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Abstract— Magnetic local positioning systems are a well-suited
candidate for reliable indoor positioning systems, as they are
robust against blocking by dielectric materials like walls or
people. The system presented in this paper is implemented
with a one-axis magnetic transmitter and several three-axis field
sensors connected to a complete sensor network. Unfortunately,
the performance of the system is severely impaired by field
sensor nonidealities such as magnetic coupling of the sensor
coils, coil misalignment, field sensor rotation, and unsynchronized
sampling. In this paper, the overall field sensor impairments
and an additive Gaussian noise model superposing the magnetic
field are mathematically described. Then, a novel calibration
scheme for the overall field sensor nonidealities is presented.
Furthermore, a statistically optimal localization procedure coping
with the field sensor nonidealities is developed. The proposed
novel localization and calibration algorithms are demonstrated
in a common office environment with a size of 7 m × 5 m × 3 m.
Thereby, the calibration impressively reduces the position root-
mean-square error (RMSE) from 46.8 to 10.6 cm and the angle
RMSE from 24.8◦ to 6.1◦.

Index Terms— Calibration, field sensor, indoor navigation,
localization, magnetic fields, magnetic local positioning.

I. INTRODUCTION

C
URRENTLY, local positioning systems are an impor-

tant key technology. They contribute significantly to

the expansion of the economy, improvement in security,

and increase in productivity. Examples of applications are

localization and coordination of robots, items, humans, and

animals within buildings, information systems in museums and

schools, assistance systems in hospitals, industrial automation,

item tracking, virtual reality and augmented reality, and sup-

porting firefighters, rescue, and safety personnel [1]–[3].

Various system concepts for local positioning systems have

been developed and researched in recent years [1]–[3]. In prin-

ciple, they can be divided into wave-, field-, and motion-based

systems.

Existing wave-based systems are RF positioning

systems [2], [3], acoustic systems with ultrasound [4],
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and optical systems based on cameras [5], and other

optical sensors like laserscanners [6]. Examples for

RF positioning systems are narrowband RF systems

that used WLAN [7], Zigbee [8], and Bluetooth [9],

ultra-wideband systems (UWB) such as pulse radar [10],

cellular-based systems [11], and radio-frequency identification

(RFID [12]. Basically, they all attempt to estimate the target’s

position by processing a wave that was emitted from or

reflected by the target. Typical measurement principles

are time of flight, angle of arrival, and received signal

strength [2]. For an acceptable position accuracy, the signal

should be received via the line of sight (LoS). Hence, they

are normally susceptible to multipath, fading and in-band

interference, which in the worst case can lead to ambiguous

or falsified position results.

Motion-based systems measure movement and calculate

position based on this data. Examples are odometry [13] and

inertial navigation systems (INSs), which utilize an inertial

measurement unit (IMU) [14]. An IMU measures the accel-

eration and rotation rate with respect to an inertial system.

The position can be calculated with double integration of the

acceleration values. During the past few years, cheap and small

IMUs in chip form based on microelectromechanical systems

have become available. Unfortunately, degradation of sensor

values leads to large position errors after a short time, as long

as there is no online estimation of the sensor errors [15].

Field-based positioning systems estimate the target’s posi-

tion via a system model based on the electromagnetic field dis-

tribution. In the case of indoor localization, the magnetic field

outperforms the electric field, as it is barely distorted by dielec-

tric materials such as walls and groups of people [3], [16].

In principle, magnetic local positioning systems (MLPSs)

can be divided into earth’s magnetic field-based and artificial

magnetic field-based systems [3].

The first group commonly uses fingerprint techniques,

in which a map of earth’s magnetic field distortion is

stored [17]. Based on this data, the localization is accom-

plished. Earth’s magnetic field-based systems have a high oper-

ating area [3] but are vulnerable to changes in the surrounding

environment. The modified setting leads to a different set of

measured values at the same reference points and, therefore,

causes false estimated positions.

In [3], the second group is further subdivided into dc field-

based and ac field-based systems. dc field-based systems

can be found in [18] and [19]. Magnetic field-based location

systems are robust against multipath, fading, and shading by
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nonmetal materials [3]. Hence, they are well-suited for indoor

localization. Moreover, they have a lower hardware complexity

as microwave and RF-based systems [3]. Thereby, merging

MLPS with other technologies as GPS [20] or INS [21], [22]

facilitates robust localization. However, as the magnetic fields

amplitude decreases cubically with distance in the near field,

the range in LoS scenarios is smaller compared to wave-based

systems [3]. By exploiting resonance effects, the range of ac

field-based systems can increase compared to dc field-based

systems [3].

Various ac field-based systems with different system topolo-

gies and algorithms were proposed in previous works, see [3]

for an overview of existing systems and their performance.

Generally, the systems either utilize one-axis coils [23]–[27]

or three-axis coils [21], [22], [28]–[31] to detect the mag-

netic field. On the one hand, the use of three-axis sensors

maximizes the information generated at each measurement

point by measuring each dimension of the magnetic field.

On the other hand, a variety of imperfections such as coupling,

coil misalignment, field sensor rotation, amplitude, and phase

errors caused by the analog circuits and signal processing,

and unsynchronized sampling instances, degrade the local-

ization performance. These imperfections represent the main

challenge of current magnetic localization systems, see [31].

Hence, a corresponding calibration and localization scheme is

necessary in order to improve the performance and increase

the reliability of magnetic positioning systems.

For this purpose, we developed a mathematical description

of the sensor effects. Furthermore, a novel robust calibration

scheme is proposed in order to cope with the field sensors

nonidealities. In addition, a 5-DoF localization algorithm

for position and orientation estimation is developed, which

incorporates the calibration result. The novel proposed cali-

bration scheme impressively decreases localization-error from

46.8 to 10.6 cm and orientation-error from 24.8◦ to 6.1◦ in

an office-room scenario. MLPS, designated to localize within

a room, achieved localization accuracies of 0.3–0.8 m in

previous works, see [20], [21], [24]–[26], [30]. Note that only

the system in [24] performed a 5-DoF localization. Thereby,

they achieved an elevation-error of 9.7◦ and an azimuth-error

of 2.8◦.

The remainder of this paper is organized in the following

manner. Section II describes the system principle of the MLPS.

Section III presents the mathematical model of the field

sensors. Then, Section IV describes the calibration of the

sensor model and localization with a least mean square (LMS)

algorithm. Section V describes the hardware setup of the real-

ized system. Section VI presents the measurement results with

and without considering the sensor model. Finally, Section VII

presents the conclusion.

II. SYSTEM PRINCIPLE

In Fig. 1, the MLPS principle is illustrated. The aim of

the MLPS is to estimate the pose of a magnetic transmitter

(TX), emitting a quasi-static magnetic field. In this paper,

the magnetic field of the TX is described by a magnetic dipole

Fig. 1. Principle of localization of a magnetic dipole with a network
comprising several field sensors, where xD, yD, and zD denote the dipole’s
frame and xn, yn , and zn denote the navigation frame.

in free space. The underscore marks a complex number, the hat

an amplitude value, the arrow above the variable a vector,

and matrices are written in bold letters. Assuming that the

magnetic dipole is located at position �rD and oriented by

a normal vector �nD = �ex sin ϑD cos ϕD + �ey sin ϑD sin ϕD +
�ez cos ϑD, where ϑD is the elevation, ϕD denotes the azimuth

angle, and �ex , �ey , and �ez are the basis vectors, the transmitted

magnetic field at position �rP can be expressed as

�̂H
dipole

(�rP, �xpose) =
1

4πr3

[

3
�r

r

(
�r

r
· �̂m

)

− �̂m

]

(1)

with �r = �rP − �rD, r = |�r |, the pose of the dipole �xpose =
(

�rT
D ϑD ϕD

)T
, (·)T as transpose, the magnetic moment �̂m =

Î TX AD�nD, Î TX as current that flows through the dipole, and

AD the dipole area (see [32]). The magnetic field is measured

at different positions in space with several 3-D-field sensors.

The dipole’s pose is estimated on the basis of the measurement

data.

III. FIELD SENSOR IMPAIRMENT MODEL

Each field sensor comprises three coils. As mentioned,

a variety of impairments occur. To be able to calibrate the

effects of the field sensors, they are described mathematically

in detail in this Section.

A. Magnetic Coupling

The left-hand side of Fig. 2 shows the magnetic TX and the

right-hand side shows the three coils of a field sensor, where Φ

denotes the magnetic flux. The losses of the coils are modeled

with ohmic resistors. Capacitors are placed at the output of the

circuit in order to create a resonance peak [33], [34]. With

Faraday’s law of induction, this yields the following equation
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Fig. 2. Network model and magnetic coupling of a field sensor.

in the time domain:

⎛

⎜
⎜
⎝

vTX

vx

vy

vz

⎞

⎟
⎟
⎠

=
d

dt

⎛

⎜
⎜
⎜
⎝

ΨTX,TX

Ψx,TX + Ψx x + Ψxy + Ψxz

Ψy,TX + Ψyx + Ψyy + Ψyz

Ψz,TX + Ψzx + Ψzy + Ψzz

⎞

⎟
⎟
⎟
⎠

=
d

dt

⎛

⎜
⎜
⎜
⎝

LTXiTX

Mx,TXiTX + Lx ix + Mxy iy + Mxziz

My,TXiTX + Myx ix + L y iy + Myz iz

Mz,TXiTX + Mzx ix + Mzy iy + Lziz

⎞

⎟
⎟
⎟
⎠

= L ·
d

dt

⎛

⎜
⎜
⎝

iTX

ix

iy

iz

⎞

⎟
⎟
⎠

(2)

where the linked magnetic flux of circular coils with N

windings can be stated as Ψ ≈ NΦ, L is the self-inductance,

M is the mutual inductance, and backward coupling from the

receiver (RX) side to the TX side is negligible. The inductance

matrix [35] is expressed as

L =

(

LTX 01×3

Ls,TX Ls,s

)

(3)

with

Ls,TX =

⎛

⎝

Mx,TX

My,TX

Mz,TX

⎞

⎠, Ls,s =

⎛

⎝

Lx Mxy Mxz

Myx L y Myz

Mzx Mzy Lz

⎞

⎠ (4)

where Ls,TX describes the coupling between the TX coil and

the sensor coils and Ls,s the magnetic coupling within the

field sensor. In the frequency domain follows with the angular

frequency ω = 2π f

⎛

⎜
⎜
⎜
⎝

V̂ TX

V̂ x

V̂ y

V̂ z

⎞

⎟
⎟
⎟
⎠

= jωL ·

⎛

⎜
⎜
⎜
⎝

Î TX

Î x

Î y

Î z

⎞

⎟
⎟
⎟
⎠

. (5)

The network’s output in Fig. 2 can be described by two mesh

equations, with ξ ∈ {x, y, z}, as

Î ξ = −jωCξ V̂ RX,ξ (6)

V̂ ξ = − Î ξ Rξ + V̂ RX,ξ = (1 + jωRξ Cξ )V̂ RX,ξ . (7)

With (5), the voltage at the RX coils can be rewritten as

⎛

⎜
⎝

V̂ x

V̂ y

V̂ z

⎞

⎟
⎠ = jω Ls,TX Î TX

︸ ︷︷ ︸

= �̂Ψ s,TX

+jωLs,s

⎛

⎜
⎝

Î x

Î y

Î z

⎞

⎟
⎠. (8)

Inserting (6) and (7) into (8) and reordering for the linked

magnetic flux vector �̂Ψ s,TX yields

�̂Ψ s,TX

= Ls,TX Î TX = −Ls,s

⎛

⎜
⎝

Î x

Î y

Î z

⎞

⎟
⎠+

1

jω

⎛

⎜
⎝

V̂ x

V̂ y

V̂ z

⎞

⎟
⎠

= jωLs,s

⎛

⎝

Cx 0 0

0 Cy 0

0 0 Cz

⎞

⎠ �̂V RX

+

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 + jωRxCx

jω
0 0

0
1 + jωRyCy

jω
0

0 0
1 + jωRzCz

jω

⎞

⎟
⎟
⎟
⎟
⎟
⎠

�̂V RX

= Mcoupling · �̂V RX (9)

with the coupling matrix Mcoupling, which is shown at the

bottom of this page. By assuming the field sensor to be free of

Mcoupling =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 − ω2 LxCx

jω
+ Rx Cx jωMxyCy jωMxzCz

jωMyx Cx

1 − ω2 L yCy

jω
+ RyCy jωMyzCz

jωMzx Cx jωMzyCy
1 − ω2 LzCz

jω
+ RzCz

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠
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coupling and resonance-matched circuits, the ideal relationship

can be stated as

�̂Ψ s,TX =

⎛

⎜
⎝

Rx Cx 0 0

0 RyCy 0

0 0 RzCz

⎞

⎟
⎠

�̂V RX

= Mcoupling,ideal · �̂V RX. (10)

B. Misalignment of the Coils to the Body Frame

The magnetic flux Ψ̂ s,TX,ξ flowing through a coil ξ ∈
{x, y, z} can generally be evaluated by integrating the magnetic

field strength flowing through a sensor at position �rs over the

coil area as

Ψ̂ s,TX,ξ =

∫∫

Aξ

µ0
�̂Hn(�rP) · d �An (11)

where (·)n denotes navigation frame coordinates, µ0 denotes

vacuum permeability, and Aξ denotes linked coil area. Now,

expanding the magnetic field strength into its Taylor expansion

around the center of symmetric coils, �rs reveals that every point

symmetrical component of the magnetic field integrates over

the coil area to zero. Hence, assuming the field to be almost

described by the constant and linear Taylor component as

�̂Hn(�rP) ≈ �̂H n(�rs) +
∂ �̂Hn

∂�rP

∣
∣
∣
∣
�rP=�rs

(�rP − �rs) (12)

allows to approximate the magnetic flux as

Ψ̂ s,TX,ξ ≈

∫∫

Aξ

µ0

⎛

⎝ �̂Hn(�rs) +
∂ �̂Hn

∂�rP

∣
∣
∣
∣
�rP=�rs

(�rP − �rs)

⎞

⎠ d �An

=

∫∫

Aξ

µ0
�̂Hn(�rs) · d �An = Aξ �nT

Lξ ,n
· µ0

�̂Hn(�rs)

= Aξ �nT
Lξ ,b

R
T
nb Rnb
︸ ︷︷ ︸

=I3

µ0
�̂Hb(�rs) = Aξ �nT

Lξ ,b · µ0
�̂H s,b

(13)

where (·)b denotes body-frame coordinates, �nLξ ,b denotes

orientation vector of the ξ th coil in body-frame coordinates,

Rnb denotes the rotation matrix from the body frame to the

navigation frame [36, p. 41], and �̂H s,b = �̂Hb(�rs). Ideally,

the orientation vectors of the coils can be expressed as

�nLx ,b,ideal = �ex = �er

(

ϑ =
π

2
, ϕ = 0

)

(14)

�nL y ,b,ideal = �ey = �er

(

ϑ =
π

2
, ϕ =

π

2

)

(15)

�nL z,b,ideal = �ez = �er (ϑ = 0, ϕ = 0) (16)

with �er (ϑ, ϕ) = �ex sin ϑ cos ϕ + �ey sin ϑ sin ϕ + �ez cos ϑ and

r , ϑ , and ϕ as spherical coordinates. Unfortunately, mis-

alignment of the coil’s orientation vectors with respect to

the body-frame coordinate system of the field sensor occurs

due to inaccurate coil assembling and by the slope of the

coil’s winding. Then, (13) can be written for every coil as

�̂Ψ s,TX =

⎛

⎜
⎜
⎝

Ax �nT
Lx ,b · µ0

�̂H s,b

Ay �nT
L y,b

· µ0
�̂H s,b

Az �n
T
L z ,b

· µ0
�̂H s,b

⎞

⎟
⎟
⎠

=

⎛

⎝

Ax 0 0

0 Ay 0

0 0 Az

⎞

⎠ · Mmisalignment · µ0
�̂H s,b (17)

with the misalignment matrix

Mmisalignment =

⎛

⎜
⎜
⎝

�nT
Lx ,b

�nT
L y,b

�nT
L z ,b

⎞

⎟
⎟
⎠

. (18)

The ideal misalignment matrix is the identity matrix

Mmisalignment,ideal =

⎛

⎜
⎜
⎝

�nT
Lx ,b,ideal

�nT
L y ,b,ideal

�nT
L z,b,ideal

⎞

⎟
⎟
⎠

= I3. (19)

Then, the misalignment between the coil’s orientation vector

and the body-frame of the sensor can be described with error

angles in spherical coordinates, thereby yielding the following

true coil orientation vector

�nLx ,b = �er

(

ϑ =
π

2
+ ϑe,x , ϕ = ϕe,x

)

(20)

�nL y ,b = �er

(

ϑ =
π

2
+ ϑe,y, ϕ =

π

2
+ ϕe,y

)

(21)

�nL z,b = �er (ϑ = ϑe,z, ϕ = ϕe,z). (22)

The misalignment matrix can now be stated as

Mmisalignment

=

⎛

⎜
⎜
⎝

�nT
Lx ,b

�nT
L y ,b

�nT
L z ,b

⎞

⎟
⎟
⎠

=

⎛

⎝

cos ϑe,x cos ϕe,x cos ϑe,x sin ϕe,x − sin ϑe,x

−cos ϑe,y sin ϕe,y cos ϑe,y cos ϕe,y − sin ϑe,y

sin ϑe,z cos ϕe,z sin ϑe,z sin ϕe,z cos ϑe,z

⎞

⎠. (23)

C. Rotation With Respect to the Navigation Frame

The rotation of the field sensor with respect to the navigation

frame can be described by the rotation of the magnetic field

strength vector in navigation coordinates to the sensor’s body

frame with a direction cosine matrix

�̂H s,b = Rbn · �̂H s,n (24)

where Rbn denotes the rotation from the navigation frame to

the body frame [36, p. 41].

D. Effects of the Circuit and Signal Processing

As shown in (1), the magnetic field strength is propor-

tional to 1/r3. Therefore, the RX circuit needs to sustain

a large signal dynamic. For this purpose, several parallel

signal processing chains supporting different signal levels
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Fig. 3. Algorithm flowchart showing the calibration on the left-hand side and the localization on the right-hand side.

are required. The signal after the analog and digital signal

processing chain ν is given as

�̂sν =

⎛

⎝

aν,x 0 0

0 aν,y 0

0 0 aν,z

⎞

⎠ �̂V RX = Aν · �̂V RX (25)

with the amplification matrix Aν and the amplification

factors aν,ξ for each channel with ξ ∈ {x, y, z}, including

the influences of voltage dividers, amplifiers, analog-to-digital

converters (ADCs), and other linear operations in the signal

chain that alter the signal’s phase and amplitude. The measured

voltage �̂V RX is calculated manually by a measured amplifica-

tion matrix per signal chain from the signal �̂sν and has no

impact on the subsequent calibration scheme.

E. Complete Field Sensor Model

The overall transfer model of the magnetic field strength

flowing through the sensor coils and the RX voltage follows

from (9) and (17) as

�̂V RX = M · �̂H s,b (26)

with

M = µ0 · M
−1
coupling

⎛

⎝

Ax 0 0

0 Ay 0

0 0 Az

⎞

⎠Mmisalignment (27)

as the sensor’s model matrix. Hence, all field sensor effects

can be described by a single matrix relation. The ideal model

matrix is given with (10) and (19) as

Mideal =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

µ0 · Ax

Rx Cx

0 0

0
µ0 · Ay

RyCy

0

0 0
µ0 · Az

RzCz

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (28)

Adding the rotation of the field sensor results in

�̂V RX = M · Rbn · �̂H s,n. (29)

F. Sampling Effects

As the implementation of distributing a common sampling

clock for synchronization to each field sensor and magnetic TX

comes with disproportional hardware effort, only the signals

at the three coils of every field sensor are sampled coherently.

Hence, every sensor has a common random signal phase α[k]
at each coil at measurement point k resulting in

�̂V RX[k] = M · Rbn · �̂H s,n[k] · ejα[k]. (30)

IV. CALIBRATION AND LOCALIZATION ALGORITHM

In this section, a novel calibration and corresponding local-

ization scheme are developed, which are designed to deal with

the considered hardware impairments. For this purpose, a noise

model and its impact on the statistical optimal localization

are examined. Furthermore, a corresponding novel field sensor

calibration is developed. This results in two LMS algorithms

directly comparing magnetic field strengths that can be solved

with gradient-based algorithms, which are generally combin-

ing high precision with low computational effort. In addition,

an analytical solution is derived in order to handle the effects

originated from unsynchronized sampling. Fig. 3 shows the

flowchart of the subsequently proposed algorithm. It consists

of the foregoing calibration on the left-hand side and the

recursive localization on the right-hand side.

A. Noise Model

In this paper, the magnetic field is assumed to be disturbed

by additive complex zero mean white Gaussian noise �w[k] ∼
CN 3(�0, σ 2

I), which is well known from communications,

see [37]. Thereby, the noise arises from the superposition

of different error sources like electric devices or coupling

of the magnetic field with the environment. Furthermore,

additive white Gaussian noise represents a worst case scenario,

see [37]. As �w[k] is disturbing the magnetic field, the mea-

sured voltage at field sensor η can be stated with (30) as

�̂V
meas

RX,η[k] = G
−1
η

(

�̂H
dipole

sη,n [k] + �w[k]
)

ejαη[k] (31)
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with the dipole field �̂H
dipole

sη,n = �̂H
dipole

n (�rsη , �xpose), as in (1),

G
−1
η = Mη Rbn,η, and hence, the measured magnetic field

strength as

�̂H
meas

sη,n
[k] = Gη

�̂V
meas

RX,η[k]

=
(

�̂H
dipole

sη,n [k] + �w[k]
)

· ejαη[k]

= �̂H
dipole

sη,n [k] · ejαη[k] + �w′[k] (32)

with �w′[k] = �w[k] · ejαη[k]. Thereby, �w′[k] ∼ CN 3(�0, σ 2
I)

holds as Gaussian noise is phase-shift invariant. Note that

the assumption about the noise appearance is essential, as the

measured noise at �̂V
meas

RX,η[k] becomes correlated in (31) due to

the matrix multiplication with G
−1
η .

B. Maximum Likelihood Estimation

In order to calibrate the model and accordingly localize the

magnetic TX, the likelihood function [38, pp. 542–547]

P =

Ns∏

η=1

Nk∏

k=1

∏

ξ

1

πσ 2

· exp

⎛

⎜
⎝−

∣
∣
∣Ĥ

meas

sη,n,ξ [k] − Ĥ
dipole

sη,n,ξ [k]ejαη[k]
∣
∣
∣

2

σ 2

⎞

⎟
⎠ (33)

has to be maximized, where Ns and Nk denote the number

of field sensors and measurement points, respectively, and

ξ ∈ {x, y, z} and | · | denote absolute value. As ln(·) is a

monotonic function, the maximization of (33) is equivalent to

the maximization of its log-likelihood function

ln(P) = − 3Ns Nk ln
(

πσ 2
)

−
1

σ 2

·

Ns∑

η=1

Nk∑

k=1

∑

ξ

∣
∣
∣Ĥ

meas

sη,n,ξ [k] − Ĥ
dipole

sη,n,ξ [k]ejαη[k]
∣
∣
∣

2

.

(34)

Thus, both the calibration and the localization is performed

by solving

max
�x

⎛

⎝−

Ns∑

η=1

Nk∑

k=1

∑

ξ

∣
∣
∣Ĥ

meas

sη,n,ξ [k] − Ĥ
dipole

sη,n,ξ [k]ejαη[k]
∣
∣
∣

2

⎞

⎠

= min
�x

Ns∑

η=1

Nk∑

k=1

∥
∥
∥ �̂H

meas

sη,n [k] − �̂H
dipole

sη,n [k]ejαη[k]
∥
∥
∥

2

2

= min
�x

Ns∑

η=1

Nk∑

k=1

∥
∥
∥Gη

�̂V
meas

RX,η[k] − �̂H
dipole

sη,n [k]ejαη[k]
∥
∥
∥

2

2
(35)

where ‖ · ‖2 denotes the Euclidean norm and �x denotes the

vector containing the optimization variables.

C. Sensor Model Estimation

The sensor model estimation of sensor η is executed by

recording Nk measurement points with different known TX

poses. Here, random TX poses to support the assumption of

uncorrelated Gaussian noise, as in (31). The field sensors

can be calibrated independently of each other, as in (35),

the corresponding errors are summed up. Hence, for estimating

Gη

min
Gη,αη[1],...,αη[Nk ]

Nk∑

k=1

∥
∥
∥Gη �̂V

meas

RX,η[k] − �̂H
dipole

sη,n [k]ejαη[k]
∥
∥
∥

2

2

= min
Gη

Nk∑

k=1

min
αη[k]

∥
∥
∥Gη �̂V

meas

RX,η[k] − �̂H
dipole

sη,n [k]ejαη[k]
∥
∥
∥

2

2

(a)
= min

Gη

Nk∑

k=1

∥
∥
∥Gη �̂V

meas

RX,η[k] − �̂H
dipole

sη,n [k]ejα′
η[k]
∥
∥
∥

2

2
(36)

needs to be solved, where (42) is used at (a) (see Appendix),

and α′
η[k] = − arg{ �̂H

meas,H

sη,n [k] �̂H
dipole

sη,n
[k]}. Inserting G

est
η =

Gηejαe,η and αest
η [k] = αη[k] + αe,η, with the unknown

phase αe,η, into the kth summand of (36) as

∥
∥
∥G

est
η

�̂V
meas

RX,η[k] − �̂H
dipole

sη,n [k]ejαest
η [k]

∥
∥
∥

2

2

=
∥
∥
∥ejαe,η

(

Gη �̂V
meas

RX,η[k] − �̂H
dipole

sη,n [k]ejαη[k]
)∥
∥
∥

2

2

=
∥
∥
∥Gη �̂V

meas

RX,η[k] − �̂H
dipole

sη,n [k]ejαη[k]
∥
∥
∥

2

2
(37)

shows that the overall calibration metric for Gη is insensi-

tive to a phase shift. Hence, in order to assure the stable

convergence to the optimal solution for Gη, it is assumed

that Im{Gη[1, 1]} = 0. Generally, except for the unknown

phases αη[1], . . . , αη[Nk ], the optimization problem in (36) is

linear least square. As the phases are evaluated analytically, see

Appendix, the remaining search is well-suited for a gradient-

based search beginning from Gη,start = M
−1
ideal. Note that

due to the phase ambiguity −Gη is an equivalently accurate

solution to Gη. However, as Gη,start[1, 1] > 0 holds, Gη will

converge toward its positive solution.

D. Estimation of the Pose of the Magnetic Dipole

Similar to the calibration of the individual field sensors,

the TX poses can be estimated independent of each other by

solving (35) for every measurement point k as

min
�xpose[k],α1[k],...,αNs [k]

Ns∑

η=1

∥
∥
∥ �̂H

meas

sη,n [k] − �̂H
dipole

sη,n [k]ejαη[k]
∥
∥
∥

2

2

= min
�xpose[k]

Ns∑

η=1

min
αη[k]

∥
∥
∥ �̂H

meas

sη,n
[k] − �̂H

dipole

sη,n
[k]ejαη[k]

∥
∥
∥

2

2

(a)
= min

�xpose[k]

Ns∑

η=1

∥
∥
∥ �̂H

meas

sη,n [k] − �̂H
dipole

sη,n [k]ejα′
η[k]
∥
∥
∥

2

2
(38)

where at (a) again (42) was used. For this purpose, a gradient-

based search for pose �xpose[k] beginning from the previous

pose �xpose[k − 1] is well suited.

V. SYSTEM SETUP

Fig. 4 illustrates the block diagram of the TX and Fig. 5(a)

illustrates its implementation. The system frequency is selected
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Fig. 4. Concept of the implemented TX.

to 125 kHz, because it turned out to be a good compromise

in the tradeoff between a sufficiently strong receive signal

and low coupling with the environment. A microcontroller

board is used as a signal generator that generates a rectan-

gular waveform at the system frequency. The noninverted

rectangular signal and its inverted version are connected to

MOSFET-driver circuits that control two n-channel MOSFETs

in a half-bridge circuit. The MOSFETs connect the output to

VDC = 48 V and ground (GND) in an alternating manner.

The upper signal path interacts with the lower signal path in a

push–pull configuration. With the emerging differential output

signal, the coil circuit is conducted by a rectangular signal

with a peak-to-peak value of 2 VDC. A tunable capacitor is

connected in parallel to the TX coil to tune the resonance

frequency of the parallel resonance circuit. Due to the filter

behavior of the resonance circuit, the emerging coil current

becomes sinusoidal at the system frequency with a measured

amplitude of ÎTX ≈ 422 mA. VDC is generated by a boost-

converter circuit, supplied by a 5 V power bank. The power

consumption of the TX is 1.25 W.

The block diagram of a 3-D-field sensor is illustrated

in Fig. 6 and its implementation is illustrated in Fig. 5(b).

The resonance circuits with the three sensor coils are matched

to the system frequency by tunable capacitors. During the

tuning process, only one coil circuit is connected to its capac-

itors in order to avoid distorted measurements due to coil cou-

pling. To ensure a high-quality factor in the resonance circuits,

a buffer with a high impedance input follows. As the magnetic

field strength is proportional to 1/r3, as in (1), the RX

needs to manage a high dynamic range. For this purpose,

the signal path is divided into an amplifier path (Amp) with an

amplification factor of 10 and voltage divider path (AT) with

an amplification factor of 0.1. A microcontroller of the type

STM32F303VE is used for signal processing and communi-

cation. The signal paths are selected by a multiplexer (MUX)

within the microcontroller. Subsequently, the signal is sampled

by an ADC with a 12-Bit resolution and a sample rate

of 480 kS/s, which satisfies the Nyquist–Shannon sampling

theorem. The sampled signal of length 1024 is multiplied with

Fig. 5. Implementation of (a) TX including driver circuit, microcontroller
board, TX coil, and prisms for reference orientation and (b) field sensor
consisting of 3-D-coil, RX circuit, microcontroller, and radio module.

a flattop window and transformed to frequency domain using

the discrete Fourier transform (DFT) algorithm. For noisy

environments, a longer DFT, i.e., measuring time, might be

used. Then, the amplitude of the spectral line, which represents

the measured field strength, is stored as measurement at time k.

If the peak value exceeds a threshold value, the MUX selects

the voltage divider signal path. All sensors are connected to

a sensor network via 433 MHz radio modules and with a

unique address, which is configured by coding switches. The

sensor network can be controlled by a host computer.

The TX and RX coils were dimensioned using the meth-

ods proposed in [34]. The circular coils have 20 wind-

ings of polyvinyl chloride-isolated wire with a cross section

of 1.5 mm2. The TX coils have a radius of 10 cm, and a

simulated inductance and resistance of 155 µH and 1.02 �,

respectively. The RX coils have a radius of 15 cm, and a

simulated inductance and resistance of 258 µH and 1.48 �,

respectively.

Fig. 7 illustrates the measurement setup for evaluating the

proposed algorithms. The field sensor network comprises eight

field sensors. In order to maximize the sensitivity of the

measured magnetic fields to TX position changes, the field

sensors were placed at the edges of the room. Furthermore,

the field sensors need to cover the complete room in all three

dimensions. Field sensors #1, #5, #8, and #4 can be seen

in Fig. 7 from left to right. A tachymeter providing 3 mm

accuracy measures the reference trajectory and orientation of

the TX. The reference orientation is calculated by capturing

the coordinates of three prisms [see Fig. 5(a)]. The office

environment, in which the measurement was conducted, has a

size of 7 m × 5 m × 3 m.

VI. MEASUREMENT RESULTS

At first, an approximation of the SNR of the measure-

ment will be given. In this measurement, a field sensor

was located at position �0 and the magnetic TX at �rD =
(

4m 0 0
)T

and y-orientated. Fig. 8 shows the DFT of the field

sensor’s y-channel. By performing two measurements with

and without the TX, the SNR can be approximated to be

about 60 dB at 4 m distance. Note that the TX localization
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Fig. 6. Block diagram of the implemented field sensor. The signal path, either attenuator (AT) or amplifier (Amp), are selected with the MUX depending
on the received signal amplitude. This way it was possible to cover the very high dynamic range with a 12-Bit ADC.

Fig. 7. Measurement setup for calibration and localization showing several
field sensors, the TX, and a tachymeter for measurement of reference points
and orientation.

Fig. 8. DFT of a coil’s receive signal with and without TX. The y-oriented
TX was located in 4 m x-distance to the y-oriented RX coil.

is performed via signal amplitude comparison, and hence,

the SNR strongly depends on the TX location and orientation.

In Fig. 9, the positions of the field sensors and the mea-

surement points for calibration are depicted. For this purpose,

40 measurements were conducted. In order to support the

assumption of independent Gaussian noise in (31), the calibra-

tion was performed at random poses distributed over the entire

measurement area. For evaluation of the localization accuracy,

a trajectory with 100 measurement points was recorded. The

reference trajectory was measured by the tachymeter and

is shown as a red solid curve in Fig. 10. To specify the

Fig. 9. Field sensor positions and measurement points used for calibration.

localization accuracy, the root-mean-square error (RMSE)

RMSEpos =

√
√
√
√

1

Nk

Nk∑

k=1

∥
∥�r est

D [k] − �r ref
D [k]

∥
∥

2

2
(39)

is used. In order to analyze the orientation accuracy, the angle

between the reference and estimated normal vector is calcu-

lated by the scalar product

ǫ[k] = arccos
(

�nest
D [k] · �nref

D [k]
)

(40)

and then yields the RMSE value of the error angle ǫ[k] as

RMSEangle =

√
√
√
√

1

Nk

Nk∑

k=1

‖ǫ[k]‖2
2. (41)

As the field sensors are not synchronized with the magnetic

TX, the direction of Î TX in (1) is undetermined, which yields

an uncertain sign of the orientation vector. This is fixed by

knowledge of the start orientation and a fast sample rate of

the localization system, where the orientation vector is located

in the same half sphere as the orientation vector of the previous

measurement point.
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Fig. 10. (a) Side view and (b) top view of field sensor positions, reference trajectory, estimated trajectory by locating the TX searching from corresponding
reference pose with uncalibrated field sensors, estimated trajectory by recursively locating the TX searching from its preceding pose with uncalibrated field
sensors, and estimated trajectory by recursively locating the TX by searching from its preceding pose with calibrated field sensors.

Fig. 11. Position error of the estimated trajectories for each measurement
point k shown in Fig. 10.

Fig. 12. Angle error from (40) of the estimated trajectories for each
measurement point k shown in Fig. 10.

In order to allow a fair comparison of calibrated and

uncalibrated field sensors, the entries of the main diago-

nal of Mideal were individually measured by performing a

reference measurement with a coil at a 2 m distance. In

the uncalibrated case, coupling and misalignment of the

sensor coils are neglected and thus G
−1
uncal = Mideal Rbn,

with known rotation matrices Rbn, is used for localiza-

tion. The TX is located by recursively estimating the TX

position �xpose[k] with the previous point �xpose[k−1] used as the

Fig. 13. Position and angle error histograms of pose estimation with
calibrated field sensors.

initial value for the search algorithm. Generally, the algorithm

could fail to converge toward the next global minimum due to

erroneous measurements. In practice, this should be resolved

by exploiting movement statistics, which might be done by a

Kalman filter [27].

The overall localization results are shown in Fig. 10. The

position and angle errors are shown in Figs. 11 and 12,

respectively. The results for the uncalibrated and the calibrated

field sensors are depicted by the orange dotted and the blue

dashed–dotted line, respectively. The performance with uncal-

ibrated field sensors is drastically degraded by the ambiguity

of the least square solution of (38). The poses �xpose[k]
were also searched using the reference trajectory as initial

values. The calibrated system maintains its accuracy, while the

uncalibrated system improves its performance, as shown in the

green dashed line, with a localization and orientation accuracy

of 46.8 cm and 24.8◦. Calibration of the system drastically

improves the performance to 10.6 cm and 6.1◦, respectively.

Fig. 13 shows the histograms of the position and angle errors

for calibrated field sensors. The localization error of the uncal-

ibrated system agrees with comparable previous works, which

is in the range of 0.3 to 0.8 m, see [20], [21], [24]–[26], [30].

In [24], an MLPS utilizing one-axis field sensors is shown,

which achieves an elevation error of 9.7◦ and an azimuth

error of 2.8◦. The result approximately matches the orientation

accuracy localized with the calibrated field sensors.
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VII. CONCLUSION

In this paper, a variety of 3-D-field sensor impairments

have been analyzed. Then, corresponding calibration and

localization algorithms were proposed. It was shown, that the

position- and orientation-RMSE could be drastically improved

by calibration, which was demonstrated in a common office

room. Considering the improved accuracy, MLPS becomes

a promising candidate for high-accuracy indoor localization

compared to other localization technologies like UWB.

Nevertheless, some subjects for further investigation

emerged during measurements. At first, the influence of system

parameters as TX signal strength and the number and posi-

tions of the field sensors should be examined. Furthermore,

the measurements suggest that the main remaining challenge

is the composition of the GND, which might be conductive, for

example, ferroconcrete. Hence, incorporating the room into the

calibration could be beneficial. Then, the positioning accuracy

might be improved using statistical filters, e.g., a Kalman

filter. Thereby, merging MLPS and other systems like INS

will further increase localization performance and resolve the

ambiguity challenge of MLPS.

APPENDIX

In this Appendix, it is shown that the optimization problem

in (36) and (38) can be solved as

argmin
αη[k]

∥
∥
∥ �̂H

meas

sη,n [k] − �̂H
dipole

sη,n [k]ejαη[k]
∥
∥
∥

2

2

= − arg
{

�̂H
meas,H

sη,n [k] �̂H
dipole

sη,n [k]
}

. (42)

For this purpose, the Hilbert projection theorem

[38, pp. 116–118] is used, stating that for the optimal

phase αη[k] the remaining error �̂H
meas

sη,n
[k]− �̂H

dipole

sη,n [k] · ejαη[k]

is orthogonal to �̂H
dipole

sη,n [k] · ejαη[k]. Thus

〈

�̂H
meas

sη,n [k] − �̂H
dipole

sη,n
[k] · ejαη[k], �̂H

dipole

sη,n [k] · ejαη[k]
〉

=
(

�̂H
meas

sη,n
[k] − �̂H

dipole

sη,n
[k] · ejαη[k]

)H
�̂H

dipole

sη,n [k] · ejαη[k]

= �̂H
meas,H

sη,n [k] �̂H
dipole

sη,n
[k]ejαη[k] − �̂H

dipole,H

sη,n
[k] �̂H

dipole

sη,n
[k]

!
= 0 (43)

holds, where 〈·, ·〉 denotes the complex scalar product and (·)H

denotes the conjugate transpose and must be satisfied by the

real and imaginary parts. The imaginary part

Im
{

�̂H
meas,H

sη,n [k] �̂H
dipole

sη,n
[k]ejαη[k]

}
!
= 0 (44)

can only be solved by

αη[k] =

⎧

⎨

⎩

αη,1[k] = − arg
{

�̂H
meas,H

sη,n
[k] �̂H

dipole

sη,n [k]
}

αη,2[k] = αη,1[k] + π.
(45)

The real part yields

Re
{

�̂H
meas,H

sη,n
[k] �̂H

dipole

sη,n [k]ejαη[k]
}

= �̂H
dipole,H

sη,n
[k] �̂H

dipole

sη,n
[k] ≥ 0. (46)

Inserting

∣
∣
∣ �̂H

meas,H

sη,n [k] �̂H
dipole

sη,n [k]
∣
∣
∣e

j arg

{

�̂H
meas,H

sη,n [k] �̂H
dipole

sη,n [k]

}

ejαη[k]

=
∣
∣
∣ �̂H

meas,H

sη,n
[k] �̂H

dipole

sη,n
[k]
∣
∣
∣ ·

{

1 for αη,1[k]

−1 for αη,2[k]
(47)

into (46) only yields αη,1[k] as a valid solution for (43).
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