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Numerical simulations of 15 orbits of an equal-mass binary black-hole system are presented.

Gravitational waveforms from these simulations, covering more than 30 cycles and ending about 1.5

cycles before merger, are compared with those from quasicircular zero-spin post-Newtonian (PN)

formulae. The cumulative phase uncertainty of these comparisons is about 0.05 radians, dominated by

effects arising from the small residual spins of the black holes and the small residual orbital eccentricity in

the simulations. Matching numerical results to PN waveforms early in the run yields excellent agreement

(within 0.05 radians) over the first �15 cycles, thus validating the numerical simulation and establishing a

regime where PN theory is accurate. In the last 15 cycles to merger, however, generic time-domain Taylor

approximants build up phase differences of several radians. But, apparently by coincidence, one specific

post-Newtonian approximant, TaylorT4 at 3.5PN order, agrees much better with the numerical simula-

tions, with accumulated phase differences of less than 0.05 radians over the 30-cycle waveform.

Gravitational-wave amplitude comparisons are also done between numerical simulations and post-

Newtonian, and the agreement depends on the post-Newtonian order of the amplitude expansion: the

amplitude difference is about 6%–7% for zeroth order and becomes smaller for increasing order. A newly

derived 3.0PN amplitude correction improves agreement significantly ( < 1% amplitude difference

throughout most of the run, increasing to 4% near merger) over the previously known 2.5PN amplitude

terms.
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I. INTRODUCTION

The last two years have witnessed tremendous progress

in simulations of black-hole binaries, starting with the first

stable simulation of orbiting and merging black holes [1,2],

development of the moving puncture method [3,4], and

rapid progress by other groups [5–13]. Since then, an

enormous amount of work has been done on the late

inspiral and merger of black-hole binaries, among them

studies of the universality of the merger waveforms

[14,15], investigations into black-hole kicks [11,16–28],

and spin dynamics [29–31], comparisons to post-

Newtonian (PN) models [32–34], and applications to

gravitational-wave data analysis [35–37].

Compared to the intense activity focusing on simula-

tions close to merger, there have been relatively few simu-

lations covering the inspiral phase. To date, only three

simulations [38–42] cover more than five orbits. Long

inspiral simulations are challenging for a variety of rea-

sons: First, the orbital period increases rapidly with sepa-

ration, so that simulations must cover a significantly longer

evolution time. In addition, the gravitational waveform

must be extracted at larger radius (and the simulation

must therefore cover a larger spatial volume) because the

gravitational wavelength is longer. Furthermore,

gravitational-wave data analysis requires small absolute

accumulated phase uncertainties in the waveform, so the

relative phase uncertainty of the simulation must be

smaller.

Gravitational-wave detectors provide a major driving

force for numerical relativity (NR). The first generation

interferometric gravitational-wave detectors, such as LIGO

[43,44], GEO600 [45], and VIRGO [46,47], are now op-

erating at or near their design sensitivities. Furthermore,

the advanced generation of detectors are entering their

construction phases. This new generation of interferome-

ters will improve detector sensitivity by a factor of �10
and hence increase expected event rates by a factor of

�1000 [48]. One of the most promising sources for these

detectors is the inspiral and merger of binary black holes

(BBHs) with masses m1 �m2 � 10–20M� [49]. These

systems are expected to have circularized long before their

gravitational waves enter the sensitive frequency band of

ground-based detectors [50].

A detailed and accurate understanding of the gravita-

tional waves radiated as the black holes spiral towards

each other will be crucial not only to the initial detection

of such sources, but also to maximize the information

that can be obtained from signals once they are observed.

When the black holes are far apart, the gravitational wave-
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form can be accurately computed using a PN expansion.

As the holes approach each other and their velocities

increase, the post-Newtonian expansion is expected to

diverge from the true waveform. It is important to quantify

any differences between theoretical waveforms and the

true signals, as discrepancies will cause a reduction of

search sensitivity. Several techniques have been proposed

to address the problem of the breakdown of the post-

Newtonian approximation [51–53], but ultimately, the ac-

curacy of the post-Newtonian waveforms used in binary

black-hole gravitational-wave searches can only be estab-

lished through comparisons with full numerical

simulations.

Unfortunately, comparing post-Newtonian approxima-

tions to numerical simulations is not straightforward, the

most obvious problem being the difficulty of producing

long and sufficiently accurate numerical simulations as

explained above. In addition, post-Newtonian waveforms

typically assume circular orbits, and most astrophysical

binaries are expected to be on circular orbits late in their

inspiral, so the orbital eccentricity within the numerical

simulation must be sufficiently small.1 Another factor that

complicates comparisons is the variety of post-Newtonian

approximants available, from several straightforward

Taylor expansions to more sophisticated Padé resumma-

tion techniques and the effective one-body approach (see

e.g. [51,52,54–60], as well as Sec. III E below). While all

post-Newtonian approximants of the same order should

agree sufficiently early in the inspiral (when neglected

higher-order terms are small), they begin to disagree with

each other during the late inspiral when the post-

Newtonian approximation starts to break down—exactly

the regime in which NR waveforms are becoming

available.

Finally, agreement (or disagreement) between NR and

PN waveforms will also depend very sensitively on the

precise protocol used to compare the waveforms. Are PN

and NR waveforms matched early or late in the inspiral? Is

the matching done at a particular time, or is a least-squares

fit performed over part (or all) of the waveform? Does one

compare frequencies !�t� or phases ��t�? Are compari-

sons presented as functions of time or of frequency? Up to

which cutoff frequency does one compare PN with NR?

Despite these difficulties, several comparisons between

NR and PN have been done for the last few orbits of an

equal-mass, nonspinning black-hole binary. The first such

study was done by Buonanno et al. [32] based on simula-

tions performed by Pretorius [1] lasting somewhat more

than 4 orbits ( � 8 gravitational-wave cycles). This com-

parison performs a least-squares fit over the full waveform,

finds agreement between the numerical evolution and a

particular post-Newtonian approximant (in our language

TaylorT3 3.0/0.02) and notes that another approximant

(TaylorT4 3.5/0.0) will give similarly good agreement.

However, as the authors note, this study is severely limited

by numerical resolution, sizable initial eccentricity ( �
0:015), close initial separation of the black holes, and

coordinate artifacts; for these reasons, the authors do not

quantify the level of agreement.

More recently, Baker et al. [38,39] performed simula-

tions covering the last �14 cycles before merger. These

simulations have an orbital eccentricity �0:008 [38], forc-

ing the authors to use a fitted smooth (‘‘deeccentrized’’)

gravitational-wave phase to obtain a monotonically in-

creasing gravitational-wave frequency. Comparing to

TaylorT4 3.5/2.5, they find agreement between the numeri-

cal and post-Newtonian gravitational-wave phase to within

their numerical errors, which are about 2 radians. The

authors also indicate that other post-Newtonian approxim-

ants do not match their simulation as well as TaylorT4, but

unfortunately, they do not mention whether any disagree-

ment is significant (i.e., exceeding their numerical errors).

Pan et al. [35] performed a more comprehensive analysis

of the numerical waveforms computed by Pretorius [32]

and the Goddard group [38,39], confirming that TaylorT4

3.5/0.0 matches the numerical results best.

The most accurate inspiral simulation to date was per-

formed by the Jena group and presented in Husa et al. [42]

and Hannam et al. [41]. This simulation covers 18 cycles

before merger and has an orbital eccentricity of �0:0018
[61]. Discarding the first two cycles which are contami-

nated by numerical noise, and terminating the comparison

at a gravitational-wave frequency m! � 0:1 (see Eq. (15)

for the precise definition) their comparison extends over 13

cycles. We discuss the results of Ref. [41] in more detail in

Sec. VI A 1.

This paper presents a new inspiral simulation of a non-

spinning equal-mass black-hole binary. This new simula-

tion more than doubles the evolution time of the

simulations in Refs. [38,39,41,42], resulting in a waveform

with 30 gravitational-wave cycles, ending �1:5 cycles

before merger, and improves numerical truncation errors

by 1 to 2 orders of magnitude over those in

Refs. [38,39,41,42]. The orbital eccentricity of our simu-

lations is �6� 10�5; this low eccentricity is achieved

using refinements of techniques described in [40]. We

present a detailed analysis of various effects which might

influence our comparisons to post-Newtonian waveforms

for nonspinning black-hole binaries on circular orbits.

These effects result in an uncertainty of �0:05 radians

out of the accumulated �200 radians. Perhaps surprisingly,

1Unfortunately, this circularization occurs on extremely long
time scales [50], thousands of orbits, making it impossible to run
the numerical simulation long enough to radiate the eccentricity
away.

2We identify post-Newtonian approximants with three pieces
of information: the label introduced by [54] for how the orbital
phase is evolved; the PN order to which the orbital phase is
computed; and the PN order that the amplitude of the waveform
is computed. See Sec. III E for more details.
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the largest uncertainty arises from the residual orbital

eccentricity, despite its tiny value. The second largest

effect arises due to a potential residual spin on the black

holes, which we bound by jSj=M2
irr < 5� 10�4.

We compare the numerical waveforms with four differ-

ent time-domain post-Newtonian Taylor-approximants

[53–55] and we match PN and NR waveforms at a specific

time during the inspiral. We explore the effects of varying

this matching time. When matching �9 cycles after the

start of our evolution, all post-Newtonian approximants of

3.0PN and 3.5PN order in orbital phase agree with our

simulation to within �0:03 radians over the first 15 cycles.

This agreement is better than the combined uncertainties of

the comparison, thus validating our simulations in a regime

where the 3.5PN truncation error of post-Newtonian theory

is comparable to the accuracy of our simulations. Lower

order post-Newtonian approximants (2.0PN and 2.5PN

order), however, accumulate a significant phase difference

of �0:2 radians over this region.

Extending the comparison toward merger (as well as

when matching closer to merger), we find, not surprisingly,

that the agreement between PN and NR at late times

depends strongly on exactly what post-Newtonian approx-

imant we use [54,55]. Typical accumulated phase differ-

ences are on the order of radians at frequency m! � 0:1.

One particular post-Newtonian approximant, TaylorT4 at

3.5PN order in phase, agrees with our NR waveforms far

better than the other approximants, the agreement being

within the phase uncertainty of the comparison (0.05 radi-

ans) until after the gravitational-wave frequency passes

m! � 0:1 (about 3.5 cycles before merger). It remains to

be seen whether this agreement is fundamental or acciden-

tal, and whether it applies to more complicated situations

(e.g. unequal masses, nontrivial spins).

We also compare the post-Newtonian gravitational-

wave amplitude to the numerical amplitude, where we

estimate the uncertainty of this comparison to be about

0.5%. Restricted waveforms (i.e., 0PN order in the ampli-

tude expansion) are found to disagree with the numerical

amplitudes by 6%–7%. An amplitude expansion of order

2PN shows significantly better agreement than the expan-

sion at order 2.5PN. A newly derived 3PN amplitude [62] is

found to give much better agreement than the 2.0PN

amplitude.

This paper is organized as follows: Sec. II discusses our

numerical techniques. In particular, we describe how we

construct binary black-hole initial data, evolve these data

for 15 orbits, extract gravitational-wave information from

the evolution, and produce a gravitational waveform as

seen by an observer at infinity. Section III details the

generation of post-Newtonian waveforms, including de-

tails of how we produce the four approximants that we

compare against NR. We describe our procedure for com-

paring NR and PN waveforms in Sec. IV, and present a

detailed study of various sources of uncertainty in Sec. V.

The comparisons between NR and PN are presented in

Sec. VI. This section is split into two parts: First, we

compare each PN approximant separately with the numeri-

cal simulation. Subsequently, we show some additional

figures which facilitate cross-comparisons between the

different PN approximants. Finally, we present some con-

cluding remarks in Sec. VII. The impatient reader primar-

ily interested in NR-PN comparisons may wish to proceed

directly to Table III summarizing the uncertainties of our

comparisons, and then continue to Sec. VI, starting with

Fig. 15.

II. GENERATION OF NUMERICAL WAVEFORMS

In order to do a quantitative comparison between nu-

merical and post-Newtonian waveforms, it is important to

have a code capable of starting the black holes far enough

apart to be in a regime where we strongly believe the post-

Newtonian approximation is valid, track the orbital phase

extremely accurately, and do so efficiently so the simula-

tion can be completed in a reasonable amount of time.

Furthermore, the gravitational waves from such a simula-

tion must be extracted in such a manner that preserves the

accuracy of the simulation and predicts the waveform as

seen by a distant observer, so a comparison with the post-

Newtonian waveform can be made. In this section we

describe the techniques we use to do this, as well as the

results of a simulation starting more than 15 orbits prior to

merger.

When discussing numerical solutions of Einstein’s equa-

tions, we write all dimensioned quantities in terms of some

mass scale m, which we choose to be the sum of the

irreducible masses of the two black holes in the initial data:

 m � Mirr;1 �Mirr;2: (1)

The irreducible mass of a single hole is defined as

 Mirr 	
���������������

A=16�
p

; (2)

where A is the surface area of the event horizon; in practice

we take A to be the surface area of the apparent horizon.

More generally, it is more appropriate to use the

Christodoulou mass of each black hole,

 M2
BH � M2

irr �
S2

4M2
irr

; (3)

instead of the irreducible mass. Here S is the spin of the

hole. However, for the case considered in this paper, the

spins are sufficiently small and there is little difference

between MBH and Mirr.

A. Initial data

Initial data are constructed within the conformal thin

sandwich formalism [63,64] using a pseudospectral elliptic

solver [65]. We employ quasiequilibrium boundary con-

ditions [66,67] on spherical excision boundaries, choose
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conformal flatness and maximal slicing, and use Eq. (33a)

of Ref. [68] as the lapse boundary condition. The spins of

the black holes are made very small via an appropriate

choice of the tangential shift at the excision surfaces, as

described in [68].

As the most accurate post-Newtonian waveforms avail-

able assume adiabatic inspiral of quasicircular orbits, it is

desirable to reduce the eccentricity of the numerical data as

much as possible. Using techniques developed in [40],

each black hole is allowed to have a nonzero initial velocity

component towards the other hole. This small velocity

component vr and the initial orbital angular velocity �0

are then fine-tuned in order to produce an orbit with very

small orbital eccentricity.3 We have improved our

eccentricity-reduction procedure since the version de-

scribed in [40], so we summarize our new iterative proce-

dure here:

We start with a quasicircular (i.e., vr � 0) initial data set

at coordinate separation d � 30, where �0 is determined

by equating Komar mass with Arnowitt-Deser-Misner

(ADM) mass [68]. We then evolve these data for about

1.5 orbits, corresponding to a time t=m 
 600. From this

short evolution, we measure the proper separation s be-

tween the horizons by integration along the coordinate axis

connecting the centers of the black holes. We fit the time

derivative ds=dt in the interval 100 & t=m & 600 to the

function

 

ds

dt
� A0 � A1t� B cos�!t� ’�; (4)

where we vary all five parameters A0, A1, B, !, and ’ to

achieve the best fit. The desired smooth inspiral is repre-

sented by the part A0 � A1t; the term B cos�!t� ’� cor-

responds to oscillations caused by orbital eccentricity.

For a Newtonian orbit with radial velocity B cos�!t�
’� at initial separation s0, it is straightforward to determine

the changes to the orbital frequency and the radial velocity

which make the orbit perfectly circular, namely

 �0 ! �0 �
B sin’

2s0
; (5)

 vr ! vr �
B cos’

2
: (6)

For Newtonian gravity, Eq. (6) will of course result in a

circular orbit with vr � 0. In general relativity, �0 and vr

will be different from their Newtonian values, for instance

vr < 0 to account for the inspiral of the two black holes.

Nevertheless, we assume that small perturbations around

the zero-eccentricity inspiral trajectory behave similarly to

small perturbations around a Newtonian circular orbit.

Therefore, we apply the same formulae, Eqs. (5) and (6),

to obtain improved values for �0 and vr for the black-hole

binary, where s0 is the initial proper separation between the

horizons. We then use the new values of �0 and vr to

construct a new initial data set, again evolve for two orbits,

fit to Eq. (4), and update �0 and vr. We continue iterating

this procedure until the eccentricity is sufficiently small.

We estimate the eccentricity for each iteration from the

fit to Eq. (4) using the formula

 eds=dt �
B

s0!
; (7)

which is valid in Newtonian gravity for small eccentric-

ities. Successive iterations of this procedure are illustrated

in Fig. 1 and yield the initial data sets 30a, 30b, and 30c

summarized in Table I. Eccentricity decreases by roughly a

factor of 10 in each iteration, with 30c having eds=dt 

5� 10�5. The evolutions used during eccentricity reduc-

tion need not be very accurate and need to run only for a

short time, t� 600m. One iteration of this procedure at our

second lowest resolution requires about 250 CPU-hours.

For completeness, Table I also lists parameters for initial

data at smaller separation; these data will be used for

consistency checks below. Apart from these consistency

checks, the remainder of this paper will focus exclusively

on evolutions of the low-eccentricity initial data set 30c.

0 500 1000 1500

-0.003

-0.002

-0.001

0

0.001

15

16

17

30a
30b
30c

s(t)/m

ds(t)/dt

t/m

FIG. 1 (color online). Proper separation (top panel) and its

time derivative (lower panel) versus time for short evolutions of

the d � 30 initial data sets 30a, 30b, and 30c (see Table I). These

three data sets represent zero through two iterations of our

eccentricity-reduction procedure. The orbital eccentricity is re-

duced significantly by each iteration.

3An alternative method of producing low-eccentricity initial
data, based on post-Newtonian ideas, is developed in [61]. While
that technique is computationally more efficient than ours, it
merely reduces orbital eccentricity by a factor of �5 relative to
quasicircular initial data, which is insufficient for the compari-
sons presented here (cf. Sec. V E 2).
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B. Evolution of the inspiral phase

The Einstein evolution equations are solved with the

pseudospectral evolution code described in Ref. [7]. This

code evolves a first-order representation [69] of the gener-

alized harmonic system [70–72]. We handle the singular-

ities by excising the black-hole interiors from our grid. Our

outer boundary conditions [69,73,74] are designed to pre-

vent the influx of unphysical constraint violations [75–81]

and undesired incoming gravitational radiation [82], while

allowing the outgoing gravitational radiation to pass freely

through the boundary.

The code uses a fairly complicated domain decomposi-

tion to achieve maximum efficiency. Each black hole is

surrounded by several (typically six) concentric spherical

shells, with the inner boundary of the innermost shell (the

excision boundary) just inside the horizon. A structure of

touching cylinders (typically 34 of them) surrounds these

shells, with axes along the line between the two black

holes. The outermost shell around each black hole overlaps

the cylinders. The outermost cylinders overlap a set of

outer spherical shells, centered at the origin, which extend

to large outer radius. External boundary conditions are

imposed only on the outer surface of the largest outer

spherical shell. We vary the location of the outer boundary

by adding more shells at the outer edge. Since all outer

shells have the same angular resolution, the cost of placing

the outer boundary farther away (at full resolution) in-

creases only linearly with the radius of the boundary.

External boundary conditions are enforced using the

method of Bjørhus [83], while interdomain boundary con-

ditions are enforced with a penalty method [84,85].

We employ the dual-frame method described in Ref. [7]:

we solve the equations in an ‘‘inertial frame’’ that is

asymptotically Minkowski, but our domain decomposition

is fixed in a ‘‘comoving frame’’ that rotates with respect to

the inertial frame and also shrinks with respect to the

inertial frame as the holes approach each other. The posi-

tions of the holes are fixed in the comoving frame; we

account for the motion of the holes by dynamically adjust-

ing the coordinate mapping between the two frames. Note

that the comoving frame is referenced only internally in the

code as a means of treating moving holes with a fixed

domain. Therefore all coordinate quantities (e.g. black-

hole trajectories, wave-extraction radii) mentioned in this

paper are inertial-frame values unless explicitly stated

otherwise.

One side effect of our dual-frame system is that the outer

boundary of our domain (which is fixed in the comoving

frame) moves inward with time as observed in the inertial

frame. This is because the comoving frame shrinks with

respect to the inertial frame to follow the motion of the

holes. In Refs. [7,40] the inertial-frame coordinate radius r
(with respect to the center of mass) and the comoving

coordinate radius r0 are related by a simple scaling

 r � a�t�r0: (8)

The expansion parameter a�t� is initially set to unity and

decreases dynamically as the holes approach each other, so

that the comoving-frame coordinate distance between the

holes remains constant. The outer boundary of the compu-

tational grid is at a fixed comoving radius R0
bdry, which is

mapped to the inertial coordinate radius Rbdry�t� �
a�t�R0

bdry. Because we wish to accurately compute the

gravitational radiation as measured far from the holes, it

is desirable to have a moderately large outer boundary

(Rbdry�t� * 200m) throughout the run. For the linear map-

ping, Eq. (8), this requires a very distant outer boundary

early in the run, Rbdry�0� ’ 1000m. Computationally this is

not very expensive. However, the initial junk radiation

contaminates the evolutions for a time interval propor-

tional to the light-crossing time to the outer boundary,

and for Rbdry�0� ’ 1000m it would be necessary to discard

a significant portion of the evolution.

We therefore use the mapping

 r �
�

a�t� � �1� a�t�� r
02

R02
0

�

r0; (9)

for some constant R0
0 which is chosen to be roughly the

radius of the outer boundary in comoving coordinates. This

mapping has the following properties: (1) At the initial

time t � 0, the map reduces to the identity map because

a�0� � 1. Thus we do not need to remap our initial data

before evolving. (2) For small radii (i.e., at the locations of

TABLE I. Summary of the initial data sets used in this paper. The first block of numbers (d, �0, fr, and vr) represent raw parameters

entering the construction of the initial data. The second block gives some properties of each initial data set: m denotes the sum of the

irreducible masses, MADM and JADM the ADM energy and angular momentum, and s0 the initial proper separation between the

horizons. The last column lists the eccentricity computed from Eq. (7). The initial data set 30c is used for all evolutions (except for

consistency checks) described in this paper.

Name d �0 fr vr � 104 m�0 MADM=m JADM=m
2 s0=m eds=dt

30a 30 0.008 010 8 0.939 561 0.00 0.016 647 93 0.992 333 1.0857 17.37 1:0� 10�2

30b 30 0.008 038 9 0.939 561 �4:90 0.016 705 4 0.992 400 1.0897 17.37 6:5� 10�4

30c 30 0.008 040 1 0.939 561 �4:26 0.016 708 1 0.992 402 1.0898 17.37 5� 10�5

24a 24 0.011 049 6 0.923 73 �8:29 0.023 194 7 0.990 759 1.0045 14.15 1:1� 10�3

24b 24 0.011 050 6 0.923 739 �8:44 0.023 196 7 0.990 767 1.0049 14.15 1:5� 10�4
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the black holes), the map reduces to the linear map, r �
a�t�r0 �O�r03�. This allows use of the control system

without modifications. (3) The moving radius r0 � R0
0 is

mapped to a constant inertial radius: r�R0
0� � R0

0. This

allows us to keep the inertial radius of the outer boundary

constant (or nearly constant4) in time rather than shrinking

rapidly.

In total, we have run three evolutions of the 30c initial

data set; these use different combinations of outer bound-

ary radius and radial mapping between inertial and moving

coordinates. Some properties of these evolutions are sum-

marized in Table II. We also performed extensive conver-

gence testing, running the same evolution on up to six

distinct resolutions, N1 to N6. The coarsest resolution

30c-1/N1 uses approximately 413 grid points (summing

all grid points in all the subdomains), while the most

accurate evolution, 30c-1/N6, uses about 673 grid points.

The run 30c-1/N2 required about 2500 CPU-hours and run

30c-1/N6 about 19 000, where our simulations do not take

advantage of symmetries. The distance to the outer bound-

ary is adjusted by adding or removing outer spherical shells

to an otherwise unmodified domain decomposition. Run

30c-1 has 20 such outer spherical shells, while 30c-2

utilizes 32 and 30c-3 only 8. Thus, the total number of

grid points varies slightly between runs, e.g. about 713 for

30c-2/N6. Figure 2 indicates the different behavior of the

outer boundary location for these three evolutions.

For all of the evolutions 30c-1/2/3, the coordinate tra-

jectories of the centers of the apparent horizons appear as

in Fig. 3. The regular inspiral pattern without noticeable

oscillations once again indicates that our evolutions indeed

have very low eccentricity.

Figure 4 demonstrates the convergence of the black-hole

mass m�t� with spatial resolution for run 30c-1. The mass

m�t� is computed as the sum of the irreducible masses of

TABLE II. Overview of low-eccentricity simulations dis-

cussed in this paper. Rbdry is the initial coordinate radius of the

outer boundary; this radius changes during the evolution accord-

ing to the choice of ‘‘radial map’’ between inertial and comoving

coordinates. The last column lists the different resolutions run

for each evolution, N6 being highest resolution. Evolution 30c-1/

N6 forms the basis of our post-Newtonian comparisons, and is

used in all figures unless noted otherwise.

Name ID Norbits Rbdry Radial map Resolutions

30c-1 30c 15.6 462m Equation (9) N1, N2, . . ., N6

30c-2 30c 15.6 722m Equation (8) N2, N4, N6

30c-3 30c 15.6 202m Equation (8) N2, N3, . . ., N6

24b-1 24b 8.3 160m Equation (8) N2, N3, N4
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FIG. 2 (color online). Spacetime diagram showing the space-

time volume simulated by the numerical evolutions listed in

Table II. The magnified view in the right panel shows how the

gravitational waves are escorted to our extraction radii (see

Sec. II C) after the simulation in the center has already crashed

at t� 3930m, and after the estimated time of the black-hole

merger, which is indicated by the circle. The thin diagonal lines

are lines of constant t� r�; each corresponds to a retarded time

at which the gravitational-wave frequency ! at infinity assumes

a particular value.
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FIG. 3 (color online). Coordinate trajectories of the centers of

the black holes. The small circles/ellipsoids show the apparent

horizons at the initial time and at the time when the simulation

ends and wave escorting begins. The inset shows an enlargement

of the dashed box.

4In practice, we choose R0
0 somewhat larger than the outer

boundary, so that the outer boundary of the computational
domain slowly contracts in inertial coordinates. This makes
the zero-speed characteristic fields outgoing there, avoiding the
need to impose boundary conditions on those fields.
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both black holes, as defined in Eq. (2). At the highest

resolution, m�t� deviates by only a few parts in 106 from

its initial value m.

Our apparent horizon finder works by expanding the

radius of the apparent horizon as a series in spherical

harmonics up to some order L. We utilize the fast flow

methods developed by Gundlach [86] to determine the

expansion coefficients; these are significantly faster than
our earlier minimization algorithms [87,88]. The apparent

horizon is almost spherical during the inspiral, so that the

expansion in L converges exceedingly fast: L � 8 results

in a relative error of the irreducible mass of better than

10�8. The distortion of the horizons becomes more pro-

nounced toward the end of the evolution when the black

holes approach each other rapidly. This results in an error

of 10�6 in the L � 8 apparent horizon expansion for the

last 10m of the evolution.

We also measure the quasilocal spin using coordinate

rotation vectors projected into the apparent horizon sur-

faces [89–91]. Only the z-component of the spin is non-

zero (i.e., the spins are aligned with the orbital angular

momentum). The spin starts at Sz=M
2
irr 
 �6� 10�5 and

increases slowly to �5� 10�4 during the evolution, where

the minus sign indicates that the black-hole spin is anti-

aligned with the orbital angular momentum. Thus it ap-

pears the black hole’s spins move further away from the

corotational state. We believe this effect is caused by the

use of coordinate rotation vectors when calculating the
quasilocal spin, rather than more sophisticated approxi-

mate Killing vectors [92–94]. Preliminary results with

approximate Killing vectors find the initial spin to be less

than 10�6, and slowly increasing during the evolution to a

final value of 2� 10�5 at the end of the comparison

interval to post-Newtonian theory. Given the preliminary

character of these results, we will take here the conserva-

tive bound jSj=M2
irr � 5� 10�4 obtained from coordinate

rotation vectors.

C. Escorting gravitational waves

The simulation presented in Fig. 3 stops when the hori-

zons of the black holes become too distorted just before

merger. At this time, most of the domain (all regions except

for the immediate vicinity of the two holes) is still well

resolved, and the spacetime contains gravitational radia-

tion that has not yet propagated out to the large radii where

we perform wave extraction. So instead of losing this

information, which consists of several gravitational-wave

cycles, we evolve only the outer portions of our grid

beyond the time at which the code crashes in the center,

effectively ‘‘escorting’’ the radiation out to the extraction

radii.

To do this, we first stop the evolution shortly before it

crashes, and we introduce a new spherical excision bound-

ary that surrounds both black holes and has a radius of

roughly 3 times the black-hole separation. This new ex-

cision boundary moves radially outward at slightly faster

than the speed of light so that it is causally disconnected

from the interior region where the code is crashing, and so

that no boundary conditions are required on this boundary.

We then continue the evolution on the truncated spherical-

shell domain that extends from the new excision boundary

to the outer boundary. To move both boundaries appropri-

ately, we employ a new radial coordinate mapping

 r � A�t�r�r0� � B�t�; (10)

where r�r0� is given by Eq. (9). The functions A�t� and B�t�
are chosen to satisfy three criteria: First, the inner bound-

ary of the spherical shell moves outward with coordinate

speed of unity, which turns out to be slightly superluminal.

Second, the outer boundary location Rbdry�t� has continu-

ous first and second time derivatives at the time we tran-

sition to the truncated domain. And finally, the outer

boundary location Rbdry�t� approaches some fixed value

at late times. The right panel of Fig. 2 shows the motion

of the inner and outer radii for evolutions 30c-1 and 30c-2

(we did not perform wave escorting for 30c-3). For 30c-1,

wave escorting extends the evolution for an additional time

220m beyond the point at which the simulation stops in the

center.

Figure 5 shows the gravitational waveform extracted at

inertial coordinate radius R � 240m for the run 30c-1. The

brown vertical line indicates the time when wave escorting

starts. Wave escorting allows us to extract another 4 cycles

of gravitational waves. When computing the gravitational-

wave strain h�t� from the Newman-Penrose scalar �4 (see

Eq. (11) below), one must choose integration constants

during the time integration. These integration constants

were chosen such that h�t� has zero average and first mo-

ment [40], which is sufficiently accurate for the illustrative

Fig. 5. To avoid errors caused by the choice of integration

constants, the comparison to post-Newtonian waveforms

below is based entirely on �4.

0 1000 2000 3000 4000
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FIG. 4 (color online). Deviation of total irreducible mass

m�t� � 2Mirr�t� from its value in the initial data. Plotted are

the six different resolutions of run 30a-1.
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In the lower two panels of Fig. 5 there is a significant

amount of noise near the beginning of the run, at t < 250m.

This noise is barely evident in the top panel of Fig. 5 as

well. The noise is a manifestation of ‘‘junk radiation,’’ a

pulse of radiation often seen at the beginning of numerical

relativity simulations, and is caused by the initial data not

being precisely a snapshot of an evolution that has been

running for a long time. Among the effects that produce

junk radiation are incorrect initial distortions of the indi-

vidual holes, so that each hole radiates as it relaxes to its

correct quasiequilibrium shape.

Our evolution code does not explicitly enforce either the

Einstein constraints or the secondary constraints that arise

from writing the system in first-order form. Therefore,

examining how well these constraints are satisfied provides

a useful consistency check. Figure 6 shows the constraint

violations for run 30c-1. The top panel shows the L2 norm

of all the constraint fields of our first-order generalized

harmonic system, normalized by the L2 norm of the spatial

gradients of the dynamical fields (see Eq. (71) of

Ref. [69]). The bottom panel shows the same quantity,

but without the normalization factor (i.e., just the numera-

tor of Eq. (71) of Ref. [69]). The L2 norms are taken over

the entire computational volume that lies outside of appar-

ent horizons. At early times, t < 500m, the constraints

converge rather slowly with resolution because the junk

radiation contains high frequencies. Convergence is more

rapid during the smooth inspiral phase, after the junk

radiation has exited through the outer boundary. The con-

straints increase around t� 3900m as the code begins to

fail near the two merging holes, but then the constraints

decrease again after the failing region is excised for wave

escorting. The normalized constraint violations are less

than 10�4 until just before the peak (which occurs at t �
3930m for all but the lowest resolutions). The size of the

peak causes some concern that the waveforms at late times

may be contaminated by constraint violations to a non-

negligible degree. However, near the peak, the constraint

violations are large only in the inner regions of the domain

near the black holes (note that the curves in Fig. 6 decrease

by 2 orders of magnitude immediately after these inner

regions are excised at t � 3930m). Because all constraint

quantities propagate at the speed of light or slower for the

formulation of Einstein’s equations that we use, any influ-

ence that the constraint peak has on the extracted wave-

form occurs after the constraint violations have had time to

propagate out to the wave-extraction zone. This is very late

in the waveform, well after the gravitational-wave fre-

quency reaches m! � 0:1, as can be seen from the right

panel of the spacetime diagram in Fig. 2.

D. Waveform extraction

Gravitational waves are extracted using the Newman-

Penrose scalar �4, using the same procedure as in [40]. To

summarize, given a spatial hypersurface with timelike unit
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FIG. 6 (color online). Constraint violations of run 30c-1. The

top panel shows the L2 norm of all constraints, normalized by the

L2 norm of the spatial gradients of all dynamical fields. The

bottom panel shows the same data, but without the normalization

factor. Norms are taken only in the regions outside apparent

horizons.
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FIG. 5 (color online). Gravitational waveform extracted at r �
240m. From top panel to bottom: The real part of the (2, 2)

component of r�4; the gravitational-wave strain, obtained by

two time integrals of Re�r�4�; the frequency of the gravitational

wave, Eq. (15); the gravitational wavelength, � � 2�=!. The

vertical brown line at t 
 3930m indicates the time when ‘‘wave

escorting’’ starts.
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normal n�, and given a spatial unit vector r� in the

direction of wave propagation, the standard definition of

�4 is the following component of the Weyl curvature

tensor,

 �4 � �C����‘
�‘� �m� �m�; (11)

where ‘� 	 1��
2

p �n� � r��, and m� is a complex null vector

(satisfying m� �m� � 1) that is orthogonal to r� and n�.

Here an overbar denotes complex conjugation.

For (perturbations of) flat spacetime, �4 is typically

evaluated on coordinate spheres, and in this case the usual

choices for n�, r�, and m� are
 

n� �
�
@

@t

�
�
; (12a)

r� �
�
@

@r

�
�
; (12b)

m� � 1
���

2
p

r

�
@

@�
� i

1

sin�

@

@�

�
�
; (12c)

where �r; �; �� denote the standard spherical coordinates.

With this choice, �4 can be expanded in terms of spin-

weighted spherical harmonics of weight �2:

 �4�t; r; �; �� �
X

lm

�lm
4 �t; r��2Ylm��;��; (13)

where the �lm
4 are expansion coefficients defined by this

equation.

For curved spacetime, there is considerable freedom in

the choice of the vectors r� and m�, and different research-

ers have made different choices [8,32,95–99] that are all

equivalent in the r ! 1 limit. We choose these vectors by

first picking an extraction two-surface E that is a coordinate

sphere (r2 � x2 � y2 � z2 using the global asymptotically

Cartesian coordinates employed in our code) centered on

the center of mass of the binary system, i.e. the point of

symmetry. We choose r� to be the outward-pointing spatial

unit normal to E (that is, we choose ri proportional to rir
and raise the index with the spatial metric). Then we

choose m� according to Eq. (12c), using the standard

spherical coordinates � and � defined on these coordinate

spheres. Finally we use Eqs. (11) and (13) to define the �lm
4

coefficients.

Note that the m� vector used here is not exactly null nor

exactly of unit magnitude at finite r. The resulting �lm
4 at

finite r will disagree with the waveforms observed at

infinity. Our definition does, however, agree with the stan-

dard definition given in Eqs. (11)–(13) as r ! 1. Because

we extrapolate the extracted waves to find the asymptotic

radiation field (see Sec. II F), these effects should not play a

role in our PN comparisons: Relative errors in �lm
4 intro-

duced by using the simple coordinate tetrad fall off like

1=r, and thus should vanish after extrapolating to obtain

the asymptotic behavior. While more careful treatment of

the extraction method—such as those discussed in [100–

102]—may improve the quality of extrapolation and

would be interesting to explore in the future, the naive

choice made here should be sufficient to ensure that the

waveform after extrapolation is correct to the accuracy

needed for these simulations.

In this paper, we focus on the �l;m� � �2; 2� mode.

Following common practice (see e.g. [8,14]), we split the

extracted waveform into real phase � and real amplitude

A, defined by

 �22
4 �r; t� � A�r; t�e�i��r;t�: (14)

The gravitational-wave frequency is given by

 ! � d�

dt
: (15)

The minus sign in the definition of � is chosen so that the

phase increases in time and ! is positive. Equation (14)

defines � only up to multiples of 2�. These multiples of

2� are chosen to make � continuous through each evolu-

tion, still leaving an overall multiple of 2� undetermined.

We will consider only phase differences in this paper, so

the choice of this overall phase offset is irrelevant.

E. Convergence of extracted waveforms

In this section we examine the convergence of the gravi-

tational waveforms extracted at fixed radius, without ex-

trapolation to infinity. This allows us to study the behavior

of our code without the complications of extrapolation.

The extrapolation process and the resulting extrapolated

waveforms are discussed in Sec. II F.

The top panel of Fig. 7 shows the convergence of the

gravitational-wave phase � with numerical resolution for

the run 30c-1. For this plot, the waveform is extracted at a

fixed radius R � 77m. Each line shows the difference

between � computed at some particular resolution and �
computed from our highest-resolution run 30c-1/N6. When

subtracting results at different resolutions, no time or phase

adjustment has been performed. The difference in � be-

tween the two highest-resolution runs is smaller than 0.03

radians throughout the run, and it is smaller than 0.02

radians between t � 1000m and the point at which m! �
0:1.

At times before 1000m, the phase convergence of our

simulation is limited to about 0.05 radians because of

effects of junk radiation (described at the end of

Sec. II C). The sharp pulse of junk radiation has compara-

tively large numerical truncation error, and excites all

characteristic modes at truncation-error level, including

waves that propagate back toward the origin. Generation

of these secondary waves stops when the pulse of junk

radiation leaves through the outer boundary (i.e., after one

light-crossing time). Because we use the improved outer

boundary conditions of Rinne et al. [74], there are no

significant reflections when the junk radiation passes

through the outer boundary. However, the waves produced
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before the junk radiation leaves remain in the computa-

tional domain for two additional light-crossing times, until

they eventually leave through the outer boundary.

The bottom panel of Fig. 7 shows phase comparisons

between different waveforms after we perform a time shift

and phase shift so that the waveforms agree at m! � 0:1.

Our procedure for time shifting and phase shifting is the

same as the shifting procedure we use to compare NR with

PN waveforms (see Sec. IV B), so that the error estimates

we extract from the bottom panel of Fig. 7 are relevant for

our later NR-PN comparison.

There are three different types of comparisons shown in

the bottom panel of Fig. 7: Phase differences between runs

with the same initial data but with different outer boundary

locations, phase differences between runs with different

initial data, and phase differences between different nu-

merical resolutions of the same run (this last comparison is

the same as what is shown in the top panel, except in the

bottom panel the waveforms are time and phase shifted).

We will discuss all three of these in turn.

First, we compare the phase difference of 30c-1/N6 with

runs that have different outer boundary locations. Run 30c-

2 (with more distant outer boundary) agrees to within 0.002

radians with run 30c-1, but run 30c-3 (with closer outer

boundary), has a much larger phase difference with 30c-1.

We believe that this is because run 30c-3 has a very small

ratio of outer boundary location to gravitational wave-

length: R=� is about 1.1 for the first two-thirds of the

run, and remains less than 2 for the entire run.

We can explain the order of magnitude of these phase

differences using the analysis of Buchman and Sarbach

[82]. Our outer boundary conditions are not perfectly

absorbing, but instead they reflect some fraction of the

outgoing radiation.5 The ratio of the amplitude of curvature

perturbations (i.e. �4) of the reflected wave to that of the

outgoing wave is

 q 
 3

2�2��4
�
�

R

�
4

: (16)

The incoming reflected waves grow like 1=r as they travel

inward just like the outgoing waves decrease by 1=r as they

propagate outward. Therefore, the ratio of amplitudes of

incoming and outgoing waves will have approximately the

same value, q, at smaller radii, and we assume for the sake

of this rough argument that this ratio remains equal to q
even in the vicinity of the black holes (where it is no longer

technically meaningful to talk about ‘‘radiation’’). Now

consider the second time derivative of the gravitational-

wave phase, ��; this is nonzero only because of

gravitational-wave emission, so �� is proportional to

some power of the outgoing wave amplitude. To get the

correct power, we can use Eq. (47) to find _x� x5, so

Eq. (38) yields ��� x11=2 (we assume gravitational-wave

phase is twice the orbital phase). The amplitude of �4

scales like x4, so ��� A11=8. Let us assume for the sake of

this rough error estimate that the change in �� due to the

ingoing reflected wave scales similarly with amplitude,
��� �A11=8, where �A � qA is the amplitude of the reflected

ingoing wave. Therefore the unphysical gravitational-wave

force acting back on the system due to boundary reflections

will cause fractional errors in the second derivative of the

phase of about q11=8. That is, the error 	� caused by the

improper boundary condition will be given by

 

d2	�

dt2
� q11=8

d2�

dt2
: (17)

Integrating this yields 	� � q11=8�, where � is the total

gravitational-wave phase accumulated during the evolu-

tion. For 30c-3, �=R� 0:9, so q� 6� 10�4, which yields

	�� 0:08 radians for an accumulated gravitational-wave

phase of about 200 radians. This rough estimate agrees in

order of magnitude with the phase difference between 30c-

3 and 30c-1 as shown in the bottom panel of Fig. 7. The run

30c-1 has an outer boundary about 2.5 farther away, re-

ducing the reflection coefficient by a factor 2:54 
 40, so

for 30c-1 this estimate of the phase error gives 	� � 5�
10�4 radians. Therefore, we expect reflection of the out-
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FIG. 7 (color online). Convergence of the gravitational-wave

phase extracted at radius R � 77m. All lines show differences

with respect to our highest-resolution run, 30c-1/N6. The top

panel shows different resolutions of the same run 30c-1; no time

or phase shifts have been performed. The bottom panel compares

different runs, aligning the runs at m! � 0:1 by a time and phase

shift. The thin vertical line indicates the time at which m! � 0:1
for 30c-1/N6.

5However, in a comparison of various boundary conditions
[74], the boundary conditions we use produced smaller reflec-
tions than other boundary conditions commonly used in numeri-
cal relativity.
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going radiation at the outer boundary to be insignificant for

30c-1. This is confirmed by the excellent agreement be-

tween runs 30c-1 and 30c-2 (the latter having even larger

outer boundary).

The second comparison shown in the lower panel of

Fig. 7 is the phase difference between 30c-1/N6 and 24b-

1/N4, a shorter 8-orbit evolution started from a separate

initial data set (set 24b in Table I) with a separate

eccentricity-reduction procedure. The phase agreement

between these two runs (including an overall time shift

and phase shift) is better than 0.01 radians for a total

accumulated phase of �100 radians of the 8-orbit run,

i.e. better than one part in 104. Run 24b-1 has a similar

outer boundary location as run 30c-3, and indeed both of

these runs show similar phase differences from 30c-1.

Finally, the third comparison shown in the lower panel

of Fig. 7 is the phase difference between the two highest

resolutions of the run 30c-1 when a time shift is applied.

For t * 1000m the agreement is much better than without

the time shift (see upper panel), indicating that the domi-

nant error is a small difference in the overall evolution

time. For the post-Newtonian comparisons we perform in

the second part of this paper, waveforms are always

aligned at specific frequencies by applying time and phase

shifts. Therefore, the time-shifted phase difference as dis-

played in the lower panel is the most appropriate measure

of numerical truncation error for these PN comparisons.

This difference is less than 0.003 radians after t � 1000m
but is larger, about 0.02 radians, at early times where the

waveforms are noisy because of junk radiation.

We now compare the gravitational-wave amplitudes of

different runs in the same manner as we compared the

gravitational-wave phases. Figure 8 presents convergence

data for the amplitude of the gravitational waves for the

same runs as shown in Fig. 7. Spatial truncation error for

the amplitude is less than 0.1% for t=m> 1000, and earlier

than this it is limited by residual noise from the junk

radiation. Differences (including time shifts) between

runs of different lengths are shown in the lower panel of

Fig. 8. These differences are even smaller, but because of

their small size, they are dominated by noise for about the

first half of the run. The oscillations apparent in the com-

parison to 24b-1 are caused by the larger orbital eccentric-

ity of 24b-1 (cf. Table I).

F. Extrapolation to infinity

The quantity of interest to gravitational-wave detectors

is the gravitational waveform as seen by an observer ef-

fectively infinitely far from the source. Our numerical

simulations, in contrast, cover only a region of finite vol-

ume around the source, and our numerical waveforms are

extracted at a finite radius. Waveforms extracted at a finite

radius can differ from those extracted at infinity because of

effects discussed in Sec. II D; these effects can lead to

phase errors of several tenths of a radian and relative

amplitude errors of several percent. To avoid such errors

we extrapolate to infinite extraction radius as follows.

We extract data for �4 on coordinate spheres of coor-

dinate radii r=m � 75; 80; 85; . . . ; 240, as described in

Sec. II D. These extracted waveforms are shifted in time

relative to one another because of the finite light-travel

time between these extraction surfaces. We correct for this

by shifting each waveform by the tortoise-coordinate ra-

dius at that extraction point [95]

 r� � rareal � 2MADM ln

�
rareal

2MADM

� 1

�

: (18)

Here MADM is the ADM mass of the initial data, and

rareal �
������������

A=4�
p

, where A is the area of the extraction

sphere. This is not the only possible choice for the retarded

time—for example, the waveforms could be shifted so that

the maxima of the amplitude align [41]. It has also been

suggested [103] that the time shift should change with the

amount of radiated energy—essentially, that the factor of

MADM should be replaced by the amount of mass interior to

the extraction radius at each time. We leave investigation

of other choices of retarded time for future work.

Figure 9 presents the areal radius during the evolution at

several typical extraction radii. The areal radius of these

extraction surfaces is constant to within about 0:01m, and

to the same precision, rareal � r�MADM. This relation-

ship is not surprising, because the initial data is confor-

mally flat, so that for coordinate spheres rareal�
r�MADM�O�MADM=r�. For convenience, we simply set
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FIG. 8 (color online). Convergence of the gravitational-wave

amplitude extracted at radius R � 77m. This plot corresponds to

Fig. 7, except that relative amplitude differences are shown. The

thin vertical line indicates the time at which m! � 0:1 for 30c-1/

N6.
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rareal � r�MADM in Eq. (18), rather than explicitly inte-

grating to find the area of each extraction sphere.

After the time shift, each waveform is a function of

retarded time, t� r�. At a given value of retarded time,

we have a series of data points—one for each extraction

radius. We fit phase and amplitude of these data separately

to a polynomial in 1=r,

 ��t� r�; r� � ��0��t� r�� �
Xn

k�1

��k��t� r��
rk

; (19)

 rA�t� r�; r� � A�0��t� r�� �
Xn

k�1

A�k��t� r��
rk

: (20)

The leading-order term of each polynomial, as a function

of retarded time, is then the desired asymptotic waveform:

 ��t� r�� � ��0��t� r��; (21)

 rA�t� r�� � A�0��t� r��: (22)

We find good convergence of this method as we increase

the order n of the extrapolating polynomial. Figure 10

shows the difference in phase between waveforms extrapo-

lated using successively higher-order polynomials. We see

a broad improvement in the accuracy of the phase with

increasing order, but unfortunately, higher-order extrapo-

lations tend to amplify the noise. Our preferred choice is

n � 3 extrapolation, resulting in extrapolation errors of &

0:003 radians for t� r� * 1000m.

Figure 11 is analogous to Fig. 10, except that it shows

relative differences in the extrapolated amplitudes. The

basic picture agrees with the phase extrapolation: Higher-

order extrapolation reduces the errors, but amplifies noise.

Our preferred choice n � 3 gives a relative amplitude error

of & 0:002 for t� r� * 1000m, dropping to less than

0.001 for t� r� * 2000m.

Phase and amplitude extrapolation become increasingly

more accurate at late times. The main obstacle to accuracy

seems to be near-zone effects scaling with powers of ��=r�,
where � is the wavelength of the gravitational wave. The
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FIG. 10 (color online). Error of phase extrapolation to infinity

for extrapolation of order n, cf. Eq. (19). Plotted are absolute

differences between extrapolation with order n and n� 1.

Increasing the order of the polynomial increases accuracy, but

also amplifies noise.
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FIG. 11 (color online). Error of amplitude extrapolation to

infinity for extrapolation with order n, cf. Eq. (20). Plotted are

relative amplitude differences between extrapolation with orders

n and n� 1. The inset is an enlargement for t� r�  1000m.
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FIG. 9 (color online). Difference between areal radius rareal
and coordinate radius r of selected extraction surfaces. rareal
remains constant to within 0:01m during the evolution. The

diamond indicates MADM=m of the initial data.
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wavelength is quite large at the beginning of the simulation

(� 
 180m, cf. Fig. 5), but becomes shorter during the

evolution, so that even low-order extrapolation is quite

accurate at late times. Alternatively, near-zone effects

can be mitigated by using data extracted at large values

of r. It is precisely because of these near-zone effects that

we have chosen to ignore data extracted at r < 75m when

we extrapolate to infinity.

In Figs. 12 and 13, we show the effects of extrapolation

using different ranges of extracted data. Using data ex-

tracted every 5m in the range r � 50m–90m results in

noticeable differences early in the run—though it is ade-

quate later in the run. For ranges at higher radii (e.g.

�75m; 150m� or �150m; 240m�), the accuracy is not highly

variable, though we find that noise is increased when using

data from such a smaller range of extraction radii.

To estimate the errors generated by not extrapolating

waveforms to infinity at all, Fig. 12 contains also the phase

difference between wave extraction at two finite radii (90m
and 240m) and our preferred extrapolated phase at infinity.

The dotted lines show such phase differences when only a

time shift by the tortoise-coordinate radius of the extrac-

tion sphere is applied. The errors are dramatic, tenths of

radians or more, even very late in the run. When matching

to post-Newtonian waveforms, we are free to add an over-

all time and phase shift (cf. Sec. IV B). Therefore, the

dashed lines in Fig. 12 show phase differences with the

same unextrapolated waveforms as shown by the dotted

lines, except that a phase and time shift has been applied so

that the � and _� agree with those of the extrapolated

waveform late in the run (where m! � 0:1), where the

wavelengths are shortest and wave extraction is expected

to work best. Even with such an adjustment, the

gravitational-wave phase extracted at r � 90m differs by

about 0.1 rad at t� 1000m before coalescence, with this

difference growing to 0.3 radians at the start of our

simulation.

Figure 13 makes the same comparison for the

gravitational-wave amplitude. Wave extraction at r �
90m results in relative amplitude errors of up to 8 percent,

and of about 2 percent even in the last 1000m of our

simulation. We also point out that the errors due to finite

extraction radius decay approximately as the inverse of the

extraction radius: For waves extracted at r � 240m the

errors are smaller than for waves extracted at r � 90m
by about a factor of 3, as can be seen in Figs. 12 and 13;

for wave extraction at r � 45m, the errors would be ap-

proximately twice as large as the r � 90m case. The errors

introduced by using a finite extraction radius are signifi-

cantly larger than our truncation error (even at extraction

radius 240m). Therefore extrapolation to infinity is essen-

tial to realize the full accuracy of our simulations.
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Varying GW extraction radii: Phase
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FIG. 12 (color online). Effect of wave-extraction radii on ex-

trapolated phase. Each curve represents the difference from our

preferred wave extrapolation using r 2 �75m; 240m�. The three

solid curves represent extrapolation from different intervals of

extraction radii. The curves labeled ‘‘240m’’ and ‘‘90m’’ repre-

sent differences from waves extracted at these two radii, without

any extrapolation, for two cases: time and phase shifted so that �
and _� match at m! � 0:1 (dashed line), and without these shifts

(dotted line).
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FIG. 13 (color online). Effect of choice of wave-extraction

radii on extrapolated amplitude. Each curve represents the

(relative) amplitude difference to our preferred wave extrapola-

tion using r 2 �75m; 240m�. The three solid curves represent

extrapolation from different intervals of extraction radii. The

curves labeled ‘‘240m’’ and ‘‘90m’’ represent differences from

waves extracted at these two radii, without any extrapolation, for

two cases: time and phase shifted so that � and _� match at

m! � 0:1 (dashed line), and without these shifts (dotted line).
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G. Estimated time of merger

Since we have not yet been successful with simulating

the merger, we do not precisely know when merger occurs.

However, by comparing the orbital and gravitational-wave

frequencies to already published results, we can neverthe-

less estimate the time of merger.

The simulation presented in Fig. 3 stops at time t �
3929m when the horizons of the black holes become too

distorted just before merger. At that point, the proper

separation between the horizons is �4:0m, and the orbital

frequency has reached m�orbit � 0:125; comparison with

[32] suggests this is about 15m before formation of a

common apparent horizon, i.e. the common horizon should

form in our simulations at tCAH 
 3945m.

The waveform extrapolated to infinity ends at t� r� �
3897m at a gravitational-wave frequency of m! 
 0:16.

This places the end of the waveform at about 50m (or �1:5
cycles) before formation of a common apparent horizon6

( judged by comparison with [32]). Thus, we estimate the

formation of a common horizon to correspond to a retarded

time of approximately �t� r��CAH 
 3950m.

III. GENERATION OF POST-NEWTONIAN

WAVEFORMS

It is not our intention to review all of PN theory, but to

summarize the important points that go into the construc-

tion of the post-Newtonian waveforms that we will com-

pare to our numerical simulation. For a complete review of

post-Newtonian methods applied to inspiralling compact

binaries, see the review article by Blanchet [104].

The post-Newtonian approximation is a slow-motion,

weak-field approximation to general relativity with an

expansion parameter 
� �v=c�2 � �Gm=rc2�. For a binary

system of two point masses m1 and m2, v is the magnitude

of the relative velocity, m is the total mass, and r is the

separation. In order to produce a post-Newtonian wave-

form, it is necessary to solve both the post-Newtonian

equations of motion describing the binary, and the post-

Newtonian equations describing the generation of gravita-

tional waves.

Solving the equations of motion yields explicit expres-

sions for the accelerations of each body in terms of the

positions and velocities of the two bodies [105–115]. The

two-body equations of motion can then be reduced to

relative equations of motion in the center-of-mass frame

in terms of the relative position and velocity [116]. The

relative acceleration is currently known through 3.5PN

order, where 0PN order for the equations of motion corre-

sponds to Newtonian gravity. The effects of radiation

reaction (due to the emission of gravitational waves) enters

the relative acceleration starting at 2.5PN order. The rela-

tivistic corrections to the relative acceleration at 1PN, 2PN,

and 3PN order (ignoring the radiation reaction terms at

2.5PN and 3.5PN order) admit a conserved center-of-mass

binding energy through 3PN order [117]. There is no 2.5PN

or 3.5PN order contribution to the energy.

Solving the post-Newtonian wave generation problem

yields expressions for the gravitational waveform hij and

gravitational-wave flux L in terms of radiative multipole

moments [118]. These radiative multipole moments are in

turn related to the source multipole moments, which can be

given in terms of the relative position and relative velocity

of the binary [119]. For the gravitational-wave generation

problem, PN orders are named with respect to the leading-

order waveform and flux, which are given by the quadru-

pole formalism. Thus, for example, 1.5PN order in the

wave generation problem represents terms of order

�v=c�3 beyond quadrupole. Higher-order effects enter

both through post-Newtonian corrections to the mass quad-

rupole, as well as effects due to higher multipole moments.

Starting at 1.5PN order the radiative multipole moments

include nonlinear and noninstantaneous (i.e. depend upon

the past history of the binary) interactions among the

source multipole moments (e.g. gravitational-wave tails)

[119–122].

It was recognized early that simply plugging in the

orbital evolution predicted by the equations of motion

into the expressions for the waveform would not generate

templates accurate enough for matched filtering in detect-

ing gravitational waves [123]. This is because radiation

reaction enters the equations of motion only at the 2.5PN

order; hence computing a waveform to k PN order beyond

the quadrupole formalism would require 2:5� k PN orders

in the equations of motion. In order to obtain as accurate a

post-Newtonian waveform as possible it is thus necessary

to introduce the assumption of an adiabatic inspiral of a

quasicircular orbit, as well as the assumption of energy

balance between the orbital binding energy and the energy

emitted by the gravitational waves.

A. Adiabatic inspiral of quasicircular orbits

The emission of gravitational radiation causes the orbits

of an isolated binary system to circularize [50]. Thus it is a

reasonable assumption to model the orbital evolution of the

binary as a slow adiabatic inspiral of a quasicircular orbit.

With this assumption, post-Newtonian expressions for the

orbital energy E and gravitational energy flux L are cur-

rently known through 3.5PN order [124–128]. These ex-

pressions can be given in terms of a parameter related to

either the harmonic coordinate separation r, or to the

orbital frequency �. We choose to use the expressions

given in terms of a frequency-related parameter

 x 	
�
Gm�

c3

�
2=3

(23)

6The waveform ends somewhat further from merger than the
orbital trajectory, because the artificial boundary is placed ini-
tially at a radius �15m, and then moves outward somewhat
faster than the speed of light, thus overtaking the very last part of
the waveform as it travels to the wave-extraction radii.
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rather than a coordinate-related parameter, because the

coordinate relationship between the numerical simulation

and the harmonic coordinates used in post-Newtonian

approximations is unknown. The orbital energy for an

equal-mass system is given by [104]

 

E � �mc2

8
x

�

1� 37

48
x� 1069

384
x2

�
�
1 427 365

331 776
� 205

384
�2

�

x3
�

; (24)

and the gravitational-wave flux for an equal-mass system is

given by [104]

 

L � 2c5

5G
x5
�

1� 373

84
x� 4�x3=2 � 59

567
x2 � 767

42
�x5=2

�
�
18 608 019 757

209 563 200
� 355

64
�2 � 1712

105
�

� 856

105
ln�16x�

�

x3 � 16 655

6048
�x7=2

�

; (25)

where � � 0:577 216 . . . is Euler’s constant.

B. Polarization waveforms

The gravitational polarization waveforms for a quasicir-

cular orbit in the x-y plane, as measured by an observer at

spherical coordinates �R; �̂; �̂�, are given by

 h� � 2G�

c2R
xf��1� cos�̂� cos2��� �̂� � � � �g; (26)

 h� � 2G�

c2R
xf�2 cos�̂ sin2��� �̂� � � � �g; (27)

where � is the orbital phase (measured from the x-axis)

and � � m1m2=m is the reduced mass. The polarization

waveforms are currently known through 2.5PN order

[129,130].

1. Optimally oriented observer

For an equal-mass binary the polarization waveforms

along the z-axis (i.e. the optimally oriented observer along

the normal to the orbital plane) are given by [129,130]

 

h�z�� � Gm

2c2R
x

�

cos2�

�

�2� 17

4
x� 4�x3=2 � 15 917

2880
x2

� 9�x5=2
�

� sin2�

�

�12 ln

�
x

x0

�

x3=2

�
�
59

5
� 27 ln

�
x

x0

��

x5=2
��

; (28)

 

h�z�� � Gm

2c2R
x

�

sin2�

�

�2� 17

4
x� 4�x3=2 � 15 917

2880
x2

� 9�x5=2
�

� cos2�

�

12 ln

�
x

x0

�

x3=2

�
�
59

5
� 27 ln

�
x

x0

��

x5=2
��

; (29)

where

 lnx0 	
11

18
� 2

3
�� 2

3
ln

�
Gm

4bc3

�

(30)

is a constant frequency scale that depends upon the con-

stant time scale b entering the gravitational-wave tail con-

tribution to the polarization waveforms [131,132]. The

freely specifiable constant b corresponds to a choice of

the origin of radiative time T with respect to harmonic time

t, and enters the relation between the retarded time TR �
T � R=c in radiative coordinates (the coordinates in which

the waveform is given) and the retarded time t� r=c in

harmonic coordinates (the coordinates in which the equa-

tions of motion are given) [131,132]:

 TR � t� r

c
� 2GMADM

c3
ln

�
r

bc

�

: (31)

Here MADM is the ADM mass (mass monopole) of the

binary system.

2. The (2, 2) mode

When comparing a post-Newtonian waveform with data

from a physical gravitational-wave detector, it is necessary

to compare waves emitted in a certain direction ��̂; �̂� with

respect to the source. However, comparing waveforms

between PN and numerical simulations can be done in all

directions simultaneously by decomposing the waveforms

in terms of spherical harmonics and then comparing differ-

ent spherical harmonic modes. Since the power in each

spherical harmonic mode decreases rapidly with spherical

harmonic index, with the (2, 2) mode dominating (for an

equal-mass nonspinning binary), it is possible to do a very

accurate comparison that is valid for all angles by using

only a few modes. In addition, as pointed out by Kidder

[62], the dominant (2, 2) mode can be computed to 3PN

order. For an equal-mass binary, the (2, 2) mode is
 

h�2;2���2

����
�

5

r
Gm

c2R
e�2i�x

�

1�373

168
x�

�

2��6iln

�
x

x0

��

x3=2

�62653

24192
x2�

�
197

42
��197i

14
ln

�
x

x0

�

�6i

�

x5=2

�
�
43876092677

1117670400
� 99

128
�2�428

105
lnx�856

105
�

�1712

105
ln2�18

�

ln

�
x

x0

��
2

�428

105
i�

�12i�ln

�
x

x0

��

x3
�

: (32)
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Since the (2, 2) mode of the numerical waveforms is less

noisy than the waveform measured along the z-axis, and

since we have access to the 3PN amplitude correction of

the (2, 2) mode, we will use the (2, 2) waveforms rather

than the z-axis waveforms for our comparisons between

NR and PN in Sec. VI. We have verified (for all compari-

sons using post-Newtonian waveforms of � 2:5PN order

in amplitude) that our results do not change significantly

when we use z-axis waveforms instead of (2, 2)

waveforms.

C. Absorbing amplitude terms into a redefinition

of the phase

The logarithms of the orbital frequency parameter x (as

well as the constant frequency scale x0) that appear in the

amplitude expressions (28), (29), and (32) can be absorbed

into a redefinition of the phase by introducing an auxiliary

phase variable � � �� 	. Noting that the lnx terms first

enter at 1.5 PN order, it is straightforward to show that

choosing [62,129,133]

 	 � �3
MADM

m
x3=2 ln

�
x

x0

�

; (33)

where MADM=m � 1� x=8�O�x2� for an equal-mass

system, will eliminate the lnx terms from both the (2, 2)

mode as well as for the polarization waveforms. This

follows from

 h�2;2� � Ae�2i� � Ae�2i�e�2i	

� Ae�2i��1� 2i	� 2	2 �O�x9=2��;
and similarly for the polarization waveforms. Furthermore,

since the orbital phase as a function of frequency goes as

x�5=2 at leading order (see Eq. (40) below), the lnx terms,

which were 1.5PN, 2.5PN, and 3PN order in the original

amplitude expressions, now appear as phase corrections at

relative order 4PN, 5PN, and 5.5PN. As these terms are

beyond the order to which the orbital phase evolution is

known (3.5PN order), it can be argued that these terms can

be ignored. Note that the choices of x0 in Eq. (30) and 	 in

Eq. (33) are not unique; they were made to gather all

logarithmic terms into one term, as well as to simplify

the waveform [133].

D. Energy balance

The second assumption that goes into making as accu-

rate a post-Newtonian waveform as possible is that of

energy balance. It is assumed that the energy carried

away by the emission of gravitational waves is balanced

by the change in the orbital binding energy of the binary,

 

dE

dt
� �L: (34)

While this is extremely plausible, it has only been con-

firmed through 1.5 PN order [134].

Given the above expressions for the energy, flux, and

waveform amplitude, there is still a set of choices that must

be made in order to produce a post-Newtonian waveform

that can be compared to our numerical waveform. These

include

(1) The PN order through which terms in the orbital

energy and luminosity are retained.

(2) The procedure by which the energy balance equa-

tion is used to obtain x�t� and ��t�.
(3) The PN order through which terms in the waveform

amplitude are kept.

(4) The treatment of the lnx terms. These terms can be

included in the amplitude or included in the orbital

phase via the auxiliary phase � 	 �� 	. If the

latter is chosen, these terms can be retained or

ignored; ignoring them can be justified because

they occur at higher order than all known terms in

the orbital phase.

We always expand energy and luminosity to the same

order, which may be different from the order of the ampli-

tude expansion; both of these expansion orders are indi-

cated explicitly in each of our comparisons. We ignore the

ln�x=x0� terms in the amplitude by absorbing them into the

phase and dropping them because of their high PN order. In

the next section we describe several choices for obtaining

x�t� and ��t� from the energy balance equation.

E. Taylor approximants: Computing ��t�
In this section we describe how to obtain the orbital

phase as a function of time, ��t�, using the energy balance

Eq. (34). Different methods of doing this exist; here we

follow the naming convention of [54]. These methods, and

variations of them, are called Taylor approximants, and all

formally agree to a given PN order but differ in how higher-

order terms are truncated. We discuss four time-domain

approximants here, but more can be defined.

1. TaylorT1

The TaylorT1 approximant is obtained by numerically

integrating the ODEs

 

dx

dt
� � L

�dE=dx� ; (35)

 

d�

dt
� c3

Gm
x3=2; (36)

to produce ��t�. The fraction on the right side of Eq. (35) is

retained as a ratio of post-Newtonian expansions, and is not

expanded further before numerical integration. This is the

approximant used in the NR-PN comparisons in [35,41].

2. TaylorT2

The TaylorT2 approximant is obtained by starting with

the parametric solution of the energy balance equation:
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 t�x� � t0 �
Z x0

x
dx

�dE=dx�
L

; (37)

 ��x� � �0 �
Z x0

x
dx

x3=2c3

Gm

�dE=dx�
L

: (38)

The integrand of each expression is reexpanded as a single

post-Newtonian expansion in x and truncated at the appro-

priate PN-order; these integrals are then evaluated analyti-

cally to obtain for an equal-mass binary [54,55]:

 t � t0 �
5Gm

64c3
x�4

�

1� 487

126
x� 32

5
�x3=2 � 2 349 439

254 016
x2

� 1864
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�2
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ln�16x�

�

x3 � 571 496
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�
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(39)

 

� � �0 �
1

8
x�5=2

�

1� 2435
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ln�16x�

�

x3 � 357 185

7938
�x7=2

�

: (40)

3. TaylorT3

The TaylorT3 approximant is closely related to

TaylorT2. It is obtained by introducing the dimensionless

time variable

 � 	 �c3

5Gm
�t0 � t�; (41)

where � � m1m2=m
2 and ��1=4 � O�
�. The TaylorT2

expression t�x� is inverted to obtain x���, and truncated at

the desired PN order. Then x��� is integrated to obtain

 ���� � �0 �
Z �

�0

d�
5x3=2

�
: (42)

This procedure yields for an equal-mass binary [104]:

 x � 1
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; (43)
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ln

�
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: (44)

This is the post-Newtonian approximant used in visual

comparisons by [32] and in the NR-PN comparisons in [41]

at 3PN order in phase.

4. TaylorT4

In addition to simply numerically integrating the flux-

energy equation (37), as is done for TaylorT1, one may

instead reexpand the right side of (37) as a single series and

truncate at the appropriate PN order before doing the

integration. The phase evolution ��t� can thus be obtained

by numerically integrating the ODEs

 

dx

dt
� 16c3

5Gm
x5
�

1� 487

168
x� 4�x3=2 � 274 229

72 576
x2

� 254

21
�x5=2 �

�
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ln�16x�

�
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�x7=2

�

; (45)

 

d�

dt
� x3=2c3

Gm
: (46)

This approximant was not considered in [54], however for

consistency with their notation, we call it TaylorT4.

TaylorT4 is the primary approximant used in the NR-PN

comparisons in [38,39], and one of the several approxim-

ants considered in the NR-PN comparisons in [35].

Reference [32] pointed out that TaylorT4 at 3.5PN order

in phase is close to TaylorT3 at 3PN order in phase, and

therefore should give similar agreement with numerical

results.

IV. PN-NR COMPARISON PROCEDURE

A. What to compare?

There are many ways to compare numerical relativity

and post-Newtonian results. For example, the post-

Newtonian orbital phase ��t� could be compared with

the coordinate phase of the black-hole trajectories.

However, this and many other comparisons are difficult

to make in a coordinate-independent manner without ex-

pending significant effort to understand the relationship

between the gauge choices used in post-Newtonian theory

and in the NR simulations. Therefore, in order to obtain the

most meaningful comparison possible, we attempt to mini-
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mize gauge effects by comparing gravitational waveforms

as seen by an observer at infinity. The waveform quantity

most easily obtained from the numerical relativity code is

the Newman-Penrose quantity �4, and we will compare its

(2, 2) component [cf. Eq. (13)], split into phase � and

amplitude A according to Eq. (14) and extrapolated to

infinite extraction radius.

The post-Newtonian formulae in Sec. III yield the metric

perturbation components h� and h�, which—for a gravi-

tational wave at infinity—are related to �4 by

 �4�t� �
@2

@t2
�h��t� � ih��t��: (47)

We numerically differentiate the post-Newtonian expres-

sions for h��t� and h��t� twice before computing ampli-

tude and phase using Eq. (14). Note that ��t� will differ

slightly from the phase computed from the metric pertur-

bation directly, as tan�1�h�=h��, because both the ampli-

tude and phase of the metric perturbation are time

dependent. For the same reason, ��t� is not precisely equal

to twice the orbital phase.

As in Ref. [41], we compare �4 rather than h�;� to

avoid difficulties arising with fixing the integration con-

stants when integrating the numerically obtained �4 (see

[40] for more details). Both �4 and h�;� contain the same

information, so differences between both procedures

should be minimal.

B. Matching procedure

Each of the post-Newtonian waveforms has an arbitrary

time offset t0 and an arbitrary phase offset �0. These

constants can be thought of as representing the absolute

time of merger and the orientation of the binary at merger,

and we are free to adjust them in order to match NR and PN

waveforms. Following [38,41], we choose these constants

by demanding that the PN and NR gravitational-wave

phase and gravitational-wave frequency agree at some

fiducial frequency !m. Specifically, we proceed as follows:

We start with a NR waveform �NR
4 �t� and an unshifted PN

waveform �PN0
4 �t� that has an arbitrary time and phase

shift. After selecting the matching frequency !m, we can

find (to essentially unlimited accuracy) the time tc such

that the derivative of the PN phase satisfies _�PN0�tc� � !m,

where �PN0�t� is the phase associated with �PN0
4 �t�.

Similarly, we find the time tm such that _�NR�tm� � !m.

The time tm cannot be found to unlimited accuracy, and the

uncertainty in tm is due mainly to residual eccentricity of

the NR waveform, as discussed in Sec. V E. Once we have

tm and tc, we leave the NR waveform untouched, but we

construct a new, shifted, PN waveform

 �PN
4 �t� � �PN0

4 �t� tc � tm�ei��PN0 �tc���NR�tm��: (48)

The phase of this new PN waveform is therefore

 �PN�t� � �PN0�t� tc � tm� ��PN0�tc� ��NR�tm�; (49)

which satisfies �PN�tm� � �NR�tm� and _�PN�tm� � !m as

desired. All our comparisons are then made using the new

shifted waveform �PN
4 �t� rather than the unshifted wave-

form �PN0
4 �t�.

C. Choice of masses

The post-Newtonian expressions as written in Sec. III

involve the total mass m, which corresponds to the sum of

the bare masses of the point particles in post-Newtonian

theory. When comparing PN to NR, the question then

arises as to which of the many definitions of the mass of

a numerically generated binary black-hole solution should

correspond to the post-Newtonian parameter m. For non-

spinning black holes at very large separation, m reduces to

the sum of the irreducible masses of the two holes.

Neglecting tidal heating, the irreducible masses should

be conserved during the inspiral, so that we identify m
with the sum of the irreducible masses of the initial data

30c. As discussed in Sec. V the black-hole spins are

sufficiently small so that there is no discernible difference

between irreducible mass of the black holes and the

Christodoulou mass, Eq. (3). Of course, the latter would

be more appropriate for spinning black holes.

V. ESTIMATION OF UNCERTAINTIES

To make precise statements about agreement or dis-

agreement between numerical and post-Newtonian wave-

forms, it is essential to know the size of the uncertainties in

this comparison. When discussing these uncertainties, we

must strive to include all effects that may cause our nu-

merical waveform to differ from the post-Newtonian wave-

forms we compare to. For instance, in addition to

considering effects such as numerical truncation error,

we also account for the fact that NR and PN waveforms

correspond to slightly different physical scenarios: The PN

waveforms have identically zero spin and eccentricity,

whereas the numerical simulations have some small resid-

ual spin and eccentricity. Table III lists all effects we have

considered; we discuss these in detail below starting in

Sec. VA. All uncertainties are quoted in terms of phase and

amplitude differences, and apply to waveform comparisons

via matching at a fixed !m according to the procedure in

Sec. IV B.

Most of the effects responsible for our uncertainties are

time dependent, so that it is difficult to arrive at a single

number describing each effect. For simplicity, the error

bounds in Table III ignore the junk-radiation noise that

occurs in the numerical waveform for t� r� & 1000m.

The extent to which this noise affects the PN-NR compari-

sons presented below in Secs. VI A and VI B will be

evident from the noise in the graphs in these sections.

Note that all four matching frequencies !m occur after

the noise disappears at t� r� � 1000m. Furthermore, the

post-Newtonian waveforms end at different times depend-
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ing on the PN order and on which particular post-

Newtonian approximant is used. Therefore, in order to

produce a single number for each effect listed in

Table III, we consider only the part of the waveform prior

to some cutoff time, which we choose to be the time at

which the numerical waveform reaches gravitational-wave

frequency m! � 0:1.

A. Errors in numerical approximations

The first three error sources listed in Table III have

already been discussed in detail in Sec. II. We estimate

numerical truncation error using the difference between the

two highest-resolution runs after the waveforms have been

shifted to agree at some matching frequency !m. For

m!m � 0:1 this difference is shown as the curves labeled

‘‘30c-1/N5’’ in the lower panels of Figs. 7 and 8, and

corresponds to a phase difference of 0.003 radians and a

relative amplitude difference of 0.001. For other values of

!m the differences are similar. The effect of the outer

boundary is estimated by the difference between the runs

30c-1/N6 and 30c-2/N6, which for m!m � 0:1 is shown as

the curves labeled ‘‘30c-2/N6’’ in the lower panels of

Figs. 7 and 8, and amount to phase differences of 0.005

radians and relative amplitude differences of 0.002. Errors

associated with extrapolation to infinity have been dis-

cussed in detail in Figs. 10 and 12. Specifically, Fig. 10

shows that increasing the extrapolation order between 3

and 4 changes the extrapolated phase by less than 0.005

radians, and Fig. 12 confirms that the extrapolated result is

robust under changes of extraction radii.

B. Constancy of extraction radii

If the physical locations of the coordinate-stationary

extraction radii happen to change during the evolution,

then the extracted gravitational waves will accrue a timing

error equal to the light-travel time between the original

location and the final location. From Fig. 9, we see that the

drift in areal radius is less than 0:02m, resulting in a time

uncertainty of 	t � 0:02m. This time uncertainty trans-

lates into a phase uncertainty via

 	� � m!� �	t=m� (50)

which yields 	� 
 0:002, when m! � 0:1 (the value at

the end of the PN comparison) was used.

To estimate the effect of this time uncertainty on the

amplitude, we first note that to lowest order in the post-

Newtonian parameter x (defined in Eq. (23)), the wave

amplitude of �4 scales like x4. Also, from Eq. (45), we

have dx=dt � 16=�5m�x5. Therefore,

 

	A

A
� d lnA

dx

dx

dt
	t� 64

5
�m!=2�8=3 	t

m
; (51)

where we have used the fact that the gravitational-wave

frequency ! is approximately twice the orbital frequency.

For a time uncertainty 	t � 0:02m, Eq. (51) gives 	A=A 

10�4 for m! � 0:1.

C. Constancy of mass

Our comparisons with post-Newtonian formulae assume

a constant post-Newtonian mass parameter m, which we

set equal to the total irreducible mass of the black holes in

the numerical simulation. If the total mass of the numerical

simulation is not constant, this will lead to errors in the

comparison. For example, changes in t=m caused by a

changing mass will lead to phase differences. Figure 4

demonstrates that the irreducible mass is conserved to a

fractional accuracy of about 	m=m 
 5� 10�6.

This change in irreducible mass could be caused by

numerical errors, or by a physical increase of the mass of

each black hole through tidal heating. For our simulations,

m�t� decreases during the run (this is not apparent from

Fig. 4 which plots absolute values), thus contradicting the

second law of black-hole thermodynamics. Moreover, the

increase in m�t� through tidal heating is much smaller than

the observed variations in m�t� (see, e.g. [135]). Therefore,

the variations in m�t� are numerical errors, and we need to

bound the influence of these errors on the comparison to

post-Newtonian expansions.

Over an evolution time of t=m � 4000, the observed

mass uncertainty of 	m=m 
 5� 10�6 results in an un-

certainty in the overall time interval of 	�t=m� � �t=m� �
�	m=m� 
 0:02. This time uncertainty translates into a

phase uncertainty of 	� 
 0:002, using Eq. (50) for

m! � 0:1. Note that the effect of the black-hole spins on

the mass is negligible relative to the numerical drift of 5�
10�6. This is because the spins of the holes are bounded by

TABLE III. Summary of uncertainties in the comparison be-

tween numerical relativity and post-Newtonian expansions.

Quoted error estimates ignore the junk-radiation noise at t &

1000m and apply to times before the numerical waveform

reaches gravitational-wave frequency m! � 0:1. Uncertainties

apply to waveform comparisons via matching at a fixed !m

according to the procedure in Sec. IV B, and represent the

maximum values for all four different matching frequencies

!m that we consider, unless noted otherwise.

Effect 	� (radians) 	A=A

Numerical truncation error 0.003 0.001

Finite outer boundary 0.005 0.002

Extrapolation r ! 1 0.005 0.002

Wave extraction at rareal � const? 0.002 10�4

Drift of mass m 0.002 10�4

Coordinate time � proper time? 0.002 10�4

Lapse spherically symmetric? 0.01 4� 10�4

Residual eccentricity 0.02a 0.004

Residual spins 0.03 0.001

Root-mean-square sum 0.04a 0.005

aFor the case of matching at m!m � 0:04, the phase uncertainty
due to residual eccentricity increases to 0.05 radians, thus
increasing the root-mean-square sum to 0.06 radians.
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S=Mirr < 2� 10�4 and the spin enters quadratically into

the Christodoulou formula (3). The error in the

gravitational-wave amplitude caused by time uncertainties

due to varying mass is 	A=A 
 10�4 using Eq. (51) for

m! � 0:1. An error in the mass will affect the amplitude

not only via a time offset, but also because the amplitude is

proportional to �!m=2�8=3 (to lowest PN order). However,

this additional error is very small, 	A=A 
 �8=3�	m=m 

10�5.

D. Time coordinate ambiguity

We now turn to two possible sources of error that have

not yet been discussed, both of which are related to ambi-

guity in the time coordinate. The basic issue is that the time

variable t in post-Newtonian expansions corresponds to

proper time in the asymptotically flat region, but the time

t in numerical simulations is coordinate time. These two

quantities agree only if the lapse function N approaches

unity at large distances. To verify this, we decompose N in

spherical harmonics centered on the center of mass of the

system,

 N�r; �; ’� �
X1

l�0

Xl

m��l

Nlm�r�Ylm��; ’�: (52)

The angular average of the lapse function, �N�r� 	
�������

4�
p

N00�r� should then approach unity for r ! 1, and

all other modes Nlm�r� should decay to zero. The top panel

of Fig. 14 plots �N�r� � 1 vs m=r for three different evolu-

tion times. Fitting �N�r� � 1 for r > 100m to a polynomial

in m=r gives a y-intercept of <5� 10�6 for all three times,

and for polynomial orders of two through five. Therefore,

the coordinate time of the evolution agrees with proper

time at infinity to better than 	t=m � t=m� 5� 10�6 

0:02, which induces a phase error of at most 	� 
 0:002
and an amplitude error of 	A=A 
 10�4 [cf. Eqs. (50) and

(51)].

The second source of error related to the lapse is shown

in the lower panel of Fig. 14, which presents the three

dominant higher-order moments Nlm�r�. All these modes

decay to zero as r ! 1, except, perhaps, the real part of

the N22 mode at t=m � 3800. This mode seems to ap-

proach a value of about 5� 10�5. At t � 1900m, this

mode still decays nicely to zero, hence the maximum

time uncertainty introduced by this effect at late times is

	t � 1900m� 5� 10�5 
 0:1m, resulting in a potential

phase uncertainty of 	� 
 0:01 and a potential amplitude

uncertainty of 	A=A 
 4� 10�4.

E. Eccentricity

We estimated the eccentricity during the numerical

simulation with several of the methods described in

[32,40,61], and have found consistently e & 6� 10�5.

This eccentricity can affect our comparison to a post-

Newtonian waveform of a quasicircular (i.e. zero-

eccentricity) inspiral in three ways.

1. Change in rate of inspiral

The first effect arises because an eccentric binary has a

different inspiral rate than a noneccentric binary; physi-

cally, this can be understood by noting that the gravita-

tional flux and orbital energy depend upon the eccentricity,

and therefore modify the rate at which the orbital fre-

quency evolves assuming energy balance.

Reference [136] has derived the first-order correction in

the phase of the gravitational wave due to this effect.

Converting their result to our notation and restricting to

the equal-mass case yields

 

1

�dx=dt� � 5Gm

16c3x5

�

1� 157

24
e2i

�
xi
x

�
19=6

�

; (53)

where ei is the initial eccentricity and xi is the initial value

of the orbital frequency parameter. Substituting this into

Eq. (38) yields

 � � �0 �
1

8
x�5=2 � 785

2176
e2i x

19=6
i x�17=3: (54)

Using ei � 6� 10�5 and integrating over the frequency

range from the start of our simulation to the matching

frequency of m! � 0:1 yields a phase shift of �� 2�
10�6, which is dwarfed by many other error sources, such

as the uncertainty in the numerical mass m, cf. Sec. V C.
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FIG. 14 (color online). Asymptotic behavior of the lapse at

large radii for times t=m � 0, 1900, 3800. The top figure dis-

plays the angular average of the lapse as a function of radius at

t � 0; 1900m; 7800m. The bottom figure shows the dominant

higher multipole moments of the lapse. Both horizontal axes are

spaced in 1=r.
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2. Uncertainty in matching time

The second way in which eccentricity affects our com-

parison is by introducing errors in our procedure for match-

ing the PN and NR waveforms. Recall that our matching

procedure involves determining the time tm at which the

gravitational-wave frequency ! takes a certain value m!m;

eccentricity modulates the instantaneous gravitational-

wave frequency !�t� via

 !�t� � �!�t��1� 2e cos��rt��; (55)

where �!�t� represents the averaged ‘‘noneccentric’’ evolu-

tion of the gravitational-wave frequency, and �r is the

frequency of radial oscillations, which is approximately

equal to the orbital frequency. We see that ! can differ

from �! by as much as 2e �! 
 2e!. This could induce an

error in the determination of tm by as much as

 j	tmj �
j	!j
_!


 2e!

_!
: (56)

We can simplify this expression by using Eq. (45) to lowest

order, and by noting that the gravitational-wave frequency

is approximately twice the orbital frequency. We find

 j	tmj � e
5m

12

�
m!

2

��8=3
: (57)

This uncertainty is largest at small frequencies, because the

frequency changes much more slowly. For m! � 0:04, we

find j	tmj & 0:9m, and for m! � 0:1, we find j	tmj &

0:1m.

To determine how uncertainties in tm translate into phase

differences, recall that in the matching procedure described

in Sec. IV B, tm enters into the phase of the shifted PN

waveform according to Eq. (49). Therefore the phase

difference that we compute between the PN and NR wave-

forms is

 ���t� � �PN�t� ��NR�t�
� �PN0�t� tc � tm� ��NR�t� ��NR�tm�

��PN0�tc�: (58)

Then the error in �� is found by Taylor expanding

Eq. (58):
 

	� 	 	����t�� � � _�PN0�t� tc � tm� � _�NR�tm��	tm
� � _�PN�t� �!m�	tm: (59)

Our simulations (and therefore the comparisons to post-

Newtonian theory) start at m! 
 0:033, so that the maxi-

mal error 	� within our comparison at times before the

matching frequency will be

 j	�beforej � j0:033�!mjj	tmj: (60)

Combining Eqs. (56) and (60), and using e 
 6� 10�5,

we find that 	�before < 0:01 radians for all four of our

matching frequencies m!m � 0:04, 0.05, 0.063, 0.1. The

maximum error 	� within our comparison at times after

the matching frequency is

 j	�afterj � j0:1�!mjj	tmj; (61)

because we end our comparisons to post-Newtonian theory

at m! � 0:1. Equation (61) evaluates to 0.05 radians for

m!m � 0:04, and is less than about 0.02 radians for the

three higher matching frequencies.

The error in the gravitational-wave amplitude caused by

an error in tm can be estimated by Eq. (51). A conservative

estimate using 	t � 0:9m still gives a small error, 	A=A 

0:004.

Note that the bounds on 	�before and 	�after are propor-

tional to the eccentricity of the numerical simulation. Even

with eccentricity as low as 6� 10�5, this effect is one of

our largest sources or error for the PN-NR comparison.

(cf. Table III). This is the reason why the simpler eccen-

tricity removal procedure of Husa et al. [61] (resulting in

e � 0:0016) is not adequate for our purposes.

3. Periodic modulation of phase and amplitude

The third effect of orbital eccentricity is a periodic

modulation of the gravitational-wave phase and amplitude.

If we assume that �!�t� varies on much longer time scales

than 1=�r (which is true at large separation) then time

integration of Eq. (55) yields

 ��t� � ���t� � 2e
�!

�r

sin��rt�: (62)

Because �r 
 � 
 �!=2, we therefore find that the

gravitational-wave phase consists of the sum of the desired

‘‘circular’’ phase, ���t�, plus an oscillatory component with

amplitude 4e 
 2� 10�4. This oscillatory component,

however, is much smaller than other uncertainties of the

comparison, for instance the uncertainty in determination

of tm.

Residual eccentricity will also cause a modulation of the

gravitational-wave amplitude in a manner similar to that of

the phase. This is because eccentricity explicitly enters the

post-Newtonian amplitude formula at 0PN order [137].

This term is proportional to e, and since e & 6� 10�5

its contribution to the amplitude error is small compared to

the effect due to uncertainty in tm.

While oscillations in phase and amplitude due to eccen-

tricity are tiny and dwarfed by other uncertainties in the

PN-NR comparison, their characteristic oscillatory behav-

ior makes them nevertheless visible on some of the graphs

we present below, for instance, both panels of Fig. 19.

F. Spin

We now turn our attention to effects of the small residual

spins of the black holes. References [138,139] compute

spin-orbit coupling up to 2.5 post-Newtonian order, and

find that the orbital phase, Eq. (40), acquires the following

spin contributions
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X
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��
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24
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� 125�
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�

x�1

�
��

681 145

4032
� 965�

28

�
m2

i

m2
� 37 265�

448

� 1735�2

56

�

lnx

�

; (63)

where i � Si � L̂=m2
i is the projection of the dimension-

less spin of the ith hole onto the orbital angular momen-

tum. For equal-mass binaries with spins 1 � 2 	 , this

reduces to

 �S�x� � �

�
235

96
x�1 � 270 625

16 128
lnx

�

: (64)

Our comparisons to post-Newtonian theory are performed

over the orbital frequency range of 0:0167 � m� � 0:05,

corresponding to 0:065 � x � 0:136. The gravitational-

wave phase is approximately twice the orbital phase, so

that the spin-orbit coupling contributes

 	�S � 2��S�0:065� ��S�0:136�� 
 �64 (65)

to the gravitational-wave phase. In Sec. II B we estimated

jSj=M2
irr < 5� 10�4, where Mirr is the irreducible mass of

either black hole. Because  � jSj=M2
irr 
 5� 10�4, the

residual black-hole spins contribute less than 0.03 radians

to the overall gravitational-wave phase.

We now turn to errors in the amplitude comparison

caused by residual spin. From Eq. (64) we can compute

the error in orbital frequency as

 	� � _�s � 
_x

x

�
235

96
x�1 � 270 625

16 128

�

� x4
16

5m

�
235

96
x�1 � 270 625

16 128

�

; (66)

where we have used Eq. (47). Because the amplitude of �4

scales like �8=3, we arrive at

 

	A

A
� 8

3

	�

�
� x5=2

128

15

�
235

96
x�1 � 270 625

16 128

�

; (67)

which for m!m � 0:1 (i.e. x � 0:136) gives 	A=A �
2:0� 1:0� 10�3.

Spin-orbit terms also contribute directly to the amplitude

[140,141]. The leading-order contribution (for an equal-

mass binary with equal spins) contributes a term 	A=A�
�4=3�x3=2, which is the same order of magnitude as the

previous error, 10�3.

VI. RESULTS

A. Comparison with individual post-Newtonian

approximants

We compare our simulations with four different post-

Newtonian approximants: the TaylorT1, TaylorT2,

TaylorT3, and TaylorT4 waveforms. These four wave-

forms agree with each other up to their respective post-

Newtonian expansion orders, but they differ in the way that

the uncontrolled higher-order terms enter. We start with the

comparison to TaylorT1.

1. TaylorT1 (3.5PN phase, 2.5PN amplitude)

Figure 15 compares the numerical simulation to

TaylorT1 3.5/2.5 waveforms (i.e. expansion order 3.5PN

in phase and 2.5PN in amplitude, the highest expansion

orders currently available for generic direction, cf. III B).

The left panel shows the phase difference, where we find

differences of more than a radian for all four matching

frequencies we consider: !m � 0:04, 0.05, 0.063, and 0.01.

For our largest matching frequency, m!m � 0:1, the

phase differences are small toward the end of the run by

construction. Nevertheless, a phase difference of more than

0.5 radians builds up in the �1:5 cycles after the matching

point before the TaylorT1 template generation fails. Recall

that m!m � 0:1 occurs about 2.2 gravitational-wave

cycles before our simulations fail, which is still about 1.5

cycles before merger. However, the largest phase disagree-

ment for m!m � 0:1 builds up at early times, reaching 1.5

radians at the beginning of our simulation, about 28 cycles

before the matching ( � 30 cycles before the end of the

simulation), and still showing no sign of flattening even at

the start of our simulation.

To achieve phase coherence with the early inspiral

waveform, it is therefore necessary to match earlier than

m!m � 0:1. The left panel of Fig. 15 clearly shows that

phase differences at earlier times become smaller when the

matching point itself is moved to earlier time. For instance,

m!m � 0:063 (about eight gravitational-wave cycles be-

fore the end of our simulation), results in phase differences

less than 0.5 radians during the 22 earlier cycles of our

evolution. However, the phase difference �PN ��NR does

not level off at early times within the length of our simu-

lation, so it seems quite possible that the phase difference

may grow to a full radian or more if the numerical simu-

lations could cover many more cycles. We thus estimate

that for TaylorT1, to achieve 1-radian phase coherence

with the early inspiral may require matching more than

10 cycles before merger. To achieve more stringent error

bounds in phase coherence will require matching even

earlier: for instance it appears one needs to use m!m �
0:04 (about 20 cycles before the end of our simulation) for

a phase error of less than & 0:1 radians.

While matching at small !m yields good phase coher-

ence early in the run, it produces much larger phase dif-

ferences late in the run. For example, matching at

m!m � 0:04 results in a phase difference of almost 2

radians at frequency m! � 0:1. This rather dramatic dis-

agreement is illustrated in Fig. 16, which plots both the

numerical and the TaylorT1 waveform, matched at m!m �
0:04.
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The left panel of Fig. 15 also includes a comparison to

the so-called restricted TaylorT1 template, where only the

leading-order amplitude terms are used (i.e. 0PN in ampli-

tude). The reason that higher-order amplitude terms affect

the phase differences at all is because we are plotting

gravitational-wave phase, not orbital phase. However, we

see that the effect of these higher-order amplitude terms on

the phase difference is small.

We now turn our attention to comparing the amplitudes

of the post-Newtonian and numerical waveforms. The right

panel of Fig. 15 shows relative amplitude differences be-

tween TaylorT1 3.5/2.5 and the numerical waveforms. At

early times, the amplitudes agree to within 2 or 3 percent,

the agreement being somewhat better when the matching is

performed at early times. At late times, the amplitudes

disagree dramatically; a large fraction of this disagreement

lies probably in the fact the post-Newtonian point of

merger (i.e. the point at which the amplitude diverges)

occurs at a different time than the numerical point of

merger. We also plot the amplitude of the restricted

TaylorT1 template. The disagreement between restricted

TaylorT1 and the numerical result is much larger, about 5

percent.

Hannam et al. [41] performed a similar comparison,

matching their waveforms with a restricted TaylorT1

waveform (i.e. 3.5/0.0) generated using the LIGO

Algorithm Library (LAL) [142]. The phase difference

they observe for waveforms matched at m! � 0:1 is con-

sistent with our results within numerical errors. When

matching TaylorT1 3.5/0.0 early in their simulation (at

m! � 0:0455), however, Hannam et al. find a cumulative

phase difference of 0.6 radians at m! � 0:1. From Fig. 15

we find a quite different value of 1.5 radians for our

simulation. This disagreement might be caused by the

use of the finite extraction radius R � 90m for the

gravitational-wave phase in Hannam et al.: Fig. 10 shows

that extracting at a finite radius leads to a systematic phase
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FIG. 16 (color online). Numerical and TaylorT1 3:5=2:5
waveforms. The PN waveform is matched to the numerical

one at m!m � 0:04, indicated by the small circle. The lower

panel shows a detailed view of the last 10 gravitational-wave

cycles.
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shows the point at which _� � !m. The insets show enlargements for small differences and early times. Also shown is the difference
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error, which will induce a systematic error in determination

of the matching time of Hannam et al. This error is

amplified by the increasing gravitational-wave frequency

toward merger.

2. TaylorT2 (3.5PN phase, 2.5PN amplitude)

Figure 17 presents the comparison between the numeri-

cal waveform and the TaylorT2 approximant. The overall

trends are very similar to the TaylorT1 comparison of

Fig. 15, however, the phase differences are smaller by

about a factor of 2 when matching at m!m � 0:1, and

smaller by a factor of 3 to 4 when matching earlier. To

our knowledge TaylorT2 has never been compared to a

numerical simulation; we include it here mainly for

completeness.

3. TaylorT3 (3.5PN and 3.0PN phase, 2.5PN amplitude)

Figure 18 is the same as Fig. 15 except it compares

numerical simulations to the TaylorT3 family of wave-

forms. Two differences between TaylorT1 and TaylorT3

are readily apparent from comparing these two figures. The

first is that we do not match TaylorT3 3.5/2.5 waveforms at

m!m � 0:1. This is because the frequency of TaylorT3

3.5/2.5 waveforms reaches a maximum shortly before the

formal coalescence time of the post-Newtonian template,

and then decreases. The maximal frequency is less than

0.1, so that matching at m!m � 0:1 is not possible. For this

reason, we have also shown in Fig. 18 a comparison with a

TaylorT3 3.0/3.0 waveform matched at m!m � 0:1. The

other major difference between the TaylorT3 3.5/2.5 and

TaylorT1 3.5/2.5 comparison is that the phase difference,

�PN ��NR, has a different sign. While TaylorT1 3.5/2.5

spirals in more rapidly than the numerical simulation,

TaylorT3 3.5/2.5 lags behind. Interestingly, the phase dif-

ferences from the numerical simulation for both TaylorT1

3.5/2.5 and TaylorT3 3.5/2.5 are of about equal magnitude

(but opposite sign). The TaylorT3 3.0/3.0 comparison

matched at m!m � 0:1 has smaller phase differences

than does the TaylorT3 3.5/2.5 comparison, but the slope

of the 3.0/3.0 curve in Fig. 18 is nonzero at early times, so it

appears that Taylor T3 3.0/3.0 will accumulate significant

phase differences at even earlier times, prior to the start of

our simulation. In Fig. 22 it can be seen that matching

TaylorT3 3.0/3.0 at m!m � 0:04 leads to a good match

early, but leads to a phase difference of 0.6 radians by

m! � 0:1.

Hannam et al. [41] match a TaylorT3 3.0/0.0 waveform

at m!m � 0:1 and m!m � 0:0455. Matching at m!m �
0:1 again gives phase differences consistent with our re-

sults within numerical errors. Matching at m!m � 0:0455,

Hannam et al. find a phase difference of 0.9 radians, while

we find a smaller value of 0.5 radians. Again, this differ-

ence could be due to the finite extraction radius used by

Hannam et al..

4. TaylorT4 (3.5PN phase, 2.5PN amplitude)

Figure 19 is the same as Figs. 15 and 18 except it

compares numerical simulations to the TaylorT4 PN wave-

forms. The agreement between TaylorT4 waveforms and

the numerical results is astonishingly good, far better than

the agreement between NR and either TaylorT1 or

TaylorT3. The gravitational-wave phase difference lies

within our error bounds for the entire comparison region

m! � 0:1, agreeing to 0.05 radians or better over 29 of 30

gravitational-wave cycles. Reference [38] found agree-
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ment between TaylorT4 and their numerical simulation to

the level of their numerical accuracy ( � 2 radians), agree-

ing to roughly 0.5 radians in the gravitational frequency

range of 0:054 � m! � 0:1. Reference [35] found that

NR agrees better with TaylorT4 than with TaylorT1, but

the larger systematic and numerical errors of the numerical

waveforms used in these studies did not allow them to see

the surprising degree to which NR and TaylorT4 agree. The

gravitational-wave amplitude of TaylorT4 agrees with the

NR waveform to about 1%–2% at early times, and 8% at

late times. In Fig. 20 we plot the NR and TaylorT4 wave-

forms; the two waveforms are visually indistinguishable on

the plot, except for small amplitude differences in the final

cycles.

On the left panel of Fig. 19 we also show phase com-

parisons using PN waveforms computed to 3.5PN order in
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phase but to 0PN and 3.0PN orders in amplitude, for the

case m!m � 0:1. The PN order of the amplitude expansion

affects the phase comparison because we are plotting dif-

ferences in gravitational-wave phase and not orbital phase.

The differences between using 0PN, 2.5PN, and 3.0PN

amplitude expansions are evident on the scale of the graph,

but because these differences are smaller than our esti-

mated uncertainties (see Table III), we cannot reliably

conclude which of these most closely agrees with the

true waveform.

Figure 21 presents amplitude differences between NR

and TaylorT4 as the post-Newtonian order of the amplitude

expansion is varied, but the phase expansion remains at

3.5PN. The 2.5PN amplitude curve was already included in

the right panel of Fig. 19. We see clearly that higher-order

amplitude corrections generally result in smaller differ-

ences. The 3PN amplitude correction to the (2, 2) mode

recently derived by Kidder [62] improves agreement dra-

matically over the widely known 2.5PN amplitude formu-

lae. Unfortunately, the 3PN amplitude correction to the

entire waveform, including all Ylm modes, is not known.7

B. Comparing different post-Newtonian approximants

The previous section presented detailed comparisons of

our numerical waveforms with four different post-

Newtonian approximants. We now turn our attention to

some comparisons between these approximants. In this

section we also explore further how the post-Newtonian

order influences agreement between numerical and post-

Newtonian waveforms.

Figure 22 presents phase differences as a function of

time for all four PN approximants we consider here and for

different PN orders. The post-Newtonian and numerical

waveforms are matched at m!m � 0:04, about 9 cycles

after the beginning of the numerical waveform, and about

21 cycles before its end. We find that some PN approxim-

ants at some particular orders agree exceedingly well with

the numerical results. The best match is easily TaylorT4 at

3.5PN order, and the next best match is TaylorT4 at 2.0PN

order. Some approximants behave significantly worse,

such as the TaylorT1 and TaylorT4 waveforms at 2.5PN

order. The 2.5PN and 3PN TaylorT3 waveforms agree very

well with the numerical waveform at early times, but at late

times they accumulate a large phase difference; the 2.5PN

TaylorT3 waveform ends even before the numerical wave-

form reaches m! � 0:1 (the rightmost vertical brown line

in Fig. 22).

We also find that all four PN approximants, when com-

puted to 3PN order or higher, match the numerical wave-
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FIG. 20 (color online). Numerical and TaylorT4 3:5=3:0
waveforms. The PN waveform is matched to the numerical

one at m!m � 0:04, indicated by the small circle. The lower

panel shows a detailed view of the end of the waveform.

7To get the complete waveform to 3PN order, only the (2, 2)
mode must be known to 3PN order; other modes must be known
to smaller PN orders. For an equal-mass, nonspinning binary, all
modes except the (3, 2) mode are currently known to sufficient
order to get a complete 3PN waveform [62].
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form (and each other) quite closely at early times, when all

PN approximants are expected to be accurate. However, at

late times, t� r� > 2500m, the four PN approximants

begin to diverge, indicating that PN is beginning to break

down.

Figure 23 is an enlargement of Fig. 22 for the last 10

gravitational-wave cycles before merger. This figure shows

in more detail how the different PN approximants behave

near merger.

Figure 24 presents similar results in a different format.

We compute the phase differences between the numerical

waveform and the various post-Newtonian approximants at

the times when the numerical waveform reaches

gravitational-wave frequencies m! � 0:063 and m! �
0:1 (the times corresponding to these frequencies are also

indicated by brown lines in Fig. 22). We then plot these

phase differences as a function of the post-Newtonian

order (using equal order in phase and amplitude, except

for 3.5PN order, where we use 3.0PN in amplitude). Three

PN approximants end before t0:1: TaylorT1 2.0/2.0,

TaylorT3 2.5/2.5, TaylorT3 3.5/3.0. These data points

therefore cannot be included in the right panel of Fig. 24.

The general trend seen in Fig. 24 is that the phase

difference decreases with increasing PN order. However,

this convergence is not monotonic, and the scatter in

Fig. 24 can be larger than the phase differences themselves.

For example, the 0PN waveforms are about as good as the

2.5PN waveforms for TaylorT1 and TaylorT4, and the 2PN

TaylorT4 waveform agrees with the numerical results

much better than do either the 2.5PN or 3PN TaylorT4
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waveforms. Considering Fig. 24, it seems difficult to make

statements about the convergence with PN order for any

particular PN approximant, or statements about which PN

orders are generally ‘‘good.’’ Given that at fixed PN order

the different approximants differ merely by the treatment

of uncontrolled higher-order terms, the scatter in Fig. 24 in

some sense represents the truncation error at each PN

order. While some PN approximants at certain orders

may show better agreement with the numerical simulation,

we are not aware of any means to predict this besides direct

comparisons to numerical simulations (as is done here). In

particular, Fig. 24 suggests that the remarkable agreement

between our numerical results and the 3.5PN TaylorT4

approximant may be simply due to luck; clearly, more

PN-NR comparisons are needed, with different mass ratios

and spins, to see if this is the case.

VII. CONCLUSIONS

We have described numerical simulations of an equal-

mass, nonspinning binary black-hole spacetime covering

15 orbits of inspiral just prior to the merger of the two black

holes. Using a multidomain pseudospectral method we are

able to extract the gravitational-wave content measured by

a distant observer with a phase accuracy of better than 0.02

radians over the roughly 30 cycles of gravitational radia-

tion observed. We demonstrate that in order to achieve this

accuracy it is necessary to accurately extrapolate the wave-

form from data obtained at extraction surfaces sufficiently

far from the center of mass of the system. When comparing

to zero-spin, zero-eccentricity PN formulae, our phase

uncertainty increases to 0.05 radians because the numerical

simulation has a small but nonzero orbital eccentricity and

small but nonzero spins on the holes.

Judging from the case in which we match at m!m �
0:04, our numerical simulations are consistent (within our

estimated phase uncertainty) with all PN approximants (at

the highest PN order) from the beginning of our inspiral

until about 15 gravitational-wave cycles prior to the merger

of the binary. This agreement provides an important vali-

dation of our numerical simulation. It also establishes a

regime in which the 3.5th order post-Newtonian wave-

forms are accurate to this level, at least for an equal-

mass, nonspinning black-hole binary. After this point, the

various PN approximants begin to diverge, suggesting that

the approximation is beginning to break down. Since there

are many different PN approximants (including Padé [54]

and effective-one-body [36,52,58,59] which were not dis-

cussed in this paper) it may be possible to find a clever way

to push the PN expansion beyond its breaking point.

Indeed, we find that one approximant, TaylorT4 at

3.5PN in phase, works astonishingly well, agreeing with

our numerical waveforms for almost the entire 30-cycle

length of our runs. Given the wide scatter plot of predic-

tions by various PN approximants, it is likely that TaylorT4

3.5/3.0 simply got lucky for the equal-mass nonspinning

black-hole binary. In fact, the assumption of adiabaticity

(i.e., circular orbits) is known to lead to much larger phase

differences relative to a nonadiabatic inspiral (see Fig. 4 of

[56,143]) than the phase differences between NR and

TaylorT4 we find in Fig. 19. Thus it seems that the uncon-

trolled higher-order terms of TaylorT4 3.5/3.0 balance the

error introduced by the adiabaticity assumption to a re-

markable degree. It remains to be determined whether

similar cancellations occur when the black-hole masses

are unequal or when the holes have nonzero spin.

Regardless of the robustness of TaylorT4, it seems evi-

dent that numerical simulations are needed in order to

know which, if any, PN approximant yields the correct

waveform after the various approximants begin to diverge.

For there is no a priori reason why TaylorT4 should be a

better choice than TaylorT1 as they differ only in whether

the ratio of gravitational-wave flux to the derivative of the

orbital energy with respect to frequency is left as a ratio of

post-Newtonian expansions or reexpanded as a single post-

Newtonian expansion.

The surprising accuracy of TaylorT4 3.5/3.0 in the gravi-

tational frequency range from m! � 0:035 through m! �
0:15, for the equal-mass, nonspinning inspiral of two black

holes, in principle could form a basis for evaluating the

errors of numerical simulations. Instead of worrying about

errors due to different formulations, initial data, boundary

conditions, extraction methods, etc., perhaps a long inspi-

ral simulation could be compared with TaylorT4 3.5/3.0 in

order to get a direct estimate of the phase error. Similarly,

because of its good agreement, TaylorT4 3.5/3.0 could also

be used to address questions that require much longer
waveforms than currently available, for instance the ques-

tion of when lower order post-Newtonian waveforms be-

come unreliable.

We find that the 3PN contributions to the amplitude of

the (2, 2) modes improve their accuracy with respect to the

numerical waveforms. This suggests that for accurate pa-

rameter estimation, it may be desirable to compute the full

3PN amplitude for the polarization waveforms. Despite the

formidable nature of the calculation required, it would also

be interesting to see how the inclusion of 4PN order

corrections to the phasing would affect our comparisons.

Much work still needs to be done to improve the com-

parison between NR and PN. Our primary goal is to push

our simulations through merger and ringdown so that we

may compare various resummed PN approximants and the

effective-one-body approximants during the last cycle of

inspiral and merger, as well as test TaylorT4 3.5/3.0 closer

to merger. We also intend to do long inspirals with arbitrary

masses and spins in order to test the robustness of PN over

a range of these parameters.

Furthermore we wish to improve our initial data. There

is a large amount of junk radiation present in the initial data

that limits how early we can match PN and NR waveforms.

Reduction of this junk radiation [144] would improve the

accuracy of our simulations as well.
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Finally, we have done just a simple comparison between

NR and PN, without including any treatment of effects that

are important for real gravitational-wave detectors such as

limited bandwidth and detector noise. In order to more

directly address the suitability of PN formulae for analyz-

ing data from gravitational-wave detectors, it will be nec-

essary to fold in the properties of the detector, to consider

specific values for the total mass of the binary, and to fit for

the mass from the waveforms rather than assuming that the

PN and NR waveforms correspond to the same mass. We

leave this for future work.
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62, 084011 (2000).

[58] T. Damour, Phys. Rev. D 64, 124013 (2001).

[59] T. Damour, B. R. Iyer, P. Jaranowski, and B. S.

Sathyaprakash, Phys. Rev. D 67, 064028 (2003).

[60] A. Buonanno, Y. Chen, and T. Damour, Phys. Rev. D 74,

104005 (2006).

[61] S. Husa, M. Hannam, J. A. González, U. Sperhake, and B.
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