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ABSTRACT

This study is a result of a collaboration project between two groups,

one from Brno University of Technology and the other from Georgia

Institute of Technology (GT). Recently the Brno recognizer is known

to outperform many state-of-the-art systems on phone recognition,

while the GT knowledge-based lattice rescoring module has been

shown to improve system performance on a number of speech recog-

nition tasks. We believe a combination of the two system results in

high-accuracy phone recognition. To integrate the two very different

modules, we modify Brno’s phone recognizer into a phone lattice

hypothesizer to produce high-quality phone lattices, and feed them

directly into the knowledge-based module to rescore the lattices. We

test the combined system on the TIMIT continuous phone recogni-

tion task without retraining the individual subsystems, and we ob-

serve that the phone error rate was effectively reduced to 19.78%

from 24.41% produced by the Brno phone recognizer. To the best

of the authors’ knowledge this result represents the lowest ever error

rate reported on the TIMIT continuous phone recognition task.

Index Terms— Knowledge based system, speech recognition,

hidden Markov models, neural networks.

1. INTRODUCTION

Recently, system combination has been shown to be a promising

technique to improve the accuracy of conventional automatic speech

recognition (ASR) systems. In this area of research, the main idea is

to generate a confusion network by multiple string alignment. Then

a voting scheme is performed in order to find the best hypotheses [1].

Usually the achieved improvement depends upon whether the indi-

vidual systems have similar performance and are complementary in

the errors they produce. Moreover, combining several systems to-

gether is not always a straightforward operation because the systems

may be originally incompatible. In [2] we propose knowledge-based

lattice rescoring as a way to overcome these difficulties.

Lattice rescoring is a well-known technique to improve ASR

system performance by integrating multiple sources of knowledge.

It is typically accomplished with multi-stage decoding. In particular,

an ASR decoder first generates a collection of competing hypothe-

ses. It is then followed by a rescoring algorithm to re-rank these

hypotheses by incorporating additional information not used in the

decoding process. More detail can be found in [3] [4] [5]. We have

evaluated our knowledge-based lattice rescoring algorithm in several

speech recognition applications, and shown that it outperforms con-

ventional speech recognizers without rescoring in all of these cases.

The success of our approach relies on the design of a bank of speech

attribute detectors which capture articulatory information, such as

manner and place of articulation. Nonetheless, the rescoring per-

formance is often limited by the quality of the lattice. This quality

is mainly associated with the goodness of the lattice segmentation

which can be defined in terms of: (1) the number of word errors in

the N-top competing lists embedded in the lattice itself, and (2) the

precision of the detected word boundaries.

We believe that a better lattice will further enhance the system

performance through knowledge-based rescoring. Thus we look for

a way to improve the lattice quality to verify our conjecture. We

found from recent studies [6] [7] that the system from Brno Uni-

versity of Technology seems to achieve higher performance phone

recognition than most state-of-the-art hidden Markov model (HMM)

based systems. Therefore, we wondered if this system could also

yield high-performance lattices so that we could produce even higher

phone accuracy to break today’s performance limits by combining

the Brno phone recognition subsystem and our knowledge-based

rescoring module. Some interface and lattice generation issues need

to be addressed first in order to combine the two seemingly incom-

patible subsystems into a cohesive system.

We then evaluate this combined system on the TIMIT continu-

ous phone recognition task [8]. With this system combination we

observed that the phone error rate (PER) was effectively reduced to

21.49% from 24.41% obtained with the original Brno phone recog-

nizer [7]. The error rate can be further reduced to 19.78% if more

emphasis is placed on the knowledge scores. We believe this result

represents the lowest PER reported in the literature on the TIMIT

phone recognition task.

The rest of the paper is organized as follows. The Brno sys-

tem and the GT knowledge-based rescoring module are described

in detail in the next section. In Section 3 the experimental setup is

described, and the results are presented. Finally, we draw our con-

clusions in Section 4.

2. THE OVERALL PHONE RECOGNITION SYSTEM

As explained earlier the overall system consists of two main parts

from two different groups: (1) Brno phone recognizer, and (2) GT

knowledge module. The former is a well crafted fusion of artificial

neural networks (ANNs) and hidden Markov Models (HMMs). The

latter is the combination of a bank of speech attribute detectors and

an ANN, and it represents the core of the knowledge-based rescoring

procedure. Both these modules will be presented in the following.

More details can be found in [7] and [2], respectively.

2.1. Brno Phone Recognizer

The Brno recognizer [9], shown in Figure 1, is a hybrid system with

two key components: (1) a non-conventional front-end module based
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Fig. 1. Phoneme recognizer with split temporal context and three neural nets.

on a hierarchical structure of ANNs, and (2) a Viterbi decoder. The

main assumption behind the Brno architecture is that information

about phones is spread out in a long temporal context (more than

300 ms). In this case, input vectors for the ANN classifier are huge in

size and there are too many patterns for each phone. The ANN needs

many parameters which are difficult to estimate, and a lot of training

data is necessary. Therefore, a hierarchical structure of ANNs was

used [10] [7]. The structure incorporates intuitively obvious knowl-

edge. The most pertinent information for classification of a phone

is placed close to the center of the phone segment. Parts further

away from the center are considered less important. Neighboring

phones affect the actual phone too (co-articulation effect). Features

describing different edges of a phone (or different contexts) are more

independent than features describing the central part of the phone.

The front-end generates phone-state posteriors as follows. First, mel

filter bank energies are obtained in a conventional way. Temporal

evolutions of critical band spectral densities are taken around each

frame. A context of 31 frames (310 ms) around the current frame

is used. This context is split into 2 halves: left and right contexts.

The underlying idea is to divide the trajectory of a phone in the fea-

ture space in two blocks with the assumption that both parts of a

phone can be processed independently. Each of these contexts is

then processed by a separated ANN which yields phone-state poste-

riors. We refer to these ANNs as the lower nets. Usually, windowing

and discrete cosine transform (DCT) are performed to the input of

these lower nets to reduce the dimensionality. The outputs of the

two lower nets are then merged by another ANN upper net trained to

produce phone-state posteriors, as well.

2.2. Phone Lattice Hypothesizer

The Brno recognizer does not generate a lattice directly. Instead the

HVite decoder [11] is used. Since HVite takes only a Gaussian Mix-

ture Model in each state, it does not support direct decoding from

posteriors produced by the ANN module in the Brno phone recog-

nizer. To circumvent this problem, we convert the posteriors in like-

lihoods using the Bayes’ formula

P (ot|phj,t) = P (phj,t|ot)/(P (phj,t) ∗ P (ot)); (1)

where ot is the acoustic observation vector at time t, phj,t is the j-th

phone at time t, P (phj,t) is the prior probability of the phone j-th

phone at time t, P (ot|phj,t) is the likelihood of the observation vec-

tor ot at time t given phj,t, P (phj,t|ot) is the posterior probability

of j-th phone phj,t at time t given the observation ot, and P (ot) is

the probability of the observation vector ot which we will drop from

this point on because it does not affect our decoding results. We as-

sume that the prior probabilities of all phones are equal for decoding

purposes. Then HVite in HTK can use them to generate the desired

lattices. In order to avoid that an additive constant could bias the

posteriors, the parameter GCONST in the HTK model is set equal to

zero.

2.3. Rescoring Knowledge Module

The knowledge module [2] has two main blocks: (1) a bank of 15

manner and place of articulation detectors, and (2) an ANN. The

bank of detectors is implemented with HMMs, and it maps a segment

of speech into one of the 15 broad classes, namely fricative, vowel,

stop, nasal, semi-vowel, low, mid, high, labial, coronal, dental, velar,

glottal, retroflex, and silence. Based on our previous work in lattice

rescoring, log-likelihood ratio (LLR) at a frame level is taken as

the measure of goodness-to-fit between the input and the output of

each detector. A feed-forward ANN is trained to produce phone

scores for each set of LLR score. The j-th ANN output can be

thought of as an estimate of the posterior probability of Phj at time

t, pt(Phj |LLRi(ot)) (j = 1, ..., P ; where P is the total number of

phones). The scores at the phone level are then used in the rescoring

phase. In particular, the rescoring is done on an arc by arc basis,

and it is a weighted sum between the log-likelihood score and the

knowledge-based scores. Each arc in a lattice correspond to a phone

in a string hypotheses. If we denote the rescored log-likelihood value

as Sn for the given arc, the rescoring formula is

Sn = wkb PSn + wl Ln (2)

where Ln is the log-likelihood of the n-th arc; PSn is a linear combi-

nation of PSn,m for each arc, with PSn,m being a non linear trans-

formation of the score of the m-th frame for the n-th arc; wkn, and wl

are the weights of the log-likelihood score and the knowledge-based

score, respectively.

3. THE PHONEME RECOGNITION TASK

Designing a high-performance phone recognition system with two

very different subsystem developed by various researchers over a

long period of time is a challenging exercise by itself. In the fol-

lowing we show that through a series of experiments we manage to

achieve a very low phone error rate of 19.78% without retraining

either the subsystems.

3.1. Experimental Setup

Databases: The TIMIT corpus was chosen for all experiments. The

SA part of the TIMIT database was not used. The database was di-

vided into three parts: training (412 speakers), cross-validation (CV

– 50 speakers), and test (168 speakers) sets. The training and CV

subsets are specified in the original TIMIT training set.



Phone set: The phone set consists of 39 phones. It is very similar to

the CMU/MIT phone set [12], but closures were merged with burst

instead of with silence (bcl b → b).

Brno evaluation criteria: Brno ANNs were trained on the train-

ing part of the database. The increment in classification error on the

cross-validation part during training was used as a stopping criterion

to avoid over-training. There is one ad hoc parameter in the sys-

tem, the word (phone) insertion penalty, which has to be set. This

constant was tuned to minimize phoneme error rate on the cross-

validation set. The number of neurons in hidden layer of neural

networks was increased until the saturation of phoneme error rate

(PER) was observed. The obtained number of hidden layer nodes

was approximately 500. All experiments reported in this paper use

this number of hidden layer nodes unless stated otherwise.

Brno recognizer training: All Brno ANNs were trained using the

classical back-propagation algorithm with cross-entropy error func-

tion [13]. Several iterations of training of the whole system followed

by realignment of labels were done. For multi-state systems, the

algorithm started with a uniform segmentation of phone into states.

Then, the networks were trained, state posteriors were generated and

these posteriors were used in the classical Baum-Welch algorithm to

produce new labels. The algorithm creates hard labels – one label

per frame. The label corresponds to a state with the highest state

occupation probability. These new labels are used in the following

iteration of ANN training.

The knowledge module: The bank of detectors and the follow-up

ANN are trained on the training subset. The competing model of

each HMM-based detector is trained on all data that do not corre-

spond to the target model, for instance, all of the ”non-nasal” sounds

are used to estimate the parameters of the ”non-nasal” HMM. More-

over the LLR scores at a frame level for both the target and the

competing model were computed on the same state sequence. Each

HMM has 3 states with 32 Gaussian mixture components per state.

The ANN is a feed-forward multi-layer perceptron with one hidden

layer of 100 hidden nodes. Increase of classification error on the

CV development subset was used as a stopping criterion for ANN

training.

3.2. Phone Recognition Results

A word (phone) lattice generated by a set of HMMs is usually im-

plemented as a direct, acyclic, weighed graph G(N, A). N is the num-

ber of nodes, and A the number of arcs. The timing information is

embedded into the nodes; whereas the arcs carry the symbol along

with the score information. As we mentioned, the effectiveness of

our knowledge-based rescoring technique depends upon the quality

of the lattices. To further investigate this conjecture, we compared

the phone lattices of three phoneme recognizers. Toward this end,

we designed three phoneme recognizers. The first system was the

Brno recognizer. The second system was a conventional context-

independent recognizer with 3 states per HMM and 16 gaussian

mixtures per state. We refer to this system as GMM/CI-HMM. The

third system was a conventional context-dependent recognizer, with

3 states per model, 8 gaussian mixture per state. We termed this sys-

tem as GMM/CD-HMM. The latter two recognizers were designed

by HTK, and the number of gaussian mixtures in the hidden states

was increased until the saturation of PER on the CV development

subset was observed. The feature vector has 39 components: 12 cep-

stral coefficients plus energy and their first and second time deriva-

tives. Table 1 lists the performances of these three recognizers in

terms of PER percentage.

Recognizer GMM/CI-HMM GMM/CD-HMM Brno

PER (in %) 37.27 32.54 24.42

Table 1. Benchmark comparison

With a PER of 24.42% the Brno system yielded the best perfor-

mance. The relative improvement was about 34.5% over the GMM/CI-

HMM recognizer, and of about 25% over the GMM/CD-HMM rec-

ognizer. In the second case, the improvement became more signifi-

cant if we consider that the Brno recognizer uses context-independent

phoneme models; whereas, the GMM/CD-HMM is based on context-

dependent phone models.

In order to compare the quality of the lattices generated by these

recognizers we used an indirect method. We considered all the lat-

tices associated with the GMM/CD-HMM, and the Brno recognizer.

For each lattice, we kept its segmentation, but drop the acoustic

scores of each arc. Then a new acoustic score is computed by force-

aligning each arc of the lattice with the set of HMM models pro-

vided with the GMM/CI-HMM recognizer. Finally, the 1-best list

was found with the HVite routine modules. Since the acoustic scores

were computed by using the same set of CI models, and the language

model was a fixed 0-gram for all the systems, the performance of

each recognizer depends only upon the quality of the lattices. There-

fore, the recognizer with the best performance in terms of PER is the

one that produces the highest quality lattices. Table 2 shows the

results of this experiment. Brno recognizer again yields the lowest

PER, and the highest-quality lattices.

Recognizer PER (in %)

GMM/CI-HMM 37.27

GMM/CD-HMM 39.23

Brno 35.41

Table 2. Lattice quality.

We now present knowledge based rescoring over the Brno lat-

tices. In the following, the PER of this system is referred as base-

lines. In the first experiment, the language model was set to be a

0-gram, and in the second experiment a bigram model was used. In

both cases we did not perform tuning of the weights. Thus wkb,

and wl are set to be equal. In Table 3 the results are given. As ex-

pected, the knowledge-based rescoring lowers the PER in both cases.

In particular, we reduce the PER from 24.41% to 21.49% using a 0-

gram phone model, and from 23.84% to 20.96% with a phone bigram

model. In average we observed an improvement of about 12.5% over

the baseline.

PER (in%) 0-gram bi-gram

Brno recognizer 24.41 23.84

Rescoring (wps = wl) 21.49 20.96

Table 3. Rescoring performance in terms of PER.

In [7] it was shown that the Brno recognizer can achieve a PER

of 21.48% on TIMIT. Although this result equals the rescoring per-

formance reported in Table 3 for the 0-gram case, it was obtained by

using a more involved system configuration . In the scheme shown

in Figure 1, the number of ANNs was increased from 3 to 5 (four



ANNs for the lower net and one ANN for the upper net). The num-

ber of hidden nodes in each ANNs was increased from 500 to 800

for each ANN. The dimension of the training set was augmented by

adding the CV development subset to the training subset. The num-

ber of training epochs was also increased. Finally, a bigram phone

model was used.

In order to study the effectiveness of the knowledge-based scores

on the overall phone recognition accuracy, we incrementally placed

more and more emphasis, while keeping wl fixed. It can be seen in

Figure 2 that the PER consistently decreases for the first three steps,

and then begins to increase. This pattern was also observed on the

CV development subset. The best performance was achieved after

three lattice rescoring steps for both the 0-gram and bigram phone

models. For the case of using phone bigram models the PER was

19.78%. To the best of our knowledge, this result represents the

lowest accuracy phone error rate on the TIMIT corpus.
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Fig. 2. PER for different values of wkb.

4. SUMMARY AND DISCUSSION

In this paper we have combined the Brno phone recognizer and the

GT knowledge scoring module into a cohesive architecture in or-

der to design a high-accuracy phone recognizer. After having ad-

dressed some compatibility issues, several studies have been pre-

sented to assess the quality of the Brno lattices and the benefit of the

knowledge-based lattice rescoring technique. We reported a PER as

low as 19.78% on the TIMIT database.

We have also combined the acoustic scores of the GMM/CI-

HMM and the Brno scores together. We performed this combina-

tion over the hypotheses space provided with the Brno lattices. Al-

though we observed slight improvements, they were not significant.

We have also observed one interesting fact that the knowledge-based

score we adopted has a high discriminative power. This is demon-

strated by replacing the GMM/CI-HMM acoustic likelihood with the

knowledge-based score while keeping the Brno lattice and setting wl

equal to zero. We obtained a PER of 27.55% which is much better

than all the results listed in Table 2. It turns out that only 15 broad

classes are used in deriving knowledge scores. We believe this can

be further explored to improve system performance in future studies.

We believe a high-quality phone lattice can be used for many

new applications, including detection-based speech recognition cur-

rently being studied in the NSF-ASAT project [14]. In the future we

intend to investigate other means of system combination to improve

the quality of lattice generation and knowledge rescoring.
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