is that a high oversampling

ratio is needed to achieve high resolution. For example, if we want 16-bit resolution, the

oversampling ratio must be about 1500. Except for very low-frequency applications, a high

oversampling ratio leads to a high sampling frequency and thus to difficulties in

implementation. As the next Section will show, the oversampling ratio required to achieve

a given resolution can be made smaller if higher-order AE modulators are used. Another

disadvantage of first-order AZ modulators is the presence of idle tones in the modulator

output caused by limit cycles, especially when the input is a DC signal [27]-[29]. To ease

this problem, several methods may be used, such as using multi-bit DAC feedback [30],

chaotic modulation [31]-[33], or adding a dither signal [34][35].

3.1.3. Higher-Order Delta-Sigma Modulators

A general model of a delta-sigma modulator with one quantizer is shown in

Figure 3.3. The modulator shown consists of three blocks: a loop filter, a quantizer and a

U
Lo

G
=

Loop Filter

11PL = 1

H

z
uantizer

<DAC

V=GU+HE

Figure 3.3: A general model of a delta-sigma modulator with
one quantizer.
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feedback DAC. Modeling the quantizer with V = Y + E, the output of the modulator

becomes

V(z) = G(z)U(z)+ H(z)E(z) ,
(3.5)

where G(z) and H(z) are the signal transfer function (STF) and noise transfer function

(NTF) of the modulator, respectively. To achieve spectral separation between signal and

noise, the magnitude of STF must be close to 1 in the band of interest whereas the NTF

must be close to 0.

One of the simplest higher-order delta-sigma modulator is the double-loop, or

second-order, delta-sigma modulator [36]. A general structure is illustrated in Figure 3.4

[37]. The signal transfer function G(z) and the noise transfer function H(z) of this modulator

are

z
G(z) =

z2 + (-1+ a + 0 +7)z + (1P 1)'
and (3.6)

z2+( 2 +a+13)z+(1-13)
H(z) = (3.7)

z2+(-1+a+13+7)z+(1(3-7).

Figure 3.4: A general second-order delta-sigma modulator.
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In the most common case, (a, 13, y) = (0, 0, 1), G(z) = z-2 and

H(z) = (1 z-1)2 . This modulator will be referred to as MOD2. Other structures can also

be used to realize MOD2 and some realizations will be described later in this chapter.

Assuming that E is a white noise with power of :5, the noise power in the band of interest

is

0-2 n G2114

Nr,2 = H(eiw)12dW
e ffio 4dco

u 5R5
(3.8)

and thus an octave (factor of two) increase in R will increase the SNR by 15 dB, which,

compared with the first-order modulator, is a 6 dB/octave improvement.

Even higher order modulators can be designed by employing higher-order NTFs.

Also, the positions of the zeros in high-order NTFs need not to be all at DC, and can be

optimized to further reduce the noise power in the band of interest. Some of the loop filter

coefficients can be chosen to distribute the zeros around DC to optimize the in-band NTF

response [38]. Cascaded architectures or modulators using multibit internal DAC can also

be used [24].

When deriving the signal and noise transfer functions, the quantizer operation was

modeled by the relation v = y+e. This is often called the linear model. The linear model

allows the quantizer, a nonlinear system, to be treated as a linear system with independent

inputs y and e. Note that e and y are in reality functionally related and therefore not

completely independent. For linear systems with stable transfer functions, the output and

the internal states are bounded if the input is bounded. However, the same cannot be said

for delta-sigma modulators with stable signal and noise transfer functions, because e is not

a real input e is derived from y, in a nonlinear way. It is possible for G(z) and H(z) to

be stable and yet result in a modulator with unbounded internal states. For a first-order

modulator, it is easy to show [39] that if juj 1 , where the input u is normalized to the
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reference voltage, then the state y is bounded with lel 5_ 1 . But for higher-order modulators,

the stability issue is much more complicated and the limit on the input u becomes smaller

for stable operation [24]. It should be noted that for a single-bit quantizer, the output can

be represented by v = ky + e , where the quantizer gain k is unknown. An empirical

approach to model the gain of a singe-bit quantizer is given in [40]. It is very useful for

designing stable second-order modulators and also cascaded modulators.

3.2 SC Realization of Delta-Sigma Modulators

The delta-sigma modulators can be realized using SC circuits. Figure 3.5 illustrates

a SC realization for the first-order delta-sigma modulator shown in Figure 3.2. The

integrator with the transfer function of is realized by one opamp, two capacitors
1 z-1

and 4 switches; the DAC by two voltage references and two extra switches; and the

quantizer by a simple comparator and a D flip flop [41]. The analog circuitry appears to be

quite trivial. By rearranging the clock phases controlling the switches, the integrator with

transfer function
1

can also be realized. However, the loop must contain at least one
1

delay T.

u
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Figure 3.5: A switched-capacitor implementation of a first-order modulator.
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SC integrators can be cascaded to realize high-order delta-sigma modulators, but

care should be taken to insure that the integrator outputs are bounded and also the opamp

outputs do not saturate. This leads to the necessity of adding a gain factor to the integrator

to scale the integrator outputs, so that the opamps are operating in their linear region.

3.3 Basic Structures for Capacitor Ratio Measurement

Based on oversampling delta-sigma modulation, high-accuracy circuits for

capacitor ratio measurement can be designed. The following part of this Section introduces

three structures which can be used in different applications.

3.3.1. Structure Based on a Delta-Sigma Modulator

Figure 3.6 shows a SC delta-sigma modulator that is often used in oversampling

A/D converters. C1 is usually called the sampling capacitor and C2 is called the DAC

feedback capacitor. If C1, C2 and Cf are all equal, the noise transfer function of this

modulator is H(z) = 1 z-1 , and the signal transfer function is G(z) = z-1 . Hence it

realizes the first-order shaping of the quantization noise. On the other hand, if input u is

Figure 3.6: A SC first-order delta-sigma modulator for capacitor
ratio measurement.
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connected to the reference voltage Vref, then C1 can be a capacitor to be measured and C2

the reference capacitor. Assuming that the modulator is stable, which means that the

integrator output must be bounded, the average charge which flows from C1 and C2 to Cf

is close to 0 (charge balance). Suppose that the total number of clock cycles is N, then the

total charge from C1 is NV refC 1 , while the charge from C2 is

(N n)V refC2+ nC2Vref , where n is the number of clock cycles when y is "1". If the

average of the charges is approximately 0, the following relationship is obtained

2nc 41 )C ----- 0 ,
1 2

(3.9)

where nIN is the average of v. If nIN is replaced by a new variable gave,aye, the above equation

can be rewritten as

C1
---, _ 2y ave 1 (3.10)

As Eq. (3.10) shows, the ratio of two capacitors C1 and C2 can be obtained by simply

averaging the digital output data.

An alternative way to measure the capacitor ratio C1 /C2 is using spectral analysis.

For a traditional delta-sigma modulator, the input is u, and usually C1 = C2 = C. The charge

flow from the input signal is uC, and the charge from the feedback path is either Vref C

or Vref C , depending on the level of digital output y. The performance can be evaluated

by measuring the signal and noise power in the output spectrum. Suppose u is a sinewave

with amplitude Vm, then the normalized signal power is (Vm/Vref)
2/2

. If in Figure 3.6,

u is connected to Vref, C1 is the tested capacitor and C2 is the reference capacitor, then the

charge from the input signal is Vref Ci and the charge from the feedback path is either

V refC2 or V refC2' depending on y. This is equivalent to a regular modulator with input

u = VrefCl /C2 and the sampling and feedback capacitors equal to C2. Now in the output

spectrum, the normalized signal power becomes
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/2 . (3.11)
7 refC2

i /2 = (C2

Hence, by measuring the signal power and the noise power in the band of interest, the

capacitor ratio can be obtained.

It should be noted that C2 > C1 is required so the equivalent input voltage u =

V refCi/C2 is less than V ref As stated in earlier Section, when higher-order modulator is

used, u must much smaller than V otherwise the modulator is not stable. For second-

order modulators, u may be as large as 0.6Vref and the modulator will still be stable [24].

Then C1 < 0.6C2 must hold for the maximum value of C1. Therefore, this structure is only

suitable for sensor applications where C1 is the sensor capacitor and C2 the reference

capacitor, and C2 is larger than C1. It is not suitable for capacitor mismatch measurement

where C1 is very close to C2 or even larger than C2.

3.3.2. Structure for Differential Capacitive Displacement Sensor or Capacitor Mis-
match Measurement

The differential capacitive sensor structure shown in Table 2.1(b) has been widely

used because it reduces the nonlinearity of the transducer characteristic [17]. The

relationship between the capacitor ratio and the displacement can be written as

C1 C2
=

Ad

CI + C2 2d
(3.12)

where d is the distance between the center plate and the left plate or the right plate when

there is no pressure applied; Ad is the displacement of the center plate, as shown in

Table 2.1(b). Since d is fixed, Eq. (3.12) reflects that the capacitor ratio is a linear function

of the displacement. To obtain a linear readout of the displacement, the interface circuit

should then provide a linear readout proportional to C
1

C2

CI + C2
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In Eq. (3.11), the DAC feedback capacitor C2 is in the denominator of the capacitor

ratio. It suggests that if C1 and C2 are both used in the DAC feedback loop, (C1 + C2) will

be in the denominator of the output formula. The circuit diagram of the structure is shown

in Figure 3.7 [42]. In this circuit, C1 and C2 are used both as sampling capacitors and DAC

feedback capacitors. The operation can be described as follows. Suppose y = "1". During

the clock period when .131 is high, C1 is disconnected from the input reference voltage and

C2 is discharged to ground. There is no charge delivered to the capacitor Cf so the integrator

output remains unchanged. Next, at the next clock phase, 4)2 goes high, and a positive

charge equal to VrefC2 is delivered to Cf. This causes the output voltage of the integrator to

decrease by VrefC2 /Cf. If the integrator output voltage is below zero, y becomes "0" and

now C2 is disconnected from the input Vref. Then during the clock phase when 01 is high,

C1 is charged to Vref. When 02 goes high, C1 is discharged between ground and the virtual

ground, and a negative charge equal to -VrefCi is delivered to Cf. The integrator output is

then increased. The output waveform of the integrator is shown in Figure 3.8. The voltage

Vref

Figure 3.7: A first-order circuit for differential capacitive displacement
sensors or capacitor mismatch measurement.
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Vo varies around ground, and its average is close to zero. The negative feedback tends to

make the average charge from C1 and C2 to be 0, and the following equation can be derived

17 C2 Vref (N n)Ci Vref 0, (3.13)

where N is the number of clock cycles and n is the number of clock cycles when y is "1".

Then the relationship between the capacitance ratio and the average of output data y

becomes

C2
yave, and

CI + C2

C1 C2
1-2yave,

C
1

+ C2

(3.14)

(3.15)

where gave is the average of the output binary data. Clearly, gave is a linear function of the

displacement according to Eq. (3.12) and Eq. (3.15). Hence this structure is suitable for

measuring the displacement without calibration for nonlinearity. As Eq. (2.6) shows, this

structure can also be used for on-chip capacitor mismatch measurement. There are no

limitations on the value of the capacitors in the measurement. Thus, C1 can be equal to C2

(Yave = 0.5), or much smaller than C2 (Yave 1).

Vo

f 0

VrefCl /Cf

0. time
VrefC2/Cf

Figure 3.8: Output waveform of the integrator in the circuit for
capacitive displacement sensor readout.
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The capacitor ratio can also be obtained from the output spectrum. From Eq. (3.13),

it can be see that this structure is equivalent to a SC delta-sigma modulator with a DC input

equal to c
CI

+ cC2 Vref and with the sampling capacitor and the DAC feedback capacitor
1 2

both equal to (Co-C2)/2. Hence, in the output spectrum, the normalized signal power is

(CI
2/2 . Hence, by measuring the normalized signal power and the in-band noise

C'i + C2

power in the output spectrum, the capacitor ratio can obtained.

It should be noted that this structure does not provide a linear readout when C1 and

C2 are not in a differential configuration. For example, C1 may be the sensor capacitor as

shown in Table 2.1(a) and C2 is a capacitor with fixed capacitance. Suppose that

0.52
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Figure 3.9: (a) Plot of the output yave in time domain.
(b) Plot of the output gave in frequency domain.
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C1 = C2(1 + k sin (wt)) , where the nominal value of C1 is C2, and the variation of C1 has

a sinewave pattern. Then Eq. (3.14) becomes

Cn 1
=

C
1

+ C2 2 + k sin(o)t) gave (3.16)

The function and the frequency components in the output are plotted in Figure 3.9. Here,

instead of getting a single-tone sinewave at the output, harmonics exist even when the

variation of C1 contains only one frequency component.

3.3.3. Four-Phase Structure for Capacitor Ratio Measurement

Another structure for capacitive sensor readout or mismatch measurement is

introduced in this Section. It is useful in capacitive sensor applications where the variation

of the sensor capacitor is measured against a reference capacitor. Figure 3.10 illustrates the

diagram of this structure which needs four non-overlapping clock phases for its operation.

Oa 02 +03 +04 441+03-FY04

Vref

T

( 1)1 (1)3 01_ 102Fr);

Figure 3.10:A four-phase structure for capacitor sensor readout.
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In this structure, the operation is a little different from the previous introduced

structures. C1 is used in both the sampling and DAC feedback paths while C2 is only used

in the sampling phase. During the period when 4)1 is high, C1 is charged to Vref and C2 is

discharged to ground. At the next phase when (1)2 is high, a positive charge delivered by C2

and a negative charge delivered by C1 is transferred into the integrator feedback capacitor

Cf, causing the output of the integrator to change by Vref (C1 C2)/ Cf . Then, when 4)3 is

high, C1 is charged to Vref or discharged to ground, depends on whether y is "0" or "1".

During the interval when 04 is high, a negative charge equal to Vref C1 is delivered to Cf

when y = 0. If y = 1, a positive charge Vref C1 is transferred to Cf. So, basically, C1 is acting

as a DAC feedback capacitor during phase 3 and phase 4. The output waveform of the

integrator is depicted in Figure 3.11. The average charge delivered to Cf is close to 0 after

many clock cycles, thanks to the negative feedback through C1. Hence, the following

equation is obtained

N(C2 COV f + (N n)C1V fnCiVf,--- 0 , (3.17)

where the definitions of N and n are the same as before. The relationship between the

Vo

f 0

VrefCl /Cf

Vref( C2- Ci )/Cf 1

_

1T
_I J _J

_J
_J

_I

time

Figure 3.11:Output waveform of the integrator in the four- phase circuit.



capacitor ratio and the binary data average yave is derived from Eq. (3.17) as

C2
,- 2yci ave (3.18)
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The capacitor ratio is directly proportional to the average of binary output. It provides a

linear readout of capacitance variation when C1 is a reference capacitor and C2 varies

continuously. It can be seen from Eq. (3.18) that the range of capacitance variation is 0<

C2 < 2C1, since yave can vary from 0 to 1. Hence, this structure is also suitable for fixed

capacitance measurement such as on-chip capacitor mismatch measurement.

Again, from the output spectrum, the capacitor ratio can be measured. In

Figure 3.10, C1 is the DAC feedback capacitor and the signal charge is Vref(C1 -C2) during

each clock cycle. Hence, this structure can be regarded as a regular modulator with a DC

input equal to Vref(CI -C2)/Ci and a sampling capacitor equal to C1. Then in the output

spectrum, the normalized signal power is

3.4 Second-Order Structures

/2.
C1

The structures introduced in the previous Section are all based on first-order

modulation with single-bit quantizers. As explained earlier in Section 3.1.2, a first-order

modulator with single-bit quantizer needs a very high oversampling ratio to achieve high

resolution, which limits the achievable bandwidth of the input signal. The first-order

modulator also suffers from idle tones. One solution is to use multibit quantizers. As shown

in Eq. (3.2), the quantization error 6e2 is reduced because the quantization step A in a

multibit quantizer is smaller. However, the linearity of the DAC in the feedback loop

becomes a limiting factor of the performance. Various techniques have been introduced to

reduce non-linearities of the DAC in the band of interest [43]. However, the complexity of

the circuit is greatly increased.
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Another solution is to use high-order modulators, as discussed in Section 3.1.3. For

an oversampling ratio of 256, the maximum achievable SNR for first-order, second-order

and third-order modulator modulators is 72 dB, 102 dB and 132 dB, respectively [24].

Here, second-order modulators are preferable because they are easy to make stable and

their realization is much easier than of third-order modulators. Since in capacitive sensor

applications the band of interest is normally around a few kHz, for an oversampling ratio

of 256 the sampling frequency makes the SC implementation still reasonable. With careful

design, a second-order modulator can easily provide 16-bit accuracy. The possibility of idle

tones is also greatly reduced.

3.4.1. Design of Second-Order Modulators

A possible realization of a second-order modulator is shown in Figure 3.12. It

consists of two cascaded delayed integrators, and is a simplified structure of the one shown

in Figure 3.4. Several scale factors have been added to reduce the swing of each integrator

so that the outputs are within the linear range of the opamps in the integrators. Now the

U(z)

E(z)

1/v

X(z)

<DAC

k

Y(z)
--0---1111110.

Figure 3.12:A realization of the second-order modulator.
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performance of the modulator depends on how these factors are chosen. The output of the

quantizer is given by

r
z
-1 1

a2z
,a i(U (z) b iY (z)) 1 b2Y (z)

1
k + E(z) = Y(z)

1 z )1 z

(3.19)

where the transfer function of the quantizer is modeled as Y(z) = kX(z) + E(z) , k is the

gain of the quantizer and E(z) is the quantization error in the z domain.

The quantizer gain k is hard to derive by numerical analysis but can be modeled

empirically by simulations. It can be assumed that the effective closed-loop gain is forced

by the feedback to be unity, and then k = 1/a1a2b1 [40]. As is well known, the closed-loop

A
igain of the general model with unity negative feedback shown in Figure 3.13 is

1 + A

When A is very large, the closed-loop gain is approximately 1. The gain of the modulator

shown in Figure 3.12 to the input signal can also be assumed to be 1 at low frequencies. It

is based on the fact that the integrators have very large gain at low frequencies and it will

be shown later that the subsequent analytical results compare well with simulation results.

It can be shown that k must be equal to
1

for the loop gain to be unity [44].
aia2u1

Substituting k =
1

in Eq. (3.19) and comparing it with the second-order modulator
a la 2 b 1

relation

Figure 3.13:A general model for a gain block with unity negative
feedback.



Y(z) = U(Z)Z-2 + (1 z
_1

)
2
E(Z) , (3.20)

then b2 = 2a 1 b 1 and b 1 = 1 are obtained. Choosing a 1 =

44

1

a2 = and b 1

22 2

simulations show that the outputs of the integrators are less than 0.8 of the full scale for

input values up to 0.6 of full scale. When the input signal is small, a1 = -1 = -1 and
2 2

b2 = 1 can also be used without causing the integrator output to exceed the linear range

of the opamps. All these coefficients are simple and the modulator is easy to implement in

SC circuits.

The second-stage integrator can be replaced by a bilinear stage and the DAC

feedback loop to the second stage integrator can be eliminated, as shown in Figure 3.14.

The output now becomes

1

Z
Y(z)) k+E(z) = Y(z).

1-z- 1 -1) 1-z
(3.21)

Using the same empirical approach, the quantizer gain is k =
1

. Replacing k by
a1 1 2

U(z)
al -1

a2 -b2z

1 z-1

E(z)

X(z)

DAC

k

Y(Z)

Figure 3.14:Another realization of the second-order modulator.
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in Eq. (3.21), it can be rewritten as

a1b1b2

a2 1

z
bib2 F 2b1 (Z 1)

U(Z)+ E(z) = Y (z) .

(z 1)2 + (Ci.Z 11 (Z 1)2 + r-2Z 11

2 i 2

(3.22)
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It can be seen from Eq. (3.22) that if the denominators on the left side equal z
2

, the noise

21

transfer function becomes (1 z ) , which realizes the second-order modulation. Now

a2 = 2b2 is obtained and the signal transfer function is G(z) = (2z-1 Z-2)/b1 . The

choice of a 1 and a2 is arbitrary but they should be chosen so that the outputs of the

integrators are in their linear range.

The modulators shown in Figure 3.12 and Figure 3.14 have been simulated in

Matlab using ideal components. We call the modulator in Figure 3.12 "modl" and the other

1 1 1

one in Figure 3.14 "mod2". In the simulations, a 1 = a2 = , b1 = 1 and b2 =

were used for mod 1, and a , = -1

" 2
a-, = -1

1 ' 4
b = 1 and b2 = -1 were used in The

' 4

input signal was the same in two modulators. The simulated output spectra are shown in

Figure 3.15. The solid line refers to mod 1 and the broken line refers to mod2. It can be

observed that the quantization error increases 40 dB when the frequency increases by 20

dB. In Eq. (3.8), the quantization noise power in a second-order modulator is proportional

to w4, which means that when the frequency is 10 times (20 dB) higher, the quantization

noise power is 104 (40 dB) larger. Hence, the simulation results verify that modl and mod2

are two realizations of second-order delta-sigma modulation.
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The simulated signal-to-noise (SNR) performance shown in Figure 3.16 also shows

that modl and mod2 achieve the same performance as a regular second-order modulator.

The peak SNR is around 103 dB which is the same as stated earlier this Section for second-

order modulators. It can be seen from Figure 3.16 that mod2 has almost the same SNR
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Figure 3.15:Output spectra of mod 1 and mod2.
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performance as mod 1. In subsequent implementations of high-order structures for

capacitor ratio testing and sensor readout, the configuration of mod2 will be used.

3.4.2. Second-Order Structures for Capacitor Ratio Testing and Sensor Readout

Based on the mod2 structure shown in Figure 3.14, second-order structures can be

designed for the sensor readout circuits shown in Figures 3.6, 3.7 and 3.10. This is

straightforward, and one example is shown in Figure 3.17. The second stage realizes the

transfer function

120

100

80

_ 60
m
-0

cc

wz 40

20

i0-120
-100

i i i

-80 -60

Input amplitude (dB)

-40 -20

Figure 3.16:Simulated SNR for different input levels,
0 dB refers to full scale.

0
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a2 -b2z

H(z) =
1 z-1

(3.23)
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1

where a2 = 2b2 is realized by the ratio of the two capacitors C3 and C4. a2 = 2 is also

determined by a capacitor ratio. From Eq. (3.22), it can be seen the noise transfer function

is mainly determined by a2 = 2b2. Hence, by designing the second stage as shown, the

second-order modulation is assured, as long as the rest of design makes the circuit stable.

There is a negative sign in Eq. (3.23), as opposed to the realization shown in Figure 3.14,

which should be compensated in the first stage to keep the feedback negative. That is why

in the first stage, the clock phases for the sensor capacitors C1 and C2 are interchanged,

compared to those in Figure 3.7. The resulting output formula is now

C1

gave'
and

CI + C2

C2 C1
1-2yave

C
1

+ C2

(3.24)

(3.25)

The same second stage can be applied to the structures in Figures 3.6, 3.7 and

3.10, and again, because of the negative sign in the circuit implementation, the clock

Vref

Cf2=2

T

51 (1)2 _ 1:1)2

Figure 3.17:A second-order structure for capacitor ratio measurement.
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phases in the first stage should be changed. For the four-phase structure, (02 in Figure 3.17

should be replaced by 04. Here, the other second-order structures are not shown.

3.5 Simulation of SC Realizations and Data Processing for Capacitor Ratio
Readout

To verify the validity of the previous discussions and the functionality of the circuit

realizations, the first-order and second-order SC circuits were simulated extensively in

SWITCAP2, a SC circuit simulator which uses simplified models for switches, capacitors

and opamps. In the simulations presented in this Section, all the circuit components were

assumed to be ideal so that the functionality of these circuits could be quickly verified.

As discussed earlier in Section 3.3, the input capacitor ratio C1 /C2 can be obtained

in two different ways. One is using the spectral analysis and calculate the signal power in

the output spectrum. The other way is using data averaging in time domain. No matter

which method is used, the data are always truncated because of the limitations on the CPU

and memory of the computers utilized. For the same reason, since an ideal lowpass filter

requires infinite number of coefficients, which is not realistic, the coefficients are always

truncated and the resulting frequency response is a "smeared" version of the ideal one.

When the truncated data is simply averaged in the time domain, the equivalent in frequency

domain is a crude lowpass filtering, and the number of coefficients in the lowpass filter is

the same as the numbers in the data. Because of the so-called Gibbs phenomenon, the

resulting lowpass filter has slow transition band and ripples in passband and stopband [45].

Increasing the number of the data (or coefficients) can make the transition band sharper but

the ripples in the passband and stopband remain the same. The easiest solution to the

problem generated by truncation is the window method. The simple truncation is equivalent

to using a rectangular window which has large sidelobes. By tapering the window smoothly

to zero as with Hanning or Blackman windows, the sidelobes can be greatly reduced so that
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the resulting lowpass filter has larger attenuation in the stopband. The windows with

smaller sidelobes yield better approximations at a discontinuity of the ideal response [45].

The penalty paid is the relatively slower transition band. Hanning window was used in our

simulations and testing, since it provides relatively small sidelobes and the transition band

is not significantly widened.

The circuit shown in Figure 3.17 has been simulated in SWITCAP2, using ideal

switches, opamps and comparator. Figure 3.18 shows the simulation results when the

capacitances of C1 and C2 are fixed. The estimation error is defined as ic2_c27.1/c,,n,

where C2T is the capacitance of C2 obtained from the simulation and co. is the nominal

capacitance of C1 and C2. In the simulation, C1 was 10.5 pF and C2 was 9.5 pF, and C..

is 10 pF. In Figure 3.18(a), the estimation is carried out by simply averaging the data, and

in Figure 3.18(b) the Hanning window was used before the averaging of data. In this

simulation, the length of the Hanning window is the same as that of the data. For instance,

when the total number of data used in the averaging is 512, the length of the Hanning

window used is also 512. It can be seen that by using Hanning window, for the same

estimation accuracy, the number of data needed for averaging is greatly reduced.

When C1, C2 or both of them are varying, the variance of capacitance can be

obtained from the output spectrum. However, the circuit show in Figure 3.17 is only

suitable when C1 and C2 change differentially as illustrated in Table 2.1(b) and (d).

Figure 3.19 shows the simulated output spectra of the circuit shown in Figure 3.17. In

Figure 3.19(a), C1 is fixed to be 10 pF and C2 is assumed to vary around 10 pF. The

variation of C2 contains a sinewave signal and the range of the variation is 1 pF. The

distortion is obvious which validates previous discussions in Section 3.3.2. In
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Figure 3.21(b), both C1 and C2 vary and the change of capacitance has a differential signal

which contain a single-tone sinewave. The range of variation is again 1 pF. It can be seen
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that the distortion is much smaller when C1 and C2 vary differentially. Therefore, the circuit

shown in Figure 3.17 is suitable for either fixed capacitor ratio measurement or differential

capacitive sensor readout.

When C1 is fixed and C2 is varying continuously, as in some sensor applications,

the four-phase circuit shown in Figure 3.10 can be used. The average of its output is
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Figure 3.19:Simulated output spectra of the circuit in Figure 3.17:
(a) C1 is fixed and C2 varies; (b) C1 and C2 vary differentially.
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directly proportional to the capacitor ratio C2 /CI. The estimation error from Switcap

simulation for the second-order four-phase circuit is depicted in Figure 3.20. Again

Hanning window was used when data were averaged. In the simulation, C1 is assumed to

be the reference capacitor with capacitance of 10 pF and C2 is the tested capacitor with

capacitance of 10.5 pF. The estimation error is defined as 1C2 C2TI /CI, where C2T is

the capacitance of C2 obtained from the simulation. It can be observed from this figure that

when the number of data used for averaging is larger than 600, the lowpass filter

characteristic is very close to an ideal one. The estimation error is approximately -110 dB

when more than 600 data are averaged, which corresponds to a resolution of 31 aF for a 10

pF capacitor (0.003%).
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Figure 3.20:Estimation error of fixed capacitor ratio of the second-order
four-phase circuit.
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Figure 3.21 shows the simulated output spectra of the second-order four-phase

circuit. In the simulation, C2 is assumed to vary around 10 pF and its variation contains a

single-tone sinewave signal. It can be seen that the output has good linearity as predicted

earlier.

3.6 Conclusions

By utilizing oversampling delta-sigma technique, different structures for high-

accuracy capacitor ratio testing and sensor readout can be designed. Several new structures

have been proposed for different applications. These new structures combine the sensor

capacitors with the input branch of the delta-sigma modulator, and hence are able to

provide high-resolution digital output without the requirements of accurate component
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Figure 3.21:Simulated output spectra of the second-order four-phase circuit.
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matching and high-performance components. SWITCAP2 simulations have been

performed using ideal components, and the simulation results proved the functionality of

the introduced structures and predicted that very high accuracy can be obtained.
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Chapter 4. Non-Ideal Effects in Switched-Capacitor Sensor Interface Circuits

In Chapter 3, several switched-capacitor circuits have been introduced for accurate

capacitor ratio measurement. Switcap simulation results showed that high accuracy can be

achieved. However, since only simple models for circuit components were used in Switcap,

in the actual circuit the performance is likely to be affected by the non-idealities of real

components. In this Chapter, the effects of circuit non-idealities are analyzed and some

solutions for their elimination are discussed.

4.1 Effect of Finite Gain and Input Offset of the Opamp

The opamp is a very popular building block in analog circuits and is widely used in

signal processing. In analog delta-sigma modulators, opamps are often used to realize the

integrators, which are the main blocks in the modulator, as shown in Chapter 3. The transfer

function of the integrator is determined by the capacitor ratios, as well as the characteristics

of the opamp. Since the integrators are used to realize the noise-shaping transfer function,

errors in the transfer function of the integrator causes a deviation from ideal noise shaping

and hence may cause an increase of quantization noise in the band of interest.

An ideal opamp should have infinite gain and zero offset voltage. However, a real

opamp has finite DC gain, finite bandwidth and nonzero input offset voltage. This causes

errors in the integrator transfer function, as will be discussed next. A typical non-inverting

switched-capacitor integrator is shown in Figure 4.1, where the opamp is assumed to have

a finite DC gain of A and an input offset of Vos. First, ignoring Vos, the z-domain transfer

function of this integrator can be derived as

V t(z)
H(z) = "' =

Vin(Z)

C1 z

+ 1

+ C2 C2 + C2/A
A. A C2 + (CI + C2)/Az

(4.1)
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Here the pole of the integrator transfer function is no longer at DC ( zp = 1), as in the

transfer function of an ideal integrator. Instead, the pole of this non-ideal integrator is at

C2 + C 2/A
Z

P C2+ (Ci+ C2)/ A (4.2)

The pole is on the positive real axis and is less than 1. As also shown in Eq. (4.1), there is

also a gain error in the transfer function of the non-ideal integrator. When Vos is

considered, the integrator output is Vout(z) = H(z)(Vin(z)+ V os(z)). Hence, from the

integrator output point of view, the input offset voltage of the opamp has the same effect as

the offset voltage at the input.

Since usually the gain of the opamp A is much larger than 1, Eq. (4.1) can

approximated by

Vout(z) 1 + Ci/C2) z-1H(z) = = 1

Vin(Z) C2 A )
1 (1 )Z-1

__

(4.3)

1

If C2 = 2C1, the extra gain factor is 1
3

and the pole is at zp = 1 2A- . Assuming A

= 1000, then the finite gain causes a gain error of 0.15% and pole error of 0.005. This will

affect the noise transfer function and causes noise leakage in the band of interest.

vout

Figure 4.1: A switched-capacitor integrator.

F.10- T 4.1

1-1 2 1-1F2
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For the circuit of Figure 3.5, the noise transfer function can be derived when the

integrator is not ideal. Using the integrator transfer function shown in Eq. (4.3) and

assuming C2 = 2C1 and A = 1000, the noise transfer function is

H(z) =
1 0.001z

1 0.9995z

and the signal transfer function is

G(z) =
1 0.001z

0.9985z

(4.4)

(4.5)

Figure 4.2 shows the plots of several noise transfer functions at low frequencies for

the first-order delta-sigma modulator shown in Figure 3.5 with and without finite-gain
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Figure 4.2: Noise transfer function plots for a first-order
delta-sigma modulator.
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effect of the opamp. Again C2 = 2C1 and A = 1000 are assumed. On the abscissa, "1" is

equivalent to half of the sampling frequency. The solid line refers to an ideal first-order

function 1 z-1 and the dash-dot line refers to the non-ideal function shown in Eq. (4.4).

The conclusions which can be drawn from Figure 4.2 are the following:

1. The finite-gain effect of the opamp reduces the attenuation of the quantization

noise in the first-order lowpass delta-sigma modulator. This effect gets worse when the

oversampling ratio is very high.

2. At low frequencies, the denominator in Eq. (4.4) is very close to 1 so Eq. (4.4)

can be approximated by 1 0.9995 z-1 . The error is due to the finite gain of the opamp

which causes the deviation of the pole from 1 in the integrator transfer function of Eq. (4.3).

3. For the first-order modulator, the extra quantization noise (noise leakage) caused

by the finite gain of the opamp depends on both the oversampling ratio and the gain of the

opamp. The noise leakage is negligible if the opamp gain is larger than half of the

oversampling ratio.

Notice that in Eq. (4.5) the signal transfer function is not unity. It can be

approximated by just a constant 0.9985. This is due to the extra gain factor in Eq. (4.3)

caused by the finite gain of the opamp. This gain error is usually tolerable in most

applications. However, it will affect the cancellation of quantization noise in cascaded

modulators when the noise cancellation is performed using an ideal noise transfer function

in the digital filter.

The same analysis applies to the second-order modulator shown in Figure 3.12 with

1 1al = , a2 = , b1 = b2 = 1 . The following noise transfer function is obtained



H(z)
(z 0.9995)2

=----

Z 0.002z (4.6)

60

The variation of the amplitude in the denominator is small (less than 0.04 dB) so the noise

_1 2
transfer function becomes (1 0.9995 z ) or in a more general form

1 2
1 1/(2A) z ) , where A is the opamp gain. The amplitude response of the noise

transfer function when A = 1000 is plotted in Figure 4.3. It can be seen that for OSR less

than 1000, the difference between the ideal one and non-ideal one is smaller than the first

order modulator but is larger than that in Figure 4.2 when OSR is larger than 1000.

Therefore, if the second-order modulator needs an oversampling ratio of over 1024 tc-,

realize a large SNR, the gain of the opamp needs to be increased.

Figure 4.3: Noise transfer function plots for a second-order
delta-sigma modulator.
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It is straightforward to expect that by designing a high-gain opamp, the problem

discussed above can be solved. This can only be achieved when the sampling frequency is

not very high and at the cost of larger area and power consumption. However, if the

bandwidth of the opamp is high, it is extremely hard to obtain a large gain for a standard

CMOS process. Another alternative is to use correlated double sampling (CDS) techniques

[46]. By holding the error voltage in the capacitors, and cancelling it later, the effective gain

of the opamp can be increased. CDS technique can also be used to cancel the offset voltage.

4.2 Effect of Capacitor Mismatches

Another non-ideal circuit effect which also affects the noise transfer function is the

mismatch of capacitors in SC delta-sigma modulators. Because of process variations, the

capacitance varies at different locations, hence the capacitor ratio deviates from the

designed value. In SC delta-sigma modulators, the realization of the signal and noise

transfer functions relies on the ratio of capacitors. Hence, capacitor mismatches can cause

deviation from an ideal noise transfer function. Suppose that the variation of capacitor ratio

Ci/C2 is 5 and that the opamp gain is infinite. The integrator transfer function shown in

Eq. (4.3) then becomes

V,t(z) z-1

Vin(Z) C2 -11 Z (4.7)

The value of 8 depends on the process and the layout of the capacitors, and 8 is a random

number since the variation of the process is random.

Since the matching error in the realization of capacitor ratios only causes a gain

error in the integrator transfer function and does not generate the pole deviation, it can be

expected that the matching error of capacitors only causes a gain error in the signal transfer

function in the first-order modulator. For higher-order modulators, the discussion is more

complicated since there are more capacitors and the capacitor mismatches are random.
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However, since the mismatch of capacitors does not cause pole error in the integrator, in

the noise transfer function the numerator is the same as if there were no mismatch, and only

the denominator is affected. The effect of capacitor mismatches can be empirically studied

by Monte-Carlo simulations where capacitors can be deliberately mismatched within a

certain range and the distribution of SNR due to capacitor mismatches is obtained.

Assuming that the standard deviation of the capacitor matching error is 0.3% (1

sigma) and the distribution of the error is Gaussian, the simulated SNR distribution of a

second-order modulator is shown in Figure 4.4. The oversampling ratio of the modulator is

256 and the total number of simulations is 300. It can be observed that the distribution of

the SNR is also Gaussian and the worst-case SNR is larger than 97 dB when the peak- to-

peak capacitor matching error (6 sigma) is 1.8%.
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Figure 4.4: Monte-Carlo simulation for capacitor mismatches in
a second-order delta-sigma modulator.
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The matching error can be reduced by careful layout of the capacitors. There are

some matching techniques in the layout [47] which can provide matching of capacitor as

good as 0.1%. Then the error due to the matching error of capacitors may be negligible for

the single-loop single-stage modulator as illustrated in Figure 3.12. However, it can still

cause significant noise leakage in a high-resolution cascaded modulator.

4.3 Thermal Noise in SC Integrators

Thermal noise is perhaps the most fundamental error source in many switched-

capacitor circuits. High-performance modulators can be designed so that the quantization

noise is very small, but in actual realization the performance is often limited by the circuit

noise, mainly the thermal noise due to the switches and opamps in the SC integrators.

4.3.1. Thermal Noise of the Switches

For the integrator shown in Figure 4.1, the switches can be represented by ideal

switches associated with resistance, as illustrated in Figure 4.5. The noise power spectrum

for a resistor is 4kTR4f and the total noise power on the capacitor when = 1 can be found

by evaluating the following integral

C

R2

101

Figure 4.5: Equivalent switched-capacitor circuit for noise analysis.
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00

4kT(Ri + R2)
e2 dr

T
1 ± [27cf(R1 + R2)CFj

kT

C
(4.8)

0

assuming that the noise voltages generated by R1 and R2 are not correlated. Notice that the

noise contribution of two resistors is equivalent to that of just one resistor. It should be

pointed out that although the capacitor is noiseless, the resulting noise on the capacitor

which is generated by the resistors is determined by the capacitor. The noise is often called

the kTIC noise.

The noise bandwidth of the resistor in the RC network can be calculated as

n 1 1

fn 2 2nRC 4RC
When the sampling frequency fs is larger than twice of fn, the

spectral density of the sampled noise can be regarded as

1

C

kT kT
4S(f)= f = RC = 4RkT , (4.9)

up to fn and 0 from A to A/2, which has the same spectral density as the noise of the

resistor. However, because of settling time requirement, the RC constant is usually small

and fs is smaller than A. Hence noise will be aliased back to the band from 0 to A/2.

Assuming that a =fn/fs and a is much larger than 1, then the noise spectral density is

1 kT 1 kT f 2 kT
S(f) ) --z-. 2a = 2 = --

fn C fn C fs fsC (4.10)

Since the capacitor is sampled and discharged in (01 = 1 and 02 = 1, the thermal noise is

sampled twice in one clock period which results in a spectral density

4
S(f) = f C

kT
(4.11)

Again the noise stored in the capacitor can be represented by the equivalent noise at the

input and hence it reduces the dynamic range of the input signal.
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Usually, in high-resolution delta-sigma data converters, the quantization noise is

greatly reduced by using higher-order modulators or multi-bit quantizers, and the kT /C

noise becomes the dominant noise source. Therefore, care must be taken in choosing the

minimum input capacitors. For a given SNR and OSR, the total in-band noise power is

10(-sN1 zi 0) (dB), assuming the signal power is 0 dB. Then according to Eq. (4.11), the input

10(-sNR/10),capacitor should be larger than 2kT /(OSR* ) For example, if the desired SNR is

96 dB and OSR = 64, the input capacitor C should be at least 0.52 pF.

4.3.2. Thermal Noise of the Opamp

The thermal noise of the opamp is analyzed in [48]. For a single MOSFET

transistor, the gate-referred noise is given by [49]

2 8 kT
v = Af .n 3 (4.12)

Usually the opamp has very large gain and the input devices are the dominant noise

sources. Hence the input-referred noise can be determined by the noise of the input

devices and the bandwidth of the opamp. For a two-stage opamp with one dominant pole,

the opamp unity gain bandwidth is often related to the Miller capacitor and is given by

gm
f UGB = (4.13)

where gm is the transconductance of the input device and Cm is the Miller compensation

capacitor. The opamp thermal noise can then be approximated by

8 kT gm 8 kT
v = = .

n 3 gm Cm 3 Cm

Again, the noise is only determined by a capacitor [50]. The noise bandwidth is

. gm It

m

(4.14)

(4.15)
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Since the noise bandwidth of the opamp is often larger than the sampling frequency, noise

is aliased from high frequency into the band from 0 to fs/2. The higher the opamp

bandwidth, the larger amount of the noise will get aliased [49].

4.4 Clock Feedthrough and Charge Injection

The switches in SC circuits are realized either by NMOS or PMOS devices, or by

transmission gates. A clock signal is applied to the gate of the MOS transistor and turns it

on and off alternately. When the transistor is used as a switch, it operates in its linear region

and has nonzero on-resistance. In addition, MOS switches exhibit charge feedthrough and

charge injection. Clock feedthrough is caused by the overlap capacitances between the gate

and source or drain terminals, and charge injection is generated by the channel charge

stored when the device is on [51]. The charge due to clock feedthrough for a NMOS

transistor can be expressed as

Qcf Cov(VDD V in) (4.16)

where Co., is the input voltage, Cc, is the overlap capacitor, Vin is the input voltage and the

voltage of the control signal is VDD. When the device is in its strong inversion region, the

channel charge can be expressed as

Qch = WLCox(V Gs VTH) = WLCox(VDD V VTH). (4.17)

where 147,L are the width and length of the NMOS transistor, respectively, VGS is the gate-

source voltage, VTH is the threshold voltage, and Cox is the oxide capacitance per unit

area. It can be seen from Eq. (4.16) and Eq. (4.17) that when the input Vin varies, the error

charges due to either clock feedthrough or charge injection are signal dependent. This will

cause distortions. However, in our circuits the input is connected to a DC signal, and the

error due to charge injection and feedthrough only cause offset errors.
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As a first-order approximation, the MOS switch can be modeled as a network

containing an ideal switch, a resistor and some parasitic capacitors, as shown in

Figure 4.7(a). Coo and Cov2 are the overlap capacitors from the gate to source and gate to

the drain, respectively. The charge injection is represented by Cgs, Cgd and Vc. Vc is equal

to VDD Vin VTH. Cgs and Cgd are the equivalent capacitors which represent the amount

of channel charge flows to node 1 and 2, respectively. Cgs + Cgd = WLCox. Cs and Cd are

the parasitics to ground and may affect the channel charge distribution, as will be shown

later.

VDD

0

COV1

CD (Vin)

vc
0

LcgsR Cgd `ov2

0 (a)

Cs

VDD

0

TCd

Cpi 2 (b)

0
R 4)1

PO)

Figure 4.6: The models for clock feedthrough and charge injection
of a NMOS switch: (a) a general model;
(b) a simplified model when the input is DC.
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This model can be further simplified by using two capacitors Cgi = Covi+Cgs(VDD

and C-2 = C +C ( Vin) to replace thoseVin 17TH)/( VDD Vin), g. o v 2 gcl, VDD Vin VTH) /(VDD

four capacitors, as shown in Figure 4.6(b). Node 1 or node 2 is connected to an input signal

and the control voltage across the capacitors is (VDD Vin). The charge stored in Cgi and

C 2 when the switch is "on" is the sum of Qcf and Qch in Eq. (4.16) and Eq. (4.17). Hence,

this simplified model represents both clock feedthrough and charge injection. The model

can also be applied to PMOS where the polarity of the clock is inverted and the threshold

voltage is negative.

Usually, one side of the switch is connected to a noncritical low-impedance node

such as the input or ground. Then only the capacitor which is not connected to the low

impedance node contributes error charge to the circuit when the switch is turned off. The

capacitor connected to the low impedance node is discharged between that node and ground

when the switch is turned off. Therefore, the charge doesn't enter the circuit.

Figure 4.7 shows the simplified circuit of the SC integrator in Figure 4.1 using the

NMOS switch model in Figure 4.6(a). For simplicity, only the transition when (I)i changes

from high to low is illustrated.

_r-

CgiI
v (1)1 v,in

Cl

I I

V
TY

Cpl

Figure 4.7: The model for clock feedthrough and charge injection
analysis in an integrator.

Vout
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Assume that the voltage that controls the switches is either high (VDD) or low (0),

and that the input and ground have low impedance. Note that in Figure 4.7(b), the parasitic

capacitors of the switches associated with the input and ground terminals were eliminated

because the charge flow to those terminals do not contribute error voltages. When ch is

high, Cgi is charged to (VDD Vin), Cg2 is charged to VDD, Cpl is charged to Vin, Cp2 is

discharged to ground, and C1 is charged to Vin. When 02 goes high, the charges are

redistributed, and by using nodal analysis, the following equations can be obtained

(V x+ VDD Vjn)Cgi + (V x Vin)Cpi+ (V xVyVin)Ci = 0, and (4.18)

(Vy + VDD)Cgi + VyCp2 + (VyVx+ Vin)Ci = 0 . (4.19)

Solving for Vx and Vy results in the following

C + C
Cl cgi+ c g2 + Cg2

Cgl+Cg2 p gl
1 +CP± Cg2)

C±Cgl±C 1(1+

Vy = VinVDD
C ± C C± Cg2 Cp± Cg

1.

Cp±Cgl

(4.20)

where Cp = Cp1 = Cp2 is assumed. Here, Cgi = Co, + Cgs(VDD Vin VTH)/VDD and Cg2 =

Coy + Cgs(VDD VTH)/VDD In sensor interface applications where C1 is usually off-chip,

or has a large on-chip structure, Cp is usually much larger than Cgi or Cg2. Then Eq. (4.20)

can be simplified to

r C ± C
ig g2 ±C

Cg1±Cg2
C1 C

p
g2

C C + 2C
p

+2
P 1

Now the charge stored in C1 is no longer C1Vin and the error charge is

(4.21)



Ci(VxVy)CiVinr-z-CiVDD

C C
C'

Cg
g2 + Cg2Cgl C g2

+ 2
CP

C +2Ci

Some conclusions can be drawn from Eq. (4.22):

. (4.22)
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1. The error charge is determined by the "high" voltage of the clock signal, usually

VDD. The higher VDD, the larger the error;

larger;

2. The parasitic capacitance Cp also affects the error. The error is smaller if Cp is

3. The error also depends on the sensor or tested capacitor C1;

4. Cgi and Cg2 should be made as small as possible to reduce the error. This requires

minimum size of the switch, as small as the settling requirement allows.

The exact calculation of Cgi and Cg2 is usually complicated, since the amount of

charge injection to the drain and source side depends on the load on each side, as well as

on the slope of the clock. Assuming that the load condition is the same on both side of the

switch, then

Co =

Cg2 =

1

C IWLCox(V DD Vin V TH)/ (V DD Vin) , and

Co + WLCox( VDDVTH)/ VDD

(4.23)

(4.24)

The error due to charge injection and clock feedthrough effect can be reduced by

using calibration, or by realizing the circuit in a fully-differential configuration, as will be

shown in Chapters 5 and 6.
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4.5 Flicker Noise

Flicker noise exists in both bipolar and MOSFET devices. In a MOSFET device, it

is caused by traps associated with contamination and crystal defects. The noise of a

MOSFET transistor can be modeled as an equivalent gate-referred voltage source and its

spectral density is

K 1
S(f) = (4.25)

Since the noise spectral density has a 1/f frequency dependence, the flicker noise is often

called the 1/f noise. It is the dominant noise source for the opamp at low frequencies, and

hence it might be the limiting factor in the sensor interface circuit, where the bandwidth of

the signal is usually from DC to a few kHz. As Eq. (4.25) shows, the 1/f noise can be made

smaller by increasing the size of the input transistors. For the opamp, the input pair is

usually the dominant noise source, and the size of these transistors can be increased to

minimize 1/f noise. However, the size increase makes the area larger and may reduces the

bandwidth because of the parasitics associated with larger transistors.

In some state-of-the-art CMOS processes, K in Eq. (4.25) for a PMOS transistor is

much smaller than for an NMOS transistor. If PMOS transistors are used as input devices,

1/f noise may not be a problem when the input transistors are properly sized [52]. However,

in a lot of processes, care needs to be taken to reduce this noise. Fortunately, several

techniques have been reported to solve this problem. One technique is the chopper-

stabilization method which modulates the inputs of an opamp [53]. Another technique is

the CDS technique which is briefly discussed in Sec. 4.1. CDS is very effective in

canceling low-frequency noise. Moreover, it can also reduce the finite gain effect of the

opamp. Hence it is used in the implementations of the single-ended and fully-differential

sensor interface circuits, as will be shown in Chapters 5 and 6.
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Chapter 5. Design and Implementation of Single-Ended Circuits

In this chapter, the design of two single-ended circuits for capacitive sensor readout

or capacitor ratio measurement is described. Two calibration schemes are proposed to

cancel the effects of clock feedthrough and charge injection. A single-ended circuit which

uses two clock phases and provides a linear output for differential capacitive sensors was

implemented. From the test chip, the measured standard deviation of the tested capacitors

is less than 100 aF for a clock frequency of 500 kHz.

5.1 Design of a High-Accuracy Two-Phase Circuit

The schematic of a second-order circuit for capacitor ratio testing and sensor

readout has been described in Chapter 3 and its functionality has also been verified using

SWITCAP2. The simulation result showed that a capacitance resolution as small as 0.1 IF

for 10 pF capacitors could be achieved. However, it should be noted that in the simulations

the circuit's non-ideal effects haven't been included.

As discussed in Chapter 4, circuit non-idealities such as the input offset and finite

gain of the opamp, clock feedthrough and charge injection can greatly reduce the accuracy

of the circuit. By using techniques such as CDS and self-calibration, these non-ideal effects

can be greatly reduced.

5.1.1. CDS Circuit Design

As mentioned earlier in Section 4.1, CDS technique can be used in SC circuits to

cancel the opamp's input offset and increase the effective gain of the opamp. The way CDS

technique usually works is that the error voltage due to the finite gain and input offset of

the opamp is stored in one or more capacitors during one clock phase, and then the error

voltage will be subtracted in another clock phase [46]. A simple CDS circuit for the two-
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phase circuit shown in Figure 3.17 can be realized by adding an extra capacitor Ch and

some switches, as shown in Figure 5.1. For simplicity, only the first-stage integrator is

shown. When 01 is high, Ch samples the opamp input voltage Vin, which contains the error

due to finite gain and input offset. Then, when 1)2 is high, Ch is floating and the voltage

across Ch remains unchanged. Therefore, Vg becomes the virtual ground and it is given by

Vg = Vin(n)Vin(n 1), (5.1)

where n refers to the nth clock cycle. In order to find out how Vg changes, it is necessary to

examine the input and output voltages of the opamp in the integrator shown in Figure 5.1.

The output waveform when the values of C1 and C2 are nearly the same was shown

in Figure 3.8, and the input waveform is depicted in Figure 5.2, assuming that the gain of

the opamp is A and the input offset is Vos. It is clear that the change of Vin depends on the

level of y. It can be derived from Eq. (5.1) and Figure 5.2 that Vg is either

C2V =
Vref

g A Cf

Vref

Figure 5.1: A simple CDS structure.

(5.2)



when y =1, or

V =
V

ref
C

1

A C f'
(5.3)
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when y = 0. From Eq. (5.2) and Eq. (5.3), it can be seen that while Vg is still dependent on

the gain of the opamp, Vos has been eliminated in Vg due to the differentiation in Eq. (5.1).

It should be noted that since the 1/f noise of the opamp is at low frequencies, its variation

between two adjacent clock cycles is also small. Therefore, it is greatly attenuated in Vg

according Eq. (5.1).

Figure 5.3 shows the improved CDS circuit used to reduce the dependence of Vg on

A. Capacitors Chi and Ch2 are used to store Vin when y = 1 and y = 0, respectively. The

change of Vin is as before, but now Vg becomes

Vref C
1

C2V =
g A Cf

when y =1, or

Vref C2

A Cf

Vin

Vos

y > 1
Vref Cl

A Cf

y-->0

time

Figure 5.2: The opamp input voltage of the first-order two-phase circuit.

(5.4)



V
g

=
Vref C2 C1

A Cf
(5.5)
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when y = 0. Comparing Eq. (5.4) and Eq. (5.5) with Eq. (5.2) and Eq. (5.3), it can be seen

that V
g

is greatly reduced when the difference between the tested capacitors C1 and C2 is

small.

To verify the effectiveness of the discussed CDS schemes, the second-order circuit

shown in Figure 3.17 has been simulated in SWITCAP2 first without using CDS, then

using the simple scheme in Figure 5.1 and finally using the scheme in Figure 5.3. In the

simulations, the opamp was assumed to have an input offset of 5 mV and a finite gain of

1000, and C1 and C2 were 10.5 pF and 10 pF, respectively. The simulation results are

shown in Figure 5.4. The estimation error is again defined as IC2 C2T1 / Cnom , the same

as in Chapter 3. It is obvious that by using CDS, the error due to the opamp input offset was

drastically reduced. The simulation results also indicates that the CDS scheme shown in

Figure 5.3 improves the measurement accuracy by approximately 5 dB, compared to the

simple CDS scheme.

Vref

C1

=. =

Figure 5.3: The improved CDS circuit for the two-phase circuit.
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The error due to opamp finite-gain and input offset in the second stage of the circuit

shown in Figure 3.17 is greatly reduced by the inverse transfer function of the first-stage

integrator, which is a first-order noise-shaping function. Therefore, CDS is only needed for

the first stage.

5.1.2. Calibrations for Clock Feedthrough and Charge Injection

The simulation results shown in Figure 5.4 ignored the non-ideal effect of the

switches. However, when the capacitors are around 10 pF, for fast settling, the switch sizes

must be much larger than the minimum size. Therefore, the clock feedthrough and charge

injection of the switches can't be ignored.
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Figure 5.4: Simulation results for the two-phase circuit with
non-ideal opamps.
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Figure 5.5 illustrates the input stage of the second-order circuit shown earlier in

Figure 3.17. It has been shown in Section 4.4 that when one side of the switch is connected

to a low impedance node, the clock feedthrough and charge injection may be modeled as a

capacitor Cg with a voltage step (VDD Vin). Therefore, in Figure 5.5, all the switches

except S6 can be replaced by an ideal switch and a capacitor Cg with a voltage step source.

From Eq. (4.16) and Eq. (4.17), the amount of charge injected into Ci when Si is turned off

can be approximately written as

VDD V in V TH)V f)C = (VDD Vf)k(C± Cgd(VDD VDD Vref

(5.6)

where k represents the fraction of the charge in Si transferred from Si to C1, (1-k) is the

fraction that enters the parasitic capacitance at node 1 and Cgd is the equivalent

capacitance that represents the charge injection from Si. When C1 is fixed, k and Cgd are

also fixed because the voltage across C1 is always Vref before Si is turned off. Therefore,

the charge from Si to C1 is also fixed. For the same reason, when S2 is turned off the error

charge from S2 to C1 is also fixed. S5 and S6 also cause charge injection to C1. When S5 is

turned off, the extra charge due to clock feedthrough and charge injection of S5 is

Vref

Figure 5.5: The input stage.
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distributed between C1, C2 and the parasitic capacitance at node 3. Again, because the

load condition is the same when y is "0" and when y is "1", the charge injected to C1 is

fixed. For S6, the load condition on the right side changes because the opamp output

varies. However, because the output voltage is close to random and the average is 0, it can

be assumed that the average load for S6 is also fixed, and therefore the charge injection

from S6 to Cl is also fixed.

For C2, the switches that contribute to charge injection are S3 through S6. For a

constant C2, the injected charge due to those switches is also fixed. It should be noted that

the charge injection to C1 can cause errors in the output only when y is "0" because the

charge stored in C1 is transferred to Cf when y is "0". For C2, the injected charge causes an

error only when y is "1". However, the injected charge from S6 to Cf causes an offset error

in each clock cycle at the output when y is either "1" or "0". Therefore, the charge balancing

equation in Eq. (3.13) can be expressed as the following

n(C 2V ref + Q2) (N n)(C iV ref + Q1) + NQf 0 ,

where Q1, Q2 and Q3 are the error charges stored in C1, C2 and Cf, respectively.

The average of the binary data y becomes

(5.7)

1 +Q1
-Qf

civf+Qi+Qf C1 CiVYef

+ C + Q
1

C 1+ C2 Q2+ Q1 . (5.8)
1 +

C2Vref + C 1Vref

Comparing Eq. (5.8) with Eq. (3.14), it can be seen that gave contains a constant gain error,

assuming that C1 and C2 are fixed. The error is due to the clock feedthrough and charge

injection of the switches. Reducing the control voltage for the switches can reduce the

error. However, if the settling time remains the same, reducing the control voltage leads to

Yavelarger switches, which increases Cg and may increase the error in
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The output error due to clock feedthrough and charge injections can be cancelled

by using calibration. In Eq. (5.8), when C1 = C2, the average of y is equal to

Yave--
1

2

1 ±
Q1 Q f

C 1V ref

1+ Q2 ± Q 1

C2V ref ± C 1V ref

(5.9)

Ideally, y is 0.5 when there is no clock feedthrough and charge injection. If the output is

measured when C1 and C2 are equal, the gain error can be obtained. Hence, when C1 # C2,

the gain error can be cancelled by dividing Eq. (5.8) by Eq. (5.9), and the following is

obtained

C1 Yave
.,-....

C1 + C2 2Yave , (5.10)

where Yave and Yaw are the average values of y when C1 # C2 and C1 = C2, respectively.

Hence, the capacitor ratio C2 / C1 can be derived as

C2 2y'ave

C1 Yave

1

(5.11)

The calibration scheme is illustrated in Figure 5.6. For simplicity, only the first stage is

shown. The measurement is divided into two steps. First, the signal Ocai is set to "1", and

capacitor C2 is disconnected. C1 is used whether y is "0" or "1", and this is equivalent to

the case when C2 = C1. Therefore, y'ave in Eq. (5.10) is obtained. Next, Ocai is set to "0" so

-43cal is "1". Now the circuit is in its normal measuring mode, and gave is obtained. The

capacitor ratio can be measured using Eq. (5.11), and the error due to clock feedthrough

and charge injection is cancelled.

Another calibration scheme is depicted in Figure 5.7. The measurement is again

divided into two steps. First, the signal Ocai is set to "0". The circuit is in the normal

measuring mode and gave is obtained. Then 4ca1 is set to "1" and the positions of C2 and C1



Vref
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Figure 5.6: A calibration scheme (#1) to cancel the error
due to clock feedthrough and charge injection.

Figure 5.7: Another calibration scheme(#2) to cancel the error
due to clock feedthrough and charge injection.
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are exchanged. The average of y is now y'ave From Eq. (5.7), when Ocai is "0", it can be

shown that

Cl Q2+Q1 QlQf
C1 + C27-.""Yave+ Yave(C2-1- GOV ref (C2+ COVref

When Ocai is "1", Eq. (5.12) becomes

(5.12)



C2 Q2 ± Q1 Qf
" Ylave+ YI aC + C 2 " (C2+ C i)V ref (C2+ C i)V ref

When Eq. (5.12) is subtracted from Eq. (5.13), it results in

CIC2 Q2 ± Q1

C1
(Yave Y, ave) (Wave Y ave) (C2+ C 1)V (Yave ave)

(5.13)

. (5.14)
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Hence, the capacitor ratio can be obtained by subtracting the two measured averages, and

the error due to clock feedthrough and charge injection is cancelled.

The validity of the above discussions and the proposed calibration schemes has

been verified by SWITCAP2 simulations. Figure 5.8 shows the simulation results with the

m

200 400 600 800

Number of data averaged

1000

Figure 5.8: Simulation results for the two-phase circuit with
clock- feedthrough effect and charge injections.

1200



82

non-ideal NMOS switch model in SWITCAP2 [54]. In the simulations, C1 = 10.5 pF and

C2 = 10 pF was assumed. The effect of calibration is obvious. It can be seen that calibration

scheme #2 provides better cancellation of the error due to clock feedthrough and charge

injection. This is because (as shown in Figure 5.6), only C1 is charged and discharged when

Ocal is "1" and this is different from the case when C1 and C2 are both used. Therefore, the

error terms in Eq. (5.8) and Eq. (5.9) are not equal, and the cancellation shown in Eq. (5.10)

still has an error left. By contrast, in Figure 5.6, the errors due to clock feedthrough and

charge injection are almost the same when 6Tcal is "0" and Ocal is "1", so the cancellation is

more effective.

Figure 5.9 shows the simulated estimation error for different values of C2 for the

second-order circuit shown in Figure 3.17, with the first stage replaced by the circuit shown
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-140
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C2 (pF)

Figure 5.9: Simulated estimation error vs. C2 for the
two-phase circuit shown in Figure 5.7.
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in Figure 5.7. It can be seen that even when non-ideal opamps are used, the estimation error

is below -100 dB, which corresponds to a resolution of 100 fF for 10 pF capacitors.

5.2 Design of a High-Accuracy Four-Phase Circuit

5.2.1. CDS Circuit Design

For the four-phase circuit shown in Figure 3.10, the finite gain and input offset of

the opamp can also reduce the accuracy of the circuit. Since the output of the opamp is

similar to that in Figure 3.8 when C1 and C2 are nearly equal, the CDS scheme shown in

Figure 5.7 can be used also for the four-phase circuit. A SWITCAP2 simulation result is

shown in Figure 5.10, assuming that the opamp has a DC gain of 60 dB and a 5 mV input

Number of data averaged

Figure 5.10:Simulation results for the four-phase circuit with
non-ideal opamps.
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offset. It shows that by using CDS, the error due to finite gain and input offset of the opamp

is greatly reduced.

5.2.2. Calibration for Clock Feedthrough and Charge Injection

Figure 5.11 shows the complete schematic of the four-phase circuit with

calibration. During the period when Oc is "0", the circuit is in the normal measurement

mode and the operation is the same as discussed in Chapter 3. Then when (1)c is "1", the

circuit is in its calibration mode, and C1 is disconnected from the reference voltage Vref

when (1)1 is high. Next, when 02 is high, C2 is also disconnected from Vref, so ideally, at the

end of 02 = "1", there is no charge delivered to Cf1 and the average of the output data y

should be 0.5. This is equivalent to the case when C1 = C2. But due to clock feedthrough

and charge injection, the net charge delivered to Cf 1 is not zero, and the average of output

y is no longer 0.5. The principle of calibration is very similar to the two-phase circuit in

Figure 5.6. Basically, the error is stored in the calibration phase and cancelled later in the

Vref

= 1 (Pc + y(03 + y(P4 (Pc = (02 (Pc

= (1)1 (1)c 4)2 Y(1)3 Y(I)4 (I)d = (1)2 (1)c (I)2_

Cf1

CI ) 4)2+04 Ch 1301+43

/
T

o b I I

'I 0
C3=

- Ii
0 c2 'i / (I) 1

1

4)d / 01+03

ch , 1 Ca=y

i i )04 I l(1)1i i.- -,-

Cf2=2

(1)3_ (1)4

Figure 5.11:Schematic of the four-phase circuit with calibration.
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measurement phase. If the error is considered as an offset in the output, then during the

calibration phase the average of y can be represented by

Y'aye' 0'5 + Y err (5.15)

where yen is the error due to clock feedthrough and charge injection. During the

measurement phase when Oc = "0", the average of y becomes

C2

Yav
e

"."'" + Y err2 CI

assuming the error remains the same. Therefore, the capacitor ratio is

C2

-c 2(Yave Y ave+ 0'5)*
i

(5.16)

(5.17)

The simulation results after calibration are shown in Figure 5.12 for different values of C2.
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Figure 5.12:Simulated estimation error vs. C2 for the four-phase circuit.



It can be seen that after calibration the error becomes larger when C2 is further off from its

nominal value 10 pF. This indicates that the calibration is more effective when C1 and C2

are close. This is because the switches in the four-phase circuit are on-and-off more often

than in the two-phase circuit in one clock period, hence generating more clock

feedthrough and charge injection. Furthermore, the calibration assumes that the error

terms in Eq. (5.15) and Eq. (5.16) are equal, but when the difference between C1 and C2

becomes bigger, the load for the switches changes, and hence the distribution of error

charges to C1 and C2 changes. Hence, the difference between the error term in Eq. (5.15)

and Eq. (5.16) becomes bigger, and the calibration is less effective.

5.3 Implementation of the Two-Phase Circuits

As shown in Section 5.1 and Figure 3.17, the two-phase circuits with different

calibration schemes can be realized by using switches, capacitors, opamps, a comparator

and some digital blocks.

The switches are realized by CMOS transmission gates. To minimize the clock

feedthrough and charge injection from the switches, all the transistors for the switches have

minimum channel length: 1.2 gm. The width of the transistors should also be chosen to be

the minimum size that the settling requirement allows.

The tested capacitors are the only input capacitors, and (as shown in Section 4.3.1)

the thermal noise of the switches is determined by the values of input capacitors. The tested

capacitors have a nominal value of C = 10 pF each, and the input referred noise due to the

input switches is

P thermal = 10 log 10(k
T 4

) dB.
OSR C

(5.18)

For OSR = 512, the noise level is below -114 dB. Hence, the noise contribution from the



Figure 5.13:The two-stage opamp used in the
two-phase implementation.
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switches is negligible for a desired estimation error of -100 dB. Since the thermal noise

from the second stage is first-order shaped, the input capacitors for the second stage can be

smaller. The minimum capacitance was chosen to be 1 pF.

Since CDS is used, the opamp does not need high gain and low input offset. A

regular two-stage architecture was chosen for the opamp, because it is fairly easy to design

and a DC gain of 60 dB can easily be achieved. Figure 5.13 shows the schematic of the

single-ended opamp and Table 5.1 summarizes the simulated performance of the opamp

using a 1.2 Jim Hspice Level 28 model. The opamp also has a large output range which is

Table 5.1: Simulated performance of the two-stage opamp.

DC gain (dB)

Unit-Gain

Bandwidth

(MHz)

Phase Margin

(degree)
Slew Rate (V/m.$)

62 15 70 15
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needed since the input capacitors can be as big as 10 pF each, and hence the variation of

the opamp output can be large. The same type of opamp is used in both the first and second

stages.

The comparator used in the single-ended implementation is a dynamic comparator,

as shown in Figure 5.14 [24]. Since the comparator appears after the second integrator, the

non-idealities associated with it are shaped the same way as the quantization noise.

However, there are still design issues such as metastability and hysteresis to observe. By

resetting the comparator when clk is low, the hysteresis issue is solved.

The digital blocks include a non-overlapping two-phase clock generator, a D flip-

flop and some logic gates used to generates the control signal for the input switches shown

in Figure 3.17.

Figure 5.14:The dynamic comparator.

out
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Figure 5.15:Hspice simulation result for the single-ended
two- phase implementation.
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Figure 5.15 shows the Hspice simulation result for the second-order two-phase

circuit using the calibration scheme shown in Figure 5.7. C1 = 10 pF and C2 = 9.5 pF were

assumed in the simulation. The clock frequency was 1 MHz. The simulation result indicates

that when over 1000 data are averaged, the estimation error after calibration is close to -100

dB, which is equivalent to a resolution of about 100 fF.

5.4 Experimental Results

The single-ended two-phase circuit was fabricated in the Orbit 1.2 gm double-metal

double-poly process. Figure 5.16 shows the microphotograph of the prototype chip. An

extra opamp (Opampt) was also included on the chip for test purpose. The die size is 2 mm

x 2 mm. The tested capacitors C1 and C2 are off-chip. The test setup is shown in
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Figure 5.16:Die photograph of the single-ended implementation.

Figure 5.17. The blocks inside the dotted line are on the test board. It should be mentioned

that since the desired resolution of capacitance is very high, the PCB board was designed

so that the noise from the circuit board is minimized. All the critical signal paths have

bypass capacitors connected to a ground plane to reduce noise coupling from the power

supply. In addition, the analog and the digital blocks have separate power supplies.

In the testing, C1 and C2 were mica capacitors with small temperature coefficient.

They were first measured off the board with a HP LCR meter, and C1 was found around 11

pF and C2 =10 pF. The clock was set to 500 kHz. The output data y were read into the Next

workstation [55] and processed in Matlab.
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Figure 5.17:Test setup for the single-ended chip.

In the simulations, the accuracy of readout was obtained by comparing the

simulation results with the real value of a capacitor or capacitor ratio. However, in the

testing, the real value of the measurand is unknown, and it is difficult to obtain the absolute

value. A more meaningful term to characterize the accuracy is "repeatability".

The repeatability is measured by the agreement between successive results obtained

with the same method, under the same conditions and in a short time interval [6].

Quantitatively the repeatability is the minimum value that exceeds, with a specified

probability, the absolute value of the difference between two successive readings obtained

under the specified conditions. If not stated, it is assumed that the probability level is 95%.

The repeatability can be characterized by measuring the standard deviation 6 of many
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repeated measurements. It is known that the probability that the absolute value of the

difference between two successive readings is within 3a is more than 99%.

The standard deviation of the capacitance ratio (C1 C2)/(C1 + C2) from a typical

set of 40 measurements was calculated. Figure 5.18 shows the measured standard deviation

of C2 for different lengths of data averaged. It can be seen that when 4096 data are

averaged, the standard deviation is close to a = 0.09 fF. The equivalent resolution is 3a =

0.27 fF.

It should be noted that the term "repeatability" should not be mixed with

"reproducibility". The reproducibility is also related to the degree of coincidence between
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Figure 5.18:Standard deviation from 40 measurements for
the single-ended test chip.
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successive readings when the same quantity is measured with a given method, but in this

case for a long-term set of measurements, or with measurements carried out by different

people or performed with different instruments, or in different laboratories. For example,

the standard deviation when 4096 data are averaged can vary from time to time. The

measurements have been repeated many times during different days and the standard

deviation when 4096 data were averaged varied between 0.06 IF to 0.15 fF.

Figure 5.19 shows the output spectrum of the single-ended test chip with 65,536

FFT points. The Hanning window was used before the FFT was performed. The signal is

at DC and equal to (C1 C2)/(C1 + C2), which is approximately -26.3 dB. The noise-
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Figure 5.19:Output spectrum of the single-ended test chip.
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shaping effect can be observed. The 1/f noise is not obvious in the output since CDS was

used.

The measurement results were worse than the those obtained by simulations. One

possible reason is that in simulations the noise coupled from the substrate was not

considered. Another reason may due to the noise coupling from the outside. Due to the

limitation of facilities in the lab, the data were acquired to the Next workstation, which is

very noisy and was directly connected to the test board. Since single-ended circuits have

poor noise rejection, the extra noise coupled to the test chip may limit the achievable

resolution.

5.5 Conclusions

The use of CDS to reduce the sensitivity of readout accuracy on the non-idealities

of the opamp was discussed. Various calibration schemes for clock feedthrough and charge

injection cancellation have been presented. The implementation of single-ended circuits for

capacitor ratio testing and for sensor readout were described. The test results for the

integrated realization of a two-phase circuit verified the simulation results.
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Chapter 6. A Fully-Differential Implementation

In Chapter 3, several structures for capacitor ratio testing and sensor readout have

been introduced, and in Chapter 5 a single-ended implementation for fixed capacitor ratio

testing and differential sensor readout was presented. In this chapter, a fully-differential

implementation is described. New common-mode compensation schemes are introduced

and implemented to cancel the large common-mode signal from the input capacitors. The

area of the test chip is 2 mm by 2 mm, and the measured standard deviation of the capacitors

is less than 20 aF for a clock frequency of 1.5 MHz.

6.1 Design Motivation and Goal

As shown in previous chapters, single-ended circuitry is sensitive to clock

feedthrough effect, and calibration is usually needed to minimize the error generated by

clock feedthrough and charge injection. However, calibration does not cancel random noise

in the circuit which may dominate in high-accuracy applications. Another solution to

minimize the clock-feedthrough effect is to realize the circuit in a fully-differential form.

Because of its symmetric structure, the error due to charge injection and clock feedthrough

only causes a common-mode charge error and is effectively rejected. For the same reason,

the effects of other noise sources which appear as common-mode signal to the circuit are

also greatly reduced. Hence, the fully-differential structure has larger rejection of noise

coupled from power supply and the substrate, which is usually the limiting factor on the

performance for single-ended circuits. In addition to noise reduction, the signal amplitude

is also doubled in a fully-differential architecture, which further increases the dynamic

range of the circuit. Hence, fully-differential realizations of the sensor interface circuits

discussed in Chapter 3 are needed in order to obtain very high accuracy.
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In many industrial applications, floating capacitive sensors are widely used. In

automation applications, the requirement for the accuracy of capacitive sensor and its

interface is very high. Usually a differential capacitive sensor is needed to get better

sensitivity. The goal of this design is to realize a sensor interface circuit in a fully-

differential structure. The structure and characteristics of the capacitive sensor is the same

as shown in Chapter 5. The requirement for the resolution is better than 0.1 fF for 10 pF

capacitors, which was specified in an industrial application.

6.2 Common-Mode Feedback in Fully-Differential Circuits

As discussed in Section 6.1 the fully-differential structure has many advantages

over the single-ended one. However, it has some drawbacks too. One drawback is the

increased circuit complexity caused by the added symmetric circuitry, and another

drawback is that a common-mode feedback circuit is usually needed for a fully-differential

circuit.

Figure 6.1 shows a typical non-inverting fully-differential SC integrator. For

simplicity, all capacitors are assumed to have the same value C. Assuming that the input

signal contains a small common-mode voltage and there is no compensation for the

common-mode signal, this circuit performs as an integrator for both the differential signal

outp

outn

Figure 6.1: A fully-differential SC integrator.
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V(inp) V(inn) and the common-mode signal (V(inp) + V(inn))/2. When the integrator is

used in a feedback application, the applied feedback usually determines the differential

signal voltages, but does not affect the common-mode voltages. If the input common-mode

signal is non-zero and constant, the opamp output common-mode voltage is the integrated

value of the DC input common-mode voltage, and hence the opamp outputs will go to rails

and saturate. Therefore, the desired integration function for the differential signal no longer

exists. This is not a problem for the single-ended circuit, where there is no common-mode

signal and the feedback takes care of the stability of the integrator. For the differential

circuit, even when there is no common-mode signal from the input, due to non-ideal effects

such as charge injection of the switches and leakage current, common-mode voltage will

still be built up at the inputs and outputs of the opamp and will eventually saturate the

opamp outputs. Since the integrator is a major building block in delta-sigma modulators

and the sensor interface circuits, a common-mode feedback circuit is usually required to

maintain a stable integration function for the differential signal.

There are various circuit topologies for common-mode compensation. They can be

divided into the following three categories: output common-mode feedback, input

common-mode feedback, and feedback for both input and output common-mode voltages.

They are discussed in Sections 6.2.1 to 6.2.3.

6.2.1. Output Common-Mode Feedback Compensation

The purpose of the output common-mode feedback circuit is to sense the common-

mode voltage at the opamp output and use it to stabilize the opamp output common-mode

voltage itself. An example is illustrated in Figure 6.2. There are two typical approaches to

design the common-mode feedback (CMFB) block: continuous-time approach [56] and SC

approach [57]. In steady state, the CMFB circuit forces the output common-mode voltage

to be close to the applied reference voltage Vc,.. due to the negative feedback. Hence, the



98

I V"

VBN 1

outp
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CMFB Vcmr

Figure 6.2: An example of output common-mode feedback.

differential output swing is maximized and the next stage receives only a very small

common-mode voltage.

It is interesting to examine the input common-mode voltage of the opamp in

Figure 6.1 when the output common-mode voltage is fixed. In Figure 6.1, assuming that the

input has a common-mode voltage Vcmi, that the common-mode voltage at the opamp

input is Vx, and that under steady-state conditions the output common-mode voltage Vcmo

is 0, the relationship between Vx and Vcmi can be derived as the following

(VcmiVx) = Vx(1 z 1) . (6.1)

When the input common-mode voltage Vcmi is fixed, in steady state Vx is almost fixed and

hence Vx( 1 z1) = 0 . It can then be easily observed from Eq. (6.1) that Vx Vcmi .

Hence, although the output common-mode voltage is fixed, the input of the opamp still

tracks the common-mode voltage of the input signal. Also as shown in Eq. (6.1), this

effect does not depend on the ratio of the feedback capacitor and the sampling capacitor.

Therefore, this approach is only suitable for applications where the input common-mode

voltage is relatively small so it does not exceed the input common-mode range of the

opamp. However, in capacitive sensor interfaces or capacitor mismatch measurements, the

signal of interest is usually the capacitance difference of two capacitors and it may be
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much smaller than the nominal value of the capacitors. Thus, using the sensor capacitors

as the sampling capacitors, as proposed in Chapter 3, will force the opamp out of its input

common-mode range and into saturation.

One possible solution for this problem is depicted in Figure 6.3. We assume that the

opamp has output common-mode feedback so the outputs contain only differential signals.

In steady state, when 02 is high, the left plates of input capacitors are connected together

and their voltage is equal to the common-mode input voltage. Therefore, the opamp input

common-mode voltage Vx is 0, and the input common-mode voltage is moved from the

opamp input to the common node of the input capacitors. This solution has a major

drawback: it is sensitive to parasitic capacitance mismatch at nodes v 1 and v2. The

capacitance mismatch causes the change of some common-mode signal into differential

signal and hence generates error in the differential outputs. Therefore, the parasitic

capacitances at nodes v 1 and v2 need to match accurately. When the input capacitors are

off-chip sensors, they are usually connected by long cables, which make it very difficult to

match the parasitic capacitances. Also due to change of environment, the parasitic

capacitances can change. Therefore, for high-accuracy interface circuits, this scheme may

not be a practical solution. Furthermore, this method can't be used for differential

inp

inn

outp

outn

Figure 6.3: A simple input common-mode cancellation scheme.
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capacitive sensor interfaces, where the two capacitors have only 3 terminals with one

common plate.

Therefore, other common-mode compensation techniques should be considered.

Since the input signal contains a large common-mode component, input common-mode

compensation may be useful.

6.2.2. Input Common-Mode Feedback Compensation

Figure 6.4 shows the block diagram of a scheme to compensate the input common-

mode signal. For simplicity, only the common-mode signal path is illustrated so Vu, refers

to the input common-mode signal and Vout is the output common-mode signal. The transfer

function in the signal path is just a delay-free integration function, the same as the one used

in sensor interface circuits. The feedback path is represented by a function ftz-1). The idea

of this common-mode compensation scheme is to sense the output common-mode voltage

and then use it to compensate the input common-mode voltage. Under steady-state

conditions, the common-mode signal from the input is equal to the negative of the signal

from the feedback path. Now the integrator in Figure 6.1 has both common-mode and

differential feedback from the output.

yin
1

1-z-1

f (z-1)

Vout Vout =
1

V . + f (z
1)V

-1[ out
1 z

Vout
1 z-1 f (z-1)

V
In

Figure 6.4: Block diagram of a new input common-mode compensation scheme.



101

The criteria for choosing a transfer function f(z-1) are the following: the chosen

function must provide negative feedback for the common-mode signal, it should not affect

the operation for differential signal, and it must be stable. A simple choice is f(z-1) = -Fz-1.

Then the closed-loop gain for the common-mode feedback path is

VL(z) = out

Vin z+(F-1)
(6.2)

In order to make this feedback stable, the pole of the function shown in Eq. (6.2) should be

inside the unit circle [45][49]. Hence the value of F should be between 0 and 2.

Since this scheme uses the output common-mode voltage to compensate the input

common-mode voltage, the regular output common-mode feedback is not needed. The

function shown in Eq. (6.2) can be realized by switched-capacitor circuits, as shown in

Figure 6.5. The circuit consists of a SC amplifier with offset and gain compensations [46].

The inputs to the amplifier are from the integrator shown in Figure 6.1 and the output nodes

1 and 2 are also connected to the nodes 1 and 2 in Figure 6.1, respectively. The output of

the amplifier Km can be derived as

702
01 Cl

outp 4 I

(I) l Cl

I

outn

i(1)2.

2C1

V,

Can

I I 0
Ccm2

I I CD

Figure 6.5: Switched-capacitor realizations of the feedback function.



=
Voutp(z) + Voutn(z)

z
-1
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Hence, the output voltage of the amplifier is equal to the delayed output common-mode

voltage of the integrator. When (1)1 is high, the capacitors Ccmi and Ccm2 are charged to Vcm.

When (1)2 is high, V. is connected to both capacitors Ccmi and Ccm2 (Ccmi = r cm2= Ccm), and

charges equal to Ccm(Vr Vcm) are transferred back to the integrator. Therefore,

Ccm -1f z is realized, where C is the feedback capacitor in Figure 6.3.

Assuming the feedback loop is stable so that the common-mode signal from the input

signal becomes equal to the common-mode signal from the feedback,

Ccm(Vr(Z) Vcm(z)) = 17,,ni(z)C (6.4)

results, where Vcmi is the input common-mode voltage, Vr is a reference voltage, and Vcm

is the output common-mode voltage. If Ccm = C and Vr = Vcmi, then Vcm = 0, so the net

common-mode input signal to the integrator is zero. This scheme is very useful in the

capacitor readout circuits discussed earlier, where the input is a reference voltage VI, and

hence the same reference can be used as Vr to cancel the input common-mode signal.

is then

klz
-1

-1
In Figure 6.4, f(z-1) = (k2 0) can also be used. The closed-loop gain

1 k2z

Vout(Z) Z(Z k2)
L(Z) =

z2 k2 1)z + k2

(6.5)

Again, the poles of the loop transfer function should be inside the unit circle so that the

feedback loop is stable. Therefore, the choice of kl and k2 is limited by the following

conditions: 0 k2 < 1 and 2,X2 < k1 k2 1 < 2,1( . The range of k1 can be derived to

be

k2-2/C2 + 1 < k1 < k2 + 2,X2 + 1. (6.6)
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kiz
f(z 1).

1 k2z
can be realized by a lossy SC integrator, as shown in Figure 6.6. If only

the common-mode signal is considered, the common-mode transfer function of the

integrator can be derived as

2C1/(C2+ C3)
f(z) =

1 C2/(C2+ C3) z
(6.7)

Therefore, k1 = 2C1/(C2 + C3) and k2 = C2 /(C2 + C3). If C1 = C and C2 = C3 = C, then k1

= 1 and k2 = 0.5. Again, the output of the integrator is fed back to the integrator in

Figure 6.1 through capacitors Ccmi and Ccm2, since the nodes 1 and 2 are connected to the

nodes 1 and 2 in Figure 6.1, respectively.

6.2.3. Input and Output Common-Mode Compensation

This new compensation scheme combines the output common-mode feedback

discussed in Section 6.2.1 with a new input common-mode compensation technique. For

a fully-differential circuit such as an amplifier and an integrator, the output common-mode

feedback stabilizes the output common-mode voltage, and the input common-mode

outp

outn

ccrn,

C)

Ccm2

FigureFigure 6.6: A new input common-mode feedback circuit using a lossy SC integrator.
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compensation allows the input common-mode voltage of the opamp to be independent of

the common-mode voltage of the input signal.

Figure 6.7(a) shows the schematic of the new input common-mode compensation

scheme. The purpose is to automatically sense the amount of input common-mode charge

and feed it back to the same path as the input signal, but with a negative sign. Hence, the

total input common-mode charge entering the integrator is zero. In Figure 6.7(a), the input

nodes 1 and 2 are connected to an integrator similar to the one in Figure 6.1 except that the

two grounding switches controlled by (01 are eliminated, as illustrated in Figure 6.7(b).

When 01 is high, nodes 1 and 2 are shorted to the virtual ground node Vg of the circuit in

0
0

1
(1)2

Voutp

Voutn

Figure 6.7: A new compensation scheme to cancel the input
common-mode signal: (a) circuit diagram;
(b) modified SC integrator.

(a)

(b)
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Figure 6.7(a), and the input capacitors C in Figure 6.7(b) are charged to Vinp and Vinn,

respectively. The charges stored in these two capacitors contain both common-mode and

differential signals. At the same time, the same amount of charges are transferred to both

Ccmi and Ccm2 and the opamp output voltage Vc., becomes

Vcm = (V
V inn) C cm1+ Ccm2

=
C2V

.

' Ccm + Ccm2
(6.8)

where Km; is the input common-mode voltage. Assuming that Ccmi and Ccm2 are equal, it

can be seen from Eq. (6.8) that the charge stored in Ccmi or Ccm2 (-VanCcmi) is equal to

the common-mode charge VcmiC stored in the sampling capacitors C in Figure 6.7(b).

When 02 is high, the sampling capacitors C, Ccmi and Ccm2 are discharged between

ground and the virtual ground. The total common-mode charge entering the integrator is

then -VemCcmi VcmiC = VcmiC VcmiC = 0. Hence, the common-mode signal is cancelled

by using the circuit in Figure 6.7(a). From Eq. (6.8), it can be seen that Vcm is not a function

of the differential signal, and therefore the compensation does not affect the differential

operation. In the same clock phase, capacitor C1 stores the error voltage at the opamp input

so that node Vg can serve as the virtual ground when 01 is high. C2 provides feedback and

holds 17,,T, for the opamp when 4)2 is high.

6.3 Design and Simulation of the Differential Structures

6.3.1. The Fully-Differential Structure

The same type of modulator used in the single-ended realization can also be used

for the differential structure. For illustration, the diagram of the modulator is redrawn in

Figure 6.8. It is again based on the modulator shown in Figure 3.14. The schematic of the

fully-differential realization is shown in Figure 6.9. The first stage is based on the single-

ended structure shown in Figure 3.6 and it contains three blocks: the integrator, the DAC
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feedback branch and the common-mode feedback circuit. The differential input signal is

generated by the capacitance difference of two tested capacitors, Cs1 and C52. The

integrator realizes the function z-1/(1-z-1). The effect of opamp finite gain and offset is

compensated by using CDS technique through Chi and Ch2 [58][59]. The DAC feedback

is provided by Cdacl, Cdac2, some logic control and switches. Cdacl and Cdac2 are equal, and

Cifi was chosen to be four times as large as Cdacl to realize the 0.25 scaling factor.

The circuit shown in Figure 6.7(a) can be used as the CMFB block in Figure 6.9.

Then, due to the charge balancing operation described in Chapter 3, the following relation

holds

2n Cda, Vref + 2(N 0, (6.9)(Cs1 Cs2)( Vref Vx2 Vx1)N n)C dacV ref

where N is the total number of the binary outputs y, n is total number of the binary outputs

when y is high, Cdac = Cdacl = Cdac2, and 17x1 and 17,(2 are the common-mode voltages at

nodes 1 and 2 when 01 is high and when 02 is high, respectively. Here it is assumed that

the differential error voltages at nodes 1 and 2 are cancelled by CDS. Now, from Eq. (6.9),

the ratio between the tested capacitors and the reference capacitor can be derived as

U(z)
0.25 z-1 0.5-0.25z

-1 X(z) Y(z)

1 z-1 1 z 1

HO<DAC

Figure 6.8: The diagram of the second-order modulator used in
the fully-differential realization.
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Usually, Vx1 and Vx2 are not equal but much smaller Vref since the common-mode from

the input is compensated. However, for high-accuracy measurement, Vx1 and Vx2 can

cause gain errors and limit the accuracy.

6.3.2. The Pseudo-Differential Structure

As shown in Eq. (6.10), for the fully-differential circuit in Figure 6.9, the readout

of the capacitor ratio is affected by the common-mode voltage at the virtual ground. An

effective solution for this problem is to use the pseudo-differential structure, as shown in

Figure 6.10. The difference between this pseudo-differential structure and the fully-
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differential structure in Figure 6.9 is in the first stage integrator. Instead of using a fully-

differential opamp, two single-ended opamps are used and connected in a symmetric way.

Their positive inputs are connected to analog ground. The high gain of the opamps forces

the negative input terminals to be virtual grounds, assuming the input offset voltage is zero.

Again, the CDS technique is utilized with Chi and Ch2 storing the error voltages due to the

finite gain and input offset of the opamps. Hence, the voltages at node 1 and node 2 are very

close to ground and the problem with the input common-mode voltage is no longer present.

Now, the input common-mode signal can easily make the opamp outputs go to the

rail, if it is not properly compensated. The input common-mode signal can be compensated

using the circuits in Figure 6.5 or Figure 6.6. A regular SC or continuous-time output

common-mode feedback circuit can be used for the fully-differential opamp in the second

stage.
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6.3.3. Simulation of the Differential Circuits

To verify the fully-differential and pseudo-differential structures with different

common-mode compensation schemes, the circuits shown in Figure 6.9 and Figure 6.10

have been simulated in Hspice. In the simulations, Cs1 =10.5 pF and Cs2 = 9.5 pF were

assumed, the power supply was 5 V, and Vref was 5 V as well. Hence, the common-mode

capacitance is 10 pF, which is ten times as large as the differential one (1 pF). In

Figure 6.7(a), to prevent the large common-mode signal to saturate the opamp output, Ccmi

and Ccm2 were set to be 15 pF each so that the opamp output is still in the linear range. In

Figure 6.5 and Figure 6.6, Vr was connected to Vref, and Ccmi and Ccm2 were set to 10 pF

each.

The simulated input common-mode voltage for first-stage integrator in Figure 6.9

is shown in Figure 6.11. As can be seen from Figure 6.11, the input common-mode

2.52

2.51

2.50

2.49

2.48

2.47
14.

o : ((VT("/1' ) + VT( '/2")) / 2)

16, 18.

x10-6
20.

time

2.498 V

2.495 V

Figure 6.11:Common-mode voltage at nodes 1 and 2 in the first-stage
integrator of the fully-differential circuit in Figure 6.9.
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voltages at nodes 1 and 2 are very close to the analog ground, which is 2.5 V. However, as

discussed earlier, the variation of the input common-mode voltage at node 1 and 2 in

Figure 6.7 can cause gain error in the capacitor ratio readout. Although the variation may

be in the mV range, it still limits the accuracy to around 60 dB, as will be shown later.

Figure 6.12 (a) and (b) illustrate the output common-mode voltages of the circuit of

Figure 6.10 using the amplifier and lossy integrator in the CMFB circuit. In both cases, the

output common-mode voltages were greatly suppressed and the variation of output

common-mode voltage is around a few mVs. As can be observed from Figure 6.12, the

output common-mode voltages are close to 2.5 V. This is because in Figure 6.5 and

Figure 6.6, Ccml and Ccm2 were set to be 10 pF each, the same as the common-mode value

of the tested capacitors. In reality, the tested capacitor may be off-chip and Ccmi and Ccm2

could be on-chip capacitors, and it is very difficult to match them. Hence, it is necessary to

check how the output common-mode voltage changes when Ccmi and Ccm2 are not exactly

10 pF. The output common-mode voltage should be small so that the opamp outputs can

have a large dynamic range. The simulated waveforms are shown in Figure 6.13. It can be

seen that the CMFB circuit using the lossy integrator has better control over the output

common-mode voltage. This can be explained from the following equation

V, (10cm)
V' kC

(6.11)

where Vcmo is the output common-mode voltage of the first stage integrator in Figure 6.10,

k is the DC gain of the lossy integrator or the amplifier, and Ccm = Genii = Ccm2 is

assumed. Eq. (6.11) indicates that when Ccm is not equal to 10 pF, V. is inversely

proportional to k. To reduce the variation of Vcmo when Ccm is not equal to 10 pF, k needs

to be as large as possible. However, the stability requirement limits the range of k that can

be selected. In Section 6.2.2, it has been shown that the lossy integrator allows larger

range of k so that the variation of Vcmo can be smaller.
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The capacitor ratio can also be derived from the binary output data in the

simulations. Table 6.1 lists some simulation results for the fully-differential and pseudo-

2 6
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Figure 6.12:Output common-mode voltages in the first-stage integrator of
the pseudo-differential circuit in Figure 6.10: (a) CMFB using
an amplifier; (b) CMFB using a lossy integrator.
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differential circuits and for different Cs1 and C52. The effect of the gain factor can be seen

from the simulation results for the fully-differential circuit in Figure 6.9.
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Figure 6.13:Output common-mode voltages in the first-stage integrator of
the pseudo-differential circuit when Ccmi = Ccm2 = 12 pF:
(a) CMFB using an SC amplifier;
(b) CMFB using a lossy integrator.
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6.4 Circuit Implementation

The pseudo-differential circuit shown in Figure 6.10 was chosen in the IC

implementation and it provided good results which met the design goal. The CMFB circuit

with SC amplifier was used in the implementation because it can effectively stabilize the

output common-mode voltage. The integrator version of CMFB was developed after the IC

implementation.

6.4.1. Design of Operational Amplifiers

The opamp is perhaps the most important building block in the differential readout

circuit. Any non-idealities such as finite gain, 1/f noise, input offset, thermal noise, as well

as non-linear settling may cause serious deterioration of the readout accuracy. However,

since correlated double sampling was used, the effect of 1/f noise, input offset and finite

gain was greatly reduced and made minor noise contribution.

Figure 6.14 shows the schematic of the single-ended opamp used for the first-stage

integrator in Figure 6.10. Basically, it has the same architecture as the one used in the

single-ended implementation. Instead of using the simple Miller compensation, a transistor

biased in the triode region was added in series with the Miller capacitor. This realizes a zero

which can cancel the non-dominant pole [50][56]. The bias circuit generates the control

Table 6.1: Simulation results for the fully-differential and pseudo-differential circuits.

Cs1, Cs2 (pF) Cs1 Cs2 (pF)
(Cs1 Cs2)simulated (PF)

Fully-differential Pseudo-differential

10.5, 9.5 1 1.006358 1.000027

9.5, 10.5 -1 -1.006358 -1.000024
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D OUT

voltage for the transistor used for compensation, as well as the bias voltage for the current

source. The pin Rin is connected to an external resistor which to a first-order approximation

makes the transistor transconductance independent of power-supply voltage as well as

process and temperature variations [56].

The opamp was realized in a 1.2 gm CMOS process. Table 6.2 lists the simulated

performance of the opamp obtained using an Hspice Level 28 model. The load capacitance

Table 6.2: Simulated performance of the single-ended opamp.

DC gain

(dB)

Unit-Gain

Bandwidth (MHz)

Phase Margin

(degree)

Slew Rate

(V/i.ts)

Input -Referred

Noise (nV/Vriz )

75 25 75 20 20
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was 20 pF. Simulations showed a 14-bit settling accuracy in 200 ns. This allows the opamp

to operate at a clock frequency of over 1 MHz. Since the oversampling ratio is over 512,

the contribution of the opamp thermal noise is very small.

The second-stage integrator uses a folded-cascode fully-differential opamp, as

shown in Figure 6.15. The bias circuit is shown in Figure 6.16. It provides the voltages Vp1,

Vp2 and Vn2 that supply the cascoded current sources in Figure 6.15. It also provides the

reference voltage Vcmr for the SC common-mode feedback circuit, which is shown in

Figure 6.17. The simulated performance of the opamp is summarized in Table 6.3.

IN+ D
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41-
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a IN-

VSS

Vp1Vp2Vn2

0 0 0

out-

Vp1

Vp2
Iin

Vn2
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Bias_fcop

Vcmr

Figure 6.15:The differential opamp with the bias circuit.
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Figure 6.16:The bias circuit for the differential opamp.

out+ Vc out-

Figure 6.17:Common-mode feedback circuit.
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Table 6.3: Simulated performance of the differential opamp.

DC gain
(dB)

Unit-Gain
Bandwidth (MHz)

Phase Margin
(degree)

Slew Rate
(V/gs)

80 30 75 25

6.4.2. Clock Generator, Comparator and Other Components

The clock generator with delay control is shown Figure 6.18. Vdelay is the control

voltage that can change the duration of the non-overlapping interval between clock phases

(I)i and 02. Two transmission gates were also added to adjust the slopes of the rising and

falling edges of the clock signals so that the crossings of 01 and 4)1b, 4:12 and (1)2b are

symmetrical. Therefore, when a switch is realized by the transmission gate with equal-size

PMOS and NMOS transistors, the charge injections of the PMOS and NMOS may cancel

each other and the total charge injection is minimized.

The comparator and the D flip-flop are the same as the ones used in the single-ended

implementation.

Vdelay

CLKin

D->->-->-->
>° c> 02E1

1>"-ID (1)2L->0
I

D (I)2d

>>cT-c> 01 r->>cI-E> 01d

> 0(1)1b

>> ro. 011

Figure 6.18:Clock generator.
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The DAC feedback capacitors Cdacl and Cdac2 in Figure 6.10 were realized by poly-

poly capacitors, and Cdaci = Cdac2 = 2 pF were used. Since the input capacitors Csi and Cs2

have a nominal value of 10 pF, the input-referred thermal noise is dominated by the

switches associated with the DAC feedback. The inband input-referred thermal noise

power can be approximated as

k T 4 )
log 10(0

OSRP thermal = dB. (6.12)10
t-- dacl

For OSR = 512, at room temperature, Eq. (6.12) gives a noise level of -108 dB. Hence this

circuit can have a large dynamic range.

6.4.3. The Top-Level Schematic and Simulations

Figure 6.19 show the top-level schematic of the implemented readout circuit. The

sensor capacitors Co and Cs2 were two external capacitors and are not shown in the

schematic. They were connected later for testing to the three pins Cl, C2, Cc. Notice that

at the inputs, some switches were realized by a small size NMOS transistor in parallel with

a larger transmission gate which is turned off a little before the NMOS transistor. The

transmission gate has much larger size so that its RC time constant is small and the settling

is fast, but it generates larger clock feedthrough and charge injection when it is turned off.

However, the added NMOS can help with fine settling and conducts the extra charge due

to clock feedthrough and charge injection of the transmission gate to ground, when the

transmission gate is cut off. The NMOS switch generates very little charge error when it is

turned off because of its minimum size.

The circuit shown in Figure 6.5 was implemented as the common-feedback block

in the first-stage integrator. In order to monitor the output common-mode voltage of the

integrator, the output of the opamp was brought to a pin Vcml which causes to an extra 10

pF capacitive load. Suppose cm' and Ccm2 in Figure 6.5 are 10 pF each, then the
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Figure 6.20:The connection of the two added capacitors for coarse
common-mode compensation.

capacitive load of the opamp is more than 30 pF and opamp may become unstable. The

solution is to reduce the common-mode signal from the two tested capacitors so that Ccmi

and Ccm2 can be reduced. Two extra on-chip capacitors were added to compensate the

majority of the common-mode signal from the tested capacitors Csi and Cs2. Assuming that

the nominal value of Cs1 and Cs2 is 10 pF and the design value of the two capacitors is also

10 pF, the input common-mode signal is zero and the output common-mode voltage will

be very small. The connection of the two on-chip capacitors as well as Csi and Cs2 are

illustrated in Figure 6.20. Usually, the absolute capacitance error of poly-poly capacitors is

less than 20% of the nominal value, so Ccmi and Ccm2 were designed as 2 pF each. Now

the capacitive load of the opamp is greatly reduced and opamp is still stable when driving

the pin. It should also be noted, that in Figure 6.5, V, can be connected to ground since the

output of the opamp can provide the voltage to compensate the reduced input common-

mode signal.

The Hspice simulation result is shown in Figure 6.21. It can be seen that without

calibration, the estimation error is less than -100 dB when over 800 data are averaged.

Therefore, the resolution of this differential circuit is better than 10(-100/20)*10 pF 0.1 fF.
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Fully-differential second-order sensor readout circuit
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Figure 6.21:Hspice simulation result for the differential
implementation.

6.5 Experimental Results

The design was fabricated in the Orbit 1.2 filll double-metal/double-poly process.

Figure 6.22 shows the microphotograph of the prototype chip. The die size is 2 mm x 2 mm.

The pinout of the chip and the test setup are shown in Figure 6.23. The blocks inside the

dotted line are on the test board.

In the test setup, the control voltages Vdelay, Vrcml were connected to analog

ground AGND. The CMT pins are for testing of the comparator and they were not

connected during the test. The tested capacitors Cs1 and Cs2 were mica capacitors with a

nominal value of 10 pF. They were first measured off board with a HP LCR meter, and Cs1

was found around 11 pF and Cs2 10 pF. The clock signal for the chip was provided by an

on-board crystal oscillator with added dividers which generated different clock

frequencies. The reference voltage was generated by a LM317 which has a large ripple
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Figure 6.22:Die photograph of the differential implementation.

rejection and a wide output range starting from 1.2 V [60]. The output binary data were read

into the Next workstation through the RS232 cable and stored in a file. The bias voltages

and the output common-mode voltage of the first stage integrator were monitored by the

DMM.

With CLKin set to 1.5 MHz, the output data were acquired and processed in Matlab

and the standard deviation of the capacitance ratio (Csi Cs2)/2Cdac from a typical 40

measurements was calculated. Assuming that the DAC feedback capacitors were 2 pF in

the realization, the standard deviation of (Cs cs2) can also be derived, as shown in

Figure 6.24. The mean value of (Cs - Cs2) was 1.0048 pF. When more than 4000 data were

averaged in each measurement, the standard deviation a was better than 0.02 fF. Hence, the

resolution of the circuit is better than 36 = 0.06 fF. When only 1000 data were averaged,

the standard deviation was 0.04 fF, and the resolution was 0.12 fF. Compared with the
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simulation result shown in Figure 6.21, the test result was close but a little worse. The

increased noise may be caused by noise coupling on the circuit board, as well as from the

environment.

The standard deviation can also be obtained from the output spectrum. Figure 6.25

depicted the overall spectrum of the output binary data Y with 65536 points. The Hanning

window was used before FFT was performed. The desired signal (C51 Cs2) /2Cdac is at DC.

In the output spectrum, the signal power is -12 dBV which corresponds to (C51 C52)

1.0051 pF. The total noise power (a2) for 100 Hz bandwidth is -114 dBV. Hence, the SNR

is above 100 dB and the standard deviation is a = 0.014 aF.
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The measurements have been repeated in the lab at different times and for different

test chips. Figure 6.26 shows the measured standard deviations for 22 measurements. In

each measurement, the standard deviation was obtained from 40 short-term measurements.

The number of data points used for estimating the capacitance was 2048 and 4096 for the

top and bottom curves, respectively. The measured standard deviations from time to time

and from chip to chip varied between 17.5 aF and 32 aF when 4096 data were used for

estimation of the capacitance. This shows that the test results have good reproducibility.

In the testing, it was assumed that Cdac was 2 pF in the implementation. However,

because of process variations, Cdac can be off as much as 20%. Hence, although the

standard deviation of (Csi Cs2)/2Cdac was accurate, the standard deviation of (Cs1 Cs2)
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Figure 6.26:Standard deviations from different measurements.
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might be off by 20%. For example, in Figure 6.24, when 1000 data were averaged, the real

standard deviation would be between 0.032 fF to 0.048 fF.

Table 6.4 shows the comparison between some existing interface circuits for

capacitor ratio testing and the single-ended and differential circuits realized in this research

using delta-sigma modulation. It can be seen that the proposed single-ended and differential

Table 6.4: Comparison of earlier results and results using the proposed circuits.

Circuit Output
Hardware

Complexity
Accuracy

Measurement
time

Floating

Gate [151
analog

simple but

accurate ADC

needed for post-
processing

a = 50 ppm

time needed
to measure

the output
voltage

A/D based
[16]

digital 16-bit ADC used a = 35 ppm
conversion

time of ADC

Oscillator
[20]

digital
Microprocessor

needed
a = 25 ppm 100 msec

Charge-
redistribution

[23]

digital

Microprocessor,

accurate SAR
ADC, and

memory needed,

a < 167 ppm 120 lisec

Proposed
single-ended

circuit

digital
Second-order SC

circuit
a < 10 ppm 4 msec

Proposed

differential

circuit

digital
Second-order SC

circuit
a < 2 ppm 2.7 msec
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circuits have advantages over the existing interface circuits. They require less circuit

complexity and are insensitive to non-ideal circuit effects, such as the input offset and

finite-gain effect of the opamps, which usually require extra calibration time in other

interface circuits. The proposed circuits can also be implemented on the same chip together

with capacitive sensors so that the circuits can be smaller and more robust. The speed of

the proposed circuits is also reasonably fast, suitable for most sensor applications.

It should be noted that because the new common-mode feedback circuit shown in

Figure 6.5 was implemented, the test chip can not only measure the capacitor ratio (Csi -

Cs2)/2Cdac, but also estimate the absolute value of Cdac. When Csc1 and Csc2 in Figure 6.20

were added in the implementation, under steady state conditions, Eq. (6.4) becomes

Ccm( lc Vcmi) = Vref(C Csc) , (6.13)

where Csc = Csci = Csc2 In the implementation, Vcmi is the Km in Figure 6.5, V,. = 0, and

C = 10 pF. Ccm and Csc were designed to be 2 pF and 10 pF, respectively. Since the ratio of

Con and Cse can be implemented relatively accurately, the following can be derived from

Eq. (6.13):

C C V msc c Vcm

Ccm Ccm V ref V ref

(6.14)

Therefore, if we change Vref and monitor Vcmi, the ratio between the external capacitor

and internal capacitor can be estimated.

Figure 6.27 shows the variations of Vcmi when Vref was changed for all the test

chips. The absolute value of Ccm can be estimated by measuring the slope of these curves,

and Table 6.5 shows the results. It can be seen the absolute error is less than 3% for the

process in which the chips were implemented. Since Cdaci and Cdac2 were designed to be

the same as Ccmi and Ccm2, and on-chip capacitor matching is usually better than 1%, it is



128

Figure 6.27:Vcmi vs. Vref for 6 test chips.

expected that Cdacl and Cdac2 were around 2 pF in the chips, and the absolute error was less

than 4%.

6.6 Conclusions

Different schemes of common-mode compensation for fully-differential SC circuits

have been analyzed and discussed in this chapter. A differential structure and a pseudo-

differential structure were presented and compared. The pseudo-differential

Table 6.5: Estimated capacitance of Ccm for the test chips.

#1 #2 #3 #4 #5 #6

Ccm (pF) 1.94 1.93 1.92 1.94 1.96 1.94
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implementation of the circuit for capacitor ratio readout was described, and test results

were presented. The measured performance shows that high-resolution measurement of

capacitance can be obtained using the pseudo-differential circuit.



Chapter 7. Summary and Future Work

7.1 Summary

130

New techniques for high-accuracy capacitor ratio testing and sensor readout were

proposed in this dissertation. Even in the presence of circuit non-idealities, using the

proposed techniques, the circuits introduced can provide highly accurate readout of

capacitor ratios or difference. The following topics were included:

L The introduction of various capacitive sensor structures and their characteristics,

the limiting factors in realizing highly accurate interface circuits, and some existing circuit

techniques for capacitor ratio measurement.

2. Brief introduction of oversampling delta-sigma modulation, and how different

circuit structures for capacitor ratio test and sensor readout can be developed using delta-

sigma modulation.

3. Analysis of the effects of opamp non-idealities, clock feedthrough and charge

injection from the switches, and kT/C noise in SC capacitive sensor interface circuits.

4. Use of correlated-double-sampling techniques to reduce the effects of some

opamp non-idealities, and the design of different calibration schemes to cancel the clock

feedthrough and charge injection of the switches.

5. Introduction and analysis of new common-mode feedback techniques for fully-

differential circuits with large input common-mode input.
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The prototype chip implementing a single-ended circuit described in this

dissertation provides a readout of capacitor ratio, and its accuracy was higher than any other

interface circuit reported to date. The prototype chip of the differential implementation

verified the effectiveness of a proposed common-mode feedback scheme, and provided

even better resolution than the single-ended chip.

7.2 Future Work

The proposed two-phase circuits have been shown to be useful for high-accuracy

differential capacitive sensor interfaces, as well as for on-chip capacitor matching

measurements. It would be interesting to use the single-ended circuits in a test structure to

characterize process variations. For example, they can be used in a digital process to

measure the mismatch of capacitors of different types, such as MOSFET capacitors,

sandwich capacitors and poly-poly capacitors. Even the absolute value of capacitors can be

measured, when one capacitor is on chip and another one is off chip.

The single-ended and differential structures can be further integrated with

capacitive sensors, such as accelerometers and capacitive pressure sensors.
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