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Expressions for the gravitational wave (GW) energy flux and center-of-mass energy of a compact
binary are integral building blocks of post-Newtonian (PN) waveforms. In this paper, we compute
the GW energy flux and GW frequency derivative from a highly accurate numerical simulation of
an equal-mass, non-spinning black hole binary. We also estimate the (derivative of the) center-
of-mass energy from the simulation by assuming energy balance. We compare these quantities
with the predictions of various PN approximants (adiabatic Taylor and Padé models; non-adiabatic
effective-one-body (EOB) models). We find that Padé summation of the energy flux does not
accelerate the convergence of the flux series; nevertheless, the Padé flux is markedly closer to the
numerical result for the whole range of the simulation (about 30 GW cycles). Taylor and Padé
models overestimate the increase in flux and frequency derivative close to merger, whereas EOB
models reproduce more faithfully the shape of and are closer to the numerical flux, frequency
derivative and derivative of energy. We also compare the GW phase of the numerical simulation
with Padé and EOB models. Matching numerical and untuned 3.5 PN order waveforms, we find that
the phase difference accumulated until Mω = 0.1 is -0.12 radians for Padé approximants, and 0.50
(0.45) radians for an EOB approximant with Keplerian (non-Keplerian) flux. We fit free parameters
within the EOB models to minimize the phase difference, and confirm the presence of degeneracies
among these parameters. By tuning the pseudo 4PN order coefficients in the radial potential or
in the flux, or, if present, the location of the pole in the flux, we find that the accumulated phase
difference at Mω = 0.1 can be reduced—if desired—to much less than the estimated numerical
phase error (0.02 radians).

PACS numbers: 04.25.D-, 04.25.dg, 04.25.Nx, 04.30.-w

I. INTRODUCTION

The first-generation interferometric gravitational wave
(GW) detectors, such as LIGO [1, 2], GEO600 [3] and
Virgo [4, 5], are now operating at or near their design
sensitivities. One of the most promising sources for these
detectors is the inspiral and merger of binary black holes
(BBHs) with masses m1 ∼ m2 ∼ 10–20M⊙ [6, 7]. A de-
tailed and accurate understanding of the gravitational
waves radiated as the black holes spiral towards each
other will be crucial not only for the initial detection
of such sources, but also for maximizing the information
that can be obtained from signals once they are observed.
Both the detection and subsequent analysis of gravita-
tional waves from compact binaries depends crucially on
our ability to build an accurate bank of templates, where
each template is a theoretical model that accurately rep-
resents the gravitational waveform from a binary that has
a certain set of parameters (e.g., masses and spins). For
detection, the technique of matched filtering is applied to
noisy data to extract any signals that match members of
the template bank. For analysis, the best-fit parameters
are determined, most likely by an iterative process that
involves constructing further templates to zero in on the
best fit.

When the black holes are far apart and moving slowly,

the gravitational waveform (i.e., the template) can be
accurately computed using a post-Newtonian (PN) ex-
pansion. As the holes approach each other and their
velocities increase, the post-Newtonian expansion is ex-
pected to become less and less reliable. However, un-
til recently there has been no independent way to de-
termine how close comparable-mass holes must be be-
fore PN methods become inaccurate. This has changed
with recent advances in numerical relativity (NR), which
make it possible for the first time to quantify the dis-
agreement between PN predictions [8] and the true wave-
form [9, 10, 11, 12, 13, 14]. In a previous paper [12],
some of us described numerical simulations of 15 orbits
of an equal-mass non-spinning binary black hole system.
Gravitational waveforms from these simulations covering
more than 30 GW cycles and ending about 1.5 GW cy-
cles before merger, were compared with those from quasi-
circular PN formulas for several time-domain Taylor ap-
proximants computed in the so-called adiabatic approx-
imation. We found that there was excellent agreement
(within 0.05 radians) in the GW phase between the nu-
merical results and the PN waveforms over the first ∼ 15
cycles, thus validating the numerical simulation and es-
tablishing a regime where PN theory is accurate. In the
last 15 cycles to merger, however, generic time-domain
Taylor approximants build up phase differences of sev-
eral radians. But, apparently by coincidence, one spe-
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cific PN approximant, TaylorT4 at 3.5PN order, agreed
much better with the numerical simulations, with accu-
mulated phase differences of less than 0.05 radians over
the 30-cycle waveform. Simulations by Hannam et al. [14]
for equal-mass, non-precessing spinning binaries confirm
that this agreement in the non-spinning case is a coin-
cidence: they find the phase disagreement between Tay-
lorT4 and the numerical waveform can be a radian or
more as the spins of the black holes are increased.

To build a template bank to be used by ground-based
GW detectors, one possibility would be to run a sep-
arate numerical simulation for each template. This is
not currently possible, however, due to the large com-
putational cost per numerical waveform (on the order
of a week for a single waveform) and the large number
of templates needed to cover the parameter space, es-
pecially when spins are present. A more realistic possi-
bility is to perform a small number of simulations and
develop an analytic template family (i.e., a fitting for-
mula) which interpolates the parameter space between
the simulations [15, 16, 17, 18, 19, 20].

Before the NR breakthrough several analytic prescrip-
tions were proposed to address the loss of accuracy of
the adiabatic Taylor approximants. Damour, Iyer and
Sathyaprakash [21] introduced the Padé summation of
the PN center-of-mass energy and gravitational energy
flux in order to produce a series of Padé approximants
for the waveforms in the adiabatic. Buonanno and
Damour [22, 23, 24, 25] introduced the effective-one-body
(EOB) approach which gives an analytic description of
the motion and radiation beyond the adiabatic approx-
imation of the binary system through inspiral, merger,
and ringdown. The EOB approach also employs the
Padé summation of the energy flux and of some cru-
cial ingredients, such as the radial potential entering the
conservative dynamics. So far, the EOB waveforms have
been compared with several numerical waveforms of non-
spinning binary black holes [9, 15, 16, 18, 19, 20]. Buo-
nanno et al. [16] showed that by using three quasi-normal
modes [9] and by tuning the pseudo 4PN order coeffi-
cient [26] in the EOB radial potential to a specific value,
the phase difference accumulated by the end of the ring-
down phase can be reduced to ∼ 0.19–0.50 radians, de-
pending on the mass ratio and the number of multipole
moments included in the waveform. Those results were
obtained using waveforms with 5–16 GW cycles and mass
ratios 1 : 4, 1 : 2, 2 : 3 and 1 : 1. In Refs. [18, 19, 20]
the authors introduced other improvements in the EOB
approach, in part obtained by tuning the test-mass limit
results [27] — for example Padé summation of the PN
amplitude corrections in the inspiral waveform; ringdown
matching over an interval instead of a point; inclusion
of non-circular terms in the tangential damping force;
use of five quasi-normal modes. They found that the
phase differences accumulated by the end of the inspiral
(ringdown) can be reduced to ±0.001 (±0.03) radians for
equal-mass binaries [18, 19] and to ±0.05 radians for bi-
naries with mass ratio 1 : 2 [20]. Note that these phase

differences are smaller than the numerical errors in the
simulations.

The energy flux and the center-of-mass energy are two
fundamental quantities of the binary dynamics and cru-
cial ingredients in building GW templates. In this pa-
per we extract these quantities, and compare the results
from our numerical inspiral simulation [12] with PN re-
sults in both their Taylor-expanded and summed (Padé
and EOB) forms. The agreement between the numerical
and analytical results for the energy flux and the center-
of-mass energy is a further validation of the numerical
simulation. It also allows us to study whether or not the
agreement of the phase evolution of PN and numerical
waveforms is accidental. In addition, we compute wave-
forms based on adiabatic Padé and non-adiabatic EOB
approximants in their untuned form (i.e., without in-
troducing fitting coefficients) and study their agreement
with our numerical simulations.

We try to understand whether these approximants can
reproduce features of the numerical simulations that can
be exploited to develop a faithful analytic template fam-
ily. By introducing unknown higher-order PN coefficients
into the dynamics and tuning them to the numerical data,
we investigate how to improve the agreement with the
numerical results. Although our study only examines
non-spinning, equal-mass binary black holes, by combin-
ing it with other studies [15, 16, 17, 18, 19, 20] one can
already pinpoint which parameters are degenerate and
which have the largest effect on the waveforms. This
is particularly relevant during the last stages of inspiral
and plunge. The overall methodology can be extended
to a larger region of the parameter space. We will defer
to a future paper a complete study of the flexibility of
the EOB approach with the extension of our numerical
waveform through merger and ringdown.

This paper is organized as follows: Section II gives
a quick review of the numerical simulations presented
in [12], and then presents the computation of the GW
energy flux from the simulation. In Sec. III we summa-
rize the PN approximants that will be compared to the
numerical simulation. In Sec. IV, we compare the GW
energy flux for the various PN approximants with nu-
merical results and explore the possibility of improving
the agreement with the numerical flux by adding phe-
nomenological parameters [15, 16, 18, 19, 20]. In Sec. V,
we examine the evolution of the center-of-mass energy for
the various PN approximants and compare to the numer-
ical results assuming balance between the change in the
center-of-mass energy and the energy carried from the
system by the gravitational waves. In Sec. VI we com-
pare waveforms constructed from the Padé and EOB ap-
proximants with our numerical results, and study how to
improve the agreement by exploiting the flexibility of the
EOB model (i.e., by fitting free parameters of the EOB
model). Finally, we present some concluding remarks in
Sec. VII. In the Appendix we review the performance of
the Padé summation of the Taylor series of the energy
flux in the test particle limit.



3

-0.04

-0.02

0

0.02

-0.002

0

0.002

0 1000 2000 3000 4000
0.03
0.04

0.06

0.1

0.15

r Re(h
.

44
) r Re(h

.

32
)

r Re(h
.

22
)

Mϖ

(t-r*)/M

FIG. 1: Some aspects of the numerical simulation. From
top panel to bottom: the leading mode ḣ22; the two next
largest modes, ḣ44 and ḣ32 (smallest); the frequency of ḣ22

[see Eq. (5)].

II. COMPUTATION OF THE NUMERICAL
GRAVITATIONAL-WAVE ENERGY FLUX

A. Overview and Definitions

The data used in this paper is the same as that de-
scribed in Sec. II of Boyle et al. [12]. The simulation is
a 16-orbit inspiral, with very low spin and eccentricity.
Figure 1 presents a view of some relevant quantities of
that simulation.

The Newman-Penrose scalar Ψ4, defined using a
coordinate-based tetrad, is extracted from the simulation
at several extraction radii and expanded in spin-weighted
spherical harmonics,

Ψ4(t, r, θ, φ) =
∑

l,m

Ψlm
4 (t, r)−2Ylm(θ, φ) . (1)

Then Ψlm
4 (t, r) is extrapolated to infinite extraction ra-

dius using an n-th order polynomial in 1/r, where typ-
ically n = 3. This results in the asymptotic field
rΨlm

4 (t− r∗) as function of retarded time1 t− r∗.

Gravitational radiation may also be expressed via
the standard metric-perturbation quantities h+ and h×,
which we similarly write in terms of spin-weighted spher-

1 See Sec. II F of Ref. [12] for a precise definition of r∗ and a
description of the extrapolation.

ical harmonic components,

h ≡ h+ − ih× =
∑

l,m

hlm −2Ylm . (2)

For linear perturbations around Minkowski space,
Ψlm

4 (t − r∗) = ḧlm(t − r∗). In particular, this relation
should be true for the waveforms we have extrapolated
to infinity.

However, to compute the energy flux we do not need
to determine h; we need only its time derivative ḣ. The
energy flux depends on the spin-weighted spherical har-
monic coefficients of the time derivative ḣ via

F =
1

16π

∞∑

l=2

l∑

m=−l

|r ḣlm|2 . (3)

We obtain ḣlm by time-integration of Ψlm
4 , as discussed

in detail below.
Finally, we define gravitational wave phase and fre-

quency in two ways—one based on Ψ22
4 , and one based

on ḣ22:

φ = − arg(Ψ22
4 ) , ω =

d

dt
φ , (4)

ϕ = − arg
(
ḣ22

)
, ̟ =

d

dt
ϕ . (5)

In both cases, we define the arg function to be the usual
function, with discontinuities of 2π removed. Many PN
formulae (see Sec. III) involve yet another frequency and
phase: the orbital phase Φ and orbital frequency Ω. Al-
though the three frequencies satisfy ω ≈ ̟ ≈ 2Ω, the
slight differences between different frequencies are sig-
nificant at the level of precision of our comparison (see
Fig. 6 below), so it is important to distinguish carefully
between them.

When discussing our numerical solution, we write all
dimensionful quantities in terms of the mass scale M ,
which we choose to be the sum of the irreducible masses
of the two black holes.2

B. Calculation of ḣ

The energy flux depends on the spin-weighted spherical
harmonic coefficients of ḣ via Eq. (3). We therefore need
to perform one time integration on Ψlm

4 :

ḣlm(t) =

∫ t

t0

Ψlm
4 (t′) dt′ +Hlm. (6)

This integration is performed for each mode (l,m) sep-
arately and requires the choice of two integration con-
stants, which are contained in the complex number Hlm.

2 This quantity was denoted by m in Ref. [12].
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Ideally, Hlm should be chosen such that ḣlm → 0 for
t → −∞. Because our numerical simulations do not ex-
tend into the distant past, this prescription cannot be
implemented. Rather, we make use of the approximation
that the real and imaginary parts of ḣlm should oscillate
symmetrically around zero.

Let us consider a pure sine/cosine wave, with constant
amplitude and phase:

Ψex
4 = A[cos(ωt) + i sin(ωt)], (7)

ḣex =
A

ω
[sin(ωt) − i cos(ωt)] +Hex, (8)

where the superscript ‘ex’ stands for example. The am-
plitude is given by

|ḣex|2 =
A2

ω2
+2

A

ω
[ReHex sin(ωt)−ImHex cos(ωt)]+|Hex|2.

(9)
Only for the correct choice of integration constants,
Hex = 0, is the amplitude |ḣex| constant.

Therefore, we propose to determine the integration
constants Hlm in Eq. (6) by minimizing the time deriva-
tive of the amplitude over the entire waveform. In par-
ticular we minimize

Ilm ≡
∫ t2

t1

(
d

dt
|ḣlm|2

)2

dt. (10)

From this minimization principle it follows that Hlm is
determined by the linear system

ReH

∫
(ReΨ4)

2dt+ ImH

∫
ReΨ4ImΨ4dt

= −
∫ [

(ReΨ4)
2Reḣ0 + ReΨ4ImΨ4Imḣ0

]
dt,

(11a)

ReH

∫
ReΨ4ImΨ4dt+ ImH

∫
(ImΨ4)

2dt

= −
∫ [

(ImΨ4)
2Imḣ0 + ReΨ4ImΨ4Reḣ0

]
dt.

(11b)

Here, we have suppressed the indices lm for clarity,
all integrals are definite integrals from t1 to t2, and

ḣ0(t) ≡
∫ t

t0
Ψ4(t

′) dt′. For a given integration interval

[t1, t2], Eqs. (11) provide a deterministic procedure to
determine the integration constants Hlm. We note that
there have been several earlier proposals to fix integra-
tion constants [20, 28, 29, 30, 31]. While we have not
tested those proposals, we point out that Eqs. (11) allow
for very accurate determination of the integration con-
stants and one can easily obtain an error estimate, as we
discuss in the next subsection.

C. Uncertainties in numerical quantities

Because the amplitude and frequency of the wave-
form are not constant, this procedure is imperfect, and

the result depends somewhat on the chosen values of
t1 and t2. To estimate the residual uncertainty in H
due to this choice, we select nine different values for t1
and eleven values for t2: t1 = 200M, 220M, . . . , 360M ;
t2 = 2000M, 2100M, . . . , 3000M . The values of t1 vary
over roughly one GW cycle and test the sensitivity to
the GW phase at the start of the integration interval;
the values of t2 are designed to test the dependence
on the amplitude at the end of the integration interval.
For t2 > 3000M we find that the errors in our proce-
dure rapidly increase for several reasons: (a) the min-
imization principle is based on the approximation that
the amplitude is constant; this approximation becomes
worse toward merger; (b) Ilm in Eq. (10) weights abso-

lute changes in |ḣ|, not relative ones; close to merger,
the amplitude becomes so large that it dominates Ilm;
and (c) the integration constants shift the waveform ḣlm

vertically, and we are trying to determine the particular
vertical shift such that ḣlm is centered around zero. De-
termination of such an offset is most accurate in a regime
where the oscillations are small, i.e., at early times.

For each of these 99 integration intervals, we compute
integration constants using Eqs. (11) for the three dom-

inant modes, ḣ22, ḣ44 and ḣ32, and we compute F (t)
from Eq. (3) using only these modes and we compute
̟(t). (We will show below that the contributions of
other modes are far below our numerical errors on the
flux.) We average the 99 functions F (t) and ̟(t) and
then use a parametric plot of F (t) versus ̟(t) in our
comparisons presented below. The variation in these 99
values yields an uncertainty in F due to the choice of
integration constants.

The lower panel of Fig. 2 shows the variation in flux
from the 99 different integration intervals. We find that
the maximum deviation can be well approximated by
max |δF |/F = 1.5 × 10−5(M̟)−3/2 (see the solid line
in lower panel of Fig. 2). The average F computed from
all 99 intervals [t1, t2] will have a smaller error. Inspec-
tion of the lower panel of Fig. 2 reveals that the δF/F
curves fall into 11 groups, corresponding to the 11 val-
ues of t2. Assuming that δF between these groups is
randomly distributed, the error of the average will be re-
duced by a factor

√
11, i.e., δF/F = 5× 10−6(M̟)−3/2.

This error is indicated as the grey shaded area in the
upper panel of Fig. 2.

The upper panel of Fig. 2 plots the relative change in
F (̟) for several changes in our numerical simulation:
(a) Computing the flux from a run with lower resolu-
tion (0030c/N5 in the language of Boyle et al. [12]); (b)
using a different set of extraction radii for the extrac-
tion of the gravitational wave; (c) increasing the polyno-
mial order of extrapolation of Ψ4 to infinite extraction
radius from n = 3 to n = 4; and (d) computing the flux
from a separate evolution with a different outer bound-
ary radius (0030c-2/N6). At low frequencies, the error
is dominated by extrapolation to infinite radius and is
a few tenths of a percent; at intermediate frequencies,
0.055 . M̟ < 0.083, all errors are smaller than 0.1 per-
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FIG. 2: Lower panel: Relative difference between flux F (̟)
computed with 99 different intervals [t1, t2] and the average
of these. Upper panel: Relative change in the flux F (̟)
under various changes to the numerical simulation. The grey
area in the upper panel indicates the uncertainty due to the
choice of integration constants, which is always dominated by
numerical error. The dashed line in the upper panel is our
final error estimate, which we plot in later figures.
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FIG. 4: Lower panel: Difference between frequency deriva-
tive ˙̟ computed with 99 different intervals [t1, t2] and the
average of these. Upper panel: Change in the frequency
derivative ˙̟ under various changes to the numerical simula-
tion. The grey area in the upper panel indicates the uncer-
tainty due to choice of integration constants, which dominates
the overall uncertainty for low frequencies. The dashed line
in the upper panel is our final error estimate, which we plot
in later figures.

cent. At frequency M̟ ≈ 0.084 we change the gauge
conditions in the evolutions to allow wave-escorting; this
introduces high-frequency features, which are small when
extrapolation order n = 3 is used, but which dominate
for n = 4 extrapolation. The numerical data we use in
the PN comparisons below is extrapolated with n = 3, for
which the features due to change of gauge are small, but
nevertheless we will use conservative error bars encom-
passing the n = 4 extrapolation as indicated in Fig. 2, i.e.
a relative error of 0.2 per cent for M̟ > 0.083. We find
that the uncertainty in the flux due to numerical error
in determining Ψ4 is always larger than the uncertainty
due to the choice of integration constants.

The contributions of the various (l,m)-modes to the
total flux [see Eq. (3)] are plotted in Fig. 3. The top panel
plots the flux as a function of time; the lower panel as a
function of frequency M̟. The dashed line in the lower
panel corresponds to the error estimate of Fig. 2. Because
the modes (5, 4), (6, 6), and (8, 8) are significantly smaller
than our error estimate, we do not include them in the
present analysis.

To estimate the uncertainty in ˙̟ , we proceed in a sim-
ilar fashion. Each one of the 99 different integration in-
tervals yields an ḣ22 from which we determine ˙̟ . We
average these to obtain the final ˙̟ to be used in the post-
Newtonian comparisons. The lower panel of Fig. 4 shows
the variation in ˙̟ between the 99 different integration
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intervals. We find that the maximum deviation can be
well approximated by max |M2δ ˙̟ | = 5× 10−6(M̟)−0.3

(see the solid line in lower panel of Fig. 4). The average ˙̟
computed from all 99 intervals [t1, t2] will have a smaller
error. Inspection of the lower panel of Fig. 4 reveals that
the δ ˙̟ curves fall into 11 groups, corresponding to the 11
values of t2. As for the case of δF , if we assume that δ ˙̟
between these groups is randomly distributed, then the
error of the average will be reduced by a factor

√
11, i.e.,

M2δ ˙̟ = 1.5× 10−6(M̟)−0.3. This error is indicated as
the grey shaded area in the upper panel of Fig. 4.

The upper panel of Fig. 4 plots also the change in ˙̟ (̟)
for the same changes in our numerical simulation already
discussed above. We find that at M̟ < 0.083, the un-
certainty in ˙̟ is dominated by the choice of integration
constants, whereas at higher frequencies the uncertainty
is dominated by the numerical errors in the calculation
of Ψ4. As discussed above, at frequency M̟ ≈ 0.084 we
change the gauge conditions in the evolutions to allow
wave-escorting; this introduces high-frequency features
leading to more conservative error estimates.

Note that ˙̟ is a very steep function of ̟. While the
absolute errors in ˙̟ are roughly constant for our sim-
ulation, the relative errors change significantly: δ ˙̟ / ˙̟
drops from about 10 per cent early in the run to about
0.2 percent at late times.

We also point out that the first 1000M of our simula-
tion are contaminated by noise due to a pulse of “junk-
radiation” at the start of the simulation. While this con-
tamination is not apparent on a plot of the waveform as
in Fig. 1, it nevertheless limits accurate PN-NR compar-
isons to the region, t− r∗ & 1000M , i.e., M̟ & 0.037.

III. POST-NEWTONIAN APPROXIMANTS

In this paper we will compare the numerical simulation
to various approximants based on the PN expansion. The
PN expansion is a slow-motion, weak-field approximation
to general relativity with an expansion parameter ǫ ∼
(v/c)2 ∼ (GM/rc2). For a binary system of two point
masses m1 and m2, v is the magnitude of the relative
velocity, M is the total mass, and r is the separation.
For a review of the PN expansion applied to gravitational
radiation from inspiralling compact binaries, see Ref. [8].

In Table I we summarize the PN-approximants that
we use, and our notation. We shall use the PN ap-
proximants in the so-called adiabatic approximation,
both in the standard Taylor-expanded form (reviewed
in Sec. III A) and in a form based on Padé summa-
tion (reviewed in Sec. III B). In addition we shall use
the non-adiabatic EOB model (reviewed in Sec. III C)
in its original form [22, 23, 24], as well as several vari-
ations that differ in the form of the radiation-reaction
force [32, 33, 34]. After summarizing the various PN ap-
proximants in Secs. III A, III B, and III C, we describe
how we construct the waveform for these approximants
in Sec. III D.

approximant notation see Eqs. adiabatic Keplerian
Taylor (T-) Fn/Ep (19)/(14) yes yes
Padé (P-) F m

n /Eq

p (39)/(33) yes yes
EOB (E-) F m

n /Hp (64)/(44) no yes
EOB (E-) nKF m

n /Hp (65)/(44) no no
EOB (E-) Fn/Hp (69)/(44) no yes
EOB (E-) nKFn/Hp (70)/(44) no no

TABLE I: Summary of PN-approximants. The T-
approximants are always Taylor T4 [12] except in Fig. 16.
The P-approximant in the second row was introduced in
Refs. [21, 24, 32] and the original E-approximant in third row
was introduced in Refs. [22, 23, 24]. The last three rows refer
to three possible variations of E-approximants introduced in
Refs. [32, 33]. In a few tests aimed at improving the closeness
between numerical data and E-approximants, we vary vpole

and treat the logarithms as constants when Padé summation
to the flux is applied [18]. We shall denote this flux by F

m

n .
Finally, when using tuned PN-approximants with pseudo 4PN
order terms in the flux, energy, or Hamiltonian, we denote the
latter as pF , pE and pH . Note that if known test-mass limit
coefficients in the flux are used, the latter is still denoted as
F even at PN orders larger than 3.5PN. Finally, the values of
vpole and vlso used in the P-approximants F m

n and nKF m

n are
v2PN
pole = 0.6907 andv2PN

lso = 0.4456.

In the adiabatic approximation the inspiral is modeled
as a quasi-stationary sequence of circular orbits. The
evolution of the inspiral (and in particular of the orbital
phase Φ) is completely determined by the energy-balance

equation [8]

dE(vΩ)

dt
= −F (vΩ) . (12)

This equation relates the time derivative of the center-
of-mass energy E(vΩ) (which is conserved in absence of
radiation reaction) to the gravitational wave energy flux
F (vΩ). Both functions are known for quasicircular orbits
as a PN expansion in the invariantly defined velocity

vΩ = (MΩ)
1/3

, (13)

where Ω = Φ̇ is the orbital frequency (we use units such
that G = c = 1).3 We will denote the Taylor-expanded
flux (energy) by Fk (Ek) where k denotes the maximum
power of vΩ retained in the series. (Recall that k = 2N
for an Nth order PN expansion.) We will denote the
Padé-expanded flux (energy) by Fm

n (Em
n ) wherem+n =

k, with m and n denoting the order of the polynomial in
the numerator and denominator, respectively.

A. Adiabatic Taylor approximants

For generic values of the symmetric mass ratio ν =
m1m2/M

2, the center-of-mass energy is known through

3 In Ref. [12] we used x = v2
Ω

as the expansion parameter.
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3PN order [35, 36, 37, 38, 39]. For circular orbits the
Taylor PN-approximants (henceforth, T-approximants)
to the energy are given by

E2k(vΩ) = −Mν

2
v2
Ω

k∑

i=0

E2i(ν) v
2i
Ω , (14)

where the known coefficients are

E0(ν) = 1 , (15)

E2(ν) = −3

4
− ν

12
, (16)

E4(ν) = −27

8
+

19

8
ν − 1

24
ν2 , (17)

E6(ν) = −675

64
+

(
34445

576
− 205

96
π2

)
ν − 155

96
ν2

− 35

5184
ν3 . (18)

The GW energy flux for arbitrary masses has been
computed through 3.5PN order [40, 41]:

Fk(vΩ) =
32

5
ν2 v10

Ω

k∑

i=0

Fi(ν) v
i
Ω , (19)

where

F0(ν) = 1 , (20)

F1(ν) = 0 , (21)

F2(ν) = −1247

336
− 35

12
ν , (22)

F3(ν) = 4π , (23)

F4(ν) = −44711

9072
+

9271

504
ν +

65

18
ν2 , (24)

F5(ν) = −
(

8191

672
+

583

24
ν

)
π , (25)

F6(ν) =
6643739519

69854400
+

16

3
π2 − 1712

105
γE

−856

105
log(16v2

Ω) +

(
−134543

7776
+

41

48
π2

)
ν

−94403

3024
ν2 − 775

324
ν3 , (26)

F7(ν) =

(
−16285

504
+

214745

1728
ν +

193385

3024
ν2

)
π , (27)

where γE is Euler’s constant. Notice that starting at 3PN
order (k = 6) logarithms enter the flux.

B. Adiabatic Padé approximants

1. Center-of-mass energy

Damour, Iyer and Sathyaprakash [21] (henceforth DIS)
proposed a new class of approximate waveforms con-
structed by introducing new energy and flux functions

and by applying Padé summation [42] to build succes-
sive approximants to these two functions (henceforth P-
approximants). Their motivation for introducing these
new functions and using their P-approximants came from
an examination of the behavior of the standard PN-
expansion and the new P-approximants in the test-mass
limit in which the exact gravitational energy flux is
known numerically [43], the PN expansion of the flux is
known through 5.5PN order [44], and the center-of-mass
energy is known analytically as

E(vΩ; ν = 0)

µ
=

1 − 2v2
Ω√

1 − 3v2
Ω

− 1 , (28)

where µ = Mν is the reduced mass.
DIS first observed that in the quantum two-body prob-

lem the symmetric quantity

ǫ ≡ E2
tot −m2

1 −m2
2

2m1m2
, (29)

(where the total relativistic energy Etot = E+M), is the
best energy function when treating the two-body prob-
lem as an effective one-body problem in an external field.
Because in the test-mass limit

ǫ(vΩ; ν = 0) =
1 − 2v2

Ω√
1 − 3v2

Ω

, (30)

DIS defined the new energy function as

e(vΩ) ≡ ǫ2 − 1 , (31)

as this function has a simple pole singularity on the real
axis in the test-mass limit, and DIS conjectured that such
a pole would continue to exist in the comparable mass
case.4 The energy function E(vΩ) entering the balance
equation (12) can be expressed in terms of e(vΩ) as

E(vΩ) =
{
M2 + 2νM2

[√
1 + e(vΩ) − 1

]}1/2

−M .

(32)
by combining Eqs. (29) and (31). [Note that the map be-
tween the adiabatic functions e and E given by Eq. (32)
is the same map found in the EOB model between the ef-
fective Hamiltonian Heff and the real Hamiltonian Hreal,
as given by Eq. (44).]

Finally, DIS proposed as approximants to the en-
ergy function e(vΩ) the diagonal or subdiagonal P-
approximants, depending on whether the PN order is
even or odd.5 Investigating the behavior of the P-

4 A motivation for having using Eq. (31) instead of Eq. (29) as a
basic quantity is that the former (unlike the latter) is amenable
to Padé summation in the test mass limit.

5 As the energy is only a function of even powers of vΩ, the choice
of using diagonal or subdiagonal (superdiagonal) is based on the
order of v2

Ω
that is retained. For notational consistency, the

indices on all approximants will refer to the power of vΩ. Other
references define the indices on the energy approximants with
respect to v2

Ω
.
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approximants under variations of an (at the time) un-
known coefficient in the 3PN center-of-mass energy,
Damour, Jaranowski and Schäfer [24] found it more ro-
bust to use the superdiagonal P-approximant instead of
the subdiagonal P-approximant at 3PN order.6 This sug-
gestion was also adopted in Ref. [32] and will be used
here; that is, we use subdiagonal P-approximants for
1PN, diagonal for 2PN, and superdiagonal for 3PN.

The P-approximants for the center-of-mass energy are
defined as

Eq
p(vΩ) =

{
M2 + 2νM2

[√
1 + eq

p(vΩ) − 1

]}1/2

−M ,

(33)
where at 2PN order [21]

e22(vΩ) = −v2
Ω

1 + 1
3ν −

(
4 − 9

4ν + 1
9ν

2
)
v2
Ω

1 + 1
3ν −

(
3 − 35

12ν
)
v2
Ω

, (34)

and at 3PN order [24]

e42(vΩ) = −v2
Ω

1

1 − w3(ν) v2
Ω

[
1 −

(
1 +

1

3
ν + w3(ν)

)
v2
Ω

−
(

3 − 35

12
ν −

(
1 +

1

3
ν

)
w3(ν)

)
v4
Ω

]
, (35)

where

w3(ν) =
40

36 − 35ν

[
27

10
+

1

16

(
41

4
π2 − 4309

15

)
ν

+
103

120
ν2 − 1

270
ν3

]
. (36)

2. Gravitational wave energy flux

As originally pointed out in Refs. [47, 48], the flux
function in the test-mass limit has a simple pole at the
light-ring position (i.e., the last unstable circular orbit
of a photon). Motivated by this, DIS introduced a new
flux-type function

fk(vΩ) =

(
1 − vΩ

vpole(ν)

)
Fk(vΩ; ν) , (37)

with the suggestion that vpole be chosen to be at the light
ring (pole singularity) of the new energy function.

In order to construct well behaved approximants, DIS
proposed to normalize the velocity vΩ entering the loga-
rithms in Eq. (26) to some relevant scale which they chose
to be vlso(ν), where the last stable orbit (LSO) is defined

6 Subdiagonal P-approximants were extended to 3PN order in
Ref. [45], and LAL [46] software uses those P-approximants for
the energy function.

as the minimum of the energy. Also, they factored out
the logarithms yielding

fk(vΩ) =
32

5
ν2 v10

Ω



1 + log
vΩ

vlso(ν)




k∑

i≥6

ℓi v
i
Ω









×
(

1 − vΩ
vpole(ν)

) k∑

i=0

F log-fac
i vi

Ω , (38)

where ℓi and F log-fac
i are functions of Fi. Through 3.5PN

order, ℓ6 = −1712/105, ℓ7 = 0, and F log-fac
i = Fi with

the replacement of vΩ → vlso in F6 [see Eq. (26)].
Finally, DIS proposed to define the P-approximant of

the GW energy flux as

Fm
n (vΩ) =

1

1 − vΩ/vpole(ν)
fm

n (vΩ) . (39)

where

fm
n (vΩ) =

32

5
ν2 v10

Ω



1 + log
vΩ

vlso(ν)




k∑

i≥6

ℓi v
i
Ω









× Pm
n

[(
1 − vΩ

vpole(ν)

) k∑

i=0

F log-fac
i vi

Ω

]
, (40)

where Pm
n [x] denotes Padé summation of the series x.

DIS proposed to use the diagonal or subdiagonal P-
approximants, depending on whether k = n+m is even
or odd. Furthermore, DIS proposed to use vlso(ν) and
vpole(ν) as the minimum and pole of the center-of-mass
energy P-approximant of the same PN order. At 2PN
(the order to which the PN expansion was known by
DIS) vpole is determined from the pole of the Padé energy
function e22, yielding

v2PN
pole (ν) =

1√
3

√
1 + 1

3ν

1 − 35
36ν

. (41)

When the PN expansion was extended to 3PN order, it
was found that none of the 3PN P-approximants have a
physical pole. Therefore, somewhat arbitrarily, we will
follow previous analyses and use the value (41) also at
3PN order. We denote the P-approximants defined by
Eqs. (39) and (33) as Fm

n /Eq
p .

The denominator in the Padé summation of the GW
energy flux can have zeros. They are called extraneous

poles of the P-approximant [42]. It is desirable that these
poles be located at high frequency (i.e., beyond the tran-
sition from inspiral to plunge). We shall see that depend-
ing on the PN order and also the mass ratio, extraneous
poles can be present at low frequencies. This could indi-
cate poor convergence of the Padé summation.

In Secs. IVB, VI B and VI C we shall investigate how to
improve the closeness of the PN-approximants to the nu-
merical data by varying a5 [16, 18, 26], vpole [18, 26] and
also by introducing higher-order PN coefficients in the
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flux function. When varying vpole in the P-approximant
at 3.5PN order, extraneous poles appear at low values of
vΩ. Therefore, in order to push these poles to very high
frequency, we follow the suggestion of Ref. [18], and use
P-approximants at 4PN order, where the 4PN coefficient
is set to its known value in the test-mass limit. This cure
may fail for different mass ratios if new extraneous poles
appear at low frequency. Furthermore the logarithm in
the flux is not factored out as in Eq. (38), but treated as
a constant when Padé summation is done. In this case
the flux function is denoted F

m

n .
We notice that DIS motivated the introduction of the

P-approximants first in the test-mass limit case by ob-
serving much faster and monotonic convergence of the
Padé energy, flux and waveforms with respect to Tay-
lor energy, flux and waveforms. Quantitative tests of
the convergence were done only for the Padé waveforms
(see e.g., Tables III and IV in Ref. [21]), while for the
flux and the energy conclusions were drawn qualitatively
from Figs. 3 and 4 of Ref. [21]. DIS then conjectured
that the comparable mass case is a smooth deformation
of the test-mass limit case, and proposed to use close-
to-diagonal P-approximants for the flux and the energy
when ν 6= 0. In the Appendix we perform a few conver-
gence tests of the P-approximants of the flux function in
the test-mass limit case, and conclude that whereas the
P-approximants provide a better fit to the numerical flux
at 5.5PN order, they do not accelerate the convergence
of the Taylor series expansion of the energy flux.

C. Non-adiabatic effective-one-body approximants

The EOB model goes beyond the adiabatic approxima-
tion and can incorporate deviations from the Keplerian
law when the radial separation become smaller than the
last stable circular orbit.

Here we briefly review the main equations defining the
EOB dynamics and refer the reader to previous papers
for more details [15, 16, 18, 19, 22, 23, 24, 33]. The
non-spinning EOB effective Hamiltonian is [22, 24]:

Heff(r,p) = µ Ĥeff(r,p)

= µ

{
A(r)

[
1 + p

2 +

(
A(r)

D(r)
− 1

)
(n · p)2

+
1

r2
2(4 − 3ν) ν (n · p)4

]}1/2

, (42)

with r and p being the reduced dimensionless variables;
n = r/r where we set r = |r|. In absence of spins the
motion is constrained to a plane. Introducing polar co-
ordinates (r,Φ, pr, pΦ), the EOB effective metric reads

ds2eff ≡ geff
µν dx

µ dxν = −A(r) c2dt2 +
D(r)

A(r)
dr2

+r2 (dθ2 + sin2 θ dφ2) . (43)

The EOB real Hamiltonian is

Hreal = M

√

1 + 2ν

(
Heff − µ

µ

)
−M , (44)

and we define Ĥreal = Hreal/µ. The T-approximants
to the coefficients A(r) and D(r) in Eqs. (42) and (43)
read [22, 24]

Ak(r) =

k+1∑

i=0

ai

ri
, (45)

Dk(r) =

k∑

i=0

di

ri
, (46)

where

a0 = 1 , a1 = 2 , a2 = 0 , a3(ν) = 2ν ,

a4(ν) =

(
94

3
− 41

32
π2

)
ν , (47)

d0 = 1 , d1 = 0 , d2(ν) = 6 ν ,

d3(ν) = 2 (3ν − 26) ν . (48)

In Sec. VI C, we will explore the flexibility of the EOB
model by tuning the pseudo 4PN order coefficients a5(ν)
which we will take to have the following functional form7

a5(ν) = a5 ν . (49)

In order to assure the presence of an horizon in the
effective metric, we need to factor out a zero of A(r).
This is obtained by applying the Padé summation [24].
Thus, the coefficients Ak(r) and Dk(r) are replaced by
the Padé approximants [24]

A1
2(r) =

r (−4 + 2r + ν)

2r2 + 2ν + r ν
, (50)

at 2PN order, and

A1
3(r) =

Num(A1
3)

Den(A1
3)

, (51)

with

Num(A1
3) = r2 [(a4(ν) + 8ν − 16) + r (8 − 2ν)] , (52)

and

Den(A1
3) = r3 (8 − 2ν) + r2 [a4(ν) + 4ν]

+r [2a4(ν) + 8ν] + 4[ν2 + a4(ν)] , (53)

7 Note that what we denote a5 in this paper was denoted λ in
Ref. [16].
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at 3PN order. When exploring the flexibility of the EOB
model, we use the following Padé approximant at 4 PN
order [16, 26]:

A1
4(r) =

Num(A1
4)

Den(A1
4)

, (54)

with

Num(A1
4) = r3 [32 − 24ν − 4a4(ν) − a5(ν)]

+r4[a4(ν) − 16 + 8ν] , (55)

and

Den(A1
4) = −a2

4(ν) − 8a5(ν) − 8a4(ν)ν + 2a5(ν)ν − 16ν2

+r [−8a4(ν) − 4a5(ν) − 2a4(ν)ν − 16ν2]

+r2 [−4a4(ν) − 2a5(ν) − 16ν]

+r3 [−2a4(ν) − a5(ν) − 8ν]

+r4 [−16 + a4(ν) + 8ν] . (56)

For the coefficient D(r), the P-approximant used at 2PN,
3PN, and 4PN order respectively are [16, 24, 26]:

D0
2(r) = 1 − 6ν

r2
, (57)

D0
3(r) =

r3

r3 + 6νr + 2ν(26 − 3ν)
, (58)

D0
4(r) =

r4

r4 + 6νr2 + 2ν(26 − 3ν)r − d4(ν) + 36ν2
,

(59)

and we choose somewhat arbitrarily d4(ν) = 36ν2, so
that D0

4 = D0
3. (We note that the value of d4 does not

affect much the EOB evolution [16].) The EOB Hamilton

equations written in terms of the reduced quantities Ĥreal

and t̂ = t/M , Ω̂ = ΩM [23], are

dr

dt̂
=

∂Ĥreal

∂pr
(r, pr, pΦ) , (60)

dΦ

dt̂
≡ Ω̂ =

∂Ĥreal

∂pΦ
(r, pr, pΦ) , (61)

dpr

dt̂
= −∂Ĥ

real

∂r
(r, pr, pΦ) , (62)

dpΦ

dt̂
= F̂ [Ω̂(r, pr, pΦ)] , (63)

where for the Φ component of the radiation-reaction force
a few approximants are available. Originally, Ref. [23]
suggested the following Keplerian P-approximants to the
flux

KF̂m
n ≡ − 1

νv3
Ω

Fm
n (vΩ; ν, vpole) , (64)

where Fm
n is given by the Padé flux in Eqs. (39) and

(40). Here by Keplerian we mean that in the flux the

tangential velocity VΦ = Φ̇ r is set to VΦ ≡ vΩ = Φ̇1/3,
having assumed the Keplerian relation Φ̇2 r3 = 1. It was
then pointed out in Ref. [34] that the Keplerian relation
becomes less and less accurate once the binary passes
through the last stable orbit. A more appropriate ap-
proximant to the flux would be

nKF̂m
n ≡ − v3

Ω

νV 6
Φ

Fm
n (VΦ; ν, vpole) , (65)

where VΦ ≡ Φ̇ rΩ. Notice that because the EOB Hamil-
tonian is a deformation of the Schwarzschild Hamilto-
nian, the exact Keplerian relation is Φ̇2 r3Ω = 1 with

rΩ ≡ r [ψ(r, pΦ)]1/3 and ψ is defined following the ar-
gument presented around Eq. (19) to (22) in Ref. [34]:

1

ψr3
≡ ω2

circ =

(
∂H(r, pr = 0, pφ)

∂pφ

)2

=
1

r3
p2

φA(r)
(
1 +

p2

φ

r2

)
r
(
1 + 2η

(√
w(r, pφ) − 1

))

(66)

where w(r, pφ) = A(r)
(
1 +

p2

φ

r2

)
. The value of pφ of cir-

cular orbits are obtained by minimizing with respect to
r the circular orbit Hamiltonian H(r, pr = 0, pφ) and it
yields the following relation between r and pφ

2p2
φA(r)

r3
=

(
1 +

p2
φ

r2

)
dA(r)

dr
. (67)

By inserting Eq. (67) in the definition of ψ, and replacing
all pφ except the one which implicitly appears in w(r, pφ)
we obtain

ψ =
1 + 2η(

√
w(r, pφ) − 1)

r2 dA(r)/dr/2
. (68)

Finally, Refs. [32, 33] introduced another possible
variation of the EOB flux approximants which use T-
approximants for the flux given by Eq. (19), in either the
Keplerian or non-Keplerian form, i.e.

KF̂n = − 1

νv3
Ω

Fn(vΩ) , (69)

and

nKF̂n = − v3
Ω

νV 6
Φ

Fn(VΦ) . (70)

Note that the flux for the non-Keplerian EOB models
are not simply functions of the orbital frequency Ω. We
denote the original E-approximants [22, 23, 24] which use
the Padé flux (40) as Fm

n /Hp whereHp isHreal computed
from A1

p and D0
p. Other E-approximants used in this

paper are summarized in Table I. The initial conditions
for Eqs. (60)–(63) are obtained following Ref. [23] and
starting the evolution far apart to reduce the eccentricity
to negligible values.
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D. Waveforms

The PN waveforms are obtained by substituting the
orbital phase and frequency into the spherical harmonic
mode (2,2) with amplitude corrections through 3PN or-
der [49, 50]

h22 = −8

√
π

5

νM

R
e−2iΦv2

Ω

{
1 − v2

Ω

(
107

42
− 55

42
ν

)

+ 2πv3
Ω − v4

Ω

(
2173

1512
+

1069

216
ν − 2047

1512
ν2

)

− v5
Ω

[(
107

21
− 34

21
ν

)
π + 24iν

]

+ v6
Ω

[
27027409

646800
− 856

105
γE +

2

3
π2 − 1712

105
ln 2

− 856

105
ln vΩ −

(
278185

33264
− 41

96
π2

)
ν − 20261

2772
ν2

+
114635

99792
ν3 +

428i

105
π

]
+ O(ǫ7/2)

}
. (71)

For the adiabatic models, the orbital phase is obtained
by rewriting the energy balance equation (12) as

dΩ

dt
= − F

dE/dΩ
. (72)

and integrating this equation along with dΦ/dt = Ω.
The Taylor approximants are formed first by substituting
F = Fn and E = En into Eq. (72). The P-approximant
waveform is formed similarly by substituting F = Fm

n

and E = Em
n into Eq. (72). The TaylorT1 and Padé

approximants then numerically integrate Eq. (72). The
TaylorT4 approximant is formed by first re-expanding
the right side of Eq. (72) as a single Taylor expansion
truncated at the appropriate order, and then numeri-
cally integrating the resulting equation. The TaylorT2
and TaylorT3 approximants perform the integration an-
alytically. The various Taylor approximants are reviewed
in Sec. IIIE of Ref. [12].

For the non-adiabatic EOB models, the orbital phase
is determined by solving Hamilton’s equations (60)-(63).

After computing h22, the appropriate time derivatives
are taken to form ḣ22 and Ψ22

4 .

IV. COMPARISON WITH POST-NEWTONIAN
APPROXIMANTS: ENERGY FLUX

We now compare the numerical GW energy flux with
predictions from PN theory. In Sec. IVA we present
comparisons with T-, P- and E-approximants, and in
Sec. IVB we explore ways of fitting the numerical flux
by introducing higher-order PN coefficients and varying
the value of vpole away from v2PN

pole [Eq. (41)].
The PN flux is derived as a function of frequency, so

it is natural to perform this comparison as a function
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2MΩ

ω/Ω

ϖ/Ω

FIG. 5: Ratio of GW frequencies ω and ̟ to orbital frequency,
as a function of (twice) the orbital frequency, for different PN
models. The GW frequencies ω and ̟ are defined in Eqs. (4)
and (5). Solid lines correspond to 3.5PN, dashed and dotted
lines to 3PN and 2.5PN, respectively.

of frequency. One alternative, comparison as a function
of time, would require computation of the PN phase as
a function of time. This depends on the PN energy, so
that a comparison with respect to time would mix effects
due to flux and energy. Furthermore, comparisons with
respect to time are sensitive to (and likely dominated by)
secularly accumulating phase differences [51].

The PN flux is given in terms of the orbital frequency
Ω—see Eqs. (19) and (13)—so at first glance, it might
seem natural to compare PN and NR energy fluxes at
particular values of Ω. However, the orbital frequency is
gauge-dependent, and there is no simple relation between
the NR orbital frequency and the PN orbital frequency.
Nor is there a simple relation between the NR orbital fre-
quency and any quantity measured at infinity (where the
energy flux is defined). In particular, it is very difficult
to determine the NR orbital frequency as a function of
retarded time. In contrast, the frequency ̟ (see Eq. (5))
of the GWs at infinity is an observable quantity, and is
easily obtained from both PN formulae and from the NR
simulation. Therefore, to achieve a meaningful compari-
son, we compare the PN and NR energy flux at particular
values of ̟.

In order to compute the PN flux as a function of ̟,
we need to find the mapping ̟PN : Ω → ̟. In order
to find this mapping, we must build a PN waveform as a
function of Ω and compute ̟ as defined by Eq. (5). We
construct the waveforms as described in Sec. III D. For
the T-approximant of the flux, we will use the TaylorT4
waveform. In Fig. 5 we plot both GW frequencies (de-
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for two representative PN-approximants, plotted (correctly)
as function of ̟ and (incorrectly) as function of 2Ω. Plotting
as a function of 2Ω changes the PN fluxes significantly relative
to the numerical flux FNR.

fined in Eqs. (4) and (5)). We then invert the mapping to
obtain ΩPN = ̟−1

PN : ̟ → Ω. So, given the PN flux F (Ω)
from Sec. III, the flux as a function of the GW frequency
is given by F (̟) = F (ΩPN(̟)). The relation ΩPN(̟)
depends on the instantaneous evolution of the PN model
around frequency Ω, and is therefore (unfortunately) de-
pendent on the PN model, in particular the choice of PN
energy. This dependence, however, is local and will not
lead to secularly accumulating differences.

Notice from Fig. 5 that the orbital frequency and the
GW frequency differ by ∼ 1%–3% at large frequencies,
depending on the PN model and the PN order, and the
difference in ̟ between different PN models is about 5%.
Because the energy flux is roughly proportional to ̟10/3

(more precisely, d logF/d log(M̟) increases to ∼ 3.6 at
M̟ = 0.15), the difference in the flux caused by using
GW frequency from different PN models is about three
to four times the difference in GW frequencies. Fig. 6
illustrates this effect by intentionally plotting the PN flux
versus the incorrect frequency Ω. Because changing the
PN model has a significant effect on the flux, we consider
flux comparisons for several different PN models below.

Note that for the flux comparison (and the compar-
isons of the derivative of the energy in Sec. V), the PN
waveforms are used only to define the mapping between
Ω and ̟. The PN flux is taken directly from the PN flux
expressions, e.g., Eq. (19), and not computed by apply-
ing Eq. (3) to PN waveforms h(t). Equation (3) is used
only to compute the numerical flux.

A. Flux comparison

Figure 7 plots the NR flux and the fluxes for the T-,
P-, and E-approximants at 3.5PN order as a function
of the GW frequency ̟ computed from ḣ22. The T-
approximant is TaylorT4 [12]. Along the top of this figure
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FIG. 7: Comparison between the numerical energy flux and
several PN approximants at 3.5PN order versus GW fre-
quency ̟ extracted from ḣ22 in the equal-mass case.
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several PN approximants versus GW frequency ̟ extracted
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estimated error of the numerical flux (blue bars, see Fig. 2).
Solid lines represent 3.5PN models and NR; dashed and dot-
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(as in several figures below) we indicate the number of
gravitational wave cycles up to merger, where we define
“merger” as the maximum of |Ψ22

4 |. Figure 8 zooms over
the first 15 GW cycles. We notice that during the first 15
GW cycles the numerical data are fit best by the P- and
E-approximants at 3PN and 3.5PN order. At these low
frequencies the NR flux is best matched by the Keplerian
and non-Keplerian EOB models and the Padé model.

To more clearly show the behavior of the PN approx-
imants, we plot in Fig. 9 the energy flux normalized by
the Newtonian flux. The normalized flux is computed as

F (̟)

FNewt(̟)
≡ F (̟)

32
5 ν

2
(

M̟
2

)10/3
, (73)

where for the same reason mentioned above, the New-
tonian flux is expressed in terms of the GW frequency.
Notice that the P-approximants and some of the E-
approximants use the same Padé flux, but they start
differing at M̟ ∼ 0.12 due to their different GW fre-
quencies (obtained from an adiabatic and non-adiabatic
evolution, respectively). The E-approximants with Ke-
plerian and non-Keplerian flux increase less abruptly at
high frequency than the P- and T-approximants. This
is a consequence of non-adiabatic effects captured by the
EOB model. Quite remarkably, the E-approximants with
non-Keplerian fluxes are rather close to the NR result

0 0.5 1 1.5 2 2.5 3

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

vΩ=0.4, 2ΜΩ=0.128

vΩ=0.3, 2ΜΩ=0.054

vΩ=0.1, 2ΜΩ=0.002

|∆F
n+m

| / F
Newt

|∆F
n

m
| / F

Newt

PN order (n+m)/2

FIG. 10: Cauchy convergence test of F/FNewt for T- and
P-approximants. We plot ∆Fn+m ≡ Fn+m+1 − Fn+m, and
∆F m

n ≡ F m

n+1 − F m

n for different values of vΩ. The T- and
P-approximants are given by Eqs. (19) and (39), respectively.
Note that the P-approximant has an extraneous pole at 1PN
order at vΩ = 0.326. We use vlso = v2PN

lso , and vpole = v2PN
pole .

for the entire range of frequency spanned by the sim-
ulation.8 We observe that somewhat accidentally the
PN-approximants at 2.5PN order are also close to the
numerical flux.

The normalized NR flux starts to decrease at M̟ ∼
0.13. We notice that this behavior is rather different
from the behavior of the normalized flux in the test-mass
limit (see Fig. 19 in the Appendix). The E-approximants
with non-Keplerian Padé or Taylor flux show a similar
decreasing behavior at high frequency.

Both Figs. 8 and 9 show that in the equal-mass case
P-approximants fit the numerical results better than T-
approximants. In numerical analysis, however, Padé
summation is often used as a technique to accelerate the
convergence of a slowly-converging Taylor series (e.g., see
Tables 8.9 and 8.12 in Ref. [42]); hence it is natural to
ask in the PN case whether Padé summation indeed ac-
celerates the convergence of the series. In Table II we
list the T- and P-approximants of F/FNewt computed at
subsequent PN orders and for several values of vΩ [from
left to right vΩ = 0.1, 0.25 (i.e., beginning of the numeri-
cal simulation), 0.3, 0.35, and 0.4.] In Fig. 10 we perform

8 We notice that whereas the Keplerian Padé-based (or Taylor-
based) approximants to the flux differ from each other only when
expressed in terms of the GW frequency, the non-Keplerian Padé-
based (or Taylor-based) approximants to the flux differs from the
others because their functional dependence on the frequency is
different (e.g., compare Eq. (65) with Eq. (64)).
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PN order vΩ =0.1, 2MΩ=0.002 vΩ =0.25, 2MΩ=0.031 vΩ =0.3, 2MΩ=0.054 vΩ =0.35, 2MΩ=0.086 vΩ =0.4, 2MΩ=0.128

(n+m)/2
Fn+m

FNewt

F m

n

FNewt

Fn+m

FNewt

F m

n

FNewt

Fn+m

FNewt

F m

n

FNewt

Fn+m

FNewt

F m

n

FNewt

Fn+m

FNewt

F m

n

FNewt

0.0 1.0000000 1.1692906 1.0000 1.5673 1.000 1.7678 1.000 2.027 1.000 2.376
0.5 1.0000000 1.0214102 1.0000 1.1507 1.000 1.2325 1.000 1.345 1.000 1.505
1.0 0.9555952 0.9251084 0.7225 -0.8648 0.939 -7.8434 0.456 16.01 1.091 8.443
1.5 0.9681616 0.9686094 0.9188 0.9074 0.940 0.9069 0.995 0.924 1.094 0.967
2.0 0.9681512 0.9676191 0.9184 0.8850 0.939 0.8671 0.993 0.860 1.091 0.867
2.5 0.9675775 0.9676981 0.8624 0.8890 0.799 0.8754 0.692 0.875 0.504 0.893
3.0 0.9677265 0.9677247 0.8951 0.8914 0.895 0.8804 0.928 0.883 1.022 0.903
3.5 0.9677274 0.9677233 0.8957 0.8912 0.897 0.8798 0.934 0.882 1.036 0.900

TABLE II: Normalized energy flux F/FNewt for the T- and P-approximants at subsequent PN orders for select velocities vΩ.
vΩ = 0.25 corresponds to the start of the numerical simulation. The P-approximant flux is given by Eq. (39). Note that the
P-approximant has an extraneous pole at 1PN order at vΩ = 0.326. We use vlso = v2PN

lso = 0.4456 and vpole = v2PN
pole = 0.6907.

We use boldface to indicate the range of significant figures that do not change with increasing PN order.

a Cauchy convergence test and compute the difference
between T- and P-approximants at subsequent PN or-
ders. The figures do not suggest an acceleration of the
convergence. We notice that in the equal-mass case P-
approximants are converging more systematically than
T-approximants. However, this fact seems to depend on
the mass ratio, as can be seen by comparing Fig. 10 with
Table IV and Fig. 21 in the Appendix which are obtained
in the test-mass limit.

B. On the fitting of the numerical relativity energy
flux

In view of building accurate analytical templates that
can interpolate the NR waveforms during inspiral, merger
and ringdown, we explore here the possibility of improv-
ing the PN-approximants to the energy flux by introduc-
ing phenomenological higher-order PN coefficients and/or
by varying the value of vpole. This study should be con-
sidered a first exploration of the problem, demonstrating
only the flexibility of the PN models. None of the quan-

tities derived here should be used as the basis for further
work.

We will minimize the difference between the PN flux
and the numerical flux by varying particular coefficients
in the PN model. Ideally, the PN and numerical fluxes
should be expressed as functions of ̟ before taking this
difference, so that the fluxes are compared in a physi-
cally meaningful way. Unfortunately, the calculation of
̟ for the PN models is time-consuming, because for each
trial value of the phenomenological coefficient it is neces-
sary to compute a full waveform to determine the map-
ping between ̟ and Ω. So instead, in this section we
simply compare PN and numerical fluxes as functions of
Ω, where we define the numerical orbital frequency as
Ω ≡ ̟/2. In Fig. 6, we can see that the error intro-
duced by the discrepancy between Ω and ̟/2 will be
significant. As we will show in Sec. VI B, the waveforms
produced using these “tuned” flux functions will improve
agreement with the numerical waveform at a significant
level. Nevertheless, the values derived in this section may
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FIG. 11: Fitting several PN-approximants to the numerical
flux. The x-axis denote the orbital frequency Ω. Because the
numerical flux is computed as function of the GW frequency,
we use for the numerical flux Ω ≡ ̟/2. The blue bars indi-
cate estimated errors on the numerical flux, see Fig. 2. For
notation see Table I and caption therein.

not be optimal. Thus, we emphasize that the results of
this section constitute merely an exercise demonstrating
the feasibility of adjusting the PN parameters to optimize
the agreement of the PN flux function with numerical
data.

The least-squares fits are done on F (̟)/FNewt(̟) [see
Eq. (73)]. In the case of T-approximants, we fit for the
unknown 4PN-order coefficient in Eq. (19) for the equal-
mass case. We perform a least-squares fit of the 4PN-
order function F8(ν = 1/4) = A8 + B8 log vΩ over the
orbital-frequency range MΩ = 0.02–0.08 which starts af-
ter the first 9 GW cycles. We obtain A8 = −141 , B8 =
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102. We notice that when we perform the fit over the
first 15 (or 20) GW cycles, spanning the frequency re-
gion MΩ = 0.0168–0.0235 (MΩ = 0.0168–0.0283), the
agreement becomes worse. The resulting flux is shown in
Fig. 11. The relative difference with the numerical flux
is at most ∼ 0.8%.

We repeat this analysis in the case of P-approximants.
Because the latter also depend upon vpole, we perform
two least-squares fits. In the first fit, we fix vpole to the
value given by Eq. (41) and apply the least-squares fit to
F8(ν = 1/4) obtaining A8 = −1382 , B8 = 197.

In the second fit, we vary vpole. When varying vpole

in the P-approximant at 3.5PN order, extraneous poles
appear at low values of vΩ. Therefore, in order to push
these poles to very high frequency, we follow the sugges-
tion of Ref. [18], and use P-approximants at 4PN order,
where the 4PN coefficient is set to its known value in the
test-mass limit. Furthermore the logarithm in the flux is
not factored out, but treated as a constant when Padé
summation is done. This cure may fail for different mass
ratios if new extraneous poles appear at low frequency.
The least-squares fit gives vpole = 0.74. All the results
for the P-approximants are displayed in Fig. 11, where
we also show the T- and P-approximants at 3.5PN order
without any fit.

Figure 11 might suggest that by introducing higher-
order PN coefficients in the flux, the numerical flux can
be fit better by T-approximants than by P-approximants.
However, this result can depend on the use of orbital
frequency instead of GW frequency. In Sec. VI C (see
Fig. 18) we employ the fit values obtained in this study
and show phase differences between NR and tuned EOB
models.

Finally, we attempted to extract PN coefficients higher
than 3.5PN order from the numerical flux, as was done at
2PN, 2.5PN and 3PN order in Ref. [48] in the test-mass
limit. Unfortunately, the differences between numerical
flux and T-approximants are so large —even at the begin-
ning of the numerical waveform—that we were not able
to extract even known PN coefficients, like the ones at
3PN and 3.5PN order. Thus, to fit unknown PN coef-
ficients would require a numerical simulation with more
cycles starting at lower frequency.

V. ESTIMATION OF THE (DERIVATIVE OF
THE) CENTER-OF-MASS ENERGY

In the previous section, we analyzed and compared PN
and numerical energy fluxes. The energy of the binary is
the second fundamental ingredient in the construction of
adiabatic PN-approximants. Unfortunately, there is no
way to extract the energy for the numerical simulation
as a function of a gauge-invariant quantity such as the
GW frequency, so that it is impossible to compare PN
and NR energies directly. The frequency derivative, ˙̟ ,
however, is easily accessible in the numerical data, and, in
the adiabatic approximation is intimately related to the
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FIG. 12: GW frequency derivative ˙̟ for the numerical rela-
tivity simulation and various PN approximants at 3.5PN or-
der. For notation see Table I and caption therein.

energy, as can be seen by rewriting the energy balance,
Eq. (12), in the form

d̟

dt
= − F

dE/d̟
. (74)

Therefore, we begin this section with a comparison be-
tween numerical ˙̟ and the predictions of various PN-
approximants. For the PN-approximants, we compute
h22 as usual (i.e., using energy balance to compute the or-

bital frequency derivative Ω̇), and take a time derivative

to obtain ḣ22 and extract ˙̟ from it. The waveform h22

for the E-approximants is computed using Eqs. (42), (44),
(45) and (46) in Sec. III C. Figure 12 plots the numerical
˙̟ and its value for T-, P- and also E-approximants at
3.5PN order.

In order to emphasize differences between the different
˙̟ , we normalize the data in Fig. 12 by the Newtonian
value of ˙̟ ,

˙̟

˙̟ Newt
≡ ˙̟

192
5

ν
M2

(
M̟

2

)11/3
. (75)

The normalization is used only to eliminate the leading-
order behavior of the various curves in Fig. 12; therefore,
to compute the denominator of Eq. (75) we have sim-
ply substituted ̟/2 rather than Ω into the Newtonian
formula for the frequency derivative.

The normalized frequency derivatives are shown in
Fig. 13. At low frequencies, ˙̟ is very challenging to



16

1.0

1.2

1.4

1.6

1.8

26 16 10 6 4 3

0.04 0.05 0.06 0.08 0.1 0.12 0.15
Mϖ

1.0

1.2

1.4

1.6

1.8

NR

F 3
/H

2

F5/H4

F7/H6
F 2
1 /H

2 F 3
2 /H 4

F4
3/H6

nKF7/H6

nKF4
3/H6

ϖ
. /ϖ. Newt
Taylor T4 and Padé models

NR

F3/E2 T
4

F2
1 /E2

0  Padé

F7/E
6 T

4

F5/E4 T4

F 4
3 /E 2

4  P
ad

é

F 3
2 /E

2
2  P

ad
é

GW cycles before merger

ϖ
. /ϖ. Newt

EOB models

FIG. 13: Comparison of ˙̟ for the numerical results and var-
ious PN approximants. Dotted, dashed and solid lines corre-
spond to 1.5PN, 2.5PN and 3.5PN models, respectively. For
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compute in numerical simulations, resulting in compar-
atively large numerical uncertainties. Therefore, for fre-
quencies M̟ . 0.045 we can merely conclude that PN
and NR are consistent with each other (i.e., are within
the numerical error bars of about 10 per cent).

The 3.5PN Taylor T4 model (labeled F7/E6T 4) agrees
very well with the numerical simulation up to M̟ ≈ 0.1;
this observation is consistent with the excellent agree-
ment between TaylorT4 (3.5PN) and the numerical sim-
ulation observed in Boyle et al. [12], who compared up to
this frequency. Beyondm̟ = 0.1, however, ˙̟ / ˙̟ Newt for
Taylor T4 continues to increase (as for all other Taylor
and Padé models considered here), whereas for the nu-
merical simulation, ˙̟ / ˙̟ Newt flattens (this behavior was
also observed in Ref. [18].) Only the E-approximants
at 3.5PN order reproduce the flattening of ˙̟ / ˙̟ Newt at
high frequencies, with the closest being the one which
uses the non-Keplerian Padé flux (nKF 3

4 ). Because the
frequency derivative is the relevant quantity that deter-
mines the phase evolution, the turning over of ˙̟ / ˙̟ Newt

for the non-adiabatic models in Fig. 13 suggests that, at
high frequency, non-adiabatic analytical models might be
superior to adiabatic models.

If sufficient smoothing is applied to the numerical ˙̟ it
becomes a smooth curve even at low frequencies. Fig-
ure 14 presents a comparison between such a heavily
smoothed numerical curve and the PN-approximants. As
already pointed out, all PN approximants are consistent
to within our estimated numerical errors at low frequen-
cies. However, the NR result in Fig. 14 is notably closer
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sion of the numerical ˙̟ . Solid lines represent 3.5PN mod-
els and NR; dashed and dotted lines correspond to 3PN and
2.5PN models, respectively. For notation see Table I and cap-
tion therein.

to the 3.5PN approximants than to lower order PN ap-
proximants. This good agreement provides a further val-
idation of the numerical code used in Boyle et al. [12]. It
also indicates that our error analysis in Sec. II may be
overly conservative.

Our comparisons of ˙̟ reveal a lot of information about
the PN approximants. However, ˙̟ depends on both flux
and energy (see Eq. (74)), and so these comparisons do
not yield information about flux or energy separately. To
isolate effects due to the PN energy, we rearrange Eq. (74)
further, such that it yields in the adiabatic approxima-
tion the derivative of the center-of-mass energy for the
numerical simulation:

[
dE

d̟

]

NR

= − FNR

[d̟/dt]NR
. (76)

The relative error in [dE/d̟]NR is obtained as the root-
square-sum of the relative errors of flux and frequency
derivative (see Figs. 2 and 4). In Fig. 15 we compare
the latter with T-, P- and E-approximants. For adia-
batic T4 and Padé models, we compute dE/d̟ by tak-
ing derivatives of E(Ω) in Eq. (14) with respect to Ω
and then expressing the derivative in terms of ̟(Ω). For
non-adiabatic EOB models, we compute dE/d̟ from the
ratio of FPN and [d̟/dt]PN as obtained from Figs. 7 and
12. The closeness between the numerical result and adi-
abatic PN-approximants is expected only in the range
of frequencies over which the balance equation and the
adiabatic approximation are valid. The upper panel of
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Fig. 15 shows the Taylor and Padé adiabatic models. The
plot suggests that around M̟ ∼ 0.08 non-adiabatic ef-
fects are no longer negligible. At lower frequencies, both
3.5PN order adiabatic approximants (Padé and Taylor
T4) match the numerical result very well. Taylor T4 at
2.5PN matches well, too, although its frequency deriva-
tive ˙̟ and flux differ significantly from NR (see Figs. 13
and 9). The T-approximant at 3.5PN order is closest to
the numerical result. The lower panel of Fig. 15 shows
the non-adiabatic E-approximants. We notice that the
non-adiabatic models, especially at 3.5PN order, follow
quite nicely the behavior of the numerical derivative of
the center of mass energy. The E-approximant with non-
Keplerian flux is closest to the numerical result. This
analysis emphasizes again the relevance of including non-
adiabatic effects in the analytical model [23].

VI. COMPARING WAVEFORMS

Here we compare the numerical waveform to various
PN waveforms, basically extending the analysis of Boyle
et al. [12] to include Padé and EOB waveforms. Because
the (2, 2) mode dominates the waveform for an equal-
mass non-spinning binary, we restrict the comparison to
only this mode. As in [12], we use Ψ22

4 and the GW
phase and frequency ω defined by Eq. (4) when compar-
ing waveforms.

For the comparisons presented in this section, the

uncertainty in the phase of the numerical waveform is
roughly 0.02 radians. This number includes numerical
errors (e.g. due to convergence and extrapolation of the
waveform to infinite extraction radius), as well as mod-
elling errors due to slightly nonzero eccentricity and spin
of the numerical simulation; see Ref. [12] Sec. V. for de-
tails. We note that the modelling errors have decreased
since the analysis in Ref. [12] because the new match-
ing procedure reduces the impact of eccentricity, and be-
cause the more sophisticated spin-diagnostics presented
in Ref. [52]) resulted in a smaller bound on the residual
spin.

A. Matching procedure

Each PN waveform has an arbitrary time offset, t0, and
phase offset, φ0 with respect to the NR waveform. The
procedure used by Boyle et al. [12]—as well as in vari-
ous other papers before it, such as [10, 11]—sets these
constants by ensuring that the GW phase and frequency
match at a fiducial time. Unfortunately, when matching
at low frequency this method is sensitive to noise and
to residual eccentricity in the numerical waveform, and
does not easily translate into a robust and automatic
algorithm. Since we want to match as early as possi-
ble (where we expect the PN approximants to be valid),
we propose to use, instead, a matching procedure which
achieves the same goal, but extends over a range of data.
This procedure is similar to the one proposed by Ajith
et al. [17], but whereas we match only the GW phase,
Ajith et al. match the entire gravitational waveform—
including the amplitude—and include an overall ampli-
tude scaling. This method can be easily implemented as
a fairly automatic algorithm, robust against noise and
residual eccentricity.

Using the phase of the numerical and PN waveforms,
we define the quantity

Ξ(∆t,∆φ) =

∫ t2

t1

[φNR(t) − φPN(t− ∆t) − ∆φ]
2
dt .

(77)
Here, t1 and t2 represent the chosen range over which to
compare. Minimizing this quantity by varying the time
and phase offsets ∆t and ∆φ produces the optimal val-
ues for these quantities in a least-squares sense. Then
to compare PN and NR waveforms, we compare the (un-
changed) NR waveform with an offset PN waveform de-
fined by

Ψ4,PN(t) = APN(t+ ∆t) e−i[φPN(t+∆t)+∆φ] . (78)

With reasonable first guesses for ∆t and ∆φ, the func-
tion Ξ is quite nicely paraboloidal. Thus, even sim-
ple minimization routines work well. However, in cases
where speed is an issue, the problem can be reduced to
one dimension. For a given value of ∆t, the optimization
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over ∆φ may be done analytically by setting

∆φ(∆t) =

∫ t2
t1

[φNR(t) − φPN(t− ∆t)] dt

t2 − t1
. (79)

Using this value of ∆φ for a given value of ∆t decreases
the number of function evaluations needed to find the
minimum. This can be very useful for large data sets, or
situations where many such matches need to be done.

The choice of t1 and t2 involves some degree of judg-
ment. Preferably, t1 should be as early as possible, while
not being contaminated by junk radiation. We choose
t1 = 1100M , corresponding to Mω = 0.037. Similarly,
t2 should be as early as possible, but far enough from
t1 so that the integration averages over the noise. In
addition, the effects of the small but nonzero orbital ec-
centricity show up as oscillations in the phase, as can
be seen, for example, in the range t ∈ [1100, 1900]M in
Fig. 17. We would like t2 to be large enough so that
the integration averages over several cycles of this oscil-
lation, thus resulting in less bias due to eccentricity. Here
we use t2 = 1900M , corresponding to Mω = 0.042. We
have checked that changing the values of t1 and t2 by
±100M changes the resulting phases by less than a few
thousandths of a radian through the end of the numerical
waveform.

This method is quite similar to the one suggested in
Ref. [17]. However, here we consider only the phase and
not the amplitude of the waveform. Because we restrict
the analysis only to the (2, 2) waveform mode of an equal-
mass binary and compare only the phase and not the
amplitude, we think it is reasonable to have neglected
the amplitude in the matching procedure.

B. Padé waveforms

In Fig. 16 we plot the phase difference between the
numerical, T- and P-approximants [21, 24, 32] at the
times when the numerical waveform reaches GW fre-
quencies Mω = 0.063 and Mω = 0.1. The phase dif-
ferences are plotted versus the PN order. The phase dif-
ference at Mω = 0.1 of the P-approximant at 3.5PN
order is −0.12 radians. When comparing with generic
Taylor approximants, we notice that the phase differ-
ences of the P-approximants are less scattered as the
PN order is increased. This might be due to the fact
that P-approximants of the energy flux are closer to the
NR flux, especially for lower vΩ where the phase accu-
mulates the most. Figure 16 could be contrasted with
Tables III and IV of Ref. [21] which show the overlaps
between the numerical waveform and P-approximants at
subsequent PN orders, in the test-mass limit case. The
behavior of the P-approximants in Fig. 16 are consistent
with the behavior of ˙̟ seen in Fig. 13: At 1.5PN, Padé
has smaller ˙̟ than the numerical simulation, at 2.5PN,
Padé has larger ˙̟ . Consequently, ΦPN−ΦNR is negative
at 1.5PN order and positive at 2.5PN order. For 3.5PN
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FIG. 16: Phase differences between the numerical wave-
form, and untuned, original EOB, untuned Padé, and Tay-
lor waveforms, at two selected times close to merger. The
E-approximants are F m

n /Hp, while the P-approximants are
F m

n /Eq

p (see Table I and caption therein). Waveforms are
matched with the procedure described in Sec. VIA and phase
differences are computed at the time when the numerical sim-
ulation reaches Mω = 0.063 (left panel) and Mω = 0.1 (right
panel). Differences are plotted versus PN order. Note that at
1PN order the Padé flux has an extraneous pole at v = 0.326
causing a very large phase difference. The thick black line
indicates the uncertainty of the comparison as discussed in
Sec. VI, |ΦPN − ΦNR| ≤ 0.02 radians.

order, the P-approximant in Fig. 13 agrees very well with
the numerical simulation (at least for M̟ . 0.1), which
translates into excellent agreement in Fig. 16.

In Fig. 17 we explore the possibility of reducing the
phase differences between the numerical waveform and
P-approximants: By (i) varying vpole or (ii) introducing
the pseudo 4PN order coefficient F8(ν = 1/4) = A8 +
B8 log vΩ in the energy flux. We tune the coefficients by
minimizing the sum of the squares of the phase difference
at t0.063 and t0.1. We find that if vpole = 0.633, the
P-approximant F 4

4 /E
4
2 has a maximum phase difference

before Mω = 0.1 smaller than the numerical error in the
simulation. A similar result is obtained for the the P-
approximant pF 4

4 /E
4
2 if we use vpole = v2PN

pole = 0.6907,
and tune A8 = −493, B8 = 330.

C. Effective-one-body waveforms

In Fig. 16 we also plot the phase differences be-
tween the numerical and the untuned, original E-
approximants [22, 23, 24] Fm

n /Hp. At 3.5PN order
the phase difference at Mω = 0.1 is 0.50 radians. We
also computed the phase differences at Mω = 0.1 of
the E-approximants nKF 3

4 /H7,
nKF7/H7 and F7/H7 and

found 0.45, 2.56 and 2.7 radians, respectively. Thus,
for untuned EOB models it is crucial to have intro-
duced the Padé flux. When contrasting the original E-
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FIG. 17: Phase differences between untuned and tuned P-
approximants and NR. The untuned P-approximant is F 3

4 /E4
2

(vlso = v2PN
lso , vpole = v2PN

pole ). The tuned P-approximants are

F 4
4 /E4

2 and tunable vpole (vlso = v2PN
lso ) and pF 4

4/E4
2 (vlso =

v2PN
lso , vpole = v2PN

pole ) with tunable A8 and B8. In all cases,
waveforms are matched over t − r∗ ∈ [1100, 1900]M .

approximants with generic Taylor approximants, we find
that the phase differences are less scattered as the PN
order is increased. However, despite the fact that the
Padé-based EOB flux is closer to the numerical flux (see
Figs. 8 and 9), untuned, original E-approximants accu-
mulate more phase difference than P-approximants. This
could be a consequence of the fact that independently of
the flux and the energy functions, what seems to matter
is the way the equations of motions are solved to get the
phasing.

Because of the reduction of the dynamics to a few cru-
cial functions determining the inspiral evolution [22, 23,
25], notably A, D and F , and because of the rather sim-
ple procedure to match the inspiral(-plunge) waveform to
the ringdown waveform, the EOB model turned out to
be particularly suitable for matching the full numerical
waveforms [9, 16, 18, 20, 27]. In view of a future study
which will include merger and ringdown, we start here ex-
ploring the possibility of improving the agreement with
numerical waveforms by tuning the pseudo 4PN order
coefficients a5, A8 and B8 and/or, if present, the pole lo-
cation vpole. In the lower panel of Fig. 18, using different
vpole values, we show the phase differences computed at
t0.063 and t0.1 as functions of the unknown PN-expansion
coefficient a5 [see Eq. (49)]. As first pointed out and dis-
cussed in Ref. [18] (see e.g., Fig. 3 therein), we find that
there is a strong degeneracy between a5 and vpole. In
fact, for different vpole values, the curves in Fig. 18 are
almost identical except for a shift in a5. Although in this
test we use the E-approximant F 4

4 /pH8(vlso = v2PN
lso ), we

find that this degeneracy appears in all E-approximants
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FIG. 18: The upper panel shows phase differences versus
time (lower x-axis) and versus GW frequency (upper x-axis)
for several tuned and untuned E-approximants. For the tuned
models, the optimal a5 and vpole values displayed in Table III.
In the lower panel we show phase differences between nu-
merical and E-approximants computed at t0.063, t0.1, and the
end of the numerical simulation t0.16, as functions of a5. For
the same color and style, the curve with the steepest slope
corresponds to t0.16 and the curve with the smallest slope
corresponds to t0.063 (For notation see Table I and caption
therein).

considered.

To obtain the optimal a5 and vpole that minimize phase
differences during the entire numerical simulation, we
first choose an arbitrary vpole in the range of degeneracy.
Then, we determine the a5 value by minimizing the sum
of the squares of the phase difference at t0.063 and t0.1.
In the upper panel of Fig. 18, we show phase differences
in time and GW frequency for several E-approximants
using those optimal a5 and vpole values, which are given
in Table III. In Fig. 18, we also show phase differences
for E-approximants with pseudo 4PN order coefficients
determined by the flux fit of Sec. IVB (see Fig. 11) and
tunable a5. The optimal a5 values are shown in Table III.
The smaller phase differences along the entire inspiral
are obtained with the E-approximants with Padé flux
F 4

4 /pH8 (vlso = v2PN
lso ) and tunable vpole, a5 and Taylor



20

EOB model and fixed parameters a5 vpole

nKF̄ 4
4 /pH8 — 29.78 0.52

F 4
4 /pH8 vlso = v2PN

lso 39.35 0.55

pF8/pH8 A8 = −141, B8 = 102 5.32 N/A

pF 4
4 /pH8 A8 = −1382, B8 = 197, -3.10 N/A

vlso = v2PN
lso , vpole = v2PN

pole

TABLE III: Optimal a5 and vpole that minimize phase differ-
ences between tuned EOB models and the numerical simula-
tion.

flux pF8/pH8 with tunable A8, B8, a5. We notice that for
t > t0.1 the phase difference increases more abruptly for
the latter model. In the best case, the absolute phase dif-
ference during the entire numerical simulation is within
the numerical error, i.e., within 0.02 radians. The choice
of the best tuned E-approximant [15, 16, 18, 19, 20] will
be determined once merger and ringdown are included,
and when long and accurate comparisons with numerical
simulations are extended to BBH with mass ratio differ-
ent from one.

Finally, in Ref. [18], Damour and Nagar extracted the
data of the numerical simulation used in the present pa-
per from one of the figures of Ref. [12] and compared
those data with the EOB approach. They found for their
“non-tuned” EOB model phase differences ±0.05 radi-
ans. This phase difference is smaller than the phase dif-
ferences we discuss in this paper for untuned EOB mod-
els (see Fig. 16 and discussion around it). However, we
notice that ±0.05 radians in Ref. [18] refers to half the
maximum phase difference accumulated over the entire
evolution when matching the numerical and EOB phases
at Mω = 0.1. By contrast, in this paper, and in par-
ticular in Fig. 16, we match numerical and EOB phases
in a time interval and compute the phase differences at
Mω = 0.1.

Moreover, we observe that their “non-tuned” EOB
model is not really untuned, because it uses the Padé
summation of the radial potential at 4PN order and then

sets a5 = 0. This is not equivalent to using the radial
potential at 3.5PN order with a5 = 0. In fact, to recover
the 3.5PN order Padé radial potential from the 4PN order
Padé potential one should use a5 = −17.16. They also

use the non-Keplerian flux at 4PN order nKF
4

4 which is
different from the 3.5PN order one nKF 3

4 . For our un-
tuned EOB model at 3.5PN order which uses nKF 3

4 and
the EOB dynamics at 3PN order, if we apply Ref. [18]
procedure and compute half the maximum phase differ-
ence when matching the numerical and EOB phases at
Mω = 0.1, we find a phase difference of ±0.18 radians

VII. CONCLUSIONS

In this paper, using a highly accurate and long numer-
ical simulation [12] of a non-spinning equal-mass black

hole binary, we compute the gravitational waveform, GW
energy flux, and GW frequency derivative. Imposing
the balance equation, we also estimate the (derivative
of) center-of-mass energy. We compare these quanti-
ties to those computed using adiabatic TaylorT4 and
Padé [21, 24, 32], and non-adiabatic EOB PN approx-
imants [22, 23, 24].

We find that for the first 15 GW cycles, the 3.5PN
order T-approximant and the 3.5PN order untuned P-
and E-approximants (see Table I) reproduce the numeri-
cal results for energy flux, GW frequency derivative and
(derivative of) center-of-mass energy quite well (see Figs.
8, 9, 13, 14, and 15), but with interesting differences.

We attempted to study the convergence of the PN ex-
pansion for the energy flux.9 We find that Padé approxi-
mants to the flux introduced in Ref. [21] do not accelerate
the convergence of the Taylor series, but are closer to the
numerical flux than are the T-approximants. In particu-
lar, the Taylor flux at all orders through 3.5 PN is outside
the numerical flux error bars even ∼ 25 GW cycles be-
fore merger (see Fig. 8). We find that the non-adiabatic
non-Keplerian E-approximants to the flux at 3.5PN or-
der are within ∼ 2% of the numerical flux over the entire
frequency range we consider (see Fig. 9).

Quite interestingly, in the equal-mass case the numer-
ical normalized energy flux F/FNewt starts decreasing at
high frequency during the late part of the inspiral and
blurred plunge (see Fig. 9). This differs from the be-
havior of F/FNewt in the test-mass limit (see Fig. 19).
Both the Taylor and Padé-based E-approximants with
non-Keplerian flux [34] show a similar decreasing behav-
ior at high frequency. This fact suggests that if a pole
is present in the energy flux of equal-mass binaries, it is
located at a larger frequency than that at which the com-
mon apparent horizon forms. As seen in Sec. IVB, when
fitting for vpole we obtain vpole(ν = 1/4) = 0.74, which is
to be contrasted with the test-mass case vpole(ν = 0) =

1/
√

3 ≈ 0.58. These values of vpole correspond to orbital
frequencies MΩ = 0.405 and MΩ = 0.192, respectively.

For the GW frequency derivative ˙̟ , we find that at low
frequency the Taylor, Padé and EOB models at 3.5PN or-
der are within the numerical error (see Fig. 13). At high
frequency, as already observed in Ref. [18], only the non-
adiabatic E-approximant has a GW frequency derivative
that flattens out, as does the numerical result. The non-
Keplerian E-approximant at 3.5PN order is closest to the
numerical data (see Fig. 14).

When estimating the derivative of center-of-mass en-
ergy dE/d̟, we expect the numerical result and adi-
abatic PN-approximants to be close only in the range
of frequencies over which the balance equation and the

9 We also tried to apply the criterion suggested in Ref. [53] to
assess the region of validity of the PN series for the flux in the
equal-mass case. Unfortunately, the numerical simulation starts
at too high a frequency, when the Taylor series at 3.5PN order
seems to already be outside the region of validity.
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adiabatic approximation are valid. We find that this
range of frequencies is M̟ . 0.08 (see Fig. 15) for the
2.5PN T-approximant and all the 3.5PN approximants.10

At higher frequency, the 3.5PN order non-adiabatic E-
approximants are closer to the numerical dE/d̟ than
are the adiabatic approximants, and the non-Keplerian
E-approximant is the closest.

Applying a new matching procedure, we compared the
numerical waveforms with TaylorT4, Padé, and EOB
waveforms. We find that the accumulated phase dif-
ference from the numerical solution at Mω = 0.1 is
−0.12 radians for the untuned 3.5PN P-approximant [21,
24, 32], 0.50 radians for the untuned, original 3.5PN
E-approximant [22, 23, 24], and 0.45 radians for the
untuned non-Keplerian [34] 3.5PN E-approximant (see
Fig. 16). Although those phase differences are larger
than for 3.5PN TaylorT4 (−0.04 radians), the phase dif-
ferences for the P-approximants are less scattered as a
function of PN order than are the phase differences for
generic Taylor approximants.

The analyses of the flux, GW frequency derivative and
(derivative of the) center-of-mass energy emphasize again
the importance of including non-adiabatic effects dur-
ing the last stages of inspiral [23]. Roughly, we can say
that non-adiabatic effects are no longer negligible start-
ing from a frequency M̟ ∼ 0.08–0.12, as can be seen
in Figs. 9, 13, and 15. As seen in these figures, non-
adiabatic E-approximants can capture some of the rele-
vant features of the late time evolution. We expect that
by further improving these models by fitting higher-order
PN coefficients to the numerical data, they will become
excellent candidates for developing an analytic template
bank of coalescing BBHs [9, 16, 18, 20, 27].

In this paper we started to explore the possibility of
reducing the phase differences between numerical and E-
approximant waveforms by fitting the unknown parame-
ters a5, F8, and vpole (see Fig. 18). As a first step, for
several E-approximants we searched for a local minimal
phase difference by varying a5, F8, and vpole. We found
that we were able to reduce phase differences to below
the numerical uncertainty. In a future work which will
include merger and ringdown, we plan to determine the
region of the parameter space (a5, F8, vpole) in which
the phase difference is within the numerical uncertainty
of the simulation.
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APPENDIX: PADÉ APPROXIMANTS TO THE
ENERGY FLUX IN THE TEST PARTICLE LIMIT

In the test-mass-limit case the GW energy flux is
known through 5.5PN order [44]. The explicit coefficients
entering Eq. (19) for i ≥ 8 and ν = 0 can be read from
Eqs. (4.1) and (4.2) of Ref. [21].

In Fig. 19 we compare the normalized energy flux func-
tion [43] F/FNewt to the T- and P-approximants. To eas-
ily compare Fig. 19 with the other figures in the paper,
we plot quantities as functions of the approximate GW
frequency defined by 2MΩ. As noticed in Ref. [21], the
P-approximants approach the numerical data more sys-
tematically. The differences between different PN orders
are difficult to see in Fig. 19. To obtain a clearer view,
Fig. 20 plots the differences between PN flux and nu-
merical flux at four fixed frequencies. Fig. 20 shows this
somewhat better behavior of Padé; however, the Padé-
approximants show little improvement between PN or-
ders 3.5 and 4.5, and at order 5 there occurs an extra-
neous pole. At frequency 2MΩ = 0.04, P-approximants
with order ≥ 2.5 are within 0.5 percent of the numeri-
cal data, as are T-approximants with order ≥ 3.5. Good
agreement at low frequency is rather important because
that is where the majority of the waveform phasing ac-
cumulates.

Table IV and Fig. 21 test the internal convergence of
T- and P-approximants without referring to a numeri-
cal result. Table IV displays the flux at all known PN-
orders at select frequencies, with boldface highlighting
the digits that have already converged. Although the
Padé summation does not accelerate the convergence, the
P-approximant at 5.5PN order is closest to the numerical
data (see Fig. 20).

Comparing Table IV with Table II, and Fig. 21 with
Fig. 10 we observe that the P-approximants converge
more systematically in the equal-mass case than in the
test-mass limit. This is also evident by comparing Fig. 20
with Fig. 8: We see that P-approximants at 3PN and
3.5PN orders are inside the numerical flux error whereas
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PN order vΩ = 0.1; 2MΩ = 0.002 vΩ = 0.3; 2MΩ = 0.054 vΩ = 0.4; 2MΩ = 0.128
(n+m)/2 Fn+m/FNewt F m

n /FNewt Fn+m/FNewt F m

n /FNewt Fn+m/FNewt F m

n /FNewt

0.0 1.0000000000 1.20948977 1.0000 2.0817 1.000 3.255
0.5 1.0000000000 1.03092783 1.0000 1.3699 1.000 1.923
1.0 0.9628869047 0.94287089 0.6660 -0.9467 0.406 -12.52
1.5 0.9754532753 0.97587569 1.0053 0.9916 1.210 1.201
2.0 0.9749604292 0.97462770 0.9653 0.9337 1.084 1.031
2.5 0.9745775009 0.97469475 0.8723 0.9422 0.692 1.063
3.0 0.9747307757 0.97471937 0.9710 0.9465 1.227 1.069
3.5 0.9747206248 0.97471854 0.9488 0.9460 1.061 1.066
4.0 0.9747182352 0.97471874 0.9369 0.9462 0.952 1.067
4.5 0.9747194262 0.97471859 0.9559 0.9461 1.190 1.066
5.0 0.9747192776 0.97471930 0.9479 1.1178 1.051 1.037
5.5 0.9747192763 0.97471928 0.9485 0.9493 1.073 1.091

TABLE IV: Normalized energy flux F/FNewt in the test-mass limit for the T- and P-approximants at different PN orders and
at three different frequencies. We use boldface to indicate the range of significant figures that do not change with increasing
PN order.

T-approximants at all orders through 3.5 PN are outside
the numerical flux error bars even ∼ 25 GW cycles be-
fore merger. However, as the Padé approximant does not

converge faster, it is not immediately clear whether sim-
ilar superior behavior of Padé can be expected for more
generic binary black holes.
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76, 064034 (2007).

[30] D. Pollney, C. Reisswig, L. Rezzolla, B. Szilágyi, M. An-
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