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Collision avoidance and road safety applications require highly accurate vehicle localization techniques. Unfortunately, the existing
localization techniques are not suitable for road safety applications as they rely on the error-proneGlobal Positioning System (GPS).
Likewise, cooperative localization techniques that use intervehicle communications experience high errors due to hidden vehicles
and the limited sensing/communication range. Recently, GPS-free localization based on vehicle communication with a low cost
infrastructure installed on the roadsides has emerged as a more accurate alternative. However, existing techniques require the
vehicle to communicate with two roadside units (RSUs) in order to achieve high localization accuracy. In contrast, this paper
presents a GPS-free localization framework that uses two-way time of arrival to locate the vehicles based on communication with
a single RSU. Furthermore, our framework uses the vehicle kinematics information obtained via the vehicle’s onboard inertial
navigation system (INS) to further improve the accuracy of the vehicle location using Kalman 
lters. Our results show that the
localization error of the proposed framework is as low as 1.8 meters. 	e resulting localization accuracy is up to 65% and 47.5%
better than GPS-based techniques used without/with INS, respectively. 	is accuracy gain becomes around 73.3% when compared
to existing RSU-based techniques.

1. Introduction

	e growth in motor vehicle crashes and fatalities has
recently caused safety applications for smart roads to receive
signi
cant attention to savemillions of lives. According to the
National Highway Tra�c Safety Administration (NHTSA) in
2013, 5.4 million car crashes take place in average every year
out of which 35,244 are fatal crashes. 	e average number of
people killed on US roads each day is 80 and the estimated
number of people injured in motor vehicle tra�c crashes is
2.36 million. It is predicted that road crashes will be the 
�h
leading cause of death by 2030. In addition to such huge
fatalities, billions of dollars are also lost every year in such
crashes [1].

In order to develop robust road safety and collision
avoidance systems, highly accurate vehicle localization tech-
niques are needed. Many vehicle localization techniques
have been recently proposed which can be broadly classi
ed
into absolute positioning techniques and relative positioning

techniques. In absolute positioning techniques, each vehicle
has the ability to determine its own absolute location—
without regard to nearby vehicles—based on using either
Global Positioning System (GPS) [2–6] or roadside units
(RSUs) [7–9]. Such positioning techniques are only applicable
for navigation and �eet management application and are
not well suited for collision avoidance applications. 	is is
because of their low accuracy that can be up to tens of meters
in GPS-based systems, the lack of lane-level positioning, and
the discontinuous availability issues in the case of GPS-based
techniques. On the other hand, relative positioning tech-
niques use intervehicle communication and cooperative posi-
tion approaches to determine the vehicles’ locations relative
to each other [6, 10–18]. However, cooperative localization
techniques—which typically use eithermillimeter wave radar
sensors or vision sensors—su�er not only from the limited
sensing range and high cost of these sensors but also from
the problems of hidden vehicles, slow update rates, and the
multipath e�ect. Furthermore, lane-level vehicle localization
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techniques which use vision-based lane-recognition systems
su�er severe accuracy degradation in adverse weather condi-
tions or in unclear lane signature situations [16–18].

In this paper, we present a highly accurate—yet low-
cost—GPS-free integrated localization framework for colli-
sion avoidance and intelligent road safety applications.Unlike
related works [7, 8] which typically use 2 roadside units
(RSUs) for localization, our goal is to have each vehicle
determining its location with respect to a single RSU in order
to decrease the required number of RSUs and, consequently,
reduce the cost of the localization system installation. 	e
constraint of using a single RSU in vehicle localization poses
a signi
cant challenge in locating the vehicles with high
accuracy.Weuse the vehicle kinematics information obtained
through the inertial navigation systems (INS) and the road
constraints broadcasted by RSUs to further improve the
predictability and the accuracy in vehicle localization and
provide lane-level localization accuracy.

	e proposed localization framework consists of four
stages: (1) determining the vehicle’s driving direction, (2)
estimating the distance between the vehicle and the RSU
via two-way time of arrival (TOA) ranging to get an initial
estimate of the vehicle location in the road length dimension,
(3) obtaining a highly accurate estimate of the vehicle location
in both the �- and �-dimensions by using Kalman 
lters
to fuse the range obtained in the second stage and the
vehicle kinematics information available through the vehicle’s
inertial navigation system, and (4) ensuring that the vehicle
location in the road width dimension is within the physical
boundaries of the road/lane which signi
cantly improves the
accuracy of the vehicle localization.

Our results show that the accuracy of the proposed
single RSU localization framework signi
cantly outperforms
existing localization using GPS technique as well as existing
RSU-based techniques. More speci
cally, our results show
that the localization error of the proposed framework is
as low as 1.8 meters. 	e resulting improvement in the
localization accuracy is up to 65% and 47.5% compared to
GPS-based techniques used without/with INS, respectively.
	is accuracy gain becomes around 73.3% when compared
to existing RSU-based techniques.

	e rest of the paper is organized as follows. In Section 2,
we review the related literature. We present the systemmodel
in Section 3. In Section 4, we present our GPS-free vehicle
localization framework.	enwe evaluate the performance of
the proposed framework in Section 5 and conclude the paper
in Section 6.

2. Related Work

In this section, we overview the existing literature of posi-
tioning techniques that can be broadly classi
ed into absolute
positioning techniques and relative positioning techniques.

2.1. Absolute Positioning Techniques

2.1.1. GPS-Based Absolute Positioning. Such positioning
approach uses the Global Positioning System (GPS) to

determine the position of each vehicle. 	e traditional GPS
localization technique [2] uses GPS receivers to continuously
receive the data being sent by the GPS satellites. 	e received
data is used to estimate the vehicle’s distance to at least
four known satellites using a technique called time of
arrival (TOA) and then computes the actual position via
trilateration.

GPS-based techniques su�er many challenges. One main
challenge is the low accuracy of GPS systems (10m–30m)
that is not su�cient for vehicle collision warning systems.
	erefore, several modi
cations of the basic GPS technique
have been proposed to increase the accuracy of GPS-based
localization. An example of such methods is the radio-
frequency-GPS (RF-GPS) [3] that employs a di�erential GPS
(DGPS) concept to improve the GPS accuracy. DGPS [19] is a
method to improve the positioning of GPS using one ormore
reference stations at known locations, each equipped with at
least one GPS receiver. 	e reference station(s) calculates the
error and broadcasts it.

Another problem in GPS-based techniques is the exis-
tence of tall buildings which prevent the GPS receivers on
vehicles from receiving strong satellite signals. Assisted-GPS
(A-GPS) has been proposed to enhance the performance of
standard GPS in devices connected to the cellular network
by using an A-GPS server [4]. Although there exist some
enhanced versions of GPS such as the A-GPS and RF-GPS,
they require extra infrastructures and, hence, add cost.

2.1.2. GPS-Free Absolute Positioning. 	e need for GPS-
free localization techniques comes from the facts that the
accuracy of GPS positioning algorithms (with localization
error between 10m and 30m) are not accurate enough for
collision warning system applications. 	us motivated, new
techniques using roadside units (RSUs) [7–9] have been
proposed to eliminate the need to use GPS techniques. RSUs
are installed on both sideways of the road and all the vehicles
are equipped with onboard unit (OBU) devices that are able
to communicate with the RSUs. Hence, each vehicle has the
ability to estimate its coordinates relative to the RSUs. 	e
author of [7] assumed that there are two RSUs installed on
both sides of the road and each vehicle estimates its location
relative to those two RSUs using a technique called faulty-
free. 	e author in [7] also illustrates another scenario, called
faulty, in which one of the RSUs fails such that only one RSU
remains functional.

Alternatively, the proposed approach in [8] depends on
obtaining the initial position using single RSU information
and updates the position all the way using dead reckoning.
Dead reckoning [7] is a technique that is originally used
for localization in the absence of GPS coverage in GPS-
based techniques which is an e�ective alternative to inter-
vehicle communications techniques [10, 11]. However, the
accumulation of dead reckoning error makes the localization
accuracy of [8] signi
cantly deteriorate with distance as we
shall demonstrate in the simulation results. 	e localization
approach in [8] does not use any distance-measuring tech-
niques such as time of arrival (TOA) [20], time di�erence of
arrival (TDOA) [21], and received signal strength (RSS) [11].
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	us motivated, the authors of [9] proposed to use TOA-
based distance-measuring to signi
cantly reduce the posi-
tioning error and restrict the use of the erroneous dead
reckoning to the close proximity of the RSU.

2.2. Relative Positioning Techniques. All of the above absolute
positioning techniques are not suitable for collision avoid-
ance applications due to their limited accuracy. Furthermore,
such techniques are not capable of determining the lane in
which the vehicle is traveling. Hence, they are not applicable
to collision avoidance systems in which a vehicle has to
accurately know its relative distance with the neighboring
vehicles. Relative positioning techniques have emerged to
improve the positioning accuracy by having the vehicles
exchanging their erroneous location information and jointly
cooperate to reach a more accurate positioning relative to
each other. Such cooperative techniques [10–15] estimate
intervehicle distances using either RSS [11], time of arrival
(TOA) [12], both of RSSI and two-way TOA [10], millimeter
wave radar sensors [13], vision-based sensors [14], or Doppler
shi� [15] as an intervehicle ranging technique.

2.2.1. GPS-Based Relative Positioning. Several existing rel-
ative positioning techniques rely on GPS as an input to
the localization process. Examples include the Intervehicle-
Communication-Assisted Localization (IVCAL) which uses
a Kalman 
lter (KF) to fuse the positioning information
obtained by both GPS and the inertial navigation system
(INS). 	e KF-fused position and the relative distance esti-
mation, obtained from intervehicle communication, are inte-
grated using least square optimization in order to increase the
accuracy of the localization of every vehicle in the network.
Likewise, the grid-based on-road localization (GOT) system
was developed to use vehicle cooperating to allow vehicles
with blocked GPS signal, for example, when the vehicles
are inside a tunnel or on a road surrounded by high rises,
to accurately calculate their position through the help of at
least three vehicles with good GPS signals using intervehicle
distance estimation.

2.2.2. GPS-Free Relative Positioning. In order to improve the
predictability and the accuracy in vehicle localization, several
works have been carried out to develop GPS-free cooperative
vehicle localization schemes that do not rely on any form
of GPS assistance [10, 11, 14]. For instance, [11] proposed a
three-phase localization technique in which each vehicle ini-
tially estimates the intervehicle distances with its neighbors
using RSSI. A�er sharing such information with neighboring
vehicles, each vehicle improves its estimation alongside the
vehicle kinematics and road constraints information using
Kalman 
lter [22]. 	e process is iterated periodically to
maintain an up-to-date estimate of the vehicle position.
Meanwhile, the authors of [14] proposed a two-phase GPS-
free neighbor-vehiclemapping framework that has each vehi-
cle fetching the neighboring vehicles’ presence/absence status
information from a vision-based environment sensor system
that covers a speci
c calibrated region in the front, back,
and adjacent le�/right lanes of the vehicle using omnivision

camera-based sensor systems. A�er exchanging this status
information with neighbor vehicles, each vehicle builds a
relative local map that links the neighbors’ information and
their communication addresses, such as Medium Access
Control/Internet Protocol (MAC/IP), with the vehicles’ car-
dinal locations.

GPS-based positioning techniques su�er from many
problems that degrade the localization accuracy including
multipath and signal blockingwith high buildings and during
moving through tunnels. In contrast, our proposed localiza-
tion technique is based on using RSUs for localization to
improve the accuracy and the complexity of the existing node
localization algorithm. We also exploit fusion techniques
developed for relative positioning to further increase the
localization accuracy. However, we only rely on the vehicle’s
own information only without any kind of intervehicle
information.

3. System Model

In our systemmodel, vehicle localization is not based on GPS
receivers. Instead, we assume that all vehicles are equipped
with onboard unit (OBU) devices that are used to determine
the vehicle’s distance to the RSUs using vehicle-to-road (V2R)
communication. We use the dedicated short-range commu-
nications (DSRC 5.9GHz) for intelligent transportation sys-
tems over which the IEEE 802.11p operates. We exploit RSUs
deployed only on one side of the road to locate the vehicles.
	eRSUs broadcast periodic beacons containing the IDof the
road and the location of the RSU. For collision avoidance, we
assume that the neighboring vehicles exchange their locations
using vehicle-to-vehicle (V2V) communication.However, we
do not use V2V communication for the localization process
itself, and, hence, V2V communication falls behind the scope
of the paper.

Each vehicle is equipped with a digital odometer, a
compass, and an inertial navigation system (INS) which are
commonly available devices in modern vehicles. INS is a
navigation technique used to get the current position of an
object relative to a previous position by measuring the veloc-
ity and orientation of the object. 	e most common sensors
used to get the previous measurements are accelerometers
and gyroscopes that provide the velocity and the direction
information, respectively.

We assume that vehicles move on dual carriageway high-
way separated by a central reservation. 	e road is straight
all the way and there are multiple entry and multiple exit
points along the road. Such a road model is widely adopted
in the related literature. Each entry point is equipped with
an RSU. We assume that the entry/exit points are interleaved
(i.e., at a given �-location, we can have only one entry to
the road with an exit on the other side) as the typical case
depicted in Figure 1. 	e road has shoulders that a vehicle
can use to reverse the driving direction. However, the road
does not have any intersections. We assume that the distance
between the RSU and the vehicle � is large and the width of
the road� is too small compared to its length �, and, hence,
the curvature is assumed to be nearly linear. 	e Notations
summarizes the used notations.
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Figure 1: Illustration of the system model.

4. GPS-Free Vehicle Localization Framework
via an INS-Assisted Single RSU

We introduce a GPS-free localization framework that only
uses (1) a single RSU for locating the vehicle along the road
length (�-dimension) and (2) INS information with Kalman

ltering to accurately specify the lane-level location of the
vehicle (�-dimension). 	e vehicle location is constrained
by the road boundaries broadcasted from the RSU which
contain information about the geometry of the road such
as width of the road and number of lanes. Each vehicle
then shares its computed location information using V2V
communications with nearby vehicles to be used for collision
avoidance systems. However, this paper is only concerned
with determining the location of the individual vehicles.

	e proposed framework consists of four main compo-
nents: (1) determining the vehicle’s driving direction which
is either north (N) or south (S), (2) measuring the distance
between the vehicle and the nearest RSU, ��,RSU, using two-
way TOA, (3) estimating the vehicle location (�̂, �̂) using��,RSU estimated from the previous component and the INS
information locally provided by the vehicle, and 
nally (4)
ensuring that the 
nal vehicle location �̂� is within the
road/lane boundaries obtained from the periodic beacons
broadcasted from the RSUs using a road boundary stage.
Figure 2 summarizes the proposed framework. We next
explain the details of each of the four main components of
the framework.

4.1. Determining the Vehicle Driving Direction. 	is section
discusses our proposed technique to 
nd the driving direc-
tion. In [7] a technique for determining the driving direction
using two roadside units installed on both sides of the road
has been proposed. A vehicle determines its driving direction
by comparing the angle between its current movement vector

and the north (or south) roadside unit. Meanwhile, the
authors in [8] assume that there are RSUs installed on one
side of the road and each vehicle should receive and evaluate
the position information of 2 consecutive two RSUs to get
the driving direction. Given our system model, the major
challenge here is how to get the driving directionwith the help
of only oneRSU installed on one road direction andminimize
the start-up time.

We propose the following algorithm which is invoked
every time the vehicle enters a new road to decide the
direction the vehicle is traveling. Without loss of generality,
we denote the travel direction as either north (N) or south
(S) to distinguish the two travel possibilities. However, the
absolute travel direction is obtained by interpolating the
RSU well-de
ned coordinates which are exactly known and
broadcasted to all vehicles. We 
rst assume that there are two
types of roadside units: one type which is at the entry points
of the road. 	e second type of RSUs is in the middle of the
road between the entry points. We assume that an entry RSU
broadcasts the driving direction either N or S while a middle
RSU has a Null direction 
eld in its beacon. When a vehicle

rst enters the road, it will determine its driving direction
based on the direction of the 
rst beacon received from an
entry RSU. As the vehicle moves along the road, it receives
a beacon from a middle RSU which contains the ID and the
location of the RSU. 	e driving direction is updated to be
either the same or the opposite direction based on the ID of
the new RSU (included in the incoming beacon) and the ID
of the previous RSU (stored on the OBU which is initially set
to Null). 	erefore, even if the vehicle make a U-turn using
the shoulder, comparing the new received RSU ID with the
ID stored on the OBU will allow the vehicle to know that the
driving direction has been switched. Algorithm 1 outlines the
proposed algorithm assuming that the RSU ID increases in
the north direction.

It is worth mentioning that Algorithm 1 can be easily
generalized to vehicle localization in intersected roads. In
such a case, the intersection points should be equipped with
RSUs that broadcast all four possible travel directions: the
legacy directions N and S, as well as two perpendicular
directions such as east (E) and west (W). 	e intersection
RSUs are treated as entry/exit points of the perpendicular
road. When the vehicle receives a beacon from such an
intersection RSU, it checks whether the driving direction is
the same or has been switched to the perpendicular direction.
However, intersected roads fall behind the scope of this paper.

4.2. Estimating the Vehicle Distance to the RSU (Ranging). 	e
goal of this stage is to estimate the �-location of the vehicle
based on estimating the distance between the vehicle and
the RSU, ��,RSU, using V2R communication. In our proposed
RSU-based localization scheme, each vehicle estimates its
distance to the RSU upon receiving the RSU periodic beacon
messages which contain the ID of the RSU and its �-
coordinate denoted by �RSU. As shown in Figure 1 and given
that the RSU is located at location �RSU, a vehicle	 is located
at

� = �RSU ± ��,RSU, (1)
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Figure 2: 	e proposed GPS-free integrated framework for vehicle localization using a single RSU and INS information.

(1) Initialization: Driving Direction = NULL
(2) if Receive(Beacon) and Beacon.Direction ̸= NULL then

(3) Driving Direction = Beacon.Direction
(4) Current RSU = Beacon.ID(RSU)
(5) else

(6) if Beacon.ID(RSU) > Current RSU then

(7) Driving Direction = North
(8) else

(9) Driving Direction = South
(10) end if

(11) Current RSU = Beacon.ID(RSU)
(12) end if

Algorithm 1: Algorithm for driving direction determination.

where ��,RSU is the distance between the RSU and vehicle 	.
	e sign of ��,RSU depends on the driving direction obtained
in the previous stage and whether ��,RSU tends to increase or
decrease.

It is worth mentioning that (1) is only valid under the
assumption that the distance between theRSUand the vehicle
is large enough and the width of the road is too small
compared to its length, and, hence, the curvature is assumed
to be a line as per our system model. When the vehicle
moves closer to the RSU, this assumption is no longer valid.
	erefore, the proposed ranging technique is used to provide
an estimate of the �-location of the vehicle to be re
ned in

the next stage only when ��,RSU is greater than a certain
threshold and we will use another technique when ��,RSU is
less than that threshold as will be discussed in Section 4.3.

Many techniques are used for range measurements such
as received signal strength (RSS) [11], angle of arrival (AoA)
[23], time di�erence of arrival (TDOA) [21], and time of
arrival (TOA) [20]. In our proposed technique, we use the
two-way reciprocal time of arrival [24] technique which
is preferred in the presence of multipath interference and
does not need synchronization between the transmitter and
the receiver. Recall that DSRC systems should be resilient
to multipath fading [25]. 	e proposed two-way reciprocal
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Figure 3: 	e timeline of the proposed two-way TOA packet
handshake.

time of arrival technique works as follows. When the vehicle
receives a beacon from theRSU, the vehiclewill send a request
to send for two-way TOA (RTS-T) packet at time �1.	e RSU
will reply with a clear to send two-way TOA (CTS-T) packet
which contains the delay � experienced at the RSU (which
might come from collisions and processing time). 	e CTS-
T is received at the vehicle at time �2 as shown in Figure 3.
	e di�erence between the time the CTS-T is received and
the time the RTS-T is sent is equal to the propagation time of
the RTS-T plus the processing delay(s) within the RSU plus
the propagation time of the CTS-T; that is,

�2 − �1 = ���,RSU
 + � + ��,RSU
 , (2)

where ���,RSU/
 and ��,RSU/
 are the propagations times of
the RTS-T and CTS-T packets, respectively, and 
 is the free-
space propagation speed. Equation (2) can be rewritten as

(�2 − �1 − �)
 = ��,RSU + ���,RSU, (3)

where ��,RSU is the distance between the RSU and the vehicle

at instant �2 and ���,RSU is the distance between the RSU and
the vehicle at instant �1, as shown in Figure 4. Recall that the� distance between the vehicle and the road side is negligible
with respect to ��,RSU and ���,RSU as per the assumed system
model. Hence, the vehicle displacement can be approximated
with an increment/decrement in the �-direction, depending
on whether the vehicle is moving away/towards the RSU; that
is,

���,RSU ≅ ��,RSU ± Δ�. (4)

Substituting with ���,RSU given in (4) into (3), we get

(�2 − �1 − �)
 = 2��,RSU ± Δ�. (5)

Consequently, the �-location of the vehicle �� given in (1) is
computed using ��,RSU given by

��,RSU = (�2 − �1 − �)
 + Δ�2 , Δ� > 0,
��,RSU = (�2 − �1 − �)
 − Δ�2 , Δ� < 0,

(6)

S

R�
V,RSU

RV,RSU
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x

Δy

Figure 4: Range estimation using two-way TOA.

where Δ� = ��,RSU(� + 1) − ��,RSU(�) and ��,RSU(�) is the
estimated range a�er receiving the �th beacon from the RSU,
determining whether the vehicle is approaching or moving
away from theRSU.	eonly unknown in the above equations
is Δ�. A vehicle locally computes Δ� as Δ� = (�2 − �1)V,
where V is the average vehicle speed. Hence, our proposed
ranging technique computes the �-location of the vehicle
using a single RSU.

4.3. RSU/INS Integration for Vehicle Localization. In the
second stage of the proposed framework, we have only
obtained an estimate � of the�-location of the vehicle relative
to the nearest RSU. 	e goals of this stage of the proposed
framework are to (1) re
ne the �-location estimate, �, outside
the threshold area, (2) estimate the �-location of the vehicle
within the threshold area, and (3) estimate the �-location
of the vehicle, �. In other words, this stage not only is
responsible for signi
cantly improving the accuracy of our
ranging technique but also enables the framework to capture
the lane-level information required for the targeted collision
avoidance applications.

Our approach is to use data fusion techniques such as
Kalman 
lter that is widely used to enhance the vehicle
location obtained from GPS receivers [11, 26, 27]. Unlike
such techniques which integrate the readings from both GPS
receivers and the vehicle’s inertial navigation system (INS)
to form an estimate of the vehicle location, we use di�erent
types of Kalman 
lters to either enhance the �-location
obtained from our single RSU ranging approach, �, and the�-location obtained from INS or obtain the �-location and
the �-location in the region in which the RSU-based ranging
is not applicable.

For vehicles moving outside the threshold area, the �-
location, �, is linearly related to ��,RSU, and, hence, it can
be directly fused with the �-location of the INS. 	is is not
the case for the �-location. Unfortunately, we have only one
input for �-location which is obtained from INS and do
not have other sources for �-location data that is linearly
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Figure 5: An illustration of the various fusion techniques used along
the road. Vehicles 	1 and 	2 are inside and outside the threshold
area, respectively.

related to �. Hence, we cannot use two-dimensional Kalman

lter to simultaneously enhance the �-location and get the �-
location. 	erefore, we use a one-dimensional Kalman 
lter
to re
ne the �-location and rely only on the INS information
to update the �-location when ��,RSU > threshold.

For vehicles moving inside the threshold area around
the RSU, where there is no linear relation between ��,RSU
and the vehicle location, we use a nonlinear version of the
Kalman 
lter (extended Kalman 
lter) which linearizes the
measurement��,RSU around the current estimate. In this case,
the range ��,RSU is considered as one input of the extended
Kalman 
lter instead of �-location � and INS is the other
input of the extended Kalman 
lter. Note that the perfor-
mance of the extended Kalman 
lter results in slightly worse
accuracy in the �-location compared to the one-dimensional
Kalman 
lter since the Kalman 
lter is an optimal esti-
mator for linear measurement and process equations [22].
Figure 5 summaries the various localization techniques used
inside and outside threshold area. 	e threshold—depicted
in Figure 5—is computed using the target localization error
as will be shown in Section 5. We next brie�y overview the
fundamentals of Kalman 
lters and then explain in detail how
they are used in the proposed localization approach.

4.3.1. Kalman and Extended Kalman Filters Preliminaries.
In the proposed localization approach, the Kalman and
extended Kalman 
lters use a vehicle’s motion model—
obtained from INS—and the sequential measurement—
obtained from RSU-based localization technique—to form
an estimate of the vehicle location that is better than the
estimate obtained by using only onemeasurement (either INS
or the proposed RSU-based localization) alone. 	e motion
model of the vehicle obtained from INS, also referred to as
the system process model, is expressed as follows:

�
�
= ��
�−1

+ ���−1 + ��−1. (7)

N

Xk+1

�

Xk

Ucos�

Figure 6: INS vehicle kinematics.

	e process equation in (7) represents the estimation of the
current vehicle location �

�
based on the previous location�

�−1
using the INS, where �

�
is the 2 × 1 vector that represents

the vehicle location (�, �) at time ��. 	e process noise ��
is a random vector which is modeled as Gaussian random
variable with zero mean and covariance matrices �; that is,� ∼ �(0, �). �� is a 2 × 1 vector that represents vehicle
velocity components in the �- and �-directions which is
calculated as

�� = V[cos (�)
sin (�)] , (8)

where V is the vehicle speed and � is the angle between the�-axis and the vehicle motion direction as shown in Figure 6.
	e process equation given by (7) applies a state transition
model, re�ected by the � matrix, to the previous state �

�−1
and applies a control-input model, re�ected by the � matrix,
to the control vector ��. 	e � and �matrices are de
ned as
follows:

� = [1 00 1] ,
� = [� 00 �] ,

(9)

where � is the time interval.
On the other hand, the measurement model that is

derived from the INS data can be expressed as

�̂−
�
= ��̂
�−1

+ ���, (10)

where �̂−
�
is the a priori state estimate of the vehicle location

and �̂
�
is the a posteriori state estimate of the vehicle

location. For the one-dimensional Kalman 
lter, we use
the second component of �̂−

�
which represents the vehicle’s



8 International Journal of Distributed Sensor Networks

�-location obtained from INS. On the other hand, for
the two-dimensional extended Kalman 
lter, we use the two
components of INS �̂−

�
which re�ect both the �- and �-

locations of the vehicle. 	e Kalman and extended Kalman

lters integrate the system process and measurement models
to result in a more accurate estimate of the vehicle location.

4.3.2. One-Dimensional Kalman Filter for Locating Distant
Vehicles. As explained earlier, we divide the localization of
vehicles into two regions: one in which ��,RSU is greater than
a certain threshold and another when ��,RSU is below that
threshold. Here, we obtain the vehicle location for distant
vehicles when��,RSU is greater than the threshold, and, hence,� is linearly related to the actual �-location of the vehicle.
In order to get an accurate vehicle location that 
ts collision
warning system applications, the initially obtained�-location
from the second stage of the framework � is enhanced using
a one-dimensional Kalman 
lter, and we only rely on the INS
data to determine the �-location of the vehicle.

For the process model of the one-dimensional Kalman

lter, the vehicle uses its�-location obtained from INS, which
is the second element of the vector �̂−

�
, that is, �̂−

�
(2, 1). In

addition, the one-dimensional Kalman 
lter uses the vehicle’s
estimate of its �-location obtained via the second stage of
the framework ��. However, the estimate �� is prone to
measurement noise resulting from the range-based localiza-
tion technique used in our single RSU-based localization
technique. Such a measurement noise consists of the noise
in the estimation of the range between the vehicle and the
RSU, ��, and the curvature noise  � that re�ects the lane-level
ambiguity inherited from approximations assumed in (1).	e
curvature error is negligible compared to the noise in the
range distance estimation ��.	e e�ect of the curvature error
is investigated in Section 5. To capture such measurement
noise components, we use

!� = �� + "� (11)

as the other estimate of the vehicle’s �-location fed to the one-
dimensional Kalman 
lter, where �� is the estimated vehicle
location using our RSU-based approach at time ��, and "� is a
random vector which is considered to be Gaussian with zero
mean and variance #2� to model the measurement noise; that

is, " ∼ �(0, #2� ), where
"� = �� +  �. (12)

Two distinct sets of equations describe the operation of
the Kalman 
lter: time update (prediction) andmeasurement
update (correction) equations. Both equation sets are applied
at the $th iteration when the vehicle is moving outside the
threshold area where ��,RSU > threshold. 	e time update
(prediction) equations of the proposed one-dimensional
Kalman 
lter are given by

�̂−� = �̂−
�
(2, 1) ,

%−� = %�−1 + &. (13)

Meanwhile, the corresponding measurement update
(correction) equations are given by

'� = %−�%−� + #2� ,
�̂� = �̂−� + '� (!� − �̂−� ) ,
%� = (1 − '�) %−� ,

(14)

where �̂−� is the a priori state estimate of the vehicle location,�̂� is the a priori state estimate of the vehicle location,'� is the
Kalman gain, %� is the a posteriori estimate error variance,
and %−� is the a posteriori estimate error variance. Since the
Kalman 
lter at hand is one-dimensional, all the entities in
the above model, such as � and � in (7) and (10), are scalars.

We use INS to get the current �-location of the vehicle
related to the previous one which is the 
rst component of�̂−
�
, obtained from (10). 	e 
nal vehicle location outside the

threshold area where ��,RSU > threshold is given by

�̂
�
= [�̂−� (1, 1)�̂� ] . (15)

Recall that vehicles always enter the road through entry
points as shown in our system model depicted in Figure 1.
Hence, we set the initial estimate at $ = 0 of the two
components of �̂

0
to the center of the 
rst lane and 0,

respectively, and set %0 to 0.
It is worth mentioning that using the inertial navigation

system alone to get �-location will result in an accumulation
of the positioning error with time. However, this is the only
way we can get information about the �-location of the
vehicle given that distant vehicle localization in the second
stage of the framework is based on the assumption that the
road width is too small compared to its length.

4.3.3. Two-Dimensional Extended Kalman Filter for Locating
Nearby Vehicles. Next, we estimate the vehicle location using
two-dimensional extended Kalman 
lter in the region in
which ��,RSU is below the threshold where the Kalman 
lter
can no longer be used due to the nonlinear relationship
between ��,RSU and the vehicle location. Similar to the
Kalman 
lter, the extended Kalman 
lter integrates measure-
ment and processmodels. Instead of using the linear output �
in the measurement model given in (11), we use the nonlinear
estimation of the range between vehicle and the RSU, ��,RSU,
inside the threshold area. Hence, !�—which represents the
estimated range between the vehicle and roadside unit—is
expressed inside the threshold area as follows:

!� = ℎ (�) + ��, (16)

where ℎ(⋅) is a nonlinear function of the two components of
the vehicle locations �, �, and � that is used to compute the

predicted single-value measurement from the predicted state� as

ℎ (�) = √(� − �RSU)2 + (� − �RSU)2, (17)
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where (�, �) is the vehicle location. 	e measurement noise�� ∼ �(0, #2� ) in (16) comes from the single RSU-based
localization technique proposed in the second stage of the
framework. Unlike the case of ��,RSU > threshold, �� here
only represents the noise in the estimation of the range
between the vehicle and the RSU, ��,RSU.

Unlike the system process in the one-dimensional
Kalman 
lter which only uses the second component of�̂−
�
: (�̂−
�
(2)), we use the two components of �̂−

�
in the two-

dimensional Kalman to represent the estimation of complete
vehicle location using the INS. 	e time update (prediction)
and measurement update (correction) equations applied at
the $th iteration when ��,RSU < threshold are given by

6−� = �6�−1�� + �, (18)

'
�
= 6−� ℎ� (ℎ�6−� ℎ�� + #2� )−1 , (19)

�̂
�
= �̂−
�
+ '
�
(!� − ℎ (�̂−

�
)) , (20)

6� = (9 − '
�
ℎ�)6−� , (21)

respectively, where �̂−
�
is the 2 × 1 a priori state estimate of the

vehicle location, �̂
�
is the 2 × 1 a posteriori state estimate of

the vehicle location, '
�
describes the 2 × 1 Kalman gain, 6� is

the 2 × 2 a posteriori estimate error covariance matrix, 6−� is
the 2 × 2 a priori estimate error covariance matrix, � is the
2 × 2 covariance matrix of the process noise, 9 is the 2 × 2
unit matrix, and ℎ� is the 1 × 2 Jacobian vector of the partial
derivatives of ℎ(�)with respect to � that is evaluated with the

current predicted state at each iteration $; that is,
ℎ� = :ℎ (�):�

;;;;;;;;;;;
̂−
�

= [:ℎ (�):� :ℎ (�):� ]

̂−
�

. (22)

4.4. Road/Lane Boundary Adjustment Stage. 	e erroneous
estimate of the vehicle’s �-location obtained in the above
stage of the framework is prone to fall outside the physical
boundaries of the road. 	is is unacceptable for the targeted
collision avoidance systems. In order to ensure that the
output �̂� falls within the road boundaries, the output of the
vehicle localization stage is adjusted according to the road
boundaries stage. 	is 
nal stage uses the road geometry
information loaded from the periodic beacons broadcasted
by the RSUs. 	e road boundary adjustment stage 
xes the�-location of each vehicle to be

Δ�̃� ≤ C, (23)

where Δ = [ 1−1 ] and C depends on the geometry of the
highway. Typically, C is set to be equal to [�0 ], where �
is the width of the road, such that the �-location of the
vehicles is limited to the road boundaries that are at 0 and�. However, this typical value of C does not guarantee the
lane-level accuracy required for collision avoidance systems.
	erefore, we set the C to the lane boundaries instead of

the road boundaries which signi
cantly improves the accu-
racy in estimating the �-location of the vehicles as will be
shown in Section 5. Recall that the road geometry informa-
tion broadcasted by the RSU includes the number of lanes
per road as well as the road width, and, hence, the lane width
information is available to the vehicles.

Let � � denote the boundary of the �th lane and �0 is equal
to zero. If the vehicle is moving in the �th lane, �̃� must lie
between � �−1 and � �; that is,

� �−1 < �̃� ≤ � �. (24)

Substitutingwith� �−1 and� � for the values ofC in (23), we
obtain a set of inequalities that are considered as an active set
problem where only set of the constraints is active at a time.
We use both moving average and exponentially weighted
moving techniques to estimate the current lane. By knowing
the current lane, the estimated �-location a�er applying the
road boundary, �̃�, is checked against the lane boundary.	e
road and lane constraints can be summarized as follows:

�̃� =
{{{{{{{{{

0, if �̂� ≤ 0,
�, if �̂� ≥ �,
� �−1 ≤ �̃� ≤ � �, if current lane = Lane �.

(25)

In order to determine the current lane at time instant $,
we 
rst calculate the moving average, MA�, of the K prior
observations of �̃�; that is,

MA� = �−1∑
�=�−


�̃�K − 1. (26)

Second, we use the exponential weighted moving average
to smooth out short-term �uctuations and prevent wrong
lane determination. We calculate the exponential weighted
moving average, EMA�, of the K prior observations includ-
ing the current observation as follows:

EMA� = MEMA�−1 + (1 − M) �̃�, (27)

where EMA�−1 is the a priori exponentially weighted moving
average and 0 < M ≤ 1 is the weighting factor. 	en,
we compare the di�erence between EMA�−1 and MA� to
a certain value called the change-lane-threshold (CLT) to
decide whether the vehicle has changed its lane or not.

4.5. Framework Integration. By the end of the aforemen-
tioned four stages of the proposed framework, each vehicle
has an accurate estimate of its own location only. In order
to share the vehicle location of neighbor vehicles to be used
for the targeted collision avoidance applications, we assume
that vehicleswill be usingV2Vcommunications to share their
location, travel direction, and speed with the nearby vehicles.
	is will allow the collision avoidance system to take the
appropriate action(s) to avoid a large amount of crashes and
provide the vehicle driver with warnings to avoid rear-end,
lane change, and intersection crashes.
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Our proposed framework can be summarized as follows.

Step 1. EachRSUbroadcasts beacons at periodic time instants
which contain the ID of the RSU, the location of the RSU, and
the road geometry information.

Step 2. Each vehicle determines its driving direction which
can be either north (N) or south (S) every time the vehicle
enters a new road, as illustrated by Algorithm 1.

Step 3. Each vehicle determines its range to the RSU ��,RSU
using the proposed two-way TOA ranging technique.

Step 4. Each vehicle uses the range ��,RSU estimated in Step 3
to get the �-location � when ��,RSU > threshold, where there
is a linear relationship between the �-location and the range��,RSU.
Step 5. Each vehicle uses one-dimensional Kalman 
lter to
get a re
ned �-location �̂� when the ��,RSU > threshold and
uses INS to obtain/update �-location �̂�.
Step 6. Each vehicle uses two-dimensional extended Kalman

lter when ��,RSU < threshold to get both the �- and �-
locations. We reinitialize �-location in the threshold area
when the vehicle is exactly at the �-location of the RSU.

Step 7. In order to ensure that the output �̂
�
from Step 6 is

within the road/lane boundaries, �̂
�
is adjusted through the

road boundary adjustment stage.

Step 8. Each vehicle broadcasts its position calculated from
Step 7 to its neighbors using V2V communications.

Step 9. Periodically repeat the above steps.

5. Simulation Results

We evaluate the performance of the proposed framework
using MATLAB simulations. We assume that vehicles move
on a dual carriageway highway; each direction has three
lanes, separated by a central reservation. 	e road is straight
line. 	e length of the road is 3 km, and 3 RSUs are used;
each has a 500m communication range: south RSU (placed
at � = 500m), north RSU (placed at � = 1500m), and
middle RSU (placed at � = 2500m). 	e locations of
the RSUs are depicted by the vertical dashed lines in all

gures. 	e width of each lane is assumed to be 3m. PHY
and MAC layer parameters are con
gured according to the
IEEE 802.11p protocol [28]. Table 1 summarizes the values
of the used 802.11p parameters and the other simulation
parameters.	eRSU broadcasts periodic beacons containing
the ID of the RSU, the location of the RSU, and the road
geometry every 100msec. To reduce the simulations time,
we assume that the RSUs broadcast periodic beacons every
one second without loss of generality. 	e mobility model
of the vehicles is based on the modi
ed random waypoint
model [29]. According to the measurements presented in
[24], two-way TOA ranging techniques are susceptible to

Table 1: Summary of simulation parameters.

Communication range of each RSU 500m

Number of lanes per direction 3

Packet size 300 bytes

Bit rate 3Mbps

Beacon broadcast rate 1 per sec

SIFS 32 Osec
AIFS 50Osec
Slot time 9 Osec
(
�

min
, 
�

max
) (15, 1023)

errors due to channel �uctuations, hardware, and other
inaccuracies. Hence, we follow [24] and include the two-
way TOAmeasurement noise modeled as an additive normal
distribution with zero mean and 3m standard deviation.
	e standard deviation of the di�erent measurement noise
components of the INS system is set to 0.5m as reported
in [12]. 	e parameters used in determining the lane-level
vehicle location, M,K, and change-lane-threshold, CLT, were
evaluated to be 0.1, 4, and 1.9, respectively, to get the best
estimation of the lane-level vehicle location.

We use the root-mean-square error (RMSE) as ourmetric
to evaluate the performance of our proposed framework.
RMSE is de
ned as

RMSE = √ �∑
�=1

(�actual,�, �actual,�)2 + (�est,�, �est,�)2� , (28)

where (�actual,�, �actual,�) is the real vehicle location at time
instant �, (�est,�, �est,�) is the estimated vehicle location at time
instant �, and � is the number of time instants. 	e reported
results are the average RMSE of 1000 simulation runs to get a
stable estimate of the performance.

5.1. Impact of the Curvature Error. In order to investigate
the curvature error  � inherited from the approximations
assumed in (1), we 
rst simulate the single RSU-based
localization technique of the proposed framework given the
curvature error as the only type of error. 	is allows us to
determine the threshold regions within which the proposed
ranging technique can/cannot be used to get the �-location
of the vehicle. We consider a single vehicle moving at 20m/s
in the three lanes one at a time. Figure 7 shows that the
localization error is negligible if the vehicle is away from
the RSU and it increases as vehicles move towards the
RSU. Hence, the claim that the curvature error is negligible
compared to the error �� in estimating the range between
vehicles and RSU ��,RSU outside the threshold area is valid.

In order to determine the value of the threshold to
be used, we simulate our proposed framework for vehicles
moving at 20m/sec in a road with 3 km length and take
the average RMSE of 20 di�erent mobility patterns. 	e
simulation results showed that the best threshold in which
we switch from using our ranging technique with Kalman

lter to using extendedKalman 
lter for only INS data is 70m
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Figure 7: 	e impact of curvature error.

at each side of the RSU which corresponds to the minimum
RMSE. 	is threshold value is used for the rest of the paper.

5.2. Localization Accuracy. As we discussed earlier in
Section 2, some localization techniques only obtain the vehi-
cle location along the road length (�-dimension), such as
the one-RSU-based [9] and the RSU-assisted [8] localization
techniques, and others obtain the vehicle location in both
the �- and �-dimensions, such as GPS-standalone, faulty-
free [7], and GPS/INS integration techniques. Hence, we
divide our comparisons into two parts: one that evaluates the
accuracy of the vehicle location in the �-dimension only and
the other that evaluates the vehicle location in both �- and�-dimensions.

5.2.1. Localization Accuracy along the Road Length. Here, we
evaluate the localization accuracy of �̂� obtained from our
proposed RSU/INS integration. We simulate our proposed
framework on a vehicle moving at 20m/sec along the cov-
erage area of only one RSU as shown in Figure 8. We assume
that the standard deviation of the measurement noise �� is#� = 3m, which is consistent with the range measurement
error which varies from 0.5 to 3.0m [11]. We compare the�-location of our framework against the �-location obtained
by other techniques such as the one-RSU-based [9] and the
RSU-assisted localization [8] techniques.

Recall that the one-RSU-based localization technique
only uses dead reckoning in a limited distance around the
RSU while RSU-assisted localization uses dead reckoning, all
the way a�er knowing the initial position, obtained fromV2R
communication and RSU’s location. Hence, the localization
error unboundedly increases with travel distance in the RSU-
assisted localization technique [8] (which uses one RSU and
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Figure 8: Accuracy of �-location �̂� of our framework.

uses full dead reckoning all theway).Meanwhile, the localiza-
tion error of the one-RSU-based technique [9] (which uses
one RSU and uses partial dead reckoning) increases when
the vehicles move inside the threshold area around the RSU
which is mainly due to the use of dead reckoning only inside
the threshold area. On the other hand, the localization error
of �-location �̂� obtained from our RSU/INS framework
increases when the vehicles move inside the threshold area
around the RSU which is mainly due to the use of extended
Kalman 
lter inside the threshold area instead of Kalman

lter. As we explained earlier, the linear relationship of the
measurement equation is no longer valid inside the threshold
area. However, the RMSE of the�-location �̂� of the proposed
framework is only 1.2 meters, which is approximately 40%
and 26.67% of the RMSE of the one-RSU-based localization
and the RSU-assisted localization, respectively. Hence, the
localization accuracy improvement of the �-location of the
proposed framework is 60% and 73.3%, respectively.

5.2.2. Localization Accuracy along Both Road Dimensions. In
order to estimate the localization accuracy of our proposed
framework for the two-dimensions � and � of the vehicle
location �̃�, we simulate our proposed framework on a
vehicle moving at 20m/sec. Also, we compare our framework
against techniques that provide a two-dimensional vehicle
location such as the GPS-standalone, GPS/INS integration,
and faulty-free [7] (which uses two RSUs, one on a di�erent
side of the road) techniques. We follow [11] in modeling
the measurement noise of the GPS receiver via a Gaussian
distributionwith zeromean and 6meters’ standard deviation.
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Figure 9: Accuracy of vehicle-location in both �- and �-
dimensions.

As shown in Figure 9, the average RMSE of our proposed
framework is 1.82m compared to the average RMSE of
GPS/INS localization and GPS-standalone technique which
are 4m and 6m, respectively. Hence, our proposed frame-
work improves the vehicle location by 54.5% and 69.67%,
respectively. Figure 9 also shows that even though our
approach uses only one RSU for localization, it provides
better accuracy compared to the faulty-free localization tech-
nique which uses two RSUs. More speci
cally, our proposed
RSU/INS framework improves the vehicle location by 39.33%
compared to RMSE of the faulty-free localization technique.

It should be noted that the accuracy of the proposed
framework depends on the regular deployment of the RSUs
on one side of the road. If one RSU is temporarily not
available, for example, due to failure, the vehicle will use only
INS to update its location. In such a scenario, the achieved
localization accuracy might be not robust enough to be used
for collision avoidance applications but can be used by less
sensitive applications such as routing, Internet access, and
data dissemination protocols.

5.3. Impact of Measurement Errors. Next, we investigate the
impact of the standard deviation of the range measurement
error #�—which typically varies from 0.5 to 3.0m [11]—
on the localization accuracy of our proposed framework.
We simulate our proposed framework on vehicles moving
at various mobility patterns through 3 km road length and
take the average RMSE for all mobility patterns. As shown
in Figure 10, the average RMSE of �̂� decreases from 1.23m
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Figure 10: 	e impact of the range measurement error on �̂�, �̃�,
and �̃�.

to 0.51m as #� decreases from 3 to 0.5m. Meanwhile, the
average RMSE of two-dimensional vehicle location �̃� in both�- and �-dimensions decreases from 2.13m to 1.68m as #�
decreases from 3 to 0.5m. As shown in Figure 10, the accu-
racy of estimating the vehicle’s �-location of the proposed
framework is signi
cantly better than estimating the vehicle’s�-location because of the accumulation of error in the INS
measurements. Recall that the proposed framework’s only
source of �-dimension data is through INS unlike the �-
location that integrates the range estimate ��,RSU obtained in
the second stage of the framework with the INS data.

5.4. Performance under Di�erent Mobility Patterns. Here, we
illustrate the performance of the proposed framework for
di�erent mobility patterns. First, we consider three vehicles
moving on 3 km single carriageway with three-lane highway
with three RSUs installed 1 km apart. Each vehicle stays in
its lane for the entire road without changing lanes. One
vehicle is traveling in the 
rst lane (� = 1.5), the second
vehicle is traveling in the second lane (� = 4.5), and
the last vehicle is traveling in the third lane (� = 7.5).
Figure 11 depicts the estimated trajectory taken by the average
of �̃� for �-dimension only. 	e localization error of �-
location �̃� for vehicles moving in the outer lanes slightly
increases as the vehicle keeps traveling in the same lane
due to the accumulation of INS error—unlike the middle
lane for which the error is negligible. 	is is due to the fact
that the road boundary constraint (used alongside the lane-
level constraints) is symmetric for the middle lane while it
is not symmetric for the outer lanes. Unlike the lane-level
constraints, the road boundary constraint always pulls �̃�
towards the center of the road when estimation errors occur,
regardless of which lane the car is traveling in. Next, we
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Figure 11: Real and estimated trajectories of the �-location for three
vehicles moving in the 
rst, second, and third lanes a�er applying
the road and lane boundaries.

consider a more general mobility pattern in which the con-
sidered vehicle changes its lane frequently. Figure 12 shows
the instantaneous performance of the proposed framework
in this scenario. Figure 12(a) depicts the estimated trajectory
of �̃� alongside the real vehicle location. Our framework
is capable of closely following the vehicle’s real location.
Figures 12(b) and 12(c) show that the localization error of
our framework signi
cantly outperforms all other techniques
which only estimate the �-location (Figure 12(b)) or esti-
mate the complete vehicle coordinates (Figure 12(c)). More
speci
cally, the gain in reducing in the localization error of
our approach is 60% and 73.3% compared to the one-RSU-
based and RSU-assisted approaches, respectively. Likewise,
the gain in reducing in the localization error of our approach
is 65% and 47.5% compared to GPS andGPS/INS approaches,
respectively. We considered di�erent other random patterns
and the gains of the proposed framework slightly vary around
the reported result in Figure 12.We omit such results to avoid
redundancies.

5.5. Impact of Tra�c Density. Finally, we investigate the
impact of changing the tra�c density on our proposed frame-
work. Unlike GPS-based techniques, which use messages
transmitted from GPS-satellites, our proposed framework
uses RTS/CTS handshakemessageswith RSUs to get the vehi-
cles’ locations. 	ese RTS/CTS handshake messages cause
time delay to get the vehicle location a�er receiving beacons
from the RSU which is mostly caused by the random backo�
mechanism. As the tra�c density increases, more vehicles are
to exchange RTS/CTS messages with the RSU, and, hence,
more collisions are to be encountered. Consequently, the
vehicles will wait more time before communicating with the
RSU as the tra�c density increases. We measure such an
increase in the experienced localization delay for di�erent
tra�c densities. As shown in Figure 13, the average delay
increases almost linearly from 1.4msec to 31msec as the
number of vehicles increases from 1 vehicle/lane/km to 20
vehicles/lane/km. As we mentioned earlier, RSUs broadcast
beacons every 100msec.Hence, all vehicles—even under high

density scenario—can update their locations with a maxi-
mum latency of 100msec. 	is means that our framework
does not only achieve high localization accuracy but also
satis
es the latency requirement (less than 100ms) in VANET
DSRC safety messages.

6. Conclusions

In this paper, we have proposed a GPS-free vehicle
localization framework that only relies on RSUs deployed
only on one side of the road. Hence, our proposed framework
decreases the required number of RSUs and hence the cost,
compared to existing localization schemeswhich usemultiple
RSUs for vehicle localization. 	e proposed framework
integrates the RSU-based localization information with the
local inertial navigation system information via di�erent
Kalman 
lters to signi
cantly improve the accuracy of
vehicle localization. Our simulation results show that the
accuracy of our GPS-free localization framework does not
only signi
cantly outperform the localization accuracy of
GPS-based localization techniques but also outperform the
existing GPS-free localization approaches—despite the use
of a single RSU for localization. Consequently, our proposed
GPS-free localization framework is most suitable for smart
road applications that require high localization accuracy
such as collision avoidance applications.

Notations

�, �: Control metrics
: Speed of light
CLT: Change-lane-threshold
EMA�: Exponential weighted moving average �: Curvature noise which re�ects the

lane-level ambiguity'�: Kalman gain used in one-dimensional
Kalman 
lter'

�
: 2 × 1 Kalman gain used in

two-dimensional extended Kalman 
lterℎ(⋅): A nonlinear function used to compute the
predicted single-value measurement,��,RSUℎ�: 1 × 2 Jacobian vector of the partial
derivatives of ℎ(�)�: Length of the road�RSU: �-coordinate of the RSU� � and � �−1: 	e boundaries of lane �

MA�: Moving averageK: Number of prior observations of �̃�
N: North road driving direction��: Noise coming from range estimation,��,RSU�: Angle between the �-axis and the vehicle

motion direction%�: A posteriori estimate error variance%−� : A priori estimate error variance6�: 2 × 2 a posteriori estimate error
covariance matrix
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(a) Real and estimated trajectory of �-location
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Figure 12: 	e vehicle localization accuracy of a vehicle moving in a random pattern.



International Journal of Distributed Sensor Networks 15

0 5 10 15 20
0

5

10

15

20

25

30

35

Number of vehicles/lane/km

A
ve

ra
ge

 d
el

ay
 (

m
s)

Figure 13: 	e impact of tra�c density.

6−� : 2 × 2 a priori estimate error covariance
matrix�: 2 × 2 covariancematrix of the process noise��,RSU: Estimated range between vehicle and RSU

S: South road driving direction�: Time interval�: Time delay experienced at the RSU��: 2 × 1 vector that represents vehicle velocity
components in the �- and �-directions

V: Vehicle speed�: Width of the road�: Process noise coming from using INS��: Estimated vehicle location using our one-
RSU-based approach at time ���̂�: A posteriori state estimate of the vehicle
location in �-dimension�̂−� : A priori state estimate of the vehicle loca-
tion �-dimension!�: Measurement"�: Measurement noise�̂−

�
: 2 × 1 a priori state estimate of the vehicle

location�̂
�
: 2 × 1 a posteriori state estimate of the

vehicle location.
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