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Abstract— This paper examines the recovery of user context
in indoor environmnents with existing wireless infrastructures
to enable assistive systems. We present a novel approach
to the extraction of user context, casting the problem of
context recovery as an unsupervised, clustering problem. A
well known density-based clustering technique, DBSCAN, is
adapted to recover user context that includes user motion state,
and significant places the user visits from WiFi observations
consisting of access point id and signal strength. Furthermore,
user rhythms or sequences of places the user visits periodically
are derived from the above low level contexts by employing a
state-of-the-art probabilistic clustering technique, the Latent
Dirichlet Allocation (LDA), to enable a variety of application
services. Experimental results with real data are presented
to validate the proposed unsupervised learning approach and
demonstrate its applicability.

I. INTRODUCTION

The increasing number and capability of mobile devices
such as smart phones and ultraportable computers has
brought new opportunities and challenges for ubiquitous
computing [31]. Mobile computation brings greater variation
in a user’s situational and interactional context, and two
useful constituents of this context are location and level
of motion. Location often correlates with certain activities
or roles [22], and aspects of the user’s physicality, such
as motion, are also indicative of activity and the user’s
affordances (e.g. interruptibility). This information can drive
applications at many levels, from automated battery manage-
ment to assistive systems (e.g., for the visually impaired).
Device convergence has made available a number of sensing
and communication technologies, including Bluetooth, WiFi
and GPS, for extracting these elements of context. In this
paper, we design, develop and evaluate novel, high accuracy
mechanisms for extracting user contexts in indoor environ-
ments. User motion level and significant locations, defined as
places where a user spends time, are extracted from raw WiFi
signals in a timely, unsupervised, and accurate manner, in
existing wireless network infrastructures. The paper provides
an example of how this fundamental information can be used
to discover such higher-level contexts as the user’s daily
routines or rhythms in an unsupervised setting.

Much work has been done in the use of GPS to derive
representations of significant locations in outdoor situations.

There has also been significant activity in localization from
signatures that penetrate or originate indoors, such as WiFi,
GSM, and Bluetooth. Work aimed at characterizing the
physical state of a user has tended to make use of sensors
that aren’t as readily available as ambient radio signatures,
such as thermometers, galvanic sensors and accelerometers.
A brief review of relevant work is provided in Section IV. In
[28] location and orientation estimations based on Bayesian
filtering of Received Signal Strength (RSS) justifies the use
of WiFi signals for extracting location context. The Locadio
positioning system of Krumm et al. [17] uses WiFi signals to
infer whether or not a user is moving based on the variance
of signal of the strongest access point (AP), with an accuracy
of 85%. The noisy, sparse nature of WiFi signatures renders
Gaussian assumptions problematic. Another shortcoming
of variance-based methods is the requirement for training.
Moreover, in the original setting of [17], prediction is made
with a latency of 20 seconds, which disqualifies the approach
from real-time applications, such as navigation assistance for
the visually impaired.

Rather than viewing motion state detection as a supervised
classification problem, we cast it as an unsupervised and
incremental clustering problem. A window of consecutive
WiFi signatures observed from the same location, when
the user is still, are likely to be similar, and thus form
a cluster as opposed to those when the user is moving.
Similarly, if WiFi signals observed during a user’s daily
life are collated, locations where the user spends time
repeatedly, for example at their desk at work, will also
emerge from a clustering process. We define a measure
of distance between two WiFi observations appropriate to
their characteristics, notably allowing for missing data from
the vectors of AP signal strength. We use a density-based
technique, DBSCAN [10] and its incremental version [9], to
recover user motion level and significant locations. Use of
incremental DBSCAN allows for motion level classification
with latency under 2s, which is suitable for many real-
time applications. We conduct comprehensive experiments
to compare variance-based methods with our density-based
approach for detecting user state. We achieve up to 95%
in accuracy with the clustering technique, proving that our
method is more robust with noisy and incomplete WiFi data.



We experiment with detection of significant locations, using
pre-filtering to remove observations when the user is moving,
resulting in an accuracy of above 97%.

To further motivate the extraction of motion state and
significant locations, we also present a technique for dis-
covering user behaviour over time, termed rhythms. It has
been shown that travel episodes often correspond to hidden
agendas or ‘social projects’ [5], and we posit that a similar
situation occurs at the finer resolution of, say, the office.
Discovery of these rhythms offers potentially rich informa-
tion about user intent and activity. We adapt a probabilistic
graphical model, Latent Dirichlet Allocation (LDA)[4], for
this task. LDA is an unsupervised probabilistic clustering
technique used to discover latent topics from bags of words
in text by finding co-occurrences of words in documents.
Here, significant locations and their observed times are
extracted and are mapped to words. These are then collated
over a day and become analogous to a document. The latent
topics discovered by LDA in this way are interpreted as user
rhythms. We experiment with the discovery of rhythms for a
user over the course of a one month period. It is worth noting
from the perspective of assistive systems that the incidence
of strict routines is even higher among the visually impaired,
presumably due in part to the desire to decrease the number
of variables that might induce danger or inconvenience for
themselves or others, making rhythms more compelling in
this application domain.

Our contributions to user context extraction in indoor
situations include: (i) a novel WiFi distance measure and
unsupervised algorithms for high accuracy motion classifica-
tion in real-time; (ii) discovery of significant indoor locations
at fine resolutions; and (iii) formulation and extraction of
fine-scale user behaviour over time as latent topic discovery.

The ability to infer the context of the mobile user is
a vital, foundational component of a broad array of per-
vasive computing applications. We present work enabling
both richer representation and more accurate extraction of
aspects of context, and hence the significance of this work
is potentially great. It can serve as a basis for both annotation
and prediction at a number of levels of the services stack,
from context-sensitive device resource and interface man-
agement, to semi-automatic calendaring, personal life logs
and collaboration tools, personalized push-information such
as advertising, and navigation assistance for the visually im-
paired. In a shared context, this information can aid market
research, surveillance and urban planning. Importantly, the
absence of a requirement for calibration and use of existing
infrastructure make for a low barrier to deployment.

II. A SYSTEM FOR CONTEXT DETECTION USING

CLUSTERING MECHANISMS

This section begins with an overview of the system,
together with examples of its envisaged setting and uses
by way of motivation. Separate sections are then devoted
to motion classification, significant location extraction, and
rhythm detection, respectively.
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Fig. 1. System overview: context recovery using clustering.

A. System Overview

The envisaged setting of the algorithms detailed below
is any mobile device equipped with a WiFi receiver. The
system would typically run as a background process, making
context information available as it is extracted. The input
to the system consists of time-stamped vectors of received
signal strength , each identified by the broadcasting AP:
{time, AP id, RSS}. This is depicted on the left of Figure
1. Motion classification is performed with the arrival of
each new WiFi sample (after an initial, small startup latency
period) and is available immediately, for example, for driving
agent or interface behaviour. E.g., when navigating, points at
which the user becomes stationary are candidates for issuing
new information. Referring to Figure 1, motion classification
is an output of the Context Detection box. If the device also
has the ability to store a historical record of WiFi samples,
significant location discovery can also begin immediately,
resulting in a growing representation of where the user is
spending time. E.g., in the course of a normal work day, a
handful of locations might be discovered corresponding to
the office, cafe, library and a colleague’s room. Significant
locations are also depicted as outputs of context detection
in Figure 1. These locations can be used as annotations to
associate activities or media items (e.g., this is the set of
applications you run at this location; you took these photos
in the same place). If appropriate, labelling these locations
meaningfully would be performed as a secondary activity,
e.g. via active learning prompts, user-derived sources such as
a calendar, or centrally-sourced such as beacon databases or
pre-calibrated maps [2]. Finally, at the coarser resolution of
days and weeks, rhythm detection becomes appropriate. As
depicted on the right side of Figure 1, the rhythm detector
accepts the user’s history of time-stamped landmarks and
yields patterns of behaviour in the user’s whereabouts. E.g.,
discovered rhythms might correspond to: an average work
day, involving the office and home; a work day that includes
collaboration or shopping; and weekend routines that have
little overlap. Rhythms, in addition to constituting a higher-
order object for annotation (e.g., these photos were taken at
work, but not an average work day), provide the basis for
prediction. E.g., the user typically doesn’t appear at these
locations over the weekend.

B. WiFi observation distance

As we desire to cluster WiFi observations, we require
a measure of distance between two such observations. In



theory, the relationship between RSS and distance for a
given AP is inverse squared, and at first glance, modelling
these points according to a Gaussian distribution and then
performing hypothesis testing on the concentration of these
points may offer a straight solution. However, there are a
number of factors that complicate this model in practice:
RSS is attenuated by physical structures and other envi-
ronmental factors, which result in relatively high signal
variability. Moreover, measuring the distance of a pair of
sets of APs is complicated by missing values from one ob-
servation to the next. This also renders clustering algorithms
that utilize Gaussian properties (e.g., GMM) unsuitable. One
advantage of density-based clustering approaches is a degree
of freedom in the formulation of a suitable function of
distance between two observations.

Let X = {x1, x2, . . . , xN} be the set of all access points
available. For a WiFi observation p, let P be a subset of
{1, 2, . . . , N} denoting the set of AP indices observed and
XP be the actual set of APs. E.g., if P = {2, 5} then XP =
{x2, x5}. Furthermore, we denote by y(p)

i the corresponding
RSS reading in observation p from the source xi. Given two
WiFi observations p and q, denoting the common APs set
by C = P ∩Q, the distance between them is defined as:

dist (p, q) =
√

1
|C|

∑
j∈C

[
y
(p)
j − y

(q)
j

]2

where |C|denotes the cardinality of set C. By this distance
measure, only shared signal strength from common APs
between two observations is taken into account, any missing
ones donot affect the distance.

In practice, the spatial proximity of two WiFi observations
affects the difference between Xp and Xq . Let η =
|C| /max(|P | , |Q|) and using a threshold η0 ∈ [0, 1], the
distance between p and q is adjusted to:

dist (p, q) =

⎧⎨
⎩

√
1
|C|

∑
j∈C

[
y
(p)
j − y

(q)
j

]2

if η > η0

+∞ otherwise

Intuitively, the introduction of η0 is to account for the case
when the difference of observed APs in two observations
is too large. For example, with η0 = 0.5, any pair of
observations that share less than half their APs in common
will be set to be totally different (+∞).

C. Motion classification

As mentioned earlier, the key observation used to infer
about a user’s motion state is the level of ‘denseness’ or
‘connectedness’ of WiFi observations accumulated within
a short time interval acquired incrementally in real-time.
A good fit for this task is DBSCAN [10], a density-based
clustering algorithm, with the additional advantage of being
non-parametric in number of clusters.

DBSCAN develops three concepts that are naturally rel-
evant to our problem: directly density reachable, density
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Fig. 2. (a) directly density reachable; (b) density reachable [10].

reachable and density-connected. It requires a pair of pa-
rameters (ε,D) (which may be inferred automatically from
the data) where ε is a radius around point p to form its
neighboring set N(p|ε) and D serves as a threshold to test
if two points p and q are directly density reachable. Two
points p and q are then called density reachable if there
is a sequence of points p = p1, p2..., pl = q that links
them, where pi is directly density reachable to pi+1; and
finally p is called density connected to q if a point v that
is density reachable from both p and q can be found. These
concepts are depicted in Figure 2. DBSCAN then seeks
to form clusters that are maximal in density-connectedness.
Incremental DBSCAN [9] also uses the above fundamental
density concepts but operates in an online manner. Assuming
that all points prior to the arrival of a new point have
been clustered, the essential step is the INSERT operator,
which updates the points effected by the newly arrived point.
A DELETE operation can also be similarly performed to
remove stale points.

To determine whether the user is static or moving, we ex-
amine the similarity of WiFi observations within a window.
If the user is static, a regular ‘cluster’ will be returned, and
if the user is moving, no cluster should be formed because
of the variability in WiFi signal strength or visible access
points.

Algorithm 1 Motion state detection.
Input: current window of WiFi observations
For each WiFi observation p in current window

If no cluster found then
If p is unclassified then

If number of neighbors |N(p|ε)| ≥ D then
p and its neighboring points form a cluster.

Else p is noise point
Output: motion state: ‘moving’ if no cluster found or cluster
size is smaller a threshold δ (discussed more in the texts);
or ‘static’ otherwise.

The batch approach is restricted by window size (Alg.
1). E.g., if the window size is 20 seconds, a result can be
obtained only after each 20 second window is processed,
leading to clear real time limitations. This can be over-
come by an overlapping window approach that employs
Incremental DBSCAN. As each new overlapping window is
introduced, new WiFi observations are added, and outdated
WiFi observations are removed. As each WiFi observation
p is introduced, there are three possibilities: (1) Noise: p is



Algorithm 2 Incremental INSERT and DELETE operations.
Input: new point p (to INSERT) and existing data points
If number of neighbors |N(p|ε)| ≥ D then
p belongs to the existing cluster or form a new one.

For each neighboring point q of p
Update neighboring set of q by adding p
If |N(q|ε)| ≥ D then
q belongs to the existing cluster or form a new one.

Output: updated clustering result and motion state.

Input: existing point p (to DELETE) and other data points
For each neighbor point q of p

Update neighboring set of q by subtracting p
If |N(q|ε)| < D then

Update cluster status
Output: updated clustering result and motion state.

considered noise, (2) Creation: p and some previous noise
points form a new cluster, or (3) Absorption: p is absorbed
into the existing cluster (Alg. 2). There are two cases when
a point p is to be removed: (1) Removal: p’s neighbors
are decreased and the existing cluster may disappear, or (2)
Reduction: p’s neighbors are decreased but cluster status is
unchanged (see Alg. 2). To take advantage of the existence
of at most one cluster, the algorithm terminates as soon as
a cluster is found.

Recall that DBSCAN requires two parameters: the neigh-
borhood radius ε and number of neighbors D. Ester et. al.
[10] propose a simple but efficient heuristic to determine ε
and D in terms of the “thinnest” cluster in the database.
Let k-dist be the distance from each point p to k-th nearest
neighbor q of p. A sorted k-distance graph is produced by
sorting all the points in descending value of k-dist. A good
threshold is suggested to be empirically chosen as the point
where there is a rapid change in the sorted k-distance graph.
In Figure 3 we empirically show a threshold that intuitively
gives a good balance on this criteria. If the number of
observations assigned to a particular cluster within a window
is greater than a threshold δ, the state is deemed to be
static. For a window with N observations, D is calculated
as D ≈ δ ×N .

D. Significant location discovery

The notion of significant or meaningful locations has been
discussed in the literature from a range of perspectives. For
our purposes it is sufficient to define a significant location
as a place where a user spends time. This in turn requires
that the user be repeatedly stationary at a location.

Hence, in our setting, this involves a two step process.
Firstly, the user’s motion level is classified over a window
of time, and a cluster is formed if they are inferred to
be still. If so, the observations that belong to the static
cluster are extracted. For each AP id in these observations,
the average signal strength is computed. This is termed the
“average observation” for the given window. In the second
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Fig. 3. The sorted k-distance graph , δ = 90%, window size = 20s.

step, we use the original version of Incremental DBSCAN
presented in [9] to cluster this new average observation.
As each WiFi observation p is introduced, there are four
possibilities: (1) Noise: p is a noise point, (2) Creation:
p and some previous noise points form a new cluster, (3)
Absorption: p is absorbed in the existing cluster, or (4)
Merge: several clusters and noise neighbors are merged
to form a cluster. Parameters are determined using the k-
distance criteria referred to above, barring the parameter D,
which is directly input from the system.

E. User rhythm detection

While the notion of significant locations is useful for
many applications, location alone is an insufficient index
for others; Often diverse activities may be folded into the
same location, and are only differentiable when the context
of behaviour over time is considered. [?] have demonstrated,
at a coarse scale using logs from 100000 mobile phone users
over a 6 month period, that human trajectories show “a
high degree of temporal and spatial regularity.” [15] note
that, in addition to location, other social facets including
routine are equally important. Below we detail an approach
to detecting periodicities in time and location that arise from
daily routines, termed rhythms.

We propose to apply the LDA model [4] to the problem
of rhythm extraction. Figure 4 is a graphical representation
of LDA in plate-notation, where WiFi observations are
mapped to words, these observations collated for a day
form a document, all days form a corpus, and the latent
topics discovered from this corpus are the sought-after
rhythms. In this figure, T is the number of topics, Nd is
the number of words contained in document d. For each
document d, a mixing topic proportion θ ∼ Dir (α) is
sampled from a Dirichlet distribution parameterised by the
hyperparameter α, each word in the document is generated
by first sampling a topic z from a multinomial distribution
z ∼ Mult(θ) and then sampling w ∼ Mult (φz) where,
again, each φz is simplex distributed according to Dir (β).
LDA thus models each document as a mixture of topics,
similar to probabilistic Latent Semantic Indexing (PLSI),
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but places a smooth distribution over the topic distribution.
In our case, a rhythm is defined as repetitive visitation of
significant locations across days. For example, typical office
rhythms may include ‘having lunch in the staff room around
noon’ or ‘seminar every Monday at 1pm in the boardroom.’
These hidden timetables or agendas, which drive the user’s
trajectory, are the latent topics we seek to model with LDA
and interpret as rhythms.

Exact inference in LDA is known to be intractable.
Options include the variational approach [4], expectation
propagation (EP) [20] or collapsed Gibbs sampling [11].
Despite being deterministic with an analytical bound, the
variational method is known to be biased and may wrongly
estimate the parameter. EP requires memory storage in the
order of number of topics × total words in the corpus and
quickly becomes infeasible with a large corpus. Besides, EP
is known to have problems with sparse data. In this work,
we use collapsed Gibbs sampling proposed in [11], which
iteratively draws samples from the conditional distribution
for each topic zi after marginalizing out the parameters1:

Pr
(
zd

i = z | z−i,w, α, β
) ∝ (

αz + nd,−i
z

) βw + n−i
zw∑

v

(
β + n−i

z,v

)
where z−i denotes the sequence of topic assignments ex-
cluding position i (in document d), w denotes the entire
observed sequence of words, nd,−i

z denotes the number of
topic z being assigned to document d excluding position
i, n−i

z,w denotes the number of the current word w = wd
i

being assigned to topic z , and n−i
z,v denotes the number of

a vocabulary v being assigned to topic z, again excluding
position i. The first term is proportional to the number of the
current topic z within document d and the second term is
proportional to the count of the current word w in document
d to the topic z. Intuitively the effect of co-occurrence is
achieved by assigning higher probability to two words in
the same document being assigned to the same topic.

1Please see [12] for full derivation.

Fig. 5. Example a user movement trace for motion classification task
(groundtruth is plotted underneath).

The collapsed Gibbs sampling presented here is a form
of Markov Chain Monte Carlo method and is guaranteed to
converge to the target distribution with sufficient iterations.
This method has been found to work very efficiently in
practice when applied to different types of corpora. In this
work, we employ a version of symmetric Dirichlet for both
α and β which implies the entire Dirichlet is controlled by
only one parameter. As β gets smaller and β → 0, the model
favors more discriminative topics. I.e., the samples generated
from the Dirichlet distribution are concentrated at the corners
of the simplex. When β → 1 the Dirichlet behaves more like
a uniform distribution, and when β is large, its samples are
concentrated in the center of the simplex, favouring topics
which are more similar (by Kullback-Leibler divergence).

III. EXPERIMENTS

A. Data and groundtruth

All WiFi data was collected using a handheld HP iPAQ
HW6569 and custom logger written with .NET Compact
Framework 2.0 and the free OpenNetCF package2. For
motion classification task, groundtruth was manually marked
down using a GUI interface as the user walked around
the designated area. Data was collected over a 60 minute
period at a sampling rate of 0.5Hz for 5 days. Figure 5
shows an example user trajectory, including static periods
when the user was immobile at the same place for a few
minutes. Data for the significant locations experiment was
drawn using the same apparatus, but over a 28 day period
of one user’s normal daily routines, during the hours of
8:00AM to 17:30PM. Groundtruth was labelled from among
6 landmarks indicated by the user to be significant, and,
as with the motion groundtruth, was indicated using the
logging software. For the rhythm experiment, the 28 days of
data collected for the significant locations experiment was
collated and used.

2www.opennetcf.com



B. Motion classification results

A number of different parameterizations were used to
experiment on motion classification, including both overlap-
ping and non-overlapping windows, and window sizes rang-
ing from 10 to 120 seconds. The cluster quality threshold
parameter δ was tested with 85%, 90% and 95%; and η0 =
0.75. We also compared our method with the variance-based
approach of Krumm et al. [17], which requires supervised
training to learn the probabilities P (σ2 | still) and P (σ2 |
moving).

To evaluate the algorithm, we compute the accuracy for
each class defined as the ratio of the number of observations
detected for that class to the total number of observations in
testing.

The accuracy of the variance-based and density-based
approaches are shown in Figures 6(a) (non-overlapping
windows) and 6(b) (overlapping windows). Performance is
poor for short windows (10s), probably due to the limnited
number of WiFi observations within the window. Accuracy
gradually improves as the window is lengthened, levelling
out subsequently. In general, the density-based approach
shows superior performance compared to the variance-based
approach in all cases. Moreover, overlapping windows lead
to more consistent performance. It is to be noted that while
overlapping and non-overlapping windows yield more or less
similar results, overlapping windows have shorter latency
and thus can be used in real time.

C. Significant location extraction results

We first perform the motion classification step at the
quality threshold of δ = 90% to determine if the motion
state within a non-overlap 60s-Window is static or not.
Recall that a 60s-Window shows the best performance in
non-overlap situation (Figure 6a). Two parameters in the
batch algorithm are automatically derived, ε = 5dBm and
D = 60s× 0.5Hz × 90% = 10. We call this the “average
observation” for a minute interval.

In the second step, wee clusters this new average observa-
tion incrementally as described earlier. While the neighbor
distance remains at ε = 5dBm, the number of neighbors
is configured to reflect a duration of 5 minutes, appropriate
to discovery of significant locations, D = 5. Note that the
meaning of D in each step should be distinguished because
of the different time intervals integrated in their observations.

For performance evaluation, we use the cluster purity
measured as the percentage of match between the ex-
tracted clusters {c1, ..., cL} and the groundtruth clusters
{ψ1, ..., ψK}. The purity of cluster i is defined as

Pi =
maxj |cj ∩ ψi|

Ni

where Ni is the number of points in the groundtruth of
cluster i. The average purity across K clusters is computed
as:
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(a) Non-overlapping windows
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(b) Overlapping windows

Fig. 6. The accuracy when window size ranges from 10s to 120s in non-
overlapping and overlapping cases. Legend consists of a variance-based
approach (Var) and varying thresholds for the density-based approach.

P̄ =
K∑

i=1

NiPi

N

where N is total number of points N =
∑K

i=1Ni.
The clusters are compared with the groundtruth and the

purity of the clusters are shown in Table I. Overall cluster
purity is 98.77%.

To test the model’s predictive power, one third of the
collected data not used for the above clustering is used
for testing. Again, incremental DBSCAN (ε = 5dBm and
D = 5) is used to assign clusters, and thus significant
locations. Results are shown in Table II. It can be seen
that when sufficient data is used for detecting significant
locations (Landmarks 1–5), accuracy is very high.

D. Rhythm detection results

Significant locations are discovered using the previous
technique, and are mapped to words by discretizing each
day into 30-minute intervals from 8am to 5:30pm to obtain
a sequence of data consisting of pairs of (time, significant



TABLE I

PERFORMANCE OF CLUSTERING SIGNIFICANT LOCATIONS.

Landmark #Groundtruth #Clustered Purity (%)

1 2574 2572 99.92
2 296 291 98.31
3 40 39 97.50
4 41 41 100.00
5 193 187 96.89
6 19 19 100.00

TABLE II

PREDICTION OF SIGNIFICANT LOCATIONS.

Landmark #Prediction #Correct Accuracy (%)

1 857 855 99.76
2 100 94 94.00
3 13 13 100.00
4 14 13 92.85
5 35 31 88.57
6 7 5 71.42

place label) tuples. Gibbs sampling is used for inference
where symmetric Dirichlet hyper-parameters are set to α =
0.01 and β = 0.01. The number of Gibbs iterations is 2000
in which the first 200 iterations are discarded (burn-in stage)
and samples are collected in every 10 iterations (lag) [11].
As a measure of the goodness of fit of the model, perplexity
is used to determine the suitable number of topics, and is
computed as:

Perp (w) = exp
{
− logPr (w)

N

}
where N is number of words. Adapting [29] the probability
of the corpus Pr (w) is computed as follows. After each
sampling step, let nd,k be the number of times that topic
k appears in document d, nk,v be the number of times a
word v is assigned to topic k, parameters θ and φ are first
estimated:

θ̂s
d,k =

nd,k + α∑
k nd,k + Tα

; φ̂s
k,v =

nk,v + β∑
v nk,v +Wβ

and then Pr (w) is computed as:

Pr(w) =
D∏

d=1

W∏
v=1

T∑
k=1

1
S

S∑
s=1

θ̂s
d,kφ̂s

k,v

where S is the number of collected samples.
Figure 7 shows the perplexity in log form when the

number of topics is changing. The lower the perplexity of the
model, the better it fits. In addition, the greater the number
of topics, the more computation Gibbs sampling requires.
It is therefore desirable to choose the ‘simpler’ model with
good degree of fitness. In our case (cf. Figure 7) we choose
the number of topics T = 5. For this choice the perplexity
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Fig. 7. Choosing the number of topics using perplexity.

has decreased exponentially and is stabilizing. It thus offers
both goodness of fit and model simplicity.

Five significant rhythms (R1-R5) are shown in Figure
8 in which each row corresponds to a specific landmark
and the height of each bar depicts the accumulated time
spent. Figure 9 provides a different perspective on the same
detected rhythms. In general, the simple rhythms illustrate
the repetitive nature of a research student. For example, most
of the time was spent in his office or at lunch (Rhythm 1).
This person participates in the institute’s academic activities,
such as meeting with advisors (Rhythm 3) and attending
seminars (Rhythm 5). In addition, his frequent visits to two
advisors’ rooms for discussions are also extracted (Rhythm
2 and Rhythm 4). Rhythm 1 reflects the daily routine of this
research student, while Rhythms 2-5 are weekly routines.

IV. RELATED WORK

Using GPS signals, context such as location-based activity
and significant places are more or less solved in outdoor
environments [7], [34], [1], [19].

We focus primarily on work that recovers context with an
indoor component in terms of location, proximity of others,
and/or some definition of activity via a range of sensors.
Table III provides a brief breakdown of related work by
signal type, method and context discovered.

The work of [6] develops a wearable system includ-
ing video and audio sensors for extracting the events and
scenes. HMMs are used to infer the events, however recent
recognition techniques in video and audio are still unreli-
able. However, using HMMs required supervised training
to learn the parameters and thus user-dependent. Aiming
for an unsupervised approach we deliberately avoid this
class of models. [8] uses GSM positioning and Bluetooth
proximity to extract the repeated activities of individuals
and community patterns by extracting the principal eigen-
behaviors from the eigenvalues of the day (row) vs time



TABLE III

REVIEW

Environment Signal Context Work Method
Indoor/outdoor Video Event/Scene [6] short/long time-scale HMM

Audio
GSM Eigenbehavior [8] SVD

Bluetooth Proximity
Accelerometer Activity [14] Naive Bayes

Routine LDA

Indoor WIFI Location [3] KNN
WIFI Location [18], [26], [33], [32] Naive Bayes
WIFI State [17] Variance of signal strength

Location Naive Bayes
RFID Activity [24] Dynamic Bayes model

Powerline Location [23] Naive Bayes
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Fig. 8. Detected user rhythms – histograms by landmark (rhythms are
delineated by white boxes; best viewed in colour).
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colour).

(column) matrix, in which an entry indicates if the user
was at that spatial temporal location. However, GSM is too
coarse for use in indoor activities. Further they do not extract
rhythms.

By integrating the RFID tag for each equipment with
meaningful description [24], the context is extracted directly
from the description and then higher-order activities are
inferred using the same model in [7].

In [27], a Nash H-learning mechanism is used to predict
user mobilities for efficient resource management. To com-
plement location-based activity recognition, [14] propose a
new approach to extract activity patterns using accelerom-
eters. Naive Bayes classifier is used for recognizing the
normal activities such as sitting, walking, driving etc.

The work of [25] proposes a novel model LSDA, an
extended version of N-gram model [30], to extract the
socially hidden rhythms of a user using GPS traces. The
corpus of words and documents is generated from GPS data
[1] in which word is mapped to <time,significant place> and
a document consists of all words in each day. The advantage
of LSDA is its ability to map consecutive locations as a N-
gram of words and thus in its ability to extract meaningful
social themes.

Applying the original LDA model with variational infer-
ence [4], [14] constructs a dictionary of word and a corpus of
documents in which each word is an activity and a document
consists of all words during particular day and leverage the
daily patterns from normal activities collected in 16-day
experiment using accelerometer.

Understanding context and providing context-aware ap-
plication services are critical to dynamic pervasive environ-
ments. Context continues to be a topic of research focus as
context data and their associated sources exhibit dynamism.
Henrickson and Induslka [13] discuss shortfalls of context
modeling and reasoning with ontologies for understanding
context. Nicklas et al. [21] investigate the use of hybrid rea-
soning to augment the NEXUS framework. Naive Bayesian
classifiers are used in [16] to derive high level contexts. To
summarize, dynamic Bayesian models have been primarily



used on either WiFi or accelerometer data to derive con-
text in indoor environments. These models are supervised.
Limited use has been made to extract context with topic
models on accelerometer and GPS data, but none of these
have been applied to WiFi data. Thus there is a requirement
to produce techniques that work in an unsupervised manner
on noisy WiFi data to extract context.

V. CONCLUSION

Motivated by the need to build assistive systems in indoor
environments, we have presented a novel, clustering-based
method for the extraction of user context from ambient
WiFi. This includes state of motion, significant locations,
and rhythms. Experiments validate the accuracy of our
techniques. The advantages of our approach lie in its use
of existing wireless infrastructure, without requirements for
calibration, and its ability to support real-time services.
Our future work includes investigating the applicability of
this approach in a much larger setting and seeking better
modeling of temporal information for the task of rhythms
extraction such as n-gram models.
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