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Abstract

Genetic variation at the Human Leucocyte Antigen (HLA) genes is associated with many

autoimmune and infectious disease phenotypes, is an important element of the immunolog-

ical distinction between self and non-self, and shapes immune epitope repertoires. Deter-

mining the allelic state of the HLA genes (HLA typing) as a by-product of standard whole-

genome sequencing data would therefore be highly desirable and enable the immunoge-

netic characterization of samples in currently ongoing population sequencing projects.

Extensive hyperpolymorphism and sequence similarity between the HLA genes, however,

pose problems for accurate read mapping and make HLA type inference from whole-

genome sequencing data a challenging problem. We describe how to address these chal-

lenges in a Population Reference Graph (PRG) framework. First, we construct a PRG for

46 (mostly HLA) genes and pseudogenes, their genomic context and their characterized

sequence variants, integrating a database of over 10,000 known allele sequences. Second,

we present a sequence-to-PRG paired-end read mapping algorithm that enables accurate

read mapping for the HLA genes. Third, we infer the most likely pair of underlying alleles at

G group resolution from the IMGT/HLA database at each locus, employing a simple likeli-

hood framework. We show that HLA*PRG, our algorithm, outperforms existing methods by

a wide margin. We evaluate HLA*PRG on six classical class I and class II HLA genes

(HLA-A, -B, -C, -DQA1, -DQB1, -DRB1) and on a set of 14 samples (3 samples with 2 x

100bp, 11 samples with 2 x 250bp Illumina HiSeq data). Of 158 alleles tested, we correctly

infer 157 alleles (99.4%). We also identify and re-type two erroneous alleles in the original

validation data. We conclude that HLA*PRG for the first time achieves accuracies compa-

rable to gold-standard reference methods from standard whole-genome sequencing data,

though high computational demands (currently ~30–250 CPU hours per sample) remain a

significant challenge to practical application.
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Author Summary

Determining an individual’s HLA type (the sequence of the exons of the HLA genes) is

important in many areas of biomedical research. For example, HLA types shape immune

epitope repertoires, which are relevant in cancer immunotherapy, and influence autoim-

mune and infectious disease risk. Whole-genome sequencing data, currently being gener-

ated for hundreds of thousands of individuals, contains the information necessary for

HLA typing–but inferring accurate HLA types from these is a challenging problem. First,

the HLA genes are the most polymorphic genes in the human genome; second, these genes

and their variant alleles exhibit high degrees of sequence similarity (due to a shared evolu-

tionary origin). This makes it difficult to establish which specificHLA gene a given

observed sequencing read derives from.We show that this problem can be addressed

using a Population Reference Graph (PRG): for each gene, the PRG contains not only the

reference sequence but also variant alleles, thus enabling, using a novel sequence-to-graph

mapping algorithm, the accurate mapping of reads to HLA genes.We also show that

HLA�PRG, the algorithm implementing our approach, achieves–basedon standard

whole-genome sequencing data–accuracies comparable to those of specializedgold-stan-

dard methods. HLA�PRG is open source and freely available.

Introduction

Genetic variation at HLA loci, both classical and non-classical, is associated with many medical

phenotypes including risk of autoimmune [1–3] and infectious [4] disease, adverse drug reac-

tions [5, 6], success of tissue and organ transplants [7], and, via epitope presentation prefer-

ences, the success of cancer immunotherapy [8]. The current gold standard for high resolution

typing of HLA alleles, sequence-based typing (SBT), uses Sanger sequencing or targeted ampli-

fication of the HLA genes followed by next-generation sequencing.With the growth of high

throughput genomic technologies,methods for inferringHLA genotype have been developed

that use SNP genotyping [9–12] or next-generation sequencing [13–19]. These approaches, to

date, are either limited to a subset of HLA loci, require targeted capture / amplification, or do

not achieve the same degree of accuracy as SBT.

The main challenge in characterising the HLA genes from next-generation sequencing data

is the correct alignment of sequencing reads. Multiple factors influence accuracy, including the

sheer sequence and structural diversity of the region, the presence of multiple paralogous genes

(including pseudogenes) and rare, but important, gene conversion events that generate mosaic

allelic structures. The high degree of sequence similarity between alleles in certain groups of

loci and its non-random spatial structure are illustrated in S1 Fig and S2 Fig.

To address these challenges, we have previously introduced structures to represent known

genomic variation called population reference graphs (PRGs) and demonstrated their value in

characterising variation across the major histocompatibility complex (MHC) and particularly

within the HLA class II gene region [20]. Briefly, a PRG is a directed graph in which alternative

alleles, insertions and deletions are represented as alternative paths through the graph, and in

which orthologous and identical regions are collapsed locally to model potential recombina-

tion. Previously, we demonstrated that a prototype of this approach could identify the nucleo-

tide-level variants at classical HLA alleles with high accuracy. However, we did not address the

problem of inferring the alleles present at the gene level [20].
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We set out to extend the PRG approach to provide accurate HLA typing at G group resolu-

tion (see below) using high coverage whole-genome sequencing data, such as is being generated

by large-scale genomics projects. This study presents novel developments in 3 main areas:

First, we build a gene-only PRG that combines genomic haplotypes (spanning the complete

MHC), gene haplotypes and exon sequences for 46 (mostly HLA) genes (S1 Table). In our pre-

vious work we utilized a whole-MHCPRG and didn’t attempt to integrate exon sequences. A

gene-only PRG is smaller and therefore computationally advantageous, and integration of the

exon sequences gives a more comprehensive model of genetic variation at the HLA loci.

Second, we present an algorithm to map short (e.g. 100 or 250bp) paired-end next-genera-

tion sequencing reads directly to the PRG.We had previously [20] described an approach for

long non-paired reads. The short-read algorithmwe present here follows a classical seed-and-

extend paradigm; that is, it identifies areas of exact identity between the graph and the read to

be mapped, and tries to extend these using dynamic programming, allowing for mismatches,

insertions and deletions. Each alignment follows a possible walk through the PRG. Impor-

tantly, because the PRG encodes information on sequence variation and because the mapping

algorithm utilizes this information, it enables accurate alignment in the presence of homolo-

gous variants and a more precise quantification of mapping ambiguity. The short read map-

ping algorithm is relatively slow and benefits from our decision to limit ourselves to a gene-

only PRG. See Fig 1 for a schematic depiction of graph topology and read mapping.

Third, conditional on reads mapped to the PRG and a database of possible underlying hap-

lotypes (i.e., the HLA allele sequences), we infer the most likely pair of underlying haplotypes

and a quality score using a simple likelihood framework.

We implement our approach in an open source package calledHLA�PRG and show in two

validation experiments that the level of achieved accuracy is comparable to SBT. Allelic vari-

ants at HLA genes can be typed at different degrees of resolution; low resolution (“1-field”, for-

merly “2-digit”) types specify serological activity; intermediate resolution (“2-field”; formerly

“4-digit”) HLA types specify the complete primary sequence of the HLA proteins and high-res-

olution (“3-field”; formerly “6-digit”) types determine the full exonic sequence including syn-

onymous variants. Higher levels of resolution include non-coding variation. SBT is typically

carried out at “G group” resolution, in which only the sequences of the exons encoding the pep-

tide binding groove are considered: exons 2 and 3 for HLA class I genes and exon 2 for HLA

class II genes. In most applications of typing, a set of 6–8 loci are typed (Class I:HLA-A, -B, -C,

Class II:HLA-DQA1, -DQB1, -DRB1, -DPA1 and -DPB1), though there exist over 30 HLA

genes and pseudogenes.

Like SBT, HLA�PRG reports HLA types at G group resolution. Lower-resolution types are

only used when benchmarking against other HLA type inference algorithms that fall back to

these in cases of ambiguity.

Results

To assess the accuracy of HLA�PRG, we use two data sets with available high coverage

sequencing data and independent SBT-based HLA type information for 6 classical class I and

class II loci (Table 1).

First, we analyse NA12878, NA12891 and NA12892 from the Illumina Platinum Genomes

Project, sequenced to 50 - 55x with a PCR-free 2 x 100bp protocol. We correctly infer all 36

HLA alleles.

Second, we analyse 11 samples from the 1000 Genomes Project, sequenced to 28 – 68x with

a PCR-free 2 x 250bp protocol. In terms of diversity, the 11 samples represent 7 ethnicities (S2

Table); a wide range of HLA types, e.g. 9 different 1-field groups for HLA-DRB1 (S2 Table);
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and heterozygous as well as homozygous loci (S3 Table). Initial analysis identifies three dis-

crepancies (S1 Text), though on re-typing these individuals two of three are the result of initial

errors in the validation data. The remaining inconsistency, (HLA-DRB1�16:02:01 incorrectly

typed asHLA-DRB1�16:23) is likely caused by HLA-DRB5 sequences incorrectly aligned to

HLA-DRB1 (IMGT/HLA, the HLA sequence database, currently doesn’t contain genomic

sequences for HLA-DRB5 and the representation of this gene in the PRG therefore remains

incomplete).

We compare the performance of HLA�PRG with PHLAT [14] and HLAreporter [13], two

state-of-the-art algorithms that support HLA class I and class II (Table 1). For the Platinum

samples, we find that PHLAT also correctly infers all 36 alleles, whereas HLAreporter only

reports 16 alleles (of which 14 are correct). For the 1000 Genomes Samples, we find that

HLA�PRG outperforms both programs by a wide margin. Mean accuracy at 2-field resolution

across all loci is 75% for PHLAT and 80% for HLAreporter, and HLAreporter achieves a call

rate of only 38%. To confirm that the observeddifferences in performance are not merely

driven by different approaches to encoding ambiguous alleles, we repeat the 1000 Genomes

validation experiment at 1-field resolution, the lowest and most ambiguous level of HLA

Fig 1. Schematic representation of HLA type inference using HLA*PRG. a Broad-scale structure of the HLA
PRG. The included genes are separated by spacer blocks consisting of N characters. b Fine-scale structure of
the PRG input sequences. Exons, introns and UTRs are embedded in regional haplotypes (padding sequence).
Exon sequences typically outnumber intron sequences. The red line indicates the region covered by IMGT
genomic sequences. X-axis not to scale. c For each gene represented in the PRG, multiple sequence alignments
representing up to 3 sources of sequence data are merged for PRG construction: exonic sequences, genomic
(UTR, exons, introns) sequences, regional haplotypes (“xMHC Ref.”). Using alleles present in both the current
and the next-higher-level MSA (identifiers printed in red), the merging algorithm determines consensus
boundaries (blue bars) to connect the MSAs of different input sequence types. For each segment so-defined, we
use the MSA corresponding to the highest-resolution input sequence type (sequence characters therefore
ignored are printed in grey). d The PRG corresponding to the input sequences shown in c, and a seed-and-
extend alignment of a sequencing read to the PRG. PRG nodes are represented by boxes and edges by labelled
arrows. The four blue markers correspond to the consensus MSA boundaries shown in c. The aligned sequence
of the read is displayed below the PRG, and the alignment path (the sequence of edges and nodes traversed in
the PRG) is highlighted. The red component of the alignment path corresponds to the exact-match “seed”
component of the alignment (spanning a graph-encoded gap), whereas the orange components correspond to
the “extend” component of the alignment (where mismatches are allowed).

doi:10.1371/journal.pcbi.1005151.g001
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typing; at 100% accuracy, HLA�PRG remains ahead of PHLAT and HLAreporter, which

achieve accuracies of 89% and 90%, respectively (S4 Table).

To evaluate sensitivity of HLA�PRG to whole-genome sequencing depth, we subsampled

the NA12878 data from the Platinum and 1000 Genomes projects to average coverages of 40x,

30x and 20x in triplicates. We find that performance is stable (all alleles correctly predicted)

down to 20x for the Platinum data and down to 30x for the 1000 Genomes data (S5 Table).

To assess to what extent HLA�PRG depends on the availability of whole-genomedata, we car-

ried out two additional experiments. First, we apply HLA�PRG to whole-exome sequencing data

of a cohort of HapMap samples. Results are varied and accuracies consistently lower across all loci

(ranging from 79% forHLA-C to 98% forHLA-DQB1, S6 Table). Second,we apply HLA�PRG to

a cohort of 14 Ugandan samples that underwent targeted amplification andMiSeq-basedhigh cov-

erage sequencing of the HLA exons (this cohort also contains a novelHLA-B and a novel

HLA-DQB1 allele, see below). Average accuracy is 95% at G group resolution (PHLAT: 74%;

HLAreporter:73%) and 96% at 2-field resolution (PHLAT: 97%; HLAreporter:80%) (S7 Table).

Of the 6 erroneous alleles at 2-field resolution, 2 are novel alleles; an additional 2 errors are associ-

ated withmis-inferredDRB1�14:141 alleles, which are exon 2-identical to DRB3 sequences (which

we expect, due to linkage with DRB1�11/13 alleles, also to be present in the samples).

For each inferred allele, HLA�PRG reports three quality statistics: a parametric likelihood-

based quality score (S1 Text) and the proportion of k-Mers associated with the allele present in

the sample sequencing data, both ranging from 0 to 1; and the number of columns in the read-

to-graph alignment that contain alleles with an allele frequency�0.2 that are not accounted for

by the diploid HLA call for the sample (“unaccounted alleles”). For the first two metrics,

Table 1. HLA type inference accuracy for HLA*PRG and two state-of-the-art algorithms.

Cohort Locus Na HLA*PRG PHLAT HLAreporter

Inferred Accuracy Call Rate Inferred Accuracy Call Rate Inferred Accuracy Call Rate

Platinum Trio A 6 6 1.00 1.00 6 1.00 1.00 2 0.50 0.33

B 6 6 1.00 1.00 6 1.00 1.00 1 1.00 0.17

C 6 6 1.00 1.00 6 1.00 1.00 1 0.00 0.17

DQA1 6 6 1.00 1.00 6 1.00 1.00 2 1.00 0.33

DQB1 6 6 1.00 1.00 6 1.00 1.00 5 1.00 0.83

DRB1 6 6 1.00 1.00 6 1.00 1.00 5 1.00 0.83

1000 Genomes Highest Resolution A 22 22 1.00 1.00 20 0.45 0.91 0 NA 0.00

B 22 22 1.00 1.00 20 0.35 0.91 6 0.50 0.27

C 22 22 1.00 1.00 20 0.50 0.91 2 0.50 0.09

DQA1 12 12 1.00 1.00 10 0.70 0.83 9 1.00 0.75

DQB1 22 22 1.00 1.00 20 0.80 0.91 15 1.00 0.68

DRB1 22 22 0.95 1.00 20 0.55 0.91 10 1.00 0.45

1000 Genomes 2-field resolutionb A 22 22 1.00 1.00 20 0.70 0.91 0 NA 0.00

B 22 22 1.00 1.00 20 0.60 0.91 6 0.50 0.27

C 22 22 1.00 1.00 20 0.80 0.91 2 0.50 0.09

DQA1 12 12 1.00 1.00 10 0.70 0.83 9 1.00 0.75

DQB1 22 22 1.00 1.00 20 0.95 0.91 15 1.00 0.68

DRB1 22 22 0.95 1.00 20 0.75 0.91 10 1.00 0.45

a Number of validation alleles.
b “1000 Genomes Highest Resolution” and “1000 Genomes 2-field resolution” represent the same set of samples, with G group alleles (available for 9/12

samples) reduced to 2-field resolution for the latter experiment, enabling a fair comparison with algorithms that fall back to 2-field typing in cases of

ambiguity.

doi:10.1371/journal.pcbi.1005151.t001
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samples with lower values are enriched for errors; there is, however, no clear cut-off between

correct and incorrect alleles (S3 Fig). The two novel alleles cluster with the bulk of correct calls.

For the “unaccounted alleles” statistic, we observe that the number of columns with high-fre-

quency unaccounted alleles varies systematically between loci (S4 Fig), and that there is no sys-

tematic difference between correct and incorrect calls. Although the two novel alleles score

comparatively highly on this metric, it doesn’t enable the clear distinction between novel and

non-novel alleles (S4 Fig). Nevertheless, the combination of these quality metrics can help

identify alleles with higher uncertainty.

To assess whether HLA�PRG could be applied to additional HLA loci beyond the set of the

6 classical genes validated here, we use it to genotype a set of 12 additional HLA genes and

pseudogenes in the two trios that are part of our whole-genome cohorts (S8 Table). Across the

2 x 72 alleles inferred, we find one trio inconsistency in the CEU trio (pseudogeneHLA-K,

driven by an allele called with low confidence)); and two inconsistencies in the YRI trio (the

HLA-DRB1 inconsistency described above and an additional inconsistency at HLA-K).

Discussion

We have shown that HLA�PRG enables HLA typing from standard whole-genome next-gener-

ation sequencing data at accuracies comparable to those of the current gold-standard SBT tech-

nology (two errors in the original reference data compared to one fromHLA�PRG at 2-field /

G group resolution)–provided that high-quality whole-genome sequencing data are used as

input (PCR-free protocol, read length of at least 100bp, coverage of at least 30x).

Importantly, our results apply to both the established 2 x 100bp and the more recent 2 x

250bp Illumina HiSeq protocols; they are therefore directly applicable to many of the large-

scale sequencing projects currently ongoing. HLA�PRG will enable researchers to augment

these cohorts with reliable HLA type information and can contribute to characterizingHLA

signals in important medical phenotypes.

The current implementation of HLA�PRG is limited in three respects.

First, although the algorithmwas designed explicitly for application to high-quality whole-

genome sequencing data, it would be advantageous if comparable performancewas achieved

from other data sources. Our evaluation shows that this is not the case. The exome sequencing

cohort exhibits the lowest accuracy of all cohorts examined; it is also the cohort with the lowest

effective fragment length (2 x read length + insert size, S5 Fig). High effective fragment lengths

help overcome local sequence homologies like those observed in the HLA region, and it is likely

that this factor plays a role in explaining the poor performance of the exome cohort. Alignment

issues also likely contribute to the slight reduction in accuracy observedwhen applying

HLA�PRG to theMiSeq sequencing data (exon targeting by PCR) validation cohort. Although

the effective fragment length of this cohort is higher, the vast majority of reads start and end

within a few bases of the exon boundaries. In comparison to whole-genome data, where the

majority of exon-spanning reads run into introns and the variation contained therein, this exac-

erbates the effects of exon sequence homologies between different genes (consistent with the

observation that the problem of HLA�PRGmis-inferring a small number of alleles due to

DRB1-DRB3 distinction issues arises only in theMiSeq, but not in the whole-genome, cohort).

Of note, base quality doesn’t seem to strongly influence accuracy;whenmeasured by the number

of read bases agreeingwith the graph location they are aligned to, average base quality is lowest

for the 1000 Genomes cohort (87%) and highest for the exome cohort (99%). In summary, high

(�30x) uniform coverage across the whole length of the HLA genes and high fragment lengths

seem to deliver best results; caution should be exercised when these conditions are not met (e.g.

for targeted amplification, whole-genome amplification, targeted capture).
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Second, HLA�PRG is optimised for accuracy rather than computational efficiency. Analys-

ing the NA12878 data takes between 33 and 215 CPU hours (Platinum / 1000G data; AMD

Opteron 6174 2.2GHz; 11–17 hours clock time). Analysing the same data with PHLAT and

HLAreporter takes 466/626 and 53/50 CPU hours, respectively (Fig 2). Depending on the avail-

ability of high-performance compute infrastructure and the number of samples to analyse,

computational demands might represent a significant barrier to adoption. We provide a

detailed runtime (including CPU time) and memory analysis in S1 Text. Achieving improve-

ments in computational efficiency is ongoing work, but it is worth noting that HLA�PRG can

be run immediately after the raw sequence data has beenmapped, in parallel with standard var-

iant-calling. Future versions might make use of linear sequence alignments to seed graph align-

ment (similar to ALT-aware alignment in BWA-MEM[21]) and also incorporate population

haplotype frequencies [22, 23].

Third, HLA�PRG doesn’t enable the discovery of new alleles and it is limited to G group res-

olution. It would be advantageous if it was possible to identify samples that harbour novel

alleles from the quality metrics of the inferred alleles. This, however, was not the case for the

Fig 2. Runtime andmemory requirements comparison of HLA*PRG, PHLAT and HLAReporter on
NA12878.Upper part: NA12878 2 x 100bp reads from the Platinum cohort; lower part: NA12878 2 x 250bp reads
from the 1000 Genomes cohort. We provide a detailed analysis in S1 Text.

doi:10.1371/journal.pcbi.1005151.g002
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two novel alleles in the Ugandan cohort and the 3 parametric and non-parametric statistics we

analysed. It seems (S4 Fig) that there is a residual number of reads aligned to the wrong gene,

and distinguishing between the signal generated by these and that of true novel alleles is non-

trivial. Further research will be necessary to address this.

The good performance of HLA�PRG is consistent with the hypothesis that reference graph

approaches are well-suited to enable accurate genome inference in highly complex, highly

diverse regions of the human genome. At the example of the MHC as a whole, we had already

shown that this was the case using small-scale (SNPs, k-Mers) and large-scale (long reads) met-

rics of genome inference accuracy [20]. By focusing on G group resolution HLA typing, this

study complements the existing evidencewith another important metric: exon-scale haplotype

accuracy. Faster algorithms for sequence-to-graph alignment than the one used here are cur-

rently under development (https://github.com/vgteam/vg) and these will likely simplify the

development of future variation graph-based approaches.

There are other regions in the human genome that could benefit from a tailored PRG-based

inference approach. One example is the LRC/KIR region on chromosome 19, which is similar

to the MHC in some aspects (hyperpolymorphism, availability of haplotype and allele data-

bases[24]) and different in others (higher degrees of structural variation and paralogy [25–

27]). One important implication of the results presented here is that a variation-aware read

mapping algorithm that processes reads independently (in the sense that no attempt at local

haplotype reconstruction is made during the read mapping process) is sufficiently accurate for

HLA genotyping.Whether this also applies to the LRC/KIR region is an open question.

Materials and Methods

In this Sectionwe present a high-level summary of PRG construction, read mapping, HLA

type inference and validation. A full technical description of the algorithms is given in S1 Text.

A Population Reference Graph for the HLA genes

We construct a gene-only PRG for 46 genes from 720 genomic sequences (from IMGT [28] /

GRCh37), 10050 exonic sequences (from IMGT) and 8 MHC haplotypes (from GRCh37). For

each gene independently, we combine (see next Section) exonic sequences (where available),

genomic sequences and 0.5kb of surrounding non-genic “padding” sequence from the 8 MHC

haplotypes (where appropriate; to enable the alignment of reads that span a gene boundary).

We then construct a joint PRG [20], in which we separate genes with 2000 N characters (see

Fig 1A for a schematic depiction of the topology of the PRG created).

MSAmerging algorithm

We employ a multiple sequence alignment (MSA) merging algorithm (Fig 1C) to combine

genomic, exonic and genomic “padding” sequences for PRG construction. Typically there are

more exonic sequences than genomic sequences, and more genomic sequences than genomic

“padding” sequences (Fig 1B).

We describe the base case of merging the MSA for one exon into the MSA of surrounding

genomic sequences. The other cases follow immediately and are described in S1 Text.

The aim of the MSAmerging algorithm is to find the “switch points” between the exon

MSA and the genomicMSA; i.e. the coordinates at which the PRG switches from one MSA to

the other and back (blue lines in Fig 1C). To compute the switch points we rely on shared

alleles (i.e. alleles that are present in bothMSAs)–for each shared allele, we should be able to

identify the exon sequence as a substring of the genomic sequence alignment, defining the
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coordinates of the exon MSA in genomicMSA terms. If there is more than one shared allele,

we compute consensus switch points.

Switch coordinate computation for the exon MSA:

1. Initialize PL = { } and PR = { }. These two sets hold the coordinates of the allele-specific left

and right switch points in the exon MSA.

2. Allele-specific switch points: For each shared allele, add the exon MSA coordinates of the

beginning and the end of the un-aligned exon allele sequence to PL and PR, respectively

(that is, the coordinates of the un-aligned sequence in the alignment—for example, if an

exon MSA sequence is–-ACGT. . ., due to the two gaps at the beginning of the alignment,

we add the value 3 to PL).

3. Define the consensus switch coordinates as GL = max(PL) and GR = min(PR).

The steps as described above define the area (from coordinates GL to GR) of the exon MSA

to be utilized for PRG construction. For each individual genomic shared allele sequence, this

leaves sequence to the left and to the right of the extracted exon sequence.We combine all such

‘left’ (genomic) sequences from all shared alleles and compute [29] a newMSA; we also com-

bine all such ‘right’ (genomic) sequences from all shared alleles and compute a newMSA.

Finally, the twoMSAs so-created are used as the segments to the left and to the right of the

extracted exon MSA block for PRG construction (Fig 1B).

A full description of the PRG construction algorithm is given in S1 Text and the output data

are part of the HLA�PRG data package (available on the HLA�PRG website).

Read alignment

Read-to-graph alignment. Basic sequence-to-PRG alignment algorithms for long, non-

paired reads were described in [20]. Here we present a modified algorithm optimized for short

reads (Fig 1D):

1. For each read of a read pair, find regions of exact matches (highlighted in red in Fig 1D)

between the read sequence and walks in the graph. This step utilizes a k-Mer index of the

graph, and chains together k-Mers that are connected in both graph and read sequence.

After the exact match step, for each identifiedmatch, locally extend the exact match region

using the alignment algorithms presented in [20] (highlighted in orange in Fig 1D).

2. For each read pair, the total number of possible alignments is given by multiplying the num-

ber of possible alignments for read 1 by the number of possible alignments for read 2 (iden-

tified during the previous step).

3. We score each such paired-end alignment in a likelihood framework, taking into account

the individual alignment scores, read pair orientation and insert size characteristics. By nor-

malizing we obtain a probability distribution over possible paired-end alignments from

normalization.

4. In a final step, we obtain the maximum-likelihood alignment (which we treat as fixed for all

downstream analyses); a quality score for this alignment; a per-position alignment quality

score that measures how confidently we align a particular base in the read to a particular

level in the graph.

We give a full technical description of the alignment algorithm in S1 Text.

We highlight two differences to the algorithm utilized in [20]. First, the algorithm presented

here uses paired-end information. Second, the extension stage as defined here starts from one
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region of exact match and terminates if it reaches the end of the read or other termination con-

ditions; the algorithm in [20], in contrast, is based on the notion of using extension steps to

connectmultiple regions of exact matches.

Read filtering. As read alignment (in our current implementation) is computationally

demanding, we employ a pre-filtering step to identify reads that likely emanate from regions

covered by the PRG. Only reads that pass this filter are aligned to the PRG.

In the standard version of the filter, we keep read pairs that

• have >30% k-Mers present in the PRG (positive selection).

• have �1 reads with�1 k-Mers unique to the PRG, or that have �1 reads with<45% k-Mers

present in genomic regions outside the PRG (negative selection).

We use modified criteria for reads with a higher proportion of low-quality positions, such as

the 2 x 250bp reads from the 1000 Genomes Project samples. Full details are given in S1 Text.

HLA type inference

Let R be the set of paired-end read alignments that overlap with the peptide-binding site of a

given HLA locus.We calculate the likelihoodof the observeddata R conditional on pairs of

possible underlyingHLA types at G group resolution.We note that each HLA type (i.e., each

possible underlying allele) has a defined genotype (potentially including “gap” characters) at

each position of the peptide binding site as represented in the PRG.

For an arbitrary pair (a1,a2) of underlying alleles, we define the likelihood functions

LðRjða
1
; a

2
ÞÞ≔Q

r2RLðrjða1; a2ÞÞ and

L rjða
1
; a

2
Þð Þ≔ 1

2
� L rja

1
ð Þ þ

1

2
� L rja

2
ð Þ:

L(r|a) is the likelihoodof observed aligned read pair r, conditional on an assumed underly-

ing HLA allele a.

By definition r overlaps with the peptide-binding site. At each overlapping position, we

have a pair (gr,ga), where gr is the nucleotide (or gap) of the aligned read r (and its associ-

ated base quality, if applicable) at this position, and ga is the genotype of underlying HLA

allele a at this position.We define the set Or as the set of pairs for all overlapping positions

of r.

Finally, we define

LðrjaÞ≔ Y

ðgr ;gaÞ2Or

scoreðgr; gaÞ

, with score being a base-quality-aware alignment scoring function for matches, mismatches,

deletions and insertions.

We compute the likelihood function over all pairs of possible underlying alleles and normal-

ize to obtain a probability distribution over possible underlying allele pairs. We call two “best

guess” alleles and their associated qualities as described in [10]. Briefly,

• to obtain the first “best guess” allele we select the allele with the highest probability of occur-

ring�1 times.We use the marginal probability as quality score.

• to obtain the second “best guess” allele we consider all pairs that contain the first best-guess

allele and select the pair with the highest absolute probability. We use the absolute pair prob-

ability as quality score for the second allele.
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We give a full technical description of the likelihood-basedinference procedure in S1 Text.

Validation data

Sequencing data. We validate HLA�PRG on 2 sets of validation samples with publicly

available high coverage whole-genome sequencing data.

First, NA12878, NA12891 and NA12892, which were whole-genome sequenced for the Illu-

mina Platinum Genomes Project (50 - 55x with a PCR-free 2 x 100bp protocol).

Second, 11 samples from the 1000 Genomes Project [30], which were whole-genome

sequenced to high coverage (28 – 68x with a PCR-free 2 x 250bp protocol).

To assess the extent to which accurate HLA typing with HLA�PRG depends on the avail-

ability of whole-genome data, we also evaluate it on a cohort of 29 exome-sequencedHapMap

[31] samples (also sequenced for the 1000 Genomes Project) and on a cohort of 14 MiSeq-

sequencedUgandan individuals. Sequencing data for the Ugandan individuals is available

upon request (see below).

We list data downloadURLs and accession IDs for all utilized sequencing data in S1 Text.

HLA types

Except for the Ugandan MiSeq cohort, HLA types for all validation samples are either publicly

available [32, 33] or available from a previous study [10].

14 samples from Ugandan individuals were available through the EntebbeMother and Baby

Study courtesy of Alison Elliott[34]. DNA was extracted from EDTA-stored cell pellets using

the QIAamp DNA BloodMini Kit (QIAGEN, Germany) before undergoing SBT using two

methods. The first method, a Sanger-based approach for validation, was undertaken at Adden-

brooke’s Tissue Typing Laboratory, (Cambridge, UK) using the Fisher Scientific proprietary

uTYPE (version 7) software (Fisher Scientific,MA, USA). Exon-targetedMiSeq sequencing

was undertaken at Histogenetics (NY, USA) using proprietary protocols. After validating the

MiSeq-basedcalls with the Sanger data, the MiSeq data were used for validation. All data will

be made available to interested researchers upon request through the African Partnership for

Chronic Disease Research Data Access Committee.

S1 Text contains a table of utilized samples and their HLA types.

Software implementation

HLA�PRG is implemented in C++/Perl and available under GPLv3 as part of the MHC�PRG

repository https://github.com/AlexanderDilthey/MHC-PRG.A readme file (https://github.

com/AlexanderDilthey/MHC-PRG/blob/master/HLA-PRG.md) describes how to install and

run the software. A compiler with support for C++11 and openMP is required (e.g., GCC

4.7.2).We provide a separate HLA�PRG data package (download size ~41G), independent

from the larger MHC�PRG data package.

Supporting Information

S1 Fig. Sequence homology betweenHLA-A, -B and–C.Graphs visualizing sequence homol-

ogy betweenHLA-A, -B and -C across exons 2 (left) and 3 (right), based on an IMGT/HLA-

provided multiple sequence alignment (MSA) of 3284 -A, 4077 -B, 2799 -C alleles. The x axis

of the plot represents the column index of the MSA (304 columns for exon 2, 349 columns for

exon 3). The (invisible) nodes of the graph represent the set of unique 31-mers (across the 3

genes) starting at the corresponding column of the MSA. Two nodes (representing two conse-

cutive 31-mers in the MSA) are connected by (visible) edges if the corresponding 32-mer,

High-Accuracy HLA Type Inference fromWhole-Genome Sequencing Data

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005151 October 28, 2016 11 / 16

https://github.com/AlexanderDilthey/MHC-�PRG
https://github.com/AlexanderDilthey/MHC-�PRG/blob/master/HLA-�PRG.md
https://github.com/AlexanderDilthey/MHC-�PRG/blob/master/HLA-�PRG.md
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1005151.s001


starting at the column index of the first 31-mer, is present in the MSA. Edge flow (line thick-

ness) is proportional to the frequency of the corresponding 32-mer at the underlying column

(bounded below). Edge colour indicates the proportions of flow attributable to the 3 genes (for

each edge, the absolute count of the corresponding 32-mer at the underlying column can be

split into a triplet representing theHLA-A,HLA-B,HLA-C rows of the alignment; the (R, G, B)

colour of the edge is obtained by normalizing this triplet). For the purpose of this plot, we treat

gap characters as nucleotides. The plots below the graphs show, separately forHLA-A, -B, and–

C and separately for each column of the underlyingMSA, the (weighted) proportion of

31-mers unique to the locus. For the purpose of these plots, a k-Mer is defined as unique to a

locus if it doesn’t occur in the same MSA column of a sequence belonging to another locus. k-

Mer weights for each plotted column are proportional to within-locus k-Mer column frequen-

cies.

(PNG)

S2 Fig. MaximumHLA gene sequence homology at the peptide binding site.Maximum k-

Mer similarity at the peptide binding site (PBS; exons 2/3 for HLA class I, exon 2 for HLA class

II) between alleles of different HLA loci, based on k-Mers (k = 25). G group types are defined

by PBS sequence. Each cell, in row X and column Y, contains the maximum, over all alleles of

locus X, proportion of k-Mers present in any allele of locus Y. This quantity influences the

probability of mismapping a PBS read to another locus as exact matching is the first step of the

many mapping algorithms, including the one used here.

(PDF)

S3 Fig. Allele quality score and allele k-Mer coverage for all validated alleles samples.Allele

quality score and allele k-Mer coverage at k = 31 for all validated alleles (jittered). The colour of

the data points indicates whether an allele was inferred correctly or incorrectly, or whether it

was a novel allele (which are counted as ‘incorrect’ for all validation purposes).

(TIFF)

S4 Fig. Number of columns with high-frequencyunaccounted-for alleles.This plot shows,

for each inferred allele and stratified by locus, the number of columns in the read-to-graph

alignment that contain high-frequency (allele frequency�0.2) alleles not accounted for by the

inferred (diploid) HLA type. The colour of the data points indicates whether an allele was

inferred correctly or incorrectly, or whether it was a novel allele (which are counted as ‘incor-

rect’ for all validation purposes).

(TIFF)

S5 Fig. Insert sizes, effective fragment lengths, validated alleles, and errors across cohorts.

The figure shows how insert size and effective fragment length (2 x read length + insert size)

differ between cohorts and correctly / incorrectly inferred alleles.

(PDF)

S1 Table. HLAPRG input sequences.Loci represented in the HLA PRG. “Genomic alleles”:

Genomic alleles represented in the gene-specific segment of the PRG, i.e. alleles spanning the

complete length of the gene. “Exonic alleles”: Exonic alleles represented in the gene-specific

fragment of the PRG.

(XLSX)

S2 Table. Ethnicities and 1-field allele groups represented in the whole-genomevalidation

data. Sample ethnicity and sample HLA type (1-field resolution) in the Platinum and 1000

Genomes whole-genome validation cohorts.

(XLSX)
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S3 Table. Validation cohort homozygosity statistics.Number of homo- and heterozygous

validation samples, per locus and per validation cohort.

(XLSX)

S4 Table. 1-field validation accuracyfor the 1000 Genomes cohort.HLA type inference

accuracy, measured at 1-field resolution, for HLA�PRG and two state-of-the-art algorithms,

PHLAT and HLAreporter, on the 1000 Genomes whole-genome validation cohort (description

see main text).

(XLSX)

S5 Table. Coverage sensitivity analysis. Sensitivity to reduced coverage. Results for NA12878

(Platinum and 1000 Genomes data, see main text), down-sampled to 40x, 30x, 20x (triplicates).

(XLSX)

S6 Table. Performance on exome sequencing data.HLA type inference accuracy, per locus,

for HLA�PRG and two state-of-the-art algorithms, PHLAT and HLAreporter, on a set of

exome-sequencedHapMap samples (2 x 100bp, average per-locus coverage at the peptide-

binding site 54x (over all validated HLA loci and samples, minimum 4.4x, maximum 164x).

“Highest Resolution” and “2-field resolution” represent the same set of samples, with G group

validation alleles (where available) reduced to 2-field resolution for the latter experiment. Note

that the number of inferred alleles varies between algorithms.

(XLSX)

S7 Table. Performance on MiSeq sequencing data.HLA type inference accuracy, per locus,

for HLA�PRG and two state-of-the-art algorithms, PHLAT and HLAreporter, on a set of

MiSeq-sequencedsamples from Uganda. The cohort contains a novel HLA-B15 allele and a

novel HLA-DQB1�02 allele. “Highest Resolution” and “2-field resolution” represent the same

set of samples, with G group validation alleles (where available) reduced to 2-field resolution

for the latter experiment. Note that the number of inferred alleles varies between algorithms.

(XLSX)

S8 Table. Trio consistency for additionalHLA loci.HLA types for the CEU Platinum trio

and for the YRI 1000 Genomes trio, including additional loci and typing quality scores. Genes

from S3 Table (list of all genes in the PRG) not appearing here are not antigen-presenting or

cannot be typed for technical reasons (no IMGT exon data available or incomplete resolution

of the exon-to-genomic, genomic-to-haplotype alignment steps during PRG construction).

HLA-DRB3 and HLA-DRB4 copy numbers are variable and linked to DRB1 genotype (neither

aspect is modelled by HLA�PRG). Assumedly absent alleles (as determined by linkage with the

inferred DRB1 alleles) are shaded in grey, and we note that these carry low quality scores. In

the CEU trio, we detect one trio inconsistency at the HLA-K pseudogene (shaded in bright

red), and note that the allele driving the inconsistency carries a low quality score; in the YRI

trio, we detect two inconsistencies (the DRB1 inconsistency described in the main text and

another inconsistency at HLA-K).

(XLSX)

S1 Text. Full description of the HLA�PRG algorithms and validation data.

(DOCX)
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