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SUMMARY

Numerical simulation of the processes in the Earth mantle is a key piece in under-
standing its dynamics, composition, history, and interaction with the lithosphere and
the earth core. However, doing so presents many practical difficulties related to the
numerical methods that can accurately represent these processes at relevant scales.
This article presents an overview of the state of the art in algorithms for high-Rayleigh
number flows such as those in the earth mantle, and discusses their implementation in
the Open Source code Aspect (Advanced Solver for Problems in Earth’s ConvecTion).
Specifically, we show how an interconnected set of methods for adaptive mesh refine-
ment (AMR), higher order spatial and temporal discretizations, advection stabilization
and efficient linear solvers can provide high accuracy at a numerical cost unachievable
with traditional methods, and how these methods can be designed in a way so that
they scale to large number of processors on compute clusters.
Aspect relies on the numerical software packages deal.II and Trilinos, enabling
us to focus on high level code and keeping our implementation compact. We present
results from validation tests using widely used benchmarks for our code, as well as
scaling results from parallel runs.

Key words: Mantle convection, numerical methods, adaptive mesh refinement, finite
element method, higher order discretizations, preconditioners

1 INTRODUCTION

Computer simulation has been an important tool in study-
ing the earth mantle owing to its inaccessibility to direct
measurements. Consequently, deriving mathematical mod-
els and their numerical solution on computers has a long
history dating back several decades. Comparing predictions
from such models with indirect information about mantle
properties (e.g., thermal fluxes, glacial rebound or the shape
of the geoid) has provided an enormous amount of insight
into the structure and mechanisms driving convection in the
mantle. Similar computations have also been used to model
other bodies in the solar system.

However, numerical predictions can only be as good as
both the mathematical model and the numerical method
used to solve it. To this end, more numerical methods have
been proposed than we could attempt to summarize here,
and a number of well-supported codes implementing the
more successful methods have been published under licenses
that have allowed their wide usage in the community. Cit-

com [Moresi et al.(1996)] and Conman [King et al.(1990)] are
two examples of such codes, and both are now in fact at least
in part maintained by the NSF-funded community initiative
Computational Infrastructure in Geodynamics (CIG).

While highly successful, both of these codes as well
as most others that are in use throughout the community
have their roots in numerical methods that were state of
the art in the 1980s and early 1990s. For example, they use
fixed meshes, low order finite elements, and – measured by
today’s standards – relatively simple solver and stabiliza-
tion methods. Acknowledging the difficulty of retrofitting
existing codes to new mathematical methods, and with sup-
port from CIG, we are therefore implementing a new code
for mantle convection from scratch that incorporates the
progress that has been made in numerical methods and com-
putational science over the past 20 years. Unlike other efforts
that focus on a single part of a simulator (for example the
solver, the advection scheme, or the mesh), our intention in
this work is to provide a code that uses current technology
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in every one of its components. This code, which we call
Aspect (short for Advanced Solver for Problems in Earth’s

ConvecTion) is intended as a modular program that can
serve as the basis for both further method development and
model refinements, as well as for easy modification to adjust
for use in production simulations by the community at large.
It is available under an Open Source license.⋆

In this paper, we summarize the current state of the art
in numerical methods and computational science for prob-
lems of the kind that appear in the simulation of convection
in the earth mantle, and give an overview of the methods im-
plemented in Aspect. Specifically, we address the following
interconnected topics and the strategies used in our code:

• Mesh adaptation: Mantle convection problems are char-
acterized by widely disparate length scales (from plate
boundaries on the order of kilometers or even smaller, to the
scale of the entire earth). Uniform meshes can not resolve
the smallest length scale without an intractable number of
unknowns. Fully adaptive meshes allow resolving local fea-
tures of the flow field without the need to refine the mesh
globally. Since the location of plumes that require high res-
olution change and move with time, meshes also need to be
adapted every few time steps.

• Accurate discretizations: The Boussinesq problem upon
which most models for the earth mantle are based has a
number of intricacies that make the choice of discretiza-
tion non-trivial. In particular, the finite elements chosen
for velocity and pressure need to satisfy the usual com-
patibility condition for saddle point problems. This can be
worked around using pressure stabilization schemes for low-
order discretizations, but high-order methods can yield bet-
ter accuracy with fewer unknowns and offer more reliability.
Equally important is the choice of a stabilization method for
the highly advection-dominated temperature equation. We
will choose a nonlinear artificial diffusion method for the
latter.

• Efficient linear solvers: The major obstacle in solving
the Boussinesq system is the saddle-point nature of the
Stokes equations. Simple linear solvers and preconditioners
can not efficiently solve this system in the presence of strong
heterogeneities or when the size of the system becomes very
large. We will present an efficient solution strategy using a
block triangular preconditioner based on an algebraic multi-
grid that provides optimal complexity even up to problems
with hundreds of millions of unknowns.

• Parallelization of all of the steps above: Global man-
tle convection problems frequently require extremely large

⋆ In fact, it isn’t at the moment, though we have shared it
liberally with others up to this point (and we will be glad
to provide anonymous access to the reviewers). We commit to
releasing the first public version prior to publication of this
paper. What is currently already available is the step-32 tu-
torial program of deal.II that is the immediate precursor of
Aspect, see http://dealii.org/developer/doxygen/deal.II/

step_32.html and that already contains all principal algorithms
of Aspect. The difference between the two codes will primarily

be its intent: step-32 is a teaching tool, Aspect a code aimed at
production computations using a modular and extensible design.
Release of Aspect will make this footnote obsolete before final

publication.

numbers of unknowns for adequate resolution in three di-
mensional simulations. The only realistic way to solve such
problems lies in parallelizing computations over hundreds or
thousands of processors. This is made more complicated by
the use of dynamically changing meshes, and it needs to take
into account that we want to retain the optimal complexity
of linear solvers and all other operations in the program.

• Modularity of the code: A code that implements all of
these methods from scratch will be unwieldy, unreadable
and unusable as a community resource. To avoid this, we
build our implementation on widely used and well tested li-
braries that can provide researchers interested in extending
it with the support of a large user community. Specifically,
we use the deal.II library [Bangerth et al.(2007),Bangerth
& Kanschat(2011)] for meshes, finite elements and every-
thing discretization related; the Trilinos library [Heroux
et al.(2005), Heroux et al.(2011)] for scalable and parallel
linear algebra; and p4est [Burstedde et al.(2011)] for dis-
tributed, adaptive meshes. As a consequence, our code is
freed of the mundane tasks of defining finite element shape
functions or dealing with the data structures of linear al-
gebra, can focus on the high-level description of what is
supposed to happen, and remains relatively compact at cur-
rently only around 1,000 lines. The code will also automati-
cally benefit from improvements to the underlying libraries
with their much larger development communities. Our code
is extensively documented to enable other researchers to un-
derstand, test, use, and extend it.

It is our hope that the code finds adoption in the mantle
convection community. This publication is intended as an
overview of the numerical methods considered state-of-the-
art today and that are implemented in Aspect.

In the following sections, we will discuss the various
parts of developing a modern implementation of a mantle
convection simulator. Specifically, in Section 2 we outline
the mathematical formulation of the problem in the form
of the Boussinesq approximation. Section 3 discusses the
numerical methods used for time discretization, spatial dis-
cretization and stabilization of the temperature equation,
the linear solvers and preconditioners, and parallelization
issues. Section 4 shows numerical results obtained with the
code and the results of benchmark problems. Section 5 draws
conclusions and gives an outlook to further questions.

2 FORMULATION OF THE PROBLEM

Convection processes in the earth’s mantle are well described
by incompressible fluid flow driven by temperature-induced
small density differences. Since viscous friction forces in
the fluid are large compared to buoyancy forces, the mo-
tion is slow and inertial terms can be neglected [Schubert
et al.(2001)]. This yields the Boussinesq model, given by the
following set of partial differential equations

−∇ · (2ηε(u)) +∇p = ρ(T )g, (1)

∇ · u = 0, (2)

∂T

∂t
+ u · ∇T −∇ · (κ∇T ) = γ. (3)

In this equation, u denotes the fluid velocity, p the dy-
namic pressure, and T the temperature. η is the viscosity
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of the material, and ε(u) = 1
2

(
∇u+ (∇u)T

)
is the rate-

of-deformation or strain rate tensor. The parameters κ, γ,
and g are the thermal conductivity, heat sources, and grav-
ity vector, respectively. The simplest approximation for the
temperature dependent density ρ(T ) is to use the relation-
ship

ρ(T ) = ρref (1− β(T − Tref)) ,

where ρref is the reference density at reference temperature
Tref , and β is the thermal expansion coefficient. The equa-
tions need to be augmented by appropriate boundary condi-
tions for the velocity (or pressure) and temperature, as well
as initial conditions for T .

This relatively simple system can be non-
dimensionalized by introducing the Rayleigh number,
see e.g. [Zhong et al.(2008)] to simplify the analysis of these
equations. However, we choose not to do so, since working
in the correct physical units makes comparison of numerical
results and table lookup of experimentally determined
material parameters simpler when using nonlinear and
more realistic versions of the equations above. Furthermore,
it avoids many easy-to-make programming errors. On the
other hand, we will have to pay attention in our linear
solvers to avoid the resulting problems with ill-conditioning,
a topic we will come back to in Section 3.2.4.

We note that for a realistic description of the earth,
several of the coefficients depend on the solution variables.
For example, the viscosity η generally decreases with rising
temperature T and depends on the strain rate; both viscosity
η and density ρ depend on the current location in the p-T
phase diagram; and the heating term γ will contain not only
radiogenic heating but also adiabatic heating and the viscous
dissipation ηε(u) : ε(u). Many other factors, for example
inhomogeneous chemical composition or phase changes, also
enter any attempt at complete descriptions. We will discuss
some of these issues at the end of this paper.

3 NUMERICAL METHODS

Equations (1)–(3) are not easy to solve numerically. To be
efficient, an algorithm has to take into account a number of
interconnected issues related to time stepping, spatial dis-
cretization, and linear solvers, none of which can be consid-
ered entirely on their own.

As mentioned in the introduction, the purpose of this
paper is to describe a coherent set of methods for time dis-
cretization, adaptive meshing, spatial discretization, paral-
lelization, and optimal linear solvers and preconditioners
that together yield accurate solutions at optimal cost and
that enable the numerical simulation even of processes that
were previously considered too difficult, or in a fraction of
the time for problems that are typically considered expen-
sive.

In the following subsections, we will present the var-
ious building blocks of our approach. An open source im-
plementation of these ideas is available through the exten-
sively documented step-31 and step-32 tutorial programs
[Kronbichler & Bangerth(2011),Kronbichler et al.(2011)] of
the widely used finite element library deal.II [Bangerth
et al.(2007), Bangerth & Kanschat(2011)], and the contin-
ued development of these programs in the form of Aspect.

The numerical results in Section 4 were obtained with only
slightly modified versions of these tutorial programs and are
therefore easily replicable. We mention here that the code
supports both 2d and 3d computations, obviating the need
to develop and debug two separate versions of the meth-
ods, and enabling to test the 2d version before switching to
production runs in 3d.

3.1 Time discretization

The primary complications of the Boussinesq system (1)–
(3) with regard to the time discretization are (i) the non-
linear coupling of all components; and (ii) the fact that the
Stokes equations for u, p do not contain time derivatives
and consequently form the equivalent of an algebraic (in-
stantaneous) constraint to the temperature equation that
does have a time derivative. The result of these complica-
tions are that simple and cheap time marching schemes are
not possible. A large number of schemes have been proposed
and used over the past decades to approximate solutions to
the Boussinesq equations (for recent discussions of meth-
ods see [Ismail-Zadeh & Tackley(2010),Gerya(2010)]). How-
ever, while appropriate at the time, most of them would not
be considered highly accurate or highly efficient by today’s
standards.

The Stokes equation can be considered as a con-
straint to the temperature equation that has to hold at
any given time in general, and at time steps in particu-
lar. Time dependent differential equations of this kind are
frequently solved using time stepping methods akin to the
IMPES (implicit pressure explicit saturation) schemes orig-
inally developed for porous media flow simulations [Sheldon
et al.(1959), Stone & Garder(1961), Chen(2006)]. In these
methods, the variables defined by the constraint are com-
puted from the equations without time derivatives. Here,
these are velocities and pressure, and since a linear system
needs to be inverted, the step is considered implicit. In a sec-
ond sub-step of the original IMPES scheme, the other vari-
ables are then updated using an explicit time step. The IM-
PES approach allows to decouple the nonlinear Boussinesq
system into two simpler, linear subproblems, and therefore
leads to an efficient scheme for the solution of the coupled
problem.

Since one alternates between the two sub-steps, one can
consider them in any order. Let us here first discuss the
explicit temperature step and then the implicit Stokes solve.
In the following, let tn denote the time of the nth time step
and kn = tn − tn−1 denote the length of the nth time step.
We will then write un, pn, Tn to indicate approximations of
the velocity, pressure and temperature at time tn.

In order to provide accurate convection dynamics, we
approximate the time dependency in the temperature equa-
tion (3) using a second-order accurate implicit/explicit time
stepping scheme based on the BDF-2 scheme [Hairer &
Wanner(1991)]. This scheme is a good compromise between
high accuracy (which could be increased using higher order
schemes), stability (which typically decreases with the order
of the scheme, requiring smaller CFL numbers and conse-
quently higher computational effort), and efficiency of im-
plementation (higher order schemes often become unwieldy
as they require complicated initialization during the first few
time steps, and require the storage of many solution vectors
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from previous time steps). The BDF-2 scheme balances these
issues well and leads to reasonable CFL numbers and an ac-
curacy that is balanced with that of the spatial discretization
that we will discuss in Section 3.2.

To derive the BDF-2 scheme, we use a quadratic inter-
polation to find the finite difference approximation of ∂T

∂t

from times tn, tn−1, tn−2 as

∂T (tn)

∂t
≈

1

kn

(
2kn + kn−1

kn + kn−1

T (tn)−
kn + kn−1

kn−1

T (tn−1)

+
k2
n

kn−1(kn + kn−1)
T (tn−2)

)
. (4)

Using a Taylor series one can show that this approximation
is correct up to second order [Hairer & Wanner(1991)]. The
same formulas also hold for u(tn), of course. The usual form
in which these equations are stated in the literature is ob-
tained by assuming that kn = kn−1, but we want to keep
our formulas more general since we need to choose variable
time step sizes to satisfy the CFL condition at each time
step.

Taking into account the time step sizes kn and kn−1,
we define the linearly extrapolated temperature T ∗,n as

T ∗,n =

(
1 +

kn
kn−1

)
Tn−1 −

kn
kn−1

Tn−2, (5)

and similarly for an extrapolated velocity u∗,n.
We then arrive at a semi-implicit BDF-2 version of the

temperature equation (3) by using T ∗,n,u∗,n in the advec-
tion term, treating the diffusion term implicitly, and using
approximation (4) for the time derivative:

2kn + kn−1

kn + kn−1

Tn − kn∇ · κ∇Tn =
kn + kn−1

kn−1

Tn−1

−
k2
n

kn−1(kn + kn−1)
Tn−2 − knu

∗,n · ∇T ∗,n + knγ.

(6)

We will discuss solving the discretized version of this equa-
tion for Tn in Section 3.3.1. Note that we treat physical
heat conduction (diffusion) implicitly while the evaluation
of convection and the artificial diffusion terms we will dis-
cuss below are made explicit by extrapolation. For a fixed
convection this will retain unconditional stability, see [Quar-
teroni & Valli(1994), p.411]. Since solving the temperature
equation does not take more than a few percent of the over-
all run time of Boussinesq solvers, making diffusion implicit
is a useful compromise. Regardless of this detail, the whole
scheme is not unconditionally stable, because we extrapolate
the convection u∗,n in the temperature equation (6).

The introduction of this explicit convection limits the
time step by a Courant-Friedrichs-Lewy (CFL) condition
[Quarteroni & Valli(1994)]. Specifically, after spatial dis-
cretization (see Section 3.2), the time step kn must satisfy

CFLK =
kn‖u‖∞,K

hK

≤ C

on every cell K, for a constant C that depends on the par-
ticular time stepping method as well as the method used for
spatial discretization and that is experimentally chosen as
large as possible while ensuring that the solution remains
stable. Here, hK is the diameter of cell K, and ‖u‖∞,K the
maximal magnitude of the velocity on K. In our implemen-
tation, we have experimentally chosen C = 1

5.9p
in 2d and

C = 1
43.6p

in 3d, where p is the polynomial degree with which
we discretize the temperature variable, see Section 3.2.5. The
difference between 2d and 3d results primarily from the dif-
ferent ratio between edge length and cell diameter hK as
well as from the larger distortion of cells in 3d in the shell
geometry we will be using in mantle convection simulations.
Note that choosing time steps kn that satisfy this stability
condition necessitates choosing them of variable length as in
the formulas above.

We end the discussion of the time discretization with
three remarks. First, one might believe that a fully implicit
time discretization would allow larger time steps. However,
since it is impractical to solve the temperature equation
fully coupled with the Stokes equation, our use of the ex-
trapolated velocity u∗ already limits the size of time steps.
Furthermore, while fully implicit solutions may be stable
for advection problems with a CFL number larger than C,
they are typically rather inaccurate with large time steps.
Secondly, the BDF-2 scheme requires knowledge of the solu-
tion at time instances tn−1, tn−2; consequently, it can not be
used for the very first time step and we initialize the scheme
by a single, first-order accurate implicit Euler step. Since
most geodynamics applications are not interested in the ini-
tial transient phase but the long-term behavior, the reduced
accuracy in the initial time step does in general not affect
overall results. Finally, after solving for the temperature at
time instant tn using (6), we can compute an updated ve-
locity un using the Stokes system

−∇ · (2ηε(un)) +∇pn = ρ(Tn)g,

∇ · un = 0.
(7)

Since these equations do not have time derivatives, no spe-
cial time discretization is necessary here.

3.2 Spatial discretization and stabilization

In each time step, we now first have to solve (6) for the
updated temperature Tn, then (7) for the new velocity and
pressure. To do so, we need to spatially discretize these equa-
tions, for which we use the finite element method.

As with time stepping, spatial discretization raises a
number of interconnected issues: (i) What kind of mesh
should we choose? (ii) What kind and order of finite elements
should we use for the temperature, velocity, and pressure
variables? (iii) How can we stabilize the solution of the dis-
crete temperature equation to avoid unphysical oscillations
in regions where the temperature has strong gradients? We
will discuss these issues in turn in the following.

3.2.1 Choice of meshes and local adaptation

With few and mostly recent exceptions (see, for exam-
ple, [Burstedde et al.(2008), Stadler et al.(2010), Leng &
Zhong(2011), Burstedde et al.(2009), Albers(2000), Davies
et al.(2007a),Davies et al.(2007b)]), mantle convection ap-
plications have used meshes that are either obtained by uni-
form refinement of a coarse mesh, or are obtained from a
mesh generator. In either case, the mesh is fixed. In contrast,
we will here use a mesh that can be dynamically adapted
by local adaptive refinement and coarsening of an initial
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mesh with a small number of cells. This gives us flexibil-
ity to improve mesh resolution close to specific features of
the solution, for example strong temperature gradients, and
thereby increase the accuracy of the solution. A different
view of this adaptive mesh refinement (AMR) technique is
that the mesh is a selectively coarsened version of a uni-
formly refined one where coarsening happens in parts of the
volume where the solution is smooth. This notion supports
the view that adaptively refined meshes provide about the
same overall accuracy as a uniformly refined mesh with the
same minimal mesh size, but at a fraction of the numerical
cost. Evidence from the more mathematically oriented lit-
erature (see, e.g., [Bangerth & Rannacher(2003),Ainsworth
& Oden(2000), Babuška & Strouboulis(2001)]) shows con-
sistently that AMR can achieve levels of accuracy typically
required in engineering applications with a factor of around
100 (in 2d) or 1000 (in 3d) less computational effort than
uniformly refined meshes. Convection problems are certainly
a prime candidate for savings of this order of magnitude
given that the temperature and accompanying flow features
frequently vary on length scales of only a few kilometers,
much smaller than the size of Earth as a whole. Using adap-
tively refined meshes is, therefore, a crucially important fac-
tor in making highly accurate simulations of complex prob-
lems possible at all.

There are a number of practical aspects to using AMR.
First, the underlying software is unsurprisingly much more
complex than when one wants to use a fixed mesh. Our work
is based on a large finite element library, deal.II, that al-
ready provides this functionality at little additional effort to
the implementer of a code, for quadrilaterals in 2d and hex-
ahedra in 3d. Secondly, one has to deal with the fact that if
neighboring cells differ in refinement level, some of the nodes
of the mesh lie on the midpoints of edges or faces of neighbor-
ing cells. We deal with this through constraints that ensure
that the solution remains continuous at these hanging nodes,
see [Babuška & Rheinboldt(1978), Carey(1997), Bangerth
et al.(2007), Bangerth & Kayser-Herold(2009)]. Finally, we
dynamically adapt the mesh every few time steps and we
need a criterion to decide which cells to refine or coarsen.
Since the variable that is most indicative of abruptly chang-
ing features of the solution is the temperature, we apply a
criterion to the temperature that is commonly referred to
as the “Kelly error indicator” [Gago et al.(1983)] and that
computes for each cell an approximation of the size of the
second derivatives times the diameter of the cell. This cri-
terion has been found to be a simple, yet universally useful
tool in adaptively refining meshes, and is implemented in
deal.II. While this works well in 2d, in 3d it refines primar-
ily into the boundary layers at the inner and outer margins
of the mantle; we avoid this by also taking derivatives of the
velocity into account when refining. Even though we adapt
the mesh every few time steps, we limit the number of times
a single coarse mesh cell can be refined: otherwise, close to
steep gradients, the cells would be made smaller and smaller
in each refinement step, requiring smaller and smaller global
time steps due to the CFL condition.

While implementing the data structures and algorithms
outlined above from scratch would require several tens of
thousands of lines of codes, they are all readily available in
deal.II. In fact, using adaptive meshes and related algo-
rithms requires little more than maybe a dozen lines of code

Figure 1. Example of a locally refined mesh. One half of the mesh

for the spherical shell geometry in 3d is shown. The mesh has
approximately 890,000 cells; the finest cells are six times refined

from the coarse mesh.

in our program. An example of the kind of meshes we use
here is shown in Fig. 1 in 3d; a 2d mesh is shown in Fig. 5
below.

3.2.2 Approximation of geometry

Our program uses Cartesian coordinates. The advantage of
this choice is that the shell geometry of the earth mantle
is not a hard-coded special case, but no different than any
other geometry (it is simply produced by using a mesh con-
sisting of an unstructured collection of coarse cells which
are then hierarchically refined) and the code can readily be
adapted to use a box geometry (as used in some of the ex-
amples in Section 4), an octant of the shell, or a domain that
takes into account the geoid shape or actual topography –
none of these is any more difficult than any other, and we
need not modify the assembly of matrices or vectors when
changing between coordinate systems.

To deal with curved boundaries, one has to map the
finite element shape functions discussed below from the ref-
erence cell on which they are defined to the location of
cells in the unstructured mesh. Traditionally, this is done
using polynomial mappings, often chosen to be isoparamet-
ric, i.e., of the same polynomial degree as the shape func-
tions [Brenner & Scott(2002),Carey(1997)], though deal.II

allows these to be chosen independently. Because the over-
head of using a higher order mapping is negligible compared
to the many other operations in a program (the higher order
mapping only leads to higher numerical cost in cells at the
surface of the domain), we use a mapping of degree four.

3.2.3 Spatial approximation of the flow variables

On the meshes as described above, we discretize all vari-
ables using the finite element method, i.e., we seek to find
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approximations for un, pn, Tn of the form

u
n
h(x) =

Nu∑

j=1

Un
j ϕ

u
j (x),

pnh(x) =

Np∑

j=1

Pn
j ϕp

j (x),

Tn
h (x) =

NT∑

j=1

Tn
j ϕT

j s(x).

(8)

There are a number of choices for the finite element basis
functions ϕu

j , ϕ
p
j , ϕ

T
j . Since we will want to match the poly-

nomial degree of the functions for the temperature to those
of the velocity, let us here first discuss the choice for the flow
variables.

For the Stokes system (7), it is well known that the
polynomial degrees of shape functions for the velocity and
the pressure can not be chosen arbitrarily (see, for exam-
ple, [Brenner & Scott(2002),Braess(1997)]). Rather, one ei-
ther has to stabilize the Stokes equations, for example by
adding an artificial compressibility term, or by choosing a
pair of finite element spaces that satisfy the Babuška-Brezzi
(or LBB or inf-sup) condition.

Most homegrown codes use artificial compressibility (or
some other) stabilization because it avoids the need to imple-
ment shape functions of different polynomial degrees. How-
ever, it is known that the resulting solutions are not very ac-
curate; furthermore, these schemes can not easily guarantee
mass conservation. For these reasons, we choose to use finite
element spaces that are known to be LBB-stable [Girault &
Raviart(1986)]. Specifically, we consider the following two
options that are already implemented in deal.II:

• Qd
q+1 ×Qq, (q ≥ 1): This choice uses continuous shape

functions of polynomial degree q+1 for each of the d velocity
components, and continuous shape functions of polynomial
degree q for the pressure.† This combination is known as
Taylor-Hood elements. The fact that we use a lower polyno-
mial degree for the pressure is not usually a concern since
one is not typically interested in highly accurate pressure
fields anyway. Furthermore, the pressure is a globally smooth
function and almost entirely dominated by the hydrostatic
pressure that essentially determines the lookup of pressure-
dependent material properties.

• Qd
q+1 × P−q, (q ≥ 1): This choice differs from the one

above in that it uses discontinuous elements of polynomial
degree q for the pressure and that it omits the tensor product
shape functions from the polynomial space.

In either case, one will typically choose q = 1, i.e., linear

† Here and in the following, the finite element space Qq is gener-

ated by mapping complete tensor polynomial spaces from the ref-
erence cell to each cell. For example, in 2d the space Q1 consists of

the bilinear functions 1, ξ, η, ξη, where ξ, η are the coordinates on
the reference cell. In contrast, the space Pq consists only of poly-
nomials of maximum degree q. In 2d, P1 consists of the functions
1, ξ, η. Using a negative index, P−q , indicates that functions do
not need to be continuous across cell interfaces. See also [Elman
et al.(2005), Sec. 5.3] for a discussion of element spaces suitable
for the Stokes problem.

elements for the pressure and quadratic ones for the veloc-
ity. This gives formal third order accuracy for the velocity
variable and second order for the pressure. Choosing larger
values for q, as is possible throughAspect’s input file, would
yield higher orders of convergence, but non-smooth regions
in the solution usually limit the global accuracy so that the
additional work does not pay off.

Which of the two choices above for the pressure space
is preferable is not immediately obvious. It is easy to show
that the second implies local mass conservation on each cell,
i.e.,

∫
∂K

n·un
h = 0 for every cell K of the mesh. On the other

hand, this does not necessarily yield a smaller overall error
and, in fact, simple experiments show that the pointwise

values of the divergence of un
h are in fact larger for the second

choice than for the first. A different consideration is that the
second choice has significantly more pressure variables than
the first although as we will see in Section 3.3.2, this does
not result in a significantly higher computational effort. To
facilitate experiments, our implementation allows to choose
either based on a run-time parameter.

3.2.4 Weak form and fully discrete Stokes system

The coefficients Uj , Pj of the expansion (8) are determined
by inserting un

h, p
n
h into the Stokes system (7), multiplying

the equations with test functions ϕu
i (x), ϕ

p
l (x) respectively,

and integrating over the domain. Integrating these terms by
parts and using the appropriate boundary conditions on ϕ

u
i

and un
h then yields the weak form of the discrete equations:

(ε(ϕu
i ), 2ηε(u

n
h))Ω − (∇ ·ϕu

i , p
n
h)Ω = (ϕu

i , ρ(T
n
h )g)Ω,

(ϕp
l ,∇ · un

h)Ω = 0.

Our goal is to find functions un
h and pnh – i.e., to find

coefficients Un
j , P

n
j – such that these equations hold for

i = 1 . . . Nu, l = 1 . . . Np. As stated, the equations are
unbalanced in their physical units since we have not non-
dimensionalized them, and will have vastly different numer-
ical values when using coefficients and length scales as com-
mon for Earth. While not a mathematical problem, it leads
to severe inaccuracies for both linear and iterative solvers.
We avoid these by multiplying the second of the two equa-
tions by a pressure scaling factor sp = η

L
where L is a typ-

ical lengthscale of the problem. We have found that it is
best to choose L not as the diameter of the domain but as
the size of typical features such as plumes in the earth to
approximate the effect of the missing second derivative in
the second equation compared to the first. For example, for
global convection problems, we choose L = 104m.

After multiplying the second equation by sp, the sys-
tem is no longer symmetric. We can restore symmetry by
replacing the pressure by pnh = spp̄

n
h and solving for p̄nh with

expansion coefficients P̄ instead. We obtain the original pres-
sure immediately after solving by multiplying the pressure
component of the solution vector by sp. With all this, the
fully discrete version of the Stokes equations at time step n
now reads

(ε(ϕu
i ), 2ηε(u

n
h))Ω − sp(∇ ·ϕu

i , p̄
n
h)Ω = (ϕu

i , ρ(T
n
h )g)Ω,

sp (ϕ
p
l ,∇ · un

h)Ω = 0,
(9)

and we can rewrite these equations in matrix notation as
(

A BT

B 0

)(
Un

P̄n

)
=

(
Fn

0

)
, (10)
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where

Aij =
(
ε(ϕu

i ), 2ηε(ϕ
u
j )
)
Ω
, (11)

Bij = −sp
(
ϕq

i ,∇ ·ϕu
j

)
Ω
, (12)

Fi = (ϕu
i , ρ(T )g)Ω (13)

with right-hand side vector F . We will discuss solving this
linear system in Section 3.3.2.

3.2.5 Spatial approximation of the temperature variable

Since the temperature structure of the earth is one of the
variables of primary interest in mantle convection computa-
tions, we are interested in an accurate representation. Conse-
quently, choosing a higher order approximation would seem
promising. On the other hand, we can not expect the evo-
lution of the temperature field to be more accurate than
the velocity field along which it is primarily advected. Thus,
we choose to approximate the temperature using the same
polynomial degree q + 1 as the velocity, i.e., Tn

h ∈ Qq+1.
Our experience is that Qq elements yield considerably worse
approximations in usual temperature fields, despite the fact
that high order methods are more prone to over- and un-
dershoots in regions of high gradients [LeVeque(2002)]. We
suppress these oscillations through an appropriate stabiliza-
tion as discussed in the next section.

3.2.6 Stabilization of the temperature equation

Equation (6) for the temperature at time step n is of
advection-diffusion type. In mantle convection simulations,
the diffusivity κ is very small compared to the velocity. Even
for very fine meshes, the local Péclet number on cell K,
PeK = hK |u|K

κ
is usually in the range of 102 to 104. For

such high Péclet number problems, standard finite element
discretizations introduce spurious oscillations around steep
gradients [Donea & Huerta(2003)]. Therefore, stabilization
must be added to the discrete formulation in order to obtain
correct solutions.

One commonly used stabilization is to add artificial
diffusion, either uniformly or, in the SUPG method, only
along streamlines [Brooks & Hughes(1982)]. Such methods
are used, for example, in the widely used Conman [King
et al.(1990)] and Citcom [Moresi et al.(1996)] codes. While
popular, these methods have the disadvantage that they add
diffusion everywhere, even in regions where the temperature
is smooth and there is no danger of oscillations. We therefore
adopt a more recent method, the so-called entropy viscosity
method [Guermond et al.(2011)], that only adds artificial
diffusion where necessary. This method solves the modified
temperature equation

∂T

∂t
+ u · ∇T −∇ · (κ+ νh(T ))∇T = γ, (14)

subject to the time discretization discussed in Section 3.1,
with an artificial dissipation νh(T ) added to the equation.
Conceptually, in regions where the temperature field T is
smooth νh should be small, and in regions with significant
variability νh should be of similar size as the diffusive flux in
a first order upwind scheme [LeVeque(2002)]. This nonlin-
ear definition of the artificial viscosity makes sure that the
dissipation is as small as possible, while still large enough to

prevent oscillations in the temperature field. In particular,
the global approximation property of the scheme will not be
affected, as would be with a simple linear dissipation with a
constant νh.

Following [Guermond et al.(2011)], on cell K we choose
νh|K as

νh|K = min(νmax
h |K , νE

h |K). (15)

The maximum dissipation νmax is defined as

νmax
h |K = αmaxhK‖u‖∞,K ,

where the constant αmax = 0.026d depends only on the spa-
tial dimension d, and where hK denotes the characteristic
size of cell K. On the other hand, the entropy viscosity is
defined as

νE
h |K = αE

h2
K‖rE(T )‖∞,K

‖E(T )− Eavg‖∞,Ω

,

where we choose the constant αE = 1, see also the discussion
in [Guermond et al.(2011)]. The entropy viscosity is scaled
globally by ‖E(T )−Eavg‖∞,Ω, based on the maximum devi-
ation of the temperature entropy E(T ) = 1

2
(T −Tm)2, Tm =

1
2
(Tmin + Tmax) from the space-average Eavg = 1

|Ω|

∫
Ω
E(T ).

The residual rE(T ) is associated with the entropy of the
temperature equation,

rE(T ) =
∂E(T )

∂t
+ (T − Tm)

(
u · ∇T − κ∇2T − γ

)
.

This residual is zero if applied to the exact solution of the
temperature equation, leading to no artificial diffusion, but
it is nonzero when applied to the numerical approximation
we compute and will be large in areas where the numerical
approximation is poor, such as close to strong gradients. We
note that this definition of an artificial dissipation is similar
to the YZβ discontinuity capturing proposed in [Bazilevs
et al.(2007)], where the residual is based on the equation
itself instead of the entropy, though.

In practice, we need to evaluate the formula above for
the discrete solution. Since we do not want the artificial
viscosity to introduce a nonlinear dependence on the cur-
rent temperature Tn, we make it explicit by approximat-
ing the time derivative from the two previous time levels
in the BDF-2 time stepping, ∂E(Th)/∂t ≈ (E(Tn−1) −
E(Tn−2))/kn−1, and evaluating all other occurrences of the
temperature at the midpoint as (Tn−1+Tn−2)/2, including
the average temperature. We will treat the artificial viscos-
ity term −∇ · νh(T

n−1, Tn−2)∇T ∗,n as a whole explicitly,
based on the extrapolated temperature defined in (5). Since
the maximum artificial viscosity is proportional to the mesh
size and the velocity, the CFL number is not changed sub-
stantially, which we have also verified numerically.

3.2.7 Fully discrete temperature system

In the same way as for the Stokes equations, we obtain
the fully discrete linear system corresponding to the time-
discretized temperature equation (6):

(
2kn + kn−1

kn + kn−1

M + knK

)
Tn = Gn, (16)

where Mij =
(
ϕT

i , ϕ
T
j

)
Ω

is the mass matrix, and Kij =(
κ∇ϕT

i ,∇ϕT
j

)
Ω

the stiffness matrix. The right hand side
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term Gn contains all terms from previous time levels,

Gn
i =

(
ϕT

i ,
kn + kn−1

kn−1

Tn−1 −
k2
n

kn−1(kn + kn−1)
Tn−2

)

Ω

+
(
ϕT

i ,−knu
∗,n · ∇T ∗,n + knγ)

)
Ω
−
(
∇ϕT

i , knνh∇T ∗,n
)
Ω
,

where the artificial viscosity νh is defined by (15) and con-
stant within a cell K, and the extrapolated values for tem-
perature and velocity are according to (5).

3.3 Linear solvers

Applying temporal and spatial discretization to the Boussi-
nesq system leads to the two linear equation systems (16)
and (10) that need to be solved in each time step. To ac-
curately represent problems in geodynamics, this leads to
large systems with up to hundreds of millions or billions of
unknowns for which the only realistic choice are iterative
solvers [Saad(2003)]. We discuss our choices in the following
sections.

3.3.1 Temperature system

Solving the temperature system (16) is relatively straight-
forward. The system is symmetric, positive definite, and
dominated by the mass matrix part since the remainder is

proportional to knκ = h2

Pe
with typical local Péclet numbers

on the order of 100 or more. Consequently, the eigenvalues of
the matrix are well clustered, independent of the mesh size,
and the CG method converges in a number of steps indepen-
dent of the mesh size [Saad(2003)]. We use an incomplete LU
decomposition as a preconditioner. Typical iteration counts
are between 10 and 30.

3.3.2 Stokes system

The Stokes system (10) is more challenging because of the
saddle point structure with zero diagonal block. Solving lin-
ear equations with such a structure is discussed in great de-
tail in [Elman et al.(2005)]. An extensive overview of meth-
ods for the Stokes system in the context of mantle convec-
tion is given in [Geenen et al.(2009)], and we basically follow
their approach.

Of the available iterative solvers for indefinite sym-
metric problems such as GMRES, SymmLQ or MinRes
[Saad(2003)], only GMRES can deal with the non-symmetric
preconditioners we will discuss below and that have been
shown to be the most efficient for this problem. Standard
GMRES determines whether to stop the iteration by esti-
mating the norm of the residual based on preconditioned it-
erates. Since the preconditioner we consider below uses inex-
act solves, it is not a linear operation, and consequently the
residual estimate is inaccurate and not a reliable stopping
criterion. Therefore, we use the flexible GMRES (FGMRES)
variant of GMRES that uses one explicit residual computa-
tion per iteration to determine whether the stopping crite-
rion has been met.

Any iterative solver for large problems requires precon-
ditioners to lower the condition number of linear systems,
preferably to a value that is independent of the mesh size.
This could in principle be done by looking at the matrix as

a whole (see, for example, [Saad(2003)], or the multigrid ap-
proach in [Kameyama(2005)]), but is uncommon for block
systems such as the one considered here. Rather, most ef-
ficient preconditioners found so far for the Stokes system
are based on variants of the ones described in [Silvester &
Wathen(1994)] and are defined by the non-symmetric block
triangular matrix

P =

(
A BT

0 −S

)
, with P−1 =

(
A−1 A−1BTS−1

0 −S−1

)

where S = BA−1BT is the Schur complement of the Stokes
operator. Applying P−1 as a right preconditioner yields

(
A BT

B 0

)
P−1 =

(
I 0

BA−1 I

)
,

for which it can be shown that GMRES converges in at most
two iterations [Silvester & Wathen(1994)].

This preconditioner is not practically useful because it
involves exact inverses A−1 and S−1. In our computations,
we therefore use the following preconditioner instead:

P−1 =

(
Ã−1 −Ã−1BTS̃−1

0 S̃−1

)
(17)

where Ã−1, S̃−1 approximate the exact inverses. We will dis-
cuss our choices for these matrices next. In their construc-
tion, it is important to remember that iterative solvers do
not need element-by-element representations of matrices like

Ã−1 but only the results of products like Ã−1r for a given
vector r, whichever way this can be computed.

Choice of Ã−1. Since A is symmetric, we compute the

product x = Ã−1r by solving the linear system Ax = r for
x using a CG solver with a loose tolerance of 10−2 (relative
residual). This is a sufficient approximation, and the outer
GMRES solver will take care that the solution to the whole
system will converge to the desired tolerance.

This approximate CG solve needs to be preconditioned.
Candidate preconditioners that yield mesh-independent con-
vergence are multigrid methods, see e.g. [Hackbusch(1985),
Trottenberg et al.(2001)]. We use the algebraic multigrid
(AMG) implementation provided as part of the ML pack-
age [Tuminaro & Tong(2000),Gee et al.(2006)] of the Trili-

nos library [Heroux et al.(2005),Heroux et al.(2011)] for this
purpose due to its robustness with respect to variable vis-
cosities and scalability even on very large parallel machines.

The performance of the ML-AMG preconditioner de-
pends on the sparsity structure of the matrix. High order
methods and systems where the different vector components
of shape functions couple like in the A matrix in (11) tend to
deteriorate the quality of the preconditioner, see also [Gee-
nen et al.(2009)]. Therefore, when preconditioning the inex-
act solution of A, we do not apply the AMG to the A matrix
but instead to a matrix Â with

Âij =

dim∑

d=1

(
ε([ϕu

i ]ded), 2ηε([ϕ
u
j ]ded)

)
Ω

=
(
∇ϕ

u
i , 2η∇ϕ

u
j

)
Ω
,

where ed is the unit vector in coordinate direction d. In other
words, the bilinear form that defines Â does not couple shape
functions that correspond to different velocity components,
and Â consequently has only one third of the number of en-
tries as A in three space dimensions. On the other hand, we
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note that when building this preconditioner matrix, we have
to ensure that it respects the correct set of boundary condi-
tions on the velocity which may introduce coupling between
vector components after all if the boundary conditions re-
quire tangential flow; forgetting this coupling turns out to
have a devastating effect on the quality of the precondi-
tioner.

Choice of S̃−1. The inverse of the Schur complement
matrix S = BA−1BT can be accurately approximated by the
inverse of a (weighted) mass matrix in pressure space with
entries Mp

ij = (η−1ϕi, ϕj). This can be explained by the fact

that B approximates a gradient operator, BT a divergence
operator, whereas A−1 is the inverse of a matrix that is
spectrally close to a Laplace matrix, see also [Silvester &
Wathen(1994)].

Consequently, we choose S̃−1 = (Mp)−1 in the precon-

ditioner, and computing the action S̃−1r on a vector r only
requires an approximate CG solve with Mp, which we pre-
condition using an ILU of Mp. This solver converges in 1–5
iterations. This is again independent of the mesh size since
the condition number of the mass matrix is independent of
the refinement level.

Compared to the application of Ã−1, this step is cheap.
Consequently, choosing the larger but locally conservative
pressure space P−q over the smaller space Qq (see Sec-
tion 3.2.3) has only a minor effect on overall run times;
furthermore, the matrix Mp is block diagonal when using
the discontinuous space P−q, making the inversion of this
matrix particularly cheap.

Summary of preconditioner. In summary, applying
the preconditioner (17) to a vector, i.e., computing

(
xU

xP

)
= P−1

(
rU
rP

)

requires the following steps:

• form xP = −S̃−1rP by performing an inexact CG solve
with ILU preconditioner of the system MpxP = −rP ;

• compute y = rU −BTxP

• form xP = Ã−1y by performing an inexact CG solve of
the system AxU = y with ML-AMG preconditioner based
on the matrix Â.

Overall performance of solver. The components of
the linear solvers outlined above are chosen in such a way
that they provide a performance that is mostly mesh size in-
dependent and can therefore scale from small to very large
problems. In particular, in accordance with theoretical con-
siderations, we observe that the number of outer FGMRES
iterations is independent of the mesh size, whereas the num-
ber of iterations in the inner solves with the velocity block
using the AMG preconditioner increases only weakly (for ex-
ample, from 10 to 15 iterations when increasing the number
of unknowns from 106 to 2.4 · 108). Inversion of the pressure
mass matrix also requires a number of iterations that is in-
dependent of the mesh size. The total number of operations
for solving the linear Stokes system is therefore almost lin-
ear in the number of unknowns, and thus of almost optimal
complexity. We verify this through weak scaling experiments
in Section 4.3.

It is possible that the solver performance can be fur-
ther improved by noting that there is a tradeoff between the

accuracy in inverting Â and the number of outer FGMRES

iterations. For example, one could choose Ã−1 to be only a
single, cheap V-cycle with Â at the expense of more outer it-
erations (see also [Geenen et al.(2009)]). On the other hand,
while overall faster for isoviscous problems, we observe that
this occasionally leads to a breakdown of the iteration and
is therefore not robust. Consequently, we are experimenting
with first trying a preconditioner that only employs a sin-
gle V-cycle and, if FGMRES has not converged in a certain
number iterations with this preconditioner, switching to the
more accurate preconditioner that actually uses the approx-
imate inverse of A. We will report on results for this scheme
elsewhere.

We end this section by noting that the number of FGM-
RES iterations can be reduced by more than a factor of 5
(from an average of around 40 to an average around 7) by not
starting the iteration with a zero vector, but rather with the
extrapolation of the solution vector from the previous time
steps using a formula like (5), providing a very significant
speedup of the overall runtime.

3.4 Parallelization

The simulation of three-dimensional mantle convection re-
quires highly resolved computations, with sometimes hun-
dreds of millions or billions of unknowns, in order to yield
reliable results. With today’s computer hardware, these re-
quirements cannot be met on single machines, but instead
needs parallelization, see also [Burstedde et al.(2008)]. Our
implementation of the algorithms outlined above provides
for parallelization both via MPI between a possibly large
number of distributed memory machines as well as via
threads on shared memory machines or within individual
nodes of a cluster of computers. Both kinds of paralleliza-
tion are mostly transparent to the application code and are
primarily handled in library code in deal.II (for the mesh
and finite element specific parts) or Trilinos (for the linear
algebra).

To be efficient, parallelization requires that all parts of
a program be parallelized to the same degree. In adaptive
finite element codes, this implies that the mesh creation, as-
sembly of linear systems, linear solvers and preconditioners,
postprocessing steps such as the evaluation of the solution,
generation of output files for visualization, or the evalua-
tion of error indicators, and the adaptation of the mesh are
all parallelized. Our code provides for all of these compo-
nents. In particular, all mesh operations in deal.II build on
the p4est library for parallel mesh management [Burstedde
et al.(2011)] that has been shown to scale to more than
200,000 processors, and the linear algebra components in
Trilinos’s Epetra and ML packages have also been demon-
strated to scale to machines of this size. We have previously
verified the scalability of a large number of deal.II com-
ponents up to at least 16,384 processor cores in [Bangerth
et al.(2011)] where we also report on scalability of a 2d ver-
sion of the code discussed here. We show additional data
below in Section 4.3.
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4 RESULTS

To verify the correctness, accuracy and efficiency of our code,
we have run a number of convection benchmarks. We report
results on two of these below, namely one of the 2d bench-
marks from [Blankenbach et al.(1989)] in Section 4.1 and
one of the 3d benchmarks from [Busse et al.(1993)] in Sec-
tion 4.2, both of which are widely used in other papers as
well. We show parallel scalability in Section 4.3 and some re-
sults of global mantle convection simulations in Section 4.4.

Additional parallel scalability analyses are provided in
[Bangerth et al.(2011)] and we will report on results for the
semi-analytic benchmark of [Tan & Gurnis(2007)] in [Gee-
nen et al.(2011)], where we also demonstrate that conver-
gence rates match theoretical expectations, in addition to
the overall accuracy levels reported here.

4.1 2d benchmark problem

We compare our implementation to the well-known two-
dimensional dynamic benchmark problem described in
[Blankenbach et al.(1989)]. The benchmark is solved in non-
dimensional units in the form of equation (1)–(3), using the
parameters given in Table 1. The computational domain
is the rectangle [0, l] × [0, h]. The strength of buoyancy is
described by the Rayleigh number Ra = βgγh5/κ2ρcpη =
216, 000. The body is heated homogeneously from within
with a non-dimensional heat rate γ = 1.

On the side boundaries, reflective symmetry conditions
are assumed, i.e., no-normal-flux for velocity, u · n = 0 and
n ·∇T = 0. On the top and bottom, no-slip conditions u = 0
are applied. On the bottom face, the temperature flux is
zero, n · ∇T = 0, and we set T = 0 on the top face. The
simulation is started with a perturbation from the purely
conductive state and is run until we reach the periodic cycle
after around non-dimensional time t = 2. A snapshot of the
solution if shown in Fig. 2 (top).

We compare results using two measures: (i) the Nus-
selt number, defined as the ratio between the mean surface
temperature gradient and the mean bottom temperature,

Nu = −

∫

∂Ωt

∇T · n ds

∫

∂Ωb

T ds

, (18)

where ∂Ωt is the top face at z = h and ∂Ωb the bottom face
at z = 0. And (ii) the (non-dimensional) root mean square
velocity

vrms =

√
1

hl

∫

Ω

|u|2 dx. (19)

The bottom panel of Fig. 2 shows a phase diagram with
the Nusselt number over the rms velocity, illustrating the
periodic nature of the flow after the initial transient has
decayed.

We compare the values we obtain for the two measures
above to the benchmark data in [Blankenbach et al.(1989)].
The results for different mesh sizes with global (non-
adaptive) mesh refinement are given in Table 2, and results
with adaptive mesh refinement are given in Table 3. These
results show that we correctly reproduce the benchmark
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Figure 2. 2d benchmark. Top: Temperature field (with values
between 0 and 0.1793) and velocity field (with velocities up to
89.4) for one time step. Bottom: Nusselt number over rms velocity.
The curve shows the time evolution after the initial transient has
decayed and illustrates the periodic nature of the flow.

results and the substantial savings that can be obtained
through adaptive meshes. Not surprisingly, given the ad-
vances in numerical methods and computer hardware since
[Blankenbach et al.(1989)], we believe that our results are
substantially more accurate than the ones given in the orig-
inal reference.

4.2 3d benchmark problem

As a three-dimensional benchmark, we choose benchmark
problem 1a from [Busse et al.(1993)]. The problem is posed
in a box of dimensions a × b × 1 with a = 1.0079 and b =
0.6283, and for Rayleigh number Ra = 30, 000. The flow
develops to a stationary bimodal flow. A snapshot is shown
in Fig. 3.

To find the steady state, we simulate the problem up
to non-dimensional time t = 5 and record values for the
Nusselt number (18) and root mean square velocity (19).
Moreover, we also compare the average temperature Tm

over the plane z = 0.75, point values for the vertical ve-
locity u3 and temperature at (0, 0, 0.5), and the heat flux
Q(x1, x2) = ∂T

∂x3
|x3=1 at the top surface. Results for mesh

sizes 24 × 14 × 24, 32 × 20 × 32 and 48 × 30 × 48 (with
approximately 220k, 540k and 1.8M unknowns for the ve-
locity/pressure system and 70k, 170k and 570k tempera-
ture unknowns) are recorded in Table 4. The results are
in good accordance with the reference values, which shows
correctness of our implementation also in three spatial di-
mensions. Note that quantities derived from the FE func-
tion values (vrms, T , u3) are considerably more accurate for
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Table 1. Parameters for the benchmark discussed in Section 4.1 based on [Blankenbach et al.(1989)].

Explanation Nondim. Dim. value
value (SI-units)

h Cell height 1 106

l Cell length 1.5 1.5 · 106

ρ Fluid density 1 4 · 103

η Kinematic viscosity 1 1.157 · 1018

κ Thermal diffusion 1 10−6

g Gravity acceleration 1 10
β Thermal expansion coefficient 1 2.5 · 10−5

γ Rate of internal heating 1 5 · 10−9

cp Heat capacity 1 1.25 · 103

Ra Rayleigh number 2.16 · 105 —

Figure 3. 3d benchmark. Velocity field and isosurfaces of the

temperature.

coarser meshes than those derived from gradients (Nu, Q).
On current hardware and running without parallelization,
each time step takes on average approximately 2.5s, 6s, 15s
for the three different meshes, respectively.

4.3 Scalability of the solution scheme

Having verified the correctness of the solver, let us now con-
sider its scalability and efficiency. To this end, we start with
a spherical shell consisting of 96 coarse mesh cells which we
refine either adaptively or globally a number of times un-
til we reach a desired number of unknowns. On this mesh,
we then perform one complete time step of our scheme and
measure the wall time for the major building blocks of our
code for a fixed number of MPI processes each tied to one
CPU core (weak scaling). Alternatively, we select a fixed
mesh size and measure times for a variable number of MPI
processes (strong scaling). Specifically, we measure the run
time of the following components:

• Setup DoFs: This includes giving all degrees of freedom
globally unique numbers, computing constraints for hanging
nodes, evaluating boundary values, and setting up matrices
and vectors.

• Assemble Stokes: Computing and assembling the entries
of the Stokes matrix and right hand side.

• Build preconditioner: Computing and assembling the
entries for the Stokes preconditioner matrices as well as ini-
tializing the AMG preconditioner for Â.

• Solve Stokes: Solving the Stokes system.
• Assemble T RHS: Computing and assembling the en-

tries of the right-hand side vector for the temperature sys-
tem.

• Solve T: Solving the temperature equation.
• Refine mesh: Computing error indicators for the solu-

tion, refining and coarsening the mesh, re-partitioning it be-
tween processors, and transferring the solution vectors from
the previous to the new mesh.

Fig. 4 shows results for these operations, for both weak
and strong scaling experiments. From the figures it is ap-
parent that all operations in our program scale well with in-
creasing problem size (weak scaling) once the problem size
per MPI process becomes large enough. Likewise, run times
can be reduced inversely proportional to the number of pro-
cessors (strong scaling) as long as the local size or the prob-
lem is sufficiently large. The threshold for this scalability is
approximately a minimal local problem size of 100,000 de-
grees of freedom per MPI process, indicated by the vertical
lines in Fig. 4. This is also consistent with our observations
in [Bangerth et al.(2011)].

We note that in all cases, the time to build the precon-
ditioner and solve the Stokes system dominates all other op-
erations by about an order of magnitude. This is partly due
to the fact that, for lack of an alternative, we here start the
solver with a zero vector. In contrast, when doing time de-
pendent simulations, we start with the previous solution vec-
tor (see the discussion at the end of Section 3.3.2), thereby
reducing the fraction of wall time devoted to the Stokes so-
lution from more than 90% to around 70% of the overall
run time. With this reduction, we can solve problems at a
rate of approximately one time step per minute for large 3d
simulations on current cluster hardware when using 100,000
DoFs per processor core, more or less independently of the
overall problem size.

4.4 Modeling the earth mantle

To illustrate the ability of Aspect to solve problems that
are relevant to modeling the earth mantle, Fig. 5 and Fig. 6
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Table 2. Results for the 2d benchmark problem with uniform mesh refinement. # DoFs indicates the number of degrees of freedom.
Reference results from [Blankenbach et al.(1989)].

Mesh size 1
16

1
32

1
64

1
128

1
256

Reference

# DoFs 5 276 20 532 80 996 3.2 · 105 1.3 · 106 —

Period 0.048231 0.048051 0.048031 0.048030 0.048029 0.04803± 0.00003

Numax 7.4065 7.3822 7.3789 7.3788 7.3788 7.379± 0.005

Numin 6.5062 6.4717 6.4691 6.4691 6.4692 6.468± 0.005
Numax 7.2637 7.2047 7.1969 7.1960 7.1960 7.196± 0.005

Numin 6.7878 6.7949 6.7961 6.7965 6.7966 6.796± 0.005
vmax
rms 60.726 60.398 60.361 60.359 60.360 60.367± 0.015

vmin
rms 31.829 31.965 31.981 31.981 31.982 31.981± 0.02

vmax
rms 58.225 57.517 57.442 57.437 57.436 57.43± 0.05

vmin
rms 30.392 30.330 30.324 30.323 30.322 30.32± 0.03

show snapshots in time of two- and three-dimensional sim-
ulations. These simulations use a no-slip velocity boundary
condition at the inner rim, a slip boundary condition at
the outer rim, and keep the temperature constant at either
boundary. Neither computation includes adiabatic heating,
but compared to the simple model (1)–(3), the 2d case does
include a temperature and pressure (but not strain-rate) de-
pendent viscosity and includes compressibility in the Stokes
equation. In both computations, mesh refinement was driven
by the second derivative of the gradient which in 3d primar-
ily resolves the inner boundary layer rather than the plumes
(however, see also the solution in Section 3.2.1).

These simulations show the excellent spatial resolution
adaptive meshes can provide. We will provide results for
computations of more direct geodynamic interest in [Geenen
et al.(2011)] and elsewhere.

5 CONCLUSIONS AND OUTLOOK

The simulation of convection in the earth mantle is com-
plicated by a host of problems related to the mathemat-
ical structure of the equations as well as of the disparity
of the lengthscales implied by the sizes of physical coeffi-
cients in the earth. Consequently, geodynamics has a long
history of the development of methods that can make at
least some problems tractable. Nevertheless, fully resolved,
three-dimensional simulations have largely remained beyond
the ability of current codes and computers.

On the other hand, modern numerical methods can
close a significant part of this gap and make many previ-
ously intractable problems possible. In this paper, we have
presented a collection of state-of-the-art algorithms for man-
tle convection and their implementation in theAspect code.
Specifically, we have shown how the interconnected choice
of adaptive meshes, discretization, stabilization, solvers and
preconditioners leads to a method that not only provides
excellent accuracy at very modest numerical cost, but also
allows scaling to very large problems with hundreds of mil-
lions of unknowns on hundreds or thousands of processor
cores with almost perfect complexity. The implementation
of these methods is available under an Open Source license
in the form of the Aspect code.

Despite all this, the methods described here are not
sufficient to solve entirely realistic models. Specifically, there
are at least three obvious places where the simple Boussinesq

model described in equations (1)–(3) is not an adequate de-
scription of the real processes that act in the earth interior.
First, the various parameters, such as η, ρ, κ or γ, are in re-
ality all nonlinear functions of the solution variables u, p, T .
This dependence can either be direct, such as the depen-
dence of the viscosity on the strain rate, or more indirect by
considering which rock phases are thermodynamically sta-
ble for the current pressure and temperature value, and then
using coefficient values appropriate for this phase. A simple
approach to deal with this nonlinearity is to evaluate co-
efficients at the solution values of the previous time step
(or at a value extrapolated from the previous time steps),
rendering the system linear again. However, this may lead
to an inaccurate account of the transition zones that pro-
vide the most direct signal that can be compared with data
from seismic inversion. Consequently, an iteration is neces-
sary that resolves the nonlinearity. A common solution is
to use a Picard-type iteration (see, for example, [Burstedde
et al.(2008)]). A more efficient algorithm may be Newton’s
method, but it has to be integrated with the linear solvers
and preconditioners to be efficient, and it has to be glob-
alized to guarantee convergence even from poor starting
guesses [Nocedal & Wright(1999),Worthen(2012)]. Further-
more, a realistic description of the coefficients often leads to
highly heterogeneous coefficients that make the construction
of efficient solvers and preconditioners a challenge [Ismail-
Zadeh & Tackley(2010),Gerya(2010)].

A second challenge is to deal with compressibility ef-
fects. While velocities in the earth mantle are orders of
magnitude too slow to compress material based on inertial
effects, the large hydrostatic pressure significantly increases
the density with depth; temperature and the thermodynam-
ically stable rock phase also affect the density. Consequently,
a realistic description needs to modify the continuity equa-
tion (2) to read ∇ · (ρu) = 0 instead, where ρ = ρ(p, T ).
A simple linearization of this equation in the original set of
variables u, p unfortunately leads to a nonsymmetric variant
of the Stokes system for which the choice of preconditioner
is entirely unclear; furthermore, it leads to difficult to solve
problems with the compatibility condition this equation im-
plies for the right hand side of the divergence equation.

A final topic is that Earth’s mantle is not a homoge-
neous mixture of materials. Rather, material entrained from
plates or the core-mantle boundary may have a significantly
different chemical composition. It has also been suggested
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Table 3. Results for the 2d benchmark problem with adaptive mesh refinement. The number of degrees of freedom (# DoFs) for
each finest mesh size h varies between time steps; the indicated numbers provide a typical range. Reference results from [Blankenbach
et al.(1989)].

Finest mesh size 1
64

1
128

1
256

Reference

# DoFs 4.5 . . . 6.0 · 104 1.6 . . . 2.2 · 105 5.6 . . . 8.0 · 105 —

Period 0.048029 0.048030 0.048030 0.04803± 0.00003
Numax 7.3809 7.3792 7.3788 7.379± 0.005

Numin 6.4718 6.4695 6.4691 6.468± 0.005
Numax 7.1996 7.1967 7.1960 7.196± 0.005

Numin 6.7986 6.7969 6.7965 6.796± 0.005

vmax
rms 60.366 60.361 60.360 60.367± 0.015

vmin
rms 31.980 31.981 31.981 31.981± 0.02

vmax
rms 57.449 57.434 57.435 57.43± 0.05

vmin
rms 30.322 30.322 30.322 30.32± 0.03

that different layers have different composition [Schubert
et al.(2001)]. Simulating heterogeneity entails additional ad-
vected fields that describe mass fractions of materials. They
can be treated in the same way as the temperature field,
with a nonlinear viscosity stabilization of sharp interfaces.
Alternatively, a number of approaches such as the particle in
cell (PIC) method, marker chains or phase fields have been
proposed to avoid smearing of interfaces (for a small sam-
ple of methods, see [van Keken & Zhong(1999), Tackley &
King(2003), Leng & Zhong(2011), Lin & van Keken(2006)];
see also [Ismail-Zadeh & Tackley(2010), Gerya(2010)] for
general overviews).

We are working on extending Aspect in each of the
directions outlined above for future releases.
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Figure 4. Weak and strong scaling experiments for one time step
of a 3d mantle convection simulation. In each of the graphs, the
vertical line indicates 105 degrees of freedom per processor core;
cores have more than than this threshold to the right of the line
in the top two panels, and to the left of the line in the strong
scaling results.
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second on average. Top: Temperature field. Bottom: Adaptive
mesh of the same solution.
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I., 1983. A posteriori error analysis and adaptive processes in
the finite element method: Part II — Adaptive mesh refine-
ment, Int. J. Num. Meth. Engrg., 19, 1621–1656.

Gee, M. W., Siefert, C. M., Hu, J. J., Tuminaro, R. S., & Sala,

M. G., 2006. ML 5.0 Smoothed Aggregation User’s Guide,
Tech. Rep. 2006-2649, Sandia National Laboratories.

Geenen, T., ur Rehman, M., MacLachlan, S. P., Segal, G., Vuik,
C., van den Berg, A. P., & Spakman, W., 2009. Scalable
robust solvers for unstructured FE geodynamic modeling ap-
plications: Solving the Stokes equation for models with large

localized viscosity contrasts, Geochem. Geophys. Geosyst.,
10(9), Q09002.

Geenen, T., Heister, T., Kronbichler, M., & Bangerth, W., 2011.
3d high resolution phase distribution and seismic velocity

structure evolution of the transition zone: modeled in a full
spherical-shell compressible mantle convection context, in

preparation.

Gerya, T., 2010. Introduction to Numerical Geodynamic Mod-

elling, Cambridge University Press.

Girault, V. & Raviart, P.-A., 1986. Finite Element Methods for

the Navier–Stokes Equations, Springer–Verlag, New York.

Guermond, J.-L., Pasquetti, R., & Popov, B., 2011. Entropy vis-
cosity method for nonlinear conservation laws, J. Comput.

Phys., 230, 4248–4267.

Hackbusch, W., 1985. Multi-grid Methods and Applications,
Springer.

Hairer, E. & Wanner, G., 1991. Solving Ordinary Differen-

tial Equations II. Stiff and Differential-Algebraic Problems,
Springer-Verlag, Berlin.

Heroux, M. A. et al., 2011. Trilinos web page,
http://trilinos.sandia.gov.

Heroux, M. A., Bartlett, R. A., Howle, V. E., Hoekstra, R. J., Hu,
J. J., Kolda, T. G., Lehoucq, R. B., Long, K. R., Pawlowski,
R. P., Phipps, E. T., Salinger, A. G., Thornquist, H. K., Tu-
minaro, R. S., Willenbring, J. M., Williams, A., & Stanley,
K. S., 2005. An overview of the Trilinos project, ACM Trans.

Math. Softw., 31, 397–423.

Ismail-Zadeh, A. & Tackley, P., 2010. Computational Methods

for Geodynamics, Cambridge University Press.

Kameyama, M., 2005. ACuTEMan: A multigrid-based mantle

convection simulation code and its optimization to the Earth
simulator, J. Earth Simulator , 4, 2–10.

King, S. D., Raefsky, A., & Hager, B. H., 1990. Conman: Vector-
izing a finite element code for incompressible two-dimensional

convection in the earth’s mantle, Phys. Erath Planet. Inter.,
59, 195–207.

Kronbichler, M. & Bangerth, W., 2011. deal.II tutorial pro-

gram step-31, http://www.dealii.org/developer/doxygen/

deal.II/step_31.html.

Kronbichler, M., Heister, T., & Bangerth, W., 2011. deal.II tu-
torial program step-32, http://www.dealii.org/developer/

doxygen/deal.II/step_32.html.

Leng, W. & Zhong, S., 2011. Implementation and application of
adaptive mesh refinement for thermochemical mantle convec-
tion studies, Geoch. Geoph. Geosystems, 12, Q04006.

LeVeque, R. J., 2002. Finite Volume Methods for Hyberbolic

Problems, Cambridge Texts in Applied Mathematics, Cam-
bridge.

Lin, S.-C. & van Keken, P. E., 2006. Deformation, stirring and
material transport in thermochemical plumes, Geoph. Res.

Letters, 33, L20306/1–5.

Moresi, L., Zhong, S. J., & Gurnis, M., 1996. The accuracy of
finite element solutions of Stokes’ flow with strongly varying
viscosity, Phys. Erath Planet. Inter., 97, 83–94.

Nocedal, J. & Wright, S. J., 1999. Numerical Optimization,
Springer Series in Operations Research, Springer, New York.

Quarteroni, A. & Valli, A., 1994. Numerical Approximation of



16 M. Kronbichler, T. Heister, W. Bangerth

Partial Differential Equations, Springer, Heidelberg.
Saad, Y., 2003. Iterative Methods for Sparse Linear Systems,

SIAM, Philadelphia, 2nd edn.
Schubert, G., Turcotte, D. L., & Olson, P., 2001. Mantle Con-

vection in the Earth and Planets, Part 1 , Cambridge.

Sheldon, J. W., Zondek, B., & Cardwell, W. T., 1959. One-
dimensional, incompressible, non-capillary, two-phase fluid

flow in a porous medium, Trans. SPE AIME , 216, 290–296.
Silvester, D. & Wathen, A., 1994. Fast iterative solution of sta-

bilised Stokes systems. Part II: Using general block precondi-
tioners, SIAM J. Numer. Anal., 31, 1352–1367.

Stadler, G., Gurnis, M., Burstedde, C., Wilcox, L. C., Alisic, L.,
& Ghattas, O., 2010. The dynamics of plate tectonics and
mantle flow: From local to global scales, Science, 329, 1033–
1038.

Stone, H. L. & Garder, A. O., 1961. Analysis of gas-cap or

dissolved-gas reservoirs, Trans. SPE AIME , 222, 92–104.
Tackley, P. J. & King, S. D., 2003. Testing the tracer ra-

tio method for modeling active compositional fields in man-
tle convection simulations, Geoch. Geoph. Geosystems, 4,
2001GC000214/1–15.

Tan, E. & Gurnis, M., 2007. Compressible thermochemical con-
vection and application to lower mantle structures, J. Geo-

phys. Res., 112.
Trottenberg, U., Oosterlee, C., & Schüller, A., 2001. Multigrid ,

Elsevier Academic Press, London.
Tuminaro, R. & Tong, C., 2000. Parallel smoothed aggregation

multigrid: aggregation strategies on massively parallel ma-
chines, in Super Computing 2000 Proceedings.

van Keken, P. & Zhong, S., 1999. Mixing in a 3D spherical model
of present-day mantle convection, Earth Planet. Science L.,
171, 533–547.

Worthen, J., 2012. Inverse Problems in Mantle Convection: Mod-

els, Algorithms, and Applications, Ph.D. thesis, University of
Texas at Austin, in preparation.

Zhong, S., McNamara, A., Tan, E., Moresi, L., & Gurnis, M.,
2008. A benchmark study on mantle convection in a 3-D
spherical shell using CitcomS, Geochem. Geophys. Geosyst.,

9, Q10017.


