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ABSTRACT Attention Deficit Hyperactivity Disorder (ADHD) is a high incidence of neurobehavioral

disease in school-age children. Its neurobiological diagnosis (or classification) is meaningful for clinicians

to give proper treatment for ADHD patients. The existing ADHD classification methods suffer from two

problems, i.e., insufficient data and noise disturbance. In this paper, a high-accuracy classification method

is proposed by using brain Functional Connectivity (FC) as ADHD features, where an l2,1-norm Linear

Discriminant Analysis (LDA) model and a binary hypothesis testing framework are effectively employed.

In detail, we introduce a binary hypothesis testing framework to cope with insufficient data of ADHD

database. The FCs of test data (without seeing its label) are used for training and thus affect the subspace

learning of training data under binary hypotheses. On other hand, the l2,1-norm LDA model generates a

subspace to represent ADHD features, aiming to overcome noise disturbance. By robustly learning ADHD

features, the subspace energy difference between binary hypotheses becomes more discriminative. Thereby,

the true hypothesis can be rightly estimated with its larger subspace energy, which provides reliable evidence

to predict the label of test data. By the test on ADHD-200 database, it shows that our method outperforms

other state-of-the-art methods with the significant average accuracy of 97.6%. Moreover, the corresponding

result analysis with ADHD symptom score and the explanation of discriminative FCs between ADHD and

healthy control groups are given, which further verifies the validity of our classification method.

INDEX TERMS ADHD classification, binary hypothesis, feature learning, LDA, subspace clustering.

I. INTRODUCTION

Attention Deficit Hyperactivity Disorder (ADHD) is a high

incidence of neurobehavioral disease in children, character-

ized by difficulty paying attention, excessive activity and

other related behavioral disorders. About 5-7% of school-age

children suffer from ADHD, and 30-50% of them keep
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ADHD symptom in their adulthood [1]. It is of vital

importance to diagnose this disease as accurate as possible

such that the treatment can be in time provided for chil-

dren patients. Current clinical diagnosis depends on sub-

jective scoring via various Hamilton scales, where ADHD

patients are directly observed to identify their symptoma-

tological features [2]. But it needs experienced clinicians

and has limited ability to discover the potential ADHD bio-

information. Thus, more neurobiological diagnostic methods
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are proposed, wherein ADHD classifications with machine

learning (ML) and deep learing (DL) are rapidly developed

in recent years.

Unlike symptomatological diagnosis using subjective scor-

ing, neurobiological diagnosis relies on the physics data of

brain collected from objective observations, e.g., EEG, PET,

sMRI and fMRI [3], [4]. With some data procedures, various

biological signals are generated to give a full description of

brain status, and provide useful bioinformation for the final

ADHD judgment. The frequently used biosignals include cor-

tical thickness, gray matter probability, Regional Homogene-

ity (ReHo) and Amplitude of Low Frequency Fluctuation

(ALFF) [5]. Among these biosignals, Functional Connectiv-

ity (FC) has been proven to reveal the difference between

ADHD and healthy control individuals with great success

[6], [7]. Therefore, given a set of resting-state fMRI data,

we here focus our classification work on the FC analysis.

Generally speaking, ADHD classification with machine

learning is mainly divided into three phases, i.e., feature

selection, feature extraction and label decision via classi-

fiers. In feature selection, some discriminative biosignals

are sampled from a huge number of biosignals as their

features. Several successful feature selection approaches

have been adopted in ML-based classification, such as

Support Vector Machines Recursive Feature Elimination

(SVM-RFE) [8], Least Absolute Shrinkage and Selection

Operator (LASSO) [9] and Elastic Net [10]. Besides, more

advanced strategies are in pursuit of better selection perfor-

mance. For example, a Reliable Relief (R-Relief) method

is recently presented and gives a set of feature weights

to fractional ALFFs during feature selection [11]. As for

FCs, a graph-kernel regularized LASSO is performed on the

FC network, which preserves the local structure among the

selected FCs [12]. An ensemble learning strategy is also

employed for the FC selection by combining various Boost-

ing approaches [13].

Feature extraction contributes to find a learned space to

effectively represent the selected features. In this learned

space, either dimensionality reduction is performed to

strengthen the reliable components of features, or a better

clustering is achieved to minimize the inter-class disturbance

and centralize the same labeled features. To this end, some

plain data analysis models such as Principal Component

Analysis (PCA), Linear Discriminant Analysis (LDA) [14]

and Independent Components Analysis (ICA) [10], [15] are

pioneered to tackle the selected features. Recently, more

remarkable signal models are cast in feature extraction.

In [16], a dynamic sparse coding algorithm is presented on

EEG signal to detect ADHD biomarkers in a ’dictionary’

space composed of learned atoms. A sparse representation

model is further incorporated on FCs to identify ADHD

individuals with the grouped dictionary learning [17]. Sub-

space projection algorithms are also well developed in fea-

ture extraction. Several subspaces are effectively designed in

consideration of intra- and inter-class relationship of subjects

to improve the classification accuracy [18], [19]. Moreover,

since FCs can describe a topographic map of brain, some

special graph-based methods are performed for ADHD clas-

sification. Various graph measures are carried out to explore

the FC network features [20], [21]. Among these methods,

a fusion fMRI method [22] attracts more attention due to its

recognition of reliable FCs by using the affinity propagation

clustering on FC network. In [23], the discriminative FC

sub-networks are further discussed such that a robust FC

pattern is found for the ADHD feature extraction.

To the best of our knowledge, a training and testing scheme

is sophisticatedly adopted in label decision. Here, a target

classifier is learned by the features of labeled training data,

and then the predicted label of test data is given via this

classifier. Therefore, the design of classifier becomes a key

point. Various well-developed classifiers have been applied

in ADHD classification, including logistic regression, bag-

ging, random forest and decision tree [11], [24]. Especially,

the classifiers with SVM [20], [25] and Extreme Learning

Machine (ELM) [26] are more welcomed due to their fitness

for the ADHD databases of small size. In an L1BioSVM

method [27], the existing l1-norm SVM model is redesigned

with a bi-objective optimization problem, and thus it achieves

attractive classification accuracy. Moreover, an ELM com-

bined with a classifier-selecting genetic approach is given to

identify ADHD subjects, which only needs to detect three

brain regions with their sMRI data [28].

On the other hand, deep learning has shown its poten-

tial power in ADHD classification. DL-based classification

utterly removes the barriers among the above three phases. Its

multilayered and nonlinear learning strategy provides more

flexible ability in feature extraction and label decision. In the

early work, a Convolutional Neural Network (CNN), named

as FCNet [29], is proposed to describe the FCs of ADHD

individuals, which efficiently uses a fully connected net-

work to compute the similarity among the extracted features.

As an advanced version of FCNet, Deep fMRI [30] sequen-

tially introduces a self-learned subnetwork as its classifier

to generate a whole deep learning framework from feature

extraction to label prediction. Later, a three-dimension CNN

(3D-CNN) model is given to investigate the local spatial

patterns of ADHD from various fMRI datasets [31]. Very

recently, a four-dimension CNN is presented for the better

spatio-temporal feature learning [32].

Though ADHD classification with machining learning and

deep learning has obtained some impressive achievements, its

accuracy performance still has a gap to meet the requirement

of clinical diagnosis. In fact, the accuracies of most state-of-

the-art methods fluctuate between 65% and 87% [11], [18],

[22], [27], [30]–[32]. The reason comes from two aspects.

The lack of data is the first and major cause to hinder the

improvement of accuracy, since ADHD databases are with

their limited subjects. For ML-based methods, an effective

training and testing scheme is founded on the assumption, that

is, the features of test data are contained in the feature space

of training data. But the features of training data in practice

cannot well represent those of test data due to the small
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size of ADHD databases. Thus the classification accuracy is

inevitable deteriorated. A dearth of data also has significant

impact on DL-based methods. DL is always eager for a huge

amount of data, since thousands or millions of parameters

need be trained in deep neural network. It naturally conflicts

with the limited ADHD data. For the sake of inadequate train-

ing, the accuracy of DL-based classification is sometimes

even worse than those of ML-based methods. The second

cause is the noise disturbance in ADHD data. These noises

are not only from the biosignal collection procedure, such

as head movement and uncorrected image aligment in MRI

scans, but also from other pathological factors. For example,

ADHD children often have other associate diseases, e.g., anx-

iety and learning disorders. It greatly increases the difficulty

in ADHD feature learning, since the feature noise of other

diseases should be pre-excluded in principle. Unfortunately,

most of existing methods do not well treat the noise. They pay

less attention on the robust feature learning to remove these

noises. As a result, the accuracy is decreased.

Motivated by the recent process, we propose an ADHD

classification method by using l2,1-norm LDA and binary

hypothesis testing. Here, a binary hypothesis testing frame-

work is introduced for ADHD classification to cope with

the insufficient data problem of ADHD database. Mean-

while, to overcome noise disturbance, an l2,1-norm LDA

model is adopted in feature extraction to robustly learn the

ADHD features, where the corresponding optimization solu-

tion is given. Moreover, an energy-based decision strategy

is proposed for the learned features in different hypotheses,

which efficiently predicts the label of test data to identify

ADHD individuals. On the platform of ADHD-200 database,

the experiments show that our classification method outper-

forms other state-of-the-art methods with the higher average

accuracy of 97.6%. The corresponding result analysis with

ADHD symptom score and the explanation of discriminative

FCs of ADHD are also given to verify the validity of our

classification method.

II. MATERIALS AND METHODS

A. IMAGE DATASET AND PREPROCESSING

In our work, all resting-state fMRI data is from the

ADHD-200 consortium (http://fcon_1000.projects.nitrc.org

/indi/adhd200). We use four ADHD databases to investi-

gate the binary classification between ADHD and healthy

control subjects. These databases are from NeuroImage

(NI), New York University medical center (NYU), Kennedy

Krieger Institute (KKI) and Peking University (PU), with

their information shown in Table 1. For ADHD data prepro-

cessing, we obtain the time course values of BOLD signals

from the connectome website (http://www.preprocessed-

connectomes-project.org/adhd200). The preprocessing pro-

cedure of these time courses includes removing of first four

time points, slice time correction, motion correction (first

image taken as the reference), registration on 4 × 4 × 4 voxel

resolution using the Montreal Neurological Institute (MNI)

TABLE 1. Summary of several ADHD-200 data.

space, filtration (band pass filter 0.009Hz < f < 0.08Hz)

and smoothing using 6mm FWHM Gaussian filter. Brains

are parceled in accordance with Automated Anatomical

Labeling-116 (AAL-116) atlas, where 90 Regions of Inter-

est (ROI) are used. The FCs are generalized by Pearson cor-

relation between regional BOLD signals. Finally, a Fisher’s

r-to-z transform is utilized on FCs to transform their sampling

distribution of correlation coefficients for normality.

B. ADHD CLASSIFICATION FRAMEWORK WITH

BINARY HYPOTHESIS

Different from the training and testing scheme, the binary

hypothesis approach provides an alternative way to detect

ADHD individuals [18], [19]. Its basic idea is to let the FCs

of test data (without seeing its label) affect the selected FCs

of training data. In detail, we cast the FCs of labeled training

data and test data labeled under an ADHD or control hypoth-

esis into the feature selection procedure. The discriminative

selected FCs of training data are only generated under the

true hypothesis of test data, while the obscure ones are under

the false hypothesis. Such influence is delivered to feature

extraction. For the true hypothesis, the effective subspace is

learned by the l2,1-norm LDA model. The strong projected

components of selected FCs are then obtained in the learned

subspace with their large energies. Conversely, the projected

components keep small energies with the subspace learning

of l2,1-norm LDA model under the false hypothesis. Thus,

the projected-energy difference between binary hypotheses

is generated, which forms a significant measure for the label

prediction. By comparing the projected energies of FCs of

training data under different hypotheses, we can predict the

label of test datawith the hypothesis of large projected energy.

Note that, since the binary hypothesis approach is not neces-

sary to meet the aforementioned space coverage requirement

for training data, it becomes effective to overcome the insuf-

ficient data problem.

We give the proposed ADHD classification framework

in Figure 1. In term of the ML-based classification, our

scheme includes three phases, i.e., feature selection, feature

extraction and ADHD decision. We employ a binary hypoth-

esis model to initialize the label of test data. The test data

is in advance labeled as a healthy control (H0) or ADHD

(H1) subject. In the feature selection, both FCs of training

and test data are utilized to compute the reliability value on

each FC by the SVM-RFE approach. By sorting these values

descendingly, two feature ranking orders, RH0 and RH1 , are
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FIGURE 1. Framework of proposed ADHD classification.

generated in binary hypotheses. Hereafter, we only focus on

the FCs of training data. The selected feature (selected FC)

sets, XH0 and XH1 , with their feature number N are obtained

from training data by the ranking orders. In the feature extrac-

tion, subspaces are learned from the corresponding selected

feature sets by the l2,1-norm LDA model. In these subspaces,

the projected components of selected features are respectively

calculated as X̃
H0

and X̃
H1

. ADHD decision is finally per-

formed by the comparison between the normalized l2,1-norm

energies, EH0 and EH1 . The true hypothesis is estimated as

H̃true with the large energy, and thus the predicted label is

given to the test data.

It is worth mentioning that, compared with [18], [19],

there exist some differences in our framework. In [18], [19],

an energy balance operation is employed in the feature

selection phase. It aims to avoid the violent energy fluctu-

ation of selection features between binary hypotheses and

generate the comparable projected energies. However, by

consideration of noise, some selected FCs may be contam-

inated and viewed as outliers with their large offset val-

ues. In this case, the energy balance is improper to some

extent. Therefore, we remove this operation and use the

l2,1-norm LDA model to deal with these outliers. But we

still need the projected energies normalized in the ADHD

decision to achieve the fair energy comparison under different

hypotheses.

C. FEATURE EXTRACTION VIA l2,1-NORM LDA MODEL

Some notations are firstly introduced as follows. We define

xa and xc as the selected features of ADHD and healthy con-

trol subjects, which derive from the individual FC data. The

selected feature sets of ADHD and control groups are rep-

resented as Xa = [x1a x
2
a . . . x

na
a ] and Xc = [x1c x

2
c . . . x

nc
c ]

with their subject numbers na and nc. Thus, the LDAmodel is

used on these feature sets to extract most discriminative pro-

jected features for a better subspace clustering. The classical

LDA is described as

Q̃ = arg max
QTQ=I

tr
(

QTSbQ
)

tr
(

QTSwQ
) , (1)

where the transformation matrix Q is regarded as a subspace

with itsK orthogonal bases. The between-class scatter matrix

Sb and within-class scatter matrix Sw are defined as

Sb = na (x̄a − x̄) (x̄a − x̄)T + nc (x̄c − x̄) (x̄c − x̄)T , (2)

Sw =
na

∑

i=1

(

xia − x̄a

) (

xia − x̄a

)T

+
nc

∑

i=1

(

xic − x̄c

) (

xic − x̄c

)T
, (3)

where x̄a and x̄c are respectively the means of selected fea-

tures for ADHD and healthy control subjects, x̄ is the mean

value of all selected features. Problem (1) can be turned with

its l2-norm form as

Q̃ = arg max
QTQ=I

‖QTGb‖22
‖QTGw‖22

, (4)

where the between-class and within-class kernels are given

as Gb = [
√
na (x̄a − x̄)

√
nc (x̄c − x̄)] and Gw = [Xa −

x̄a1
T
na

Xc − x̄c1
T
nc
], 1na and 1nc are the vectors of ones with

their corresponding lengths of na and nc.

Unfortunately, the above l2-norm LDA model is sensitive

to outliers. It always attempts to force the outliers close to

their centers with heavy weights, wherein these weights are

computed from the distancemetric of squared l2-norm. But as

a general rule, the outliers usually contain serious noise. The

clustering operation on outliers becomes meaningless and

conversely deteriorates the clustering performance of other

selected features. Therefore, more measures, i.e., nuclear-

norm [33], l1-norm [34] and l2,p-norm [35], [36], are pro-

posed to improve the robustness of LDA. Among them,

the l2,1-norm LDA model has shown its strong ability to

cope with outliers, due to l2,1-norm well exploits the geo-

metric structure of data rather than l2-norm [37]. Its model

is written as

Q̃ = arg max
QTQ=I

‖QTGb‖2,1
‖QTGw‖2,1

, (5)

where the between-class kernel now is turned to Gb =
[na (x̄a − x̄) nc (x̄c − x̄)]. The l2,1-norm for a matrix A is
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defined as

‖A‖2,1 =
∑

j

‖A (:, j) ‖2, (6)

where A (:, j) is the j-th column vector of A.

As we know, problem (5) can be treated as a ratio trace

optimization problem. It has no closed-form solution and

is very often approximated by the solution of determinant

ratio problem. Though the approximated solution works well

on low-dimension data, its solution error sharply increases

for high-dimension data. To address this issue, a non-greedy

method is also referred in [37] to give an exquisite solution

for the l2,1-norm LDA model. More specifically, it firstly

transforms the numerator of (5) as

‖QTGb‖2,1 = tr
(

QTGbDbG
T
bQ

)

, (7)

whereDb = diag
(

1

‖QTGb(:,1)‖2
, 1

‖QTGb(:,2)‖2

)

is the diagonal

matrix. The similar operation is done on the denominator

of (5) as

‖QTGw‖2,1 = tr
(

QTGwDwG
T
wQ

)

, (8)

where

Dw = diag(
1

‖QTGw (:, 1) ‖2
,

1

‖QTGw (:, 2) ‖2
, . . . ,

1

‖QTGw (:, n) ‖2
)

is the diagonal matrix with the total subject number

n = na + nc.

Turn problem (5) into a simple convex problem as

Q̃ = arg max
QTQ=I

tr
(

QTGbDbG
T
bQ

)

− tr
(

QTGwDwG
T
wQ

)

.

(9)

Now, any gradient descent approach can be performed on (9)

to obtain its optimal subspace Q̃. However, since the matrices

Db and Dw are the functions of Q, it makes the gradient cal-

culation more complicated. Therefore, an iteration algorithm

is adopted to solve (9) with two-phase operation. In each

iteration, givenDb andDw, a new subspaceQ is firstly learned

by the gradient descent method. Then the matricesDb andDw
are updated with this learned subspace for the next iteration.

After several iterations, the subspace can converge to the

optimal one Q̃ (see more details in [37]).

As for our binary hypothesis framework, we input the

selected feature sets, XH0 and XH1 , into the l2,1-norm LDA

model to obtain their corresponding optimal subspaces, Q̃
H0

and Q̃
H1

. The projected components of selected features are

sequentially achieved by

{

X̃
H0 = (Q̃

H0
)TXH0

X̃
H1 = (Q̃

H1
)TXH1 .

(10)

D. ADHD DECISION

We employ a comparison operation in the ADHD decision

to replace the traditional classifier. To remove the energy

fluctuation among selected features, the normalized energies,

EH0 and EH1 , are calculated for X̃
H0

and X̃
H1

by

EHi =
‖X̃Hi‖2,1
‖XHi‖2,1

, i ∈ {0, 1}. (11)

Thus, the true hypothesis is estimated with

H̃true =
{

H1, △E > Tthr
H0, otherwise,

(12)

where the energy difference is set as △E = EH1 −EH0 with

the decision threshold Tthr = 0. In (12), the true hypothesis

is identified with the large normalized energy. It is because,

under the false hypothesis, the test data with wrong predicted

label is treated as a noise to disturb the selected features of

training data. In this situation, the subspace cannot be well

learned from the l2,1-norm LDA such that more energy of

selected features leaks out of the subspace.

III. RESULTS AND DISCUSSION

We give a set of performance evaluations on the ADHD

databases of Table 1. The classification accuracy is obtained

with the Leave-One-Out Cross Validation (LOOCV), where

in each test iteration one subject is chosen from the given

database as test data and the rest subjects are all used as train-

ing data. The parameter setting of our method, i.e., selected

feature number N and subspace dimension K , is given

in Table 2. Several state-of-the-art methods are employed

for the comparison, including machine learning methods as

R-Relief [11], L1BioSVM [27] and Fusion fMRI [22], deep

learning methods as FCNet [29], 3D-CNN [31] and Deep

fMRI [30], and two binary hypothesis methods with subspace

learning and dual subspace learning respectively named as

SP-BH [18] and Dual-SP-BH [19].

TABLE 2. Parameter setting of ADHD databases.

A. ADHD CLASSIFICATION COMPARISON

Various measures of ADHD classification, i.e., specificity,

sensitivity and accuracy, are given in Figure 2. It shows our

method achieves the significant classification performance

with the high average accuracy of 97.6%. We also find

the unbalance problem on PU 1 and KKI is well solved.

Existing reports show the sensitivity of these two databases

usually keeps in a low level [11], [27], since the ADHD

subjects are seriously less than the control ones as shown

in Table 1. In this case, unreliable features are extracted from

their limited ADHD subjects with less statistical information.

56232 VOLUME 8, 2020



Y. Tang et al.: High-Accuracy Classification of ADHD With l2,1-Norm LDA and Binary Hypothesis Testing

FIGURE 2. Classification comparison on ADHD databases (%).

TABLE 3. Accuracy comparison with various state-of-the-art methods (%).

These features are impacted by more uncertain factors and

tend to be outliers. But our method gives a remarkable

solution to the unbalance problem. It is thanks to the

l2,1-norm LDA model for the robust feature learning. As a

result, the sensitivity on these databases is impressively

improved in Figure 2, where the 100% sensitivity is even

obtained on KKI.

We further compare the accuracy of our method with those

of state-of-the-art ones in Table 3. The first three methods,

i.e., Fusion fMRI, R-Relief and L1BioSVM, are allML-based

methods. Though different approaches are incorporated to

improve the accuracy, they suffer the general problem of

ML-based methods, that is, the features of training data

are difficult to cover the features of test data. Therefore,

the accuracy on NI is much lower than those on PU 1 and

KKI, due to the small size of NI. We also note that the

accuracies on NYU and PU are unsatisfied. The selected

features are now diffused, since more features are disturbed

with noise and then turn into the outliers.Without considering

the robust feature learning, it makes the classification inef-

fective. As for the DL-based methods, 3D-CNN and Deep

fMRI achieve a better performance on NYU. They bene-

fit from the multilayered and nonlinear learning strategy.

Unfortunately, their accuracies on PU, PU 1, KKI and NI

are rather bad, and even worse than those of the ML-based

methods. An over-fitting problem appears on these databases,

which is also caused by the insufficient data. Both binary

hypothesis methods achieve remarkable performances, where

the binary hypothesis framework is adopted to overcome

the lack of data. However, our method further develops the

binary hypothesis methods. By taking advantage of the robust

feature learning with l2,1-norm LDA, its accuracy is the best

among all listed methods. Furthermore, it shows our method

well fits for various databases with less effect on the database

size.

B. DECISION RESULTS COMBINED WITH ADHD

SYMPTOM SCORE

To evaluate the validity of our ADHD decision strategy,

in Figure 3, we plot the corresponding energy difference △E
for each subject that is used as test data in its test turn of

LOOCV. The ADHD score indexes are further given for these

data as symptom score. In Figure 3, the decision threshold

Tthr well divides the ADHD and healthy control subjects on

NYU and PU, where subjects stay in their right positions

and are hard to cross the decision threshold. It proves that

the binary hypothesis approach is useful for classification.

More specifically, for training data, the stronger projected

components of selected FCs are obtained with the right pre-

dicted label of subject than those components with wrong

predicted label. As for the wrong predicted subject, we find

most of them are located in or nearby the transition zone

between ADHD and non-ADHD. Now, they are also difficult

to recognize by the symptomatological diagnosis. Moreover,

we observe there are a number of subjects in the transition

zone from the aspect of ADHD score index. It means these

subjects may be misdiagnosed. However, our method only

has a few of wrong predicted subjects, which shows the

diagnosis advantage.

C. ANALYSIS ON DISCRIMINATIVE FCs

Some post-processing is performed on the classification

results to discover the discriminative FCs between ADHD

and control groups. We calculate the appearance probability

for each FC to measure its importance. In detail, for each

subject used as test data in its test turn of LOOCV, we record

the selected FCs corresponding to its predicted label. Then

the appearance possibility of FC is obtained with

F(i) =
∑

j Fp(i, j)
∑

j Ns(j)
× 100%, (13)

where F(i) is the appearance probability of i-th FC, Fp(i, j)

is the total appearance number of i-th FC in the j-th database

with the right label prediction, andNs(j) is the subject number

of j-th database. Therefore, the appearance probability F(i)

provides the statistical information on all used databases of

Table 1. Several discriminative FCs with the highest appear-

ance probabilities are consequently achieved. The result of

FC probability is shown in Figure 4, where 29 highest-

probability FCs are chosen with the appearance probability

threshold TF = 55%. Here, the 90 ROIs are categorized into

six lobes, i.e., medial temporal, subcortical, occipital, frontal,

temporal, and parietal (pre)motor lobes [38]. In Figure 4,

it shows a large number of discriminative FCs exist in parietal
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FIGURE 3. Evaluation on ADHD decision with ADHD score index.

FIGURE 4. Discriminative FCs with highest appearance probabilities.

(pre)motor lobe which is directly associated with movement

intention and motor awareness as mentioned in [39].

We further list several high-probability discriminative FCs

in Table 4 with their P-values obtained by two-sample t-test.

The locations of these FCs are shown in Figure 5. Now we

focus on verifying whether these discriminative FCs are in

FIGURE 5. Several discriminative FCs with their locations.

TABLE 4. Discriminative FCs combined with their P-values.

line with the existing discovery of ADHD disease, which

provides another way to evaluate the validity of our method.

However, it is difficult to directly check these FCs, due

to FC is a mathematical concept derived from the correla-

tion operation between brain regions. Thus we try to find

more physical evidences to support these discriminative FCs.

In detail, the discriminative FC is verified when the corre-

sponding brain regions are abnormal under some physical

measures, e.g., cortical thickness and gray matter probability.

In other words, the discriminative FCs here can be viewed as

abnormal FCs to identify ADHD subjects. Because ADHD is

characterized by the executive function deficits of movement

and emotion controls, we discuss the discriminative FCs of

Table 4 mainly from three aspects, i.e., basic movement

control, senior movement control and emotion control.

1) For the basic movement control, it reports inferior

frontal gyrus, pars opercularis and supramarginal gyrus

greatly affect on body movement, especially hand

movement [40]. The regional graymatter abnormalities

are appeared in pars opercularis and supramarginal

gyrus with their reduced cortical thickness [41], [42],

which leads the abnormal FC between right inferior

frontal gyrus, pars opercularis and right supramarginal

gyrus.

2) For the senior movement control, cuneus and hip-

pocampal gyrus play an important role. Cuneus

receives visual information and is known for its
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involvement in basic visual processing. Besides, some

mid-level visual processing, just as attention, working

memory and reward expectation, occurs in cuneus.

It proves there are significant changes of cortical thick-

ness on bilateral cuneus, which causes the high nega-

tive correlation of inattentive score [43], [44]. Besides,

more abnormal biosignals, i.e., ReHo and ALFF, are

detected on cuneus [45], [46]. On the other hand,

hippocampal gyrus is in charge of memory encoding

and retrieval with the recognition of environmental

scenes. The hippocampal gyrus of ADHD children

is often with smaller volumes [47] and hard to be

activated during the go/no-go task [48]. The above

evidences well support the abnormal FCs exist within

bilateral cuneus and hippocampal gyrus. As for the FC

between putamen and globus pallidus, putamen and

globus pallidus are the key parts of striatum which

coordinates fine and complex movements. ADHD is

also known as a dysfunction of the striatum [49]. More-

over, the putamen and globus pallidus of boys with

ADHD suffer from volumetric reduction and inward

deformation [50], [51].

3) For the emotion control, the amygdala and hippocam-

pus are respectively related to emotion and memory.

Many researches disclose an altered effective connec-

tivity between amygdala and hippocampus in ADHD

children, where the negative emotion is often enlarged

among these children [47], [52]. It also reports the

gray matter volumes of amygdala and hippocampus are

shrunk [53], [54]. It shows the FC between amygdala

and hippocampus is changed for ADHD subjects.

Besides, the FC between right medial orbitofrontal cortex

and right gyrus rectus is found in Table 4. The altered gray

matter analysis of ADHD on gyrus rectus is given in [55],

[56]. Interestingly, there has a significant effect of gender on

rectus, that is, rectus can be more easily activated by male

than female [57]. It well explains the phenomenon that the

ADHD risk is 2.3 times higher for boys than that for girls [58].

IV. CONCLUSION

We propose a high-accuracy ADHD classification method.

In this method, we use a binary hypothesis testing framework

to effectively solve the insufficient data problem of ADHD

databases. Meanwhile, an l2,1-norm LDAmodel is employed

for the robust feature learning to alleviate noise disturbance.

The experiments show our method significantly outperforms

the existing classification methods. The average accuracy

achieves 97.6% with the LOOCV. Moreover, the correspond-

ing analysis with ADHD symptom score and the explanation

of discriminative FCs are also given, which well verifies the

validity of our classification method.

REFERENCES

[1] G. Polanczyk and P. Jensen, ‘‘Epidemiologic considerations in attention

deficit hyperactivity disorder: A review and update,’’ Child Adolescent

Psychiatric Clinics North Amer., vol. 17, no. 2, pp. 245–260, Apr. 2008.

[2] S. A. Safren, M. W. Otto, S. Sprich, C. L. Winett, T. E. Wilens, and

J. Biederman, ‘‘Cognitive-behavioral therapy for ADHD in medication-

treated adults with continued symptoms,’’Behaviour Res. Therapy, vol. 43,

no. 7, pp. 831–842, Jul. 2005.

[3] J. DellaBadia Jr, W. L. Bell, J. W. Keyes, Jr., V. P. Mathews, and

S. S. Glazier, ‘‘Assessment and cost comparison of sleep-deprived EEG,

MRI and PET in the prediction of surgical treatment for epilepsy,’’ Seizure,

vol. 11, no. 5, pp. 303–309, Jul. 2002.

[4] J.-P. Lachaux, P. Fonlupt, P. Kahane, L.Minotti, D. Hoffmann, O. Bertrand,

and M. Baciu, ‘‘Relationship between task-related gamma oscillations and

BOLD signal: New insights from combined fMRI and intracranial EEG,’’

Hum. Brain Mapping, vol. 28, no. 12, pp. 1368–1375, Dec. 2007.

[5] D. Dai, J. Wang, J. Hua, and H. He, ‘‘Classification of ADHD children

through multimodal magnetic resonance imaging,’’ Frontiers Syst. Neu-

rosci., vol. 6, p. 63, Sep. 2012.

[6] E. Hoekzema, S. Carmona, J. A. Ramos-Quiroga, V. R. Fernández,

R. Bosch, J. C. Soliva, M. Rovira, A. Bulbena, A. Tobeña, M. Casas, and

O. Vilarroya, ‘‘An independent components and functional connectivity

analysis of resting state fMRI data points to neural network dysregulation

in adult ADHD,’’ Hum. Brain Mapping, vol. 35, no. 4, pp. 1261–1272,

Apr. 2014.

[7] K. Konrad and S. B. Eickhoff, ‘‘Is the ADHD brain wired differently?

A review on structural and functional connectivity in attention deficit

hyperactivity disorder,’’Hum. Brain Mapping, vol. 31, no. 6, pp. 904–916,

Jun. 2010.

[8] J. B. Colby, J. D. Rudie, J. A. Brown, P. K. Douglas, M. S. Cohen, and

Z. Shehzad, ‘‘Insights into multimodal imaging classification of ADHD,’’

Frontiers Syst. Neurosci., vol. 6, no. 6, p. 59, 2012.

[9] Y. Zhao, H. Chen, and R. T. Ogden, ‘‘Wavelet-based weighted LASSO and

screening approaches in functional linear regression,’’ J. Comput. Graph.

Statist., vol. 24, no. 3, pp. 655–675, Jul. 2015.

[10] M. Nuñez-Garcia, S. Simpraga, M. A. Jurado, M. Garolera, R. Pueyo, and

L. Igual, ‘‘FADR: Functional-anatomical discriminative regions for rest

fMRI characterization,’’ in Proc. Int. Workshop Mach. Learn. Med. Imag.,

2015, pp. 61–68.

[11] B. Miao, L. L. Zhang, J. L. Guan, Q. F. Meng, and Y. L. Zhang, ‘‘Clas-

sification of ADHD individuals and neurotypicals using reliable RELIEF:

A resting-state study,’’ IEEE Access, vol. 7, pp. 62163–62171, 2019.

[12] M. Wang, B. Jie, W. Bian, X. Ding, W. Zhou, Z. Wang, and M. Liu,

‘‘Graph-kernel based structured feature selection for brain disease clas-

sification using functional connectivity networks,’’ IEEE Access, vol. 7,

pp. 35001–35011, 2019.

[13] D. Yao, H. Sun, X. Guo, V. D. Calhoun, L. Sun, and J. Sui, ‘‘ADHD

classification within and cross cohort using an ensembled feature selec-

tion framework,’’ in Proc. IEEE 16th Int. Symp. Biomed. Imag. (ISBI),

Apr. 2019, pp. 1265–1269.

[14] S. Dey, A. R. Rao, and M. Shah, ‘‘Exploiting the brain’s network structure

in identifying ADHD subjects,’’ Frontiers Syst. Neurosci., vol. 6, p. 75,

Nov. 2012.

[15] A. Tabas, E. Balaguer-Ballester, and L. Igual, ‘‘Spatial discriminant ICA

for RS-fMRI characterisation,’’ in Proc. Int. Workshop Pattern Recognit.

Neuroimag., Jun. 2014, pp. 1–4.

[16] F. M. Grisales-Franco, J. M. Medina-Salcedo, D. M. Ovalle-Martinez,

J. D. Martinez-Vargas, D. G. Garcia-Murillo, and G. Castellanos-

Dominguez, ‘‘EEG source imaging based on dynamic sparse coding as

ADHD biomarker,’’ in Proc. Int. Work-Conf. Interplay Between Natural

Artif. Comput., 2017, pp. 416–425.

[17] Y. Zhang, Y. Tang, Y. Chen, L. Zhou, and C. Wang, ‘‘ADHD classification

by feature space separationwith sparse representation,’’ inProc. IEEE 23rd

Int. Conf. Digit. Signal Process. (DSP), Nov. 2018, pp. 1–5.

[18] Y. Tang, C. Wang, Y. Chen, N. Sun, A. Jiang, and Z. Wang, ‘‘Identifying

ADHD individuals from resting-state functional connectivity using sub-

space clustering and binary hypothesis testing,’’ J. Attention Disorders,

early access, Apr. 2, 2019, doi: 10.1177/1087054719837749.

[19] Y. Chen, Y. Tang, C. Wang, X. Liu, L. Zhao, and Z. Wang, ‘‘ADHD

classification by dual subspace learning using resting-state functional con-

nectivity,’’ Artif. Intell. Med., vol. 103, Mar. 2020, Art. no. 101786.

[20] S. Dey, A. R. Rao, and M. Shah, ‘‘Attributed graph distance measure for

automatic detection of attention deficit hyperactive disordered subjects,’’

Frontiers Neural Circuits, vol. 8, p. 64, Jun. 2014.

[21] W. M. Ewing, S. M. Hays, R. Hatfield, W. E. Longo, and J. R. Millette,

‘‘Abnormal functional resting-state networks in ADHD: Graph theory and

pattern recognition analysis of fMRI data,’’ Biomed Res. Int., vol. 2014,

no. 4, 2014, Art. no. 380531.

VOLUME 8, 2020 56235

http://dx.doi.org/10.1177/1087054719837749


Y. Tang et al.: High-Accuracy Classification of ADHD With l2,1-Norm LDA and Binary Hypothesis Testing

[22] A. Riaz, M. Asad, E. Alonso, and G. Slabaugh, ‘‘Fusion of fMRI and

non-imaging data for ADHD classification,’’ Comput. Med. Imag. Graph.,

vol. 65, pp. 115–128, Apr. 2018.
[23] J. Du, L. Wang, B. Jie, and D. Zhang, ‘‘Network-based classification

of ADHD patients using discriminative subnetwork selection and graph

kernel PCA,’’ Comput. Med. Imag. Graph., vol. 52, pp. 82–88, Sep. 2016.
[24] J. R. Sato, M. Q. Hoexter, A. Fujita, and L. A. Rohde, ‘‘Evaluation of

pattern recognition and feature extraction methods in ADHD prediction,’’

Frontiers Syst. Neurosci., vol. 6, p. 68, Sep. 2012.
[25] D. A. Fair et al., ‘‘Distinct neural signatures detected for ADHD subtypes

after controlling for micro-movements in resting state functional connec-

tivity MRI data,’’ Frontiers Syst. Neurosci., vol. 6, p. 80, Feb. 2013.
[26] X. Peng, P. Lin, T. Zhang, and J. Wang, ‘‘Extreme learning machine-based

classification of ADHD using brain structural MRI data,’’ PLoS ONE,

vol. 8, no. 11, 2013, Art. no. e79476.
[27] L. Shao, Y. Xu, and D. Fu, ‘‘Classification of ADHD with bi-objective

optimization,’’ J. Biomed. Informat., vol. 84, pp. 164–170, Aug. 2018.
[28] V. Sachnev, S. Suresh, N. Sundararajan, B. S. Mahanand, M. W. Azeem,

and S. Saraswathi, ‘‘Multi-region risk-sensitive cognitive ensembler for

accurate detection of attention-Deficit/Hyperactivity disorder,’’ Cognit.

Comput., vol. 11, no. 4, pp. 545–559, Aug. 2019.
[29] A. Riaz, M. Asad, S. M. M. R. Al-Arif, E. Alonso, D. Dima, P. Corr,

and G. Slabaugh, ‘‘FCNet: A convolutional neural network for calculating

functional connectivity from functional MRI,’’ in Proc. Int. Workshop

Connectomics Neuroimag., 2017, pp. 70–78.
[30] A. Riaz, M. Asad, S. M. M. R. A. Arif, E. Alonso, D. Dima, P. Corr, and

G. Slabaugh, ‘‘Deep fMRI: AN end-to-end deep network for classification

of fMRI data,’’ in Proc. IEEE 15th Int. Symp. Biomed. Imag. (ISBI ),

Apr. 2018, pp. 1419–1422.
[31] L. Zou, J. Zheng, C. Miao, M. J. Mckeown, and Z. J. Wang, ‘‘3D CNN

based automatic diagnosis of attention deficit hyperactivity disorder using

functional and structural MRI,’’ IEEE Access, vol. 5, pp. 23626–23636,

2017.
[32] Z. Mao, Y. Su, G. Xu, X. Wang, Y. Huang, W. Yue, L. Sun, and N. Xiong,

‘‘Spatio-temporal deep learning method for ADHD fMRI classification,’’

Inf. Sci., vol. 499, pp. 1–11, Oct. 2019.
[33] F. Zhang, J. Yang, J. Qian, and Y. Xu, ‘‘Nuclear norm-based 2-DPCA for

extracting features from images,’’ IEEE Trans. Neural Netw. Learn. Syst.,

vol. 26, no. 10, pp. 2247–2260, Oct. 2015.
[34] N. Kwak, ‘‘Principal component analysis based on L1-norm maxi-

mization,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 9,

pp. 1672–1680, Sep. 2008.
[35] Y. Luo, Y. Yang, F. Shen, Z. Huang, P. Zhou, and H. T. Shen, ‘‘Robust

discrete codemodeling for supervised hashing,’’ Pattern Recognit., vol. 75,

pp. 128–135, Mar. 2018.
[36] Y. Yang, Z. Ma, Y. Yang, F. Nie, and H. Tao Shen, ‘‘Multitask spectral clus-

tering by exploring intertask correlation,’’ IEEE Trans. Cybern., vol. 45,

no. 5, pp. 1083–1094, May 2015.
[37] S. Liao, Q. Gao, Z. Yang, F. Chen, F. Nie, and J. Han, ‘‘Discriminant

analysis via joint euler transform and ℓ2,1-norm,’’ IEEE Trans. Image

Process., vol. 27, no. 11, pp. 5668–5682, Nov. 2018.
[38] R. Salvador, J. Suckling, M. R. Coleman, J. D. Pickard, D. Menon, and

E. Bullmore, ‘‘Neurophysiological architecture of functional magnetic

resonance images of human brain,’’ Cerebral Cortex, vol. 15, no. 9,

pp. 1332–1342, Sep. 2005.
[39] M. Desmurget and A. Sirigu, ‘‘A parietal-premotor network for movement

intention and motor awareness,’’ Trends Cognit. Sci., vol. 13, no. 10,

pp. 411–419, Oct. 2009.
[40] J. H. Hong and S. H. Jang, ‘‘Neural network related to hand movement:

A combined study of diffusion tensor tractography and functional MRI,’’

J. Phys. Therapy Sci., vol. 23, no. 1, pp. 97–101, 2011.
[41] K. A. McLaughlin, M. A. Sheridan, W. Winter, N. A. Fox, C. H. Zeanah,

and C. A. Nelson, ‘‘Widespread reductions in cortical thickness fol-

lowing severe early-life deprivation: A neurodevelopmental pathway to

attention-Deficit/Hyperactivity disorder,’’ Biol. Psychiatry, vol. 76, no. 8,

pp. 629–638, Oct. 2014.
[42] M. J. Batty, E. B. Liddle, A. Pitiot, R. Toro, M. J. Groom, G. Scerif,

M. Liotti, P. F. Liddle, T. Paus, and C. Hollis, ‘‘Cortical gray matter in

attention-Deficit/Hyperactivity disorder: A structural magnetic resonance

imaging study,’’ J. Amer. Acad. Child Adolescent Psychiatry, vol. 49, no. 3,

pp. 229–238, Mar. 2010.
[43] H. Sun, Y. Chen, Q. Huang, S. Lui, X. Huang, Y. Shi, X. Xu, J. A. Sweeney,

and Q. Gong, ‘‘Psychoradiologic utility of MR imaging for diagnosis of

attention deficit hyperactivity disorder: A radiomics analysis,’’ Radiology,

vol. 287, no. 2, pp. 620–630, May 2018.

[44] X. Wang, Y. Jiao, T. Tang, H. Wang, and Z. Lu, ‘‘Altered regional homo-

geneity patterns in adults with attention-deficit hyperactivity disorder,’’

Eur. J. Radiol., vol. 82, no. 9, pp. 1552–1557, Sep. 2013.
[45] C.-Y. Shang, H.-Y. Lin, and S. S.-F. Gau, ‘‘The norepinephrine transporter

gene modulates intrinsic brain activity, visual memory, and visual attention

in children with attention-deficit/hyperactivity disorder,’’Mol. Psychiatry,

Oct. 8, 2019, doi: 10.1038/s41380-019-0545-7.
[46] B. de Celis Alonso, S. Hidalgo Tobón, P. Dies Suarez, J. García Flores,

B. de Celis Carrillo, and E. Barragán Pérez, ‘‘A multi-methodological MR

resting state network analysis to assess the changes in brain physiology of

children with ADHD,’’ PLoS ONE, vol. 9, no. 6, 2014, Art. no. e99119.
[47] J. Van Dessel, E. Sonuga-Barke, M. Moerkerke, S. Van der Oord,

J. Lemiere, S. Morsink, and M. Danckaerts, ‘‘The amygdala in adolescents

with attention-deficit/hyperactivity disorder: Structural and functional cor-

relates of delay aversion,’’World J. Biol. Psychiatry, to be published.
[48] S. Spinelli, S. Joel, T. E. Nelson, R. A. Vasa, J. J. Pekar, and

S. H. Mostofsky, ‘‘Different neural patterns are associated with tri-

als preceding inhibitory errors in children with and without attention-

Deficit/Hyperactivity disorder,’’ J. Amer. Acad. Child Adolescent Psychia-

try, vol. 50, no. 7, pp. 705–715, Jul. 2011.
[49] H. Lou, ‘‘Etiology and pathogenesis of attention-deficit hyperactivity

disorder (ADHD): Significance of prematurity and perinatal hypoxic-

haemodynamic encephalopathy,’’ Acta Paediatrica, vol. 85, no. 11,

pp. 1266–1271, Nov. 1996.
[50] X. Tang, K. E. Seymour, D. Crocetti, M. I. Miller, S. H. Mostofsky, and

K. S. Rosch, ‘‘Response control correlates of anomalous basal ganglia

morphology in boys, but not girls, with attention-deficit/hyperactivity

disorder,’’ Behav. Brain Res., vol. 367, pp. 117–127, Jul. 2019.
[51] K. S. Rosch, D. Crocetti, K. Hirabayashi, M. B. Denckla, S. H. Mostofsky,

and E. M. Mahone, ‘‘Reduced subcortical volumes among preschool-

age girls and boys with ADHD,’’ Psychiatry Res., Neuroimag., vol. 271,

pp. 67–74, Jun. 2018.
[52] T. Villemonteix, D. Purper-Ouakil, and L. Romo, ‘‘Is emotional dysregu-

lation a component of attention-deficit/hyperactivity disorder (ADHD)?’’

Encephale-Revue de Psychiatrie Clinique Biologique et Therapeutique,

vol. 41, no. 2, pp. 108–114, 2015.
[53] B. Bonath, J. Tegelbeckers, M. Wilke, H. H. Flechtner, and K. Krauel,

‘‘Regional gray matter volume differences between adolescents with

ADHD and typically developing controls: Further evidence for anterior

cingulate involvement,’’ J. AttentionDisorders, vol. 22, no. 7, pp. 627–638,

2018.
[54] Y. Wang, Q. Xu, S. Li, G. Li, C. Zuo, S. Liao, Y. Long, S. Li, and

R.M. Joshi, ‘‘Gender differences in anomalous subcortical morphology for

children with ADHD,’’ Neurosci. Lett., vol. 665, pp. 176–181, Feb. 2018.
[55] K. R. Griffiths, S. M. Grieve, M. R. Kohn, S. Clarke, L. M. Williams,

and M. S. Korgaonkar, ‘‘Altered gray matter organization in children

and adolescents with ADHD: A structural covariance connectome study,’’

Transl. Psychiatry, vol. 6, no. 11, p. e947, Nov. 2016.
[56] M. Stevens and E. Haney-Caron, ‘‘Comparison of brain volume abnormal-

ities between ADHD and conduct disorder in adolescence,’’ J. Psychiatry

Neurosci., vol. 37, no. 6, pp. 389–398, 2012.
[57] M. E. M. Benwell, D. J. K. Balfour, and J. M. Anderson, ‘‘Evidence that

tobacco smoking increases the density of (–)-[3H]nicotine binding sites in

human brain,’’ J. Neurochem., vol. 50, no. 4, pp. 1243–1247, 1988.
[58] J. J. Bauermeister, P. E. Shrout, L. Chávez, M. Rubio-Stipec, R. Ramírez,

L. Padilla, A. Anderson, P. García, and G. Canino, ‘‘ADHD and gender:

Are risks and sequela of ADHD the same for boys and girls?’’ J. Child

Psychol. Psychiatry, vol. 48, no. 8, pp. 831–839, Aug. 2007.

YIBIN TANG received the B.S. and M.S. degrees

in information and communication engineer-

ing from the Nanjing University of Posts and

Telecommunications, China, in 2004 and 2007,

respectively, and the Ph.D. degree in information

and signal processing from Southeast University,

China, in 2010. He is currently an Associate Pro-

fessor with the College of Internet of Things Engi-

neering, Hohai University, Changzhou, China. His

research interests include imaging and speech pro-

cessing, intelligent signal processing, and machine learning.

56236 VOLUME 8, 2020

http://dx.doi.org/10.1038/s41380-019-0545-7


Y. Tang et al.: High-Accuracy Classification of ADHD With l2,1-Norm LDA and Binary Hypothesis Testing

XUFEI LI received the B.S. degree in informa-

tion and communication engineering from Hohai

University, China, in 2017, where she is cur-

rently pursuing theM.S. degree in information and

communication engineering. Her research inter-

ests include biomedical signal processing and deep

learning.

YING CHEN received the B.S. and M.S. degrees

in optical engineering from the Nanjing University

of Science and Technology, in 2010 and 2013,

China, respectively. She is currently pursuing the

Ph.D. degree in information and communication

engineering with Southeast University, China. Her

research interests include imaging processing and

graph signal processing.

YUAN ZHONG received the Ph.D. degree in

biomedical engineering from the Nanjing Uni-

versity of Aeronautics and Astronautics, China,

in 2010. He is currently an Associate Professor

with the School of Psychology, Nanjing Normal

University, China. His research interests include

the action mechanisms of mental disorders in

brain.

AIMIN JIANG received the Ph.D. degree in elec-

trical engineering from theUniversity of Windsor,

Canada, in 2010. He is currently a Professor with

the College of Internet of Things Engineering,

Hohai University, China. His research interests

include mathematical optimization and its appli-

cations to digital signal processing, and graph

networks.

CHUN WANG received the M.B. degree in clini-

cal medicine from the School of Medicine, South-

east University, China, in 2002, the M.S. degree in

applied psychology from Nanjing Normal Univer-

sity, China, in 2005, and the Ph.D. degree in psy-

chiatry andmental health from the Xiangya School

of Medicine, Central South University, China,

in 2009. She is currently the Deputy Director of

the Department of Mood Disorders, Nanjing Brain

Hospital, Nanjing Medical University, China. Her

research interest includes the understanding of mind-body mechanisms with

mental disorders and the corresponding therapeutic strategies.

VOLUME 8, 2020 56237


