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Digital elevation models (DEMs) are essential data sets for disaster risk management

and humanitarian relief services as well as many environmental process models. At

present, on the one hand, globally available DEMs only meet the basic requirements and

for many services and modeling studies are not of high enough spatial resolution and

lack accuracy in the vertical. On the other hand, LiDAR-DEMs are of very high spatial

resolution and great vertical accuracy but acquisition operations can be very costly for

spatial scales larger than a couple of hundred km2 and also have severe limitations in

wetland areas and under cloudy and rainy conditions. The ideal situation would thus be

to have a DEM technology that allows larger spatial coverage than LiDAR but without

compromising resolution and vertical accuracy and still performing under some adverse

weather conditions and at a reasonable cost. In this paper, we present a novel single

pass In-SAR technology for airborne vehicles that is cost-effective and can generate

DEMs with a vertical error of around 0.3m for an average spatial resolution of 3m. To

demonstrate this capability, we compare a sample single-pass In-SAR Ka-band DEM of

the California Central Valley from the NASA/JPL airborne GLISTIN-A to a high-resolution

LiDAR DEM. We also perform a simple sensitivity analysis to floodplain inundation. Based

on the findings of our analysis, we argue that this type of technology can and should be

used to replace large regions of globally available lower resolution DEMs, particularly

in coastal, delta and floodplain areas where a high number of assets, habitats and

lives are at risk from natural disasters. We conclude with a discussion on requirements,

advantages and caveats in terms of instrument and data processing.

Keywords: DEM, SAR, single-pass interferometry, LiDAR, floodplain topography, inundation

1. INTRODUCTION

Elevation data in the form of a digital elevation model (DEM) are probably the most common
remote sensing-derived product and are required for most types of environmental applications;
however height accuracies vary greatly with technology and spatial resolution. For some
applications high vertical precision and accuracy may be less important (e.g., large-scale hydrologic
modeling) but mapping heights accurately is required for applications that look at dynamic
processes over subtle variations in topography, such as mapping and modeling floodplain
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inundation. Table 1 provides a detailed overview and commonly
reported accuracies of the different DEMs that exist.

Fifteen years ago airborne laser altimetry or LiDAR allowed
the creation of high spatial resolution (1–5m) and accuracy
(vertical error < 20 cm) DEMs that have transformed flood
modeling and forecasting at regional to national scales in
many developed countries (Bates, 2004). However, at continental
or global scales the best currently available DEMs come
from satellite acquisitions (Table 1) that do not meet even
basic requirements for simulating flooding and related risks
(health, wetland ecology and biodiversity, inundation residence
times with important implications for bio-geochemical cycling).
Globally available DEMs have vertical errors of 10m or more and
do not resolve the detail of terrain features that control flooding
(Sanders, 2007).

It is clear that global coverage DEMs with low vertical
accuracies may not be useful for local scale detailed floodplain
inundation studies. However, in some low-lying floodplain areas,
the SRTM-DEM at 90m resolution for instance has been shown
to be accurate to better than 2m in the vertical (Schumann
et al., 2013). Since flooding occurs mostly in those area, many
of the global coverage DEMs (e.g., SRTM-DEM) may be used
for large scale flood inundation studies although high accuracy
(model) results can only really be obtained with airborne LiDAR
DEM at local to regional scales. It is noteworthy though that
recent advances in hydrodynamic modeling are moving toward
improved representation of physics in models that can credibly
simulate flood processes at sub-grid scale using coarse resolution
and lower accuracy DEMs [e.g., LISFLOOD-FP sub-grid channel
(SGC) as developed by Neal et al., 2012].

Nonetheless, the ideal situation would be to have a global and
freely accessible DEMwith LiDAR-like resolution and accuracies,
and whilst the technology to create a high-resolution, high

TABLE 1 | Sources of common digital elevation models, with spatial resolutions and typical vertical accuracies as compiled from literature and mission

specifications.

DEM Technique Spatial resolution Vertical accuracy Coverage Cost (source)

Photogrammetry Aerial stereo-photography pairs 0.5–5m <20 cm Local High

LiDAR Laser point cloud <1–5m <10–20 cm Local High

Airborne InSAR* SAR image pair interferometry 5m 1–1.5m Regional/national Moderate/high

Space-borne InSAR SAR image pair interferometry 20–30m 1.5–3m Regional/national Moderate

TanDEM-X Tandem satellite image pair interferometry <12m 10m (2m)** Regional/global Low/free (DLR)

Stereoscopy Satellite (SPOT, ASTER) ortho-stereo imaging 15–30m >10m Regional/national Moderate

ASTER GDEM Satellite ortho-stereo imaging 30m 7–14m Global Free (J-spacesystems)

SRTM SAR dual antenna interferometry 30 or 90m 7–16m Global Free (NASA/CGIAR CSI)

ACE2 GDEM Altimetry corrected global DEM 1km >10m Global Free (EAPRS)

GTOPO30 (HYDRO1k) Merged version of various DEM and vector height

products

1 km 9–30m Global Free (USGS)

To date, only aerial photogrammetry and LiDAR provide the needed vertical accuracy for flooding applications (<0.5m). In the case of the airborne InSAR, we report the accuracies

which are reasonably attained with current and prior systems (multiple and single pass interferometers). This is distinct from the higher-frequency single-pass Ka-band InSAR, for which

the DEM accuracy assessment is the topic of this paper.

*Note that the airborne InSAR referred to in the table is for previous InSAR systems, NOT the InSAR presented in this study. Prior and current systems operate at lower frequencies and

with lower accuracy.

**The 2m stated is the relative error. The 12.5m resolution DEM referred to in the table has not been fully assessed yet for its absolute vertical accuracy which according to mission

specifications is 10m (https://directory.eoportal.org/web/eoportal/satellite-missions/t/tandem-x). Thus, it is difficult to compare this version of the TanDEM-X to the other DEMs listed in

the table for which the accuracy stated is the absolute accuracy in the vertical.

accuracy global DEM using fine resolution satellite stereo images
has existed for some time, at present there is no international plan
to develop such a product. Now with recent advances in flood
modeling and supercomputing, and the increasing abundance of
high resolution stereo imagery, we believe that it is time to open
negotiations to free up the necessary financial support to achieve
this, possibly from a consortium of industry, governments and
humanitarian agencies. With annual losses due to flooding of US
$1 trillion predicted by 2050 (Hallegatte et al., 2013), producing
such a DEM at the global scale would be the environmental
equivalent of the Human Genome Project (HGP; NIH, 2010).
In 1990, the National Institutes of Health (NIH) and the US
Department of Energy joined with international partners in a
massive and costly undertaking to sequence the entire human
genome and make data publicly available over the Internet,
which would allow developing the tools to fight cancer and other
genetic diseases. This concerted, public effort was the Human
Genome Project and was completed under budget and 2 years
ahead of schedule 23 years later for a total cost of US $2.7
billion (FY 1991 dollars), which is now largely outweighed by the
advances made in biotechnology, genetic testing and treatment
of genetic diseases. Similarly, having a global high resolution
and high accuracy DEM would have enormous impacts on
finance (e.g., flood re-insurance), humanitarian services (disaster
relief services, disease prevention, etc.) and scientific research.
Schumann et al. (2014) argue that this could be achieved for
a cost of perhaps a few hundred million dollars using existing
LiDAR data, stereo satellite photogrammetry and acquisition
of new LiDAR elevation data either on board aircraft already
operated for disaster relief operations or on drones deployed
over floodplains. This is significantly cheaper than most satellite
missions, yet would be transformative across a huge range of
fields.
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Although LiDAR-DEMs are of very high spatial resolution
and great vertical accuracy (typical error: <0.2m) acquisition
operations can be very costly for spatial scales larger than a
couple of 100 square km and also have severe limitations in
wetland areas and under cloudy and rainy conditions. Ideally,
a DEM technology is needed that allows larger spatial coverage
than LiDAR but without compromising resolution and vertical
accuracy and still performing under some adverse weather
conditions and at a reasonable cost. In some countries, DEMs
at a fine spatial resolution and with a typical vertical error
of around 1m have been acquired at national level using
airborne Interferometric Synthetic Aperture Radar (InSAR),
requiring however multiple offset observations to generate the
DEM. Radar interferometry holds a unique promise here,
but typically has suffered from vertical errors which exceed
requirements for flood-modeling needs (better than 0.5m
accuracy in the vertical), and uncertainty with respect to
penetration of the electromagnetic wave in to the surface media.
However, the GLISTIN-A (Glacier and Interferometric Ice
Surface Topography Interferometer-Airborne) NASA airborne
mission offers a novel single pass In-SAR technology that
can efficiently generate DEMs over significant regions with a
vertical precision of ranging from 0.3m in the near range to
3m in the far range at a spatial resolution of 3m (Moller
et al., 2011). With appropriate calibration, the Ka-band system
enables high-accuracy high-resolution wide-swath mapping with
minimal surface penetration as a potentially cost effective
solution.

To demonstrate this capability (high resolution, cost-effective
floodplain and flood hazard mapping), we compare a sample
single-pass In-SAR Ka-band DEM of the California Central
Valley from the NASA/JPL airborne GLISTIN-A mission to a
very high-resolution LiDAR DEM as well as the Shuttle Radar
Topography Mission (SRTM) DEM at 30m. We also perform a
simple sensitivity analysis to flood inundation.

2. MATERIALS AND METHODS

2.1. SAR Data Generation and Calibration
GLISTIN-A is a Ka-Band (8mm wavelength) cross-track single-
pass InSAR, developed for high-precision, high-resolution ice-
surface topography mapping over a swath of a width of
about 10 km. The short wavelength minimizes penetration of
the electromagnetic wave into the surface media and hence
prevents any significant volume scattering from entering into
the measured echoes, a great advantage, as this removes a major
difficulty in interpreting the backscattering echoes. Airborne
laser altimetry is similarly unaffected by any unwanted volume
returns, but it is limited in swath width (up to 500m) and hence
in spatial coverage. As a quick reference, Table 2 shows a fair
comparison of the main characteristics between standard LiDAR
and the InSAR system presented here.

InSAR is able to retrieve surface topography by displacing
two antennas in the cross-track direction to view the same
surface. The interferometric combination of data received on the
two antennas allows one to resolve the path-length difference

TABLE 2 | Comparing LiDAR and Ka-band InSAR.

Properties LiDAR Ka-band InSAR

Flight altitude (typ.) 1 km 12 km

Swath <500m 10 km (foliage and terrain

dependent)

Cloudy operation No Yes

Foliage discrimination Requires canopy gaps Requires canopy gaps

Vertical accuracy <20 cm <50 cm*

Horizontal resolution NA—spot size <1m 3 × 3m (accuracy scales with

resolution)

Water classification Poor, requires optical or

equivalent

Good

*Final accuracy depends on a variety of factors including horizontal resolution, swath

location, and calibration methodology. Decimeter accuracies are achievable.

from the illuminated area to a fraction of a wavelength. From
the interferometric phase the height of the target (or phase
center) can be estimated. Therefore, an InSAR system such as
GLISTIN-A is capable of providing not only the position of each
image point in along-track and slant range as with a traditional
SAR, but also the height of that point through the use of the
interferometric phase (Rodriguez and Martin, 1992; Rosen et al.,
2000).

For the InSAR DEM, there is inherently a trade-off between
spatial resolution and relative vertical accuracy in the final
product. That is with spatial averaging the vertical precision of
the final product can be improved at the expense of resolution
(Rodriguez and Martin, 1992). In this paper we exploit this
property to produce a lower resolution (30 × 30m) from the
original 3 × 3m gridded product to reduce the random errors
on the DEM product to an acceptable level for a variety of
applications such as flood inundation modeling. In addition to
averaging to reduce the level of the random errors, the swath
data must also be calibrated due to systematic tilts across the
GLISTIN-A height maps. These are the result of imperfect
platform attitude knowledge and residual calibration errors not
captured within the instrument calibration loop. Although these
residuals are small, the bias effect can be large (up to a fewmeters)
at the far-look angles where the imperfect knowledge is effectively
multiplied by the cross-track distance. Fortunately, this effective
ramp can be relatively straightforward to correct by estimating
the bias in the far range and providing a linear correction. Several
approaches and sources can be used to determine the correction:

• overlapping near-range of one swath with far-range of another,
• using ground-control points if available,
• using LiDAR altimetry if available (spaceborne or airborne).

In this paper we use the a priori airborne LiDAR data to estimate
the cross-track systematic we apply to the InSAR swath data as
described subsequently. The LIDAR data were collected in winter
2008 and the radar data in February, 2013 resulting in some
difficulty in direct comparison due to some seasonal and time
difference. In particular crops were likely at different heights.
However, by carefully identifying relatively static regions a robust
calibration can be derived.
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2.2. SAR DEM Generation
As outlined in the previous section, the swath data must be
calibrated due to systematic tilts across the GLISTIN-A height
data. In our case, we were working with data that had not
been fully calibrated, and as such the range-tilt accounted
for 4.9m at 13 km across track. A linear slope correction
perpendicular to flight path was thus performed using the
LiDAR height data set as a reference approximately two-thirds
across the swath. Subsequently, a low-pass moving average filter
was applied in a 5 × 5 window to attenuate the random
noise.

In addition to accounting for SAR-specific effects, natural
floodplains are often vegetated to various degrees of densities
and with different vegetation heights and types, thus making
it challenging to determine accurate bare ground elevation
desirable for a variety of applications, in particular flowmodeling.
Although for LiDAR data, automated algorithms to remove
Earth surface features are routinely and successfully applied
(e.g., Cobby et al., 2001, 2003), SAR height data prove far
more challenging given the inherent errors in the data and
only limited progress has been achieved over recent years,
often using ancillary data sets or models (e.g., Baugh et al.,
2013).

However, the high-resolution and precision of these
data we believe will allow for more robust classification
schemes which in turn will enable bare-Earth DEM
generation for many floodplain regions, with the exception
of densely vegetated regions. In this instance we classified
vegetated areas from the InSAR height precision data
(Figure 2B). The height precision, σh, is derived from
the measured interferometric correlation, γ , via the
relation:

σh =
∂h

∂φ
σφ =

∂h

∂φ

1
√
2NL

√

1− γ 2

γ 2

≈
λx

4πB⊥

1
√
2NL

√

1− γ 2

γ 2
, (1)

where λ is the electromagnetic wavelength, φ is the
interferometric phase, x is the cross-track distance, B⊥ is
the projection of the interferometric baseline (vector separation
between the antennas) onto the direction perpendicular to
the look direction, and NL is the number of independent
pixels averaged to produce an elevation post. Note that σh

is directly proportional to the cross-track distance. Over
vegetation, increased volume scattering results in a lower
correlation and thus an increased height error as observed in
Figure 2B. We also observed that these regions were relatively
bright and thus we coupled the InSAR relative backscattered
power with the height precision to classify vegetated fields.
After identifying the regions, we employed an iterative
process to remove vegetation and other surface objects which
considers first order height statistics of neighboring near-ground
areas.

2.3. Demonstration Site
The demonstration site we chose from the GLISTIN-A flight
path over the California Central Valley is a 30 km section of the
San Joaquin River upstream of the city of Mendota including
the Chowchilla bypass (Figure 1). This region is dominated by
agriculture and so flood control for irrigation via dams, levees
and many bypass channels has been a major preoccupation
since the nineteenth century. This impacted substantially on the
region’s flow regimes and natural floodplain (see for example

FIGURE 1 | (A) Map of the California Central Valley showing the San Joaquin River as a thick blue line. The area of the SAR demonstration site is depicted by the

black rectangle. (B) Zoom-in of the region (rectangle in A) showing the San Joaquin River, the levees and the Chowchilla Canal Bypass (CB). (C) Photograph of the

confluence of the Chowchilla Bypass and the San Joaquin River with adjacent farmland (Source: SJR FCPA).
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the aerial imagery in Figure 2D). As can be seen in the small
panel in Figure 5 most of the area lies inside the 100-year flood
zone according to the Federal Emergency Management Agency
(FEMA) but the Friant Dam upstream of the area at the foothill
of the Sierra Nevada, constructed in the 1940s, is used for
flood control and dramatically reduces the flood flow regime.
For example, the 1.5-year flood was reduced from 320m3s−1 to
11m3s−1, and the 10-year flood was reduced from 920m3s−1 to
255m3s−1 which corresponds more or less to the constrained
channel capacity downstream of Friant Dam (Friant Water Users
Authority, 2002).

This site was identified opportunistically for analysis, as it
was collected and processed as part of instrument development.
To date, targeted science missions have primarily been over
cryospheric targets. However, we believe that this site is a good
candidate for rigorously assessing the performance and quality
of the InSAR-derived DEM given the high degree of alterations
made to the natural floodplain (fields, levees and other numerous
man-made structures) to turn the landscape into a prime area
for high-end irrigation agriculture. The resulting complexity
in terrain features (see Figure 2C) makes it a challenging test
case. Further, the availability of a high-resolution LIDAR DEM
enables a meaningful comparison against the leading benchmark
technology.

2.4. Characterizing Floodplain and River
Hydrodynamics
A high-accuracy floodplain DEM is essential for adequate flow
modeling and consequently flood risk estimation (Bates, 2004).
Substantial errors in the vertical can lead to considerable over- or
under-estimation of flood hazard which can have many adverse

consequences. Any flood model requires data on river gradients,
bank and floodplain heights, and for 1-D in-channel floodmodels
such as HEC-RAS and also for 1-D/2-D coupled flood models
this river information is provided as river section data. For this
purpose, we assess heights along the stream centerline of the San
Joaquin river in flow direction and impose a linear fit to estimate
the thalweg gradient and first order hydraulics (i.e., kinematic
waveform). To assess the quality of the floodplain topography
we run a simple flood-fill algorithm over parts of the 1:100 year
floodplain as defined by FEMA. Both analyses are performed on
the LiDAR and SAR DEMs, using the former as a reference.

Flood-fill modeling was based on calculating a floodplain
elevation profile from the DEM data, which describes floodplain
water depth as a function of flooded area (Yamazaki et al.,
2011). For simplification depth is given as an increasing function
of flooded area so that no local depression is assumed in the
floodplain elevation profile. This simplification was based on
the assumption that inundation always occurs from lower to
higher places within a unit catchment. Prior to this the natural
floodplain was delineated using correlation between local valley
slope and the topographic wetness index (Beven and Kirkby,
1979), TWI = ln(a/tan(b)), where high values typically denote
converging, almost flat terrain at locations where large upslope
areas are drained, a, and where the local gravitational gradient, b,
is low.

3. RESULTS

This section reports on the accuracy and overall quality of the
GLISTIN-A InSAR DEM and its applicability to flood mapping
and modeling. We wish to note that here we present and discuss

FIGURE 2 | (A) InSAR DEM, linearly calibrated (3 × 3m). (B) InSAR height precision map in meters (3 × 3m). (C) InSAR DEM, vegetation corrected (3 × 3m). (D)

Aerial photography of the same area.
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first findings and, although we believe that the DEM accuracy
stated and its suitability to floodplain mapping is transferable to
other locations, we suggest more studies of this type to confirm
our findings.

3.1. Accuracy Assessment
As outlined in Section 2.1, for swath calibration we used LiDAR
data approximately 13 km across-track and we chose an area
of no or very low vegetation in both data sets so that we
could assume the scene was consistent between collections. Then
we filtered the classified vegetation as correcting the height
simplistically as described in Section 2.2 and then aggregated the
DEM to 30 × 30m pixels to substantially reduce the noise level.
We only aggregated pixels within a 15m radius that exhibited
reasonable height variance (i.e., outliers due to low correlation—
water for example—were excluded). This spatial resolution seems
more than adequate for floodplain mapping. For instance,
meaningful information on inundation maps obtained from a
remotely sensed image should preferably have a spatial resolution
within a range of 10m to 1 km depending on the type of
application and user needs (Schumann et al., 2012), which is now
easily achievable.

Figure 2 displays the slope-corrected InSAR DEM as well as
the resulting DEM after vegetation removal, both at a spatial
resolution of 3 × 3m. It should be noted that in some areas
(for instance in the upper left corner of Figure 2C) vegetation

was not removed because in those areas our crude classifier
did not identify these as vegetation. They are likely a different
type of vegetation, or the scattering properties differ at the far
incidence angles. However, with a more sophisticated automated
algorithm this could be improved but it is outside the scope
of this paper. Note that, as evidenced in the latter results, the
impact of these vegetated regions remaining, remote from the
river is insignificant. The final 30 × 30m InSAR DEM is shown
in Figure 3 where height contours are overlain and compared
to the LiDAR reference DEM aggregated to the same resolution
for a fair assessment. As can be seen in that figure, the InSAR
topographic contours are very similar to those derived from the
LiDAR, which indicates very similar terrain topology in both
datasets.

For a more quantitative assessment, we also calculated both
the bias (systematic error) and the root mean square error
(RMSE) between the LiDAR and InSAR floodplain heights. Note
that since the LiDAR DEM is a bare ground terrain model, we
only selected regions in the InSAR DEM that exhibit little InSAR
height precision error and of no or very low vegetation (depicted
by red boxes in Figure 4A). The histogram plot in Figure 4B

shows the height error with normal distribution around a mean
of as low as 5.6 cm with a standard deviation of ±30 cm. When
comparing the InSAR DEM to the LIDAR bare ground terrain,
the RMSE, which is a standard accuracy metric for DEMs, is
29.7 cm and is given by the following equation:

FIGURE 3 | (A) 30 × 30m aggregated LiDAR bare ground DEM with height contours overlain. (B) The same height interval contours are overlain on the InSAR DEM

aggregated to 30 × 30m after vegetation correction.

FIGURE 4 | (A) 30 × 30m InSAR DEM showing subregions used for accuracy assessment (red rectangles). (B) Histogram of relative height error between the final

InSAR DEM and the LiDAR bare ground DEM.
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RMSE =

√

∑n
n= 1(zS − zL)2

n
, (2)

where n is the total number of pixels to be compared and z
represents the height in meters of a given pixel with subscripts
S and L denoting SAR and LiDAR, respectively.

3.2. Suitability to Map Floodplain and River
Hydrodynamics
We also assessed the suitability of the InSAR DEM for
characterizing basic river hydrodynamics and mapping
floodplain inundation, as outlined in Section 2.4. It is well known
and widely accepted that LiDAR data have been transformative
in floodplain mapping and modeling, and raised the expectation
that models built using them can predict inundation extent
accurately (Bates, 2012).

First order channel hydraulics are typically represented by the
kinematic wave form which can be expressed in simple terms
as the gradient of the stream centerline. We approximated this
gradient using a linear fit to the centerline heights extracted every
30m along the river thalweg. Unsurprisingly, the LiDAR exhibits
the smallest spread along a linear fit (Figure 5) and indicates
a downward slope of 28.4 cm per km (typical for a river this
size) with an upstream elevation intercept at 54.2m. The InSAR
DEM gives very similar results (slope: 28.9 cm per km; intercept:
54.6m) while the SRTM DEM, as expected, has a much larger
spread of residuals along the gradient line and gives a slope of
23.1 cm per km with an intercept at 56.4m. Although this can
be considered acceptable for the SRTMDEM, errors are typically
too large to allow accurate in-channel hydrodynamic modeling.

In order to demonstrate the suitability to map flooded area on
the basis of floodplain height profiling (Yamazaki et al., 2011),
we plotted and compared the cumulative distribution function

(CDF) of the elevation within the study region of the LiDAR
DEM and the InSAR DEM. As shown in Figure 6, there are
only marginal differences in the elevation profiles from LiDAR
and InSAR. In fact, a two-sample Kolmogorov-Smirnov (KS)
test indicates that, at a 5% α level, there are no significant
differences between the two floodplain height distributions. The
marginal differences become somewhat more important when
translating these heights to floodplain inundation as illustrated
by the small panels inserted in Figure 6. This is primarily due to
the remaining noise in the InSAR DEM rather than actual terrain
height discrepancies between the two datasets.

4. DISCUSSION AND PRELIMINARY
CONCLUSIONS

In this paper we assessed and reported the quality and accuracies
of a Ka-band single-pass interferometer-derived digital elevation
model over a floodplain in the California Central Valley.
The NASA airborne mission instrument GLISTIN-A has been
designed for ice elevations but here we demonstrated its
capability to acquire land elevations at large swath widths with
an accuracy comparable to that of state-of-the-art LiDAR. With a
RMSE of just under 30 cm compared to LiDAR, we believe these
InSAR height data to have much greater vertical accuracies than
prior InSAR airborne DEMs, with vertical errors typically about
1m or larger and rarely smaller than 0.5m. We also assessed the
suitability of the InSAR Ka-band DEM for floodplain inundation
mapping and characterizing first order hydrodynamics.

LiDAR is widely considered the best available technology for
producing land elevation data. Here, we do not wish to counter-
argue this. Instead, we would like to propose an alternative
technology of similar accuracy, being able to operate from much

FIGURE 5 | Plot showing the heights along the river centerline in flow direction for the LiDAR, InSAR, and SRTM DEMs. The linear slope is also shown.

The inset shows the boundaries of the FEMA 1:100 year flood extent in red and the main river in blue.
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FIGURE 6 | Plot showing the cumulative distribution function of floodplain height profile for both the LiDAR and InSAR DEMs. The small insets show the

area inundated to a specific floodplain height for the region inside the lower left rectangle in Figure 4A.

higher altitudes, over much wider swaths and during cloudy
conditions therebymaking it more cost-effective than LiDAR and
more suited to acquiring data over large floodplains and coastal
regions, and in areas often deprived of LiDAR data.

Despite the several advantages over LiDAR data and its
comparable accuracy, we wish to note the following points with
regard to the Ka-band InSAR that warrant attention or further
analysis:

• InSAR data calibration: If no LiDAR data are available, GPS tie
points or satellite altimetry data can be used to calibrate the
InSAR data following the method described in Section 2.1.

• Vegetation correction: Note that our method used to remove
vegetation, albeit automated and based only on InSAR
auxiliary data, is fairly basic and should be improved. Baugh
et al. (2013) propose an interesting approach that employs
hydrodynamic modeling to guide vegetation height removal
on the SRTM DEM. Variants thereof could potentially lead
to more sophisticated vegetation correction algorithms for
InSAR data. Also, the use of ancillary datasets should be
considered.

• Spatial aggregation: SAR data have the inherent property
to reduce in noise level when aggregated to lower spatial
resolution. Here, we suggested 30 × 30m from 3 × 3m pixels
but we did not conduct a sensitivity analysis and so the 30m
spatial resolution should only be taken as a guideline. Also,
the aggregation method we used is based on variance (Section
3.1) and needs further augmentation. In fact, we suggest
developing “intelligent” spatial aggregation/classification
methods that conserve micro-topographic features while
reducing the noise level for preserving maximum information
content.

• Suitability for 2-D flood hazard/risk modeling: Here, we only
tested for basic characterization of in-channel hydrodynamics
and floodplain inundationmapping and therefore recommend
more complete investigations of the suitability of the InSAR

data for flood modeling and mapping. In fact what is
needed is a proper hydrodynamic modeling benchmark study,
preferably using a floodplain and a flood event for which
LiDAR data have been used.

• Ongoing technological advances: The GLISTIN-A system
represents the first of its kind and was developed for
cryospheric mapping. Tailoring a system design to the needs
of floodplain mapping, and incorporating relevant recent
technology advances will enable superior performance for this
application.

Even though there are a number of points that still need
improving, most notably in classification and subsequent
vegetation removal, based on our findings so far we conclude that
the single-pass Ka-band InSAR provides competitive technology
to acquire floodplain elevation data with accuracies required
for better environmental modeling and risk mapping, especially
in developing nations that have very limited or no access to
high-quality DEMs.

In order to more fully assess the suitability of the Ka-band
InSAR instrument to acquire high-accuracy land elevation data,
we suggest to repeat this type of analysis over a more natural
floodplain and a larger river, and for an area more prone to
regular flooding.
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