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ABSTRACT
High precision at the top ranks has become a new focus
of research in information retrieval. This paper presents
the multiple nested ranker approach that improves the ac-
curacy at the top ranks by iteratively re-ranking the top
scoring documents. At each iteration, this approach uses
the RankNet learning algorithm to re-rank a subset of the
results. This splits the problem into smaller and easier tasks
and generates a new distribution of the results to be learned
by the algorithm. We evaluate this approach using different
settings on a data set labeled with several degrees of rele-
vance. We use the normalized discounted cumulative gain
(NDCG) to measure the performance because it depends
not only on the position but also on the relevance score of
the document in the ranked list. Our experiments show that
making the learning algorithm concentrate on the top scor-
ing results improves precision at the top ten documents in
terms of the NDCG score.
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1. INTRODUCTION
Traditionally, the goal of ad-hoc information retrieval was

to achieve good performance in terms of both precision and
recall. Recently, the focus has shifted to high precision at the
top of the results list. With the growing size of the Web col-
lections, users are now primarily interested in high accuracy
defined as high precision at the top ranks [16, 13, 10, 18].
Users’ studies showed that users typically look at very few
results and mostly look at the results at the very top of the
list returned by the search engine, see [9, 11, 8]. Recognizing
this trend, TREC introduced the High Accuracy Retrieval
from Documents (HARD) track that includes user specific
information to improve retrieval accuracy [6, 7]. Jarvelin et
al. proposed to base the evaluation of the IR methods on
the retrieval of highly relevant documents [10] and presented
normalized discounted cumulative gain (NDCG) as a new
measure. NDCG was then applied to analyse the TREC’s
web track results [18]. More recently, Shah et. al [16] inte-
grated some question answering techniques into the ad-hoc
retrieval to improve precision at the top of the results list.
They also addressed the issue of performance evaluation in
terms of precision only and used the mean reciprocal rank
(MRR) as performance measure.

We pose the problem of achieving high accuracy as learn-
ing the re-ranking of the results at the top of the results
list. We propose the multiple nested ranker approach which
is applied to the list of results returned by the search engine.
This approach re-ranks the documents on the results list in
stages, at each stage applying the RankNet [2] algorithm to
learn a new ranking.

Typically, ranking methods are applied to the full set of
the per query results. Even when the ranked list is gener-
ated iteratively, for example when using relevance feedback
or meta-data, at each iteration the retrieval algorithm is ap-
plied to the full set of the documents. Boosting [3], and in
particular RankBoost [4], also performs learning in stages.
But it uses the whole training set as input at each stage,
with more weight put on difficult examples. It is a very
difficult task, however, to learn how to rank a very large
number of documents for any possible query. We adapt the



Figure 1: Training procedure for the multiple nested
ranker. NET 1 is trained on the sets of 2500 docu-
ments D per query, NET 2 is trained on the sets
of the top 1000 documents D′ per query, NET 3
is trained on the top 100 documents D′′, NET 4 is
trained on the top 10 documents D′′′.

Figure 2: Re-ranking procedure for the multiple
nested ranker. NET 1 is applied to the sets of 2500
documents D per query, NET 2 is applied to the
sets of the top 1000 documents D′ per query, NET
3 is applied to the top 100 documents D′′, NET 4 is
applied to the top 10 documents D′′′.

problem of learning the ranking of the retrieved results to
the high accuracy task in the following way. We start with
the assumption that the results list returned by the search
engine already produces a sufficiently good ranking so that
some relevant documents are placed somewhere near the top
of the ranked list. Given the success of many retrieval sys-
tems and commercial search engines, this assumptions seems
very reasonable, see for example [8]. Since we are interested
in high accuracy as opposed to recall, we concentrate on
improving the ranks of relevant documents at top ranks.
The multiple nested ranker performs re-ranking of the re-
sults in stages, at each stage generating a new distribution
of the results. The training set for each subsequent stage is
pruned to include only the results that are ranked high by
the previous ranker. We will refer to this pruning procedure
as telescoping. Telescoping splits the problem into smaller
and, hopefully, easier sub-tasks to learn the ranking for each
of the stages separately. At the last stage, only a few (e.g.
10) documents are re-ranked to make sure that the most
relevant among them will be placed on the top of the list.

Since in real life the relevance assignment is often not
binary, but reflects the degree of relevance of each of the
results [10, 18], we evaluate the performance of our approach
using normalized discounted cumulative gain (NDCG) [10].
The NDCG score depends not only on the position but also
on the relevance score of the document in the ranked list.

The rest of the paper is organized as follows. Section 2
describes the multiple nested ranker algorithm and outlines
the RankNet algorithm. Section 3 describes the NDCG mea-
sure, section 4 contains the details about the data set. Sec-
tions 5 and 6 describe our experiments, section 7 contains

the analysis of the experimental results. We conclude with
section 9.

2. MULTIPLE NESTED RANKER
We propose to use the multiple nested ranker as the sec-

ond part of the retrieval process. A search engine retrieves
documents in respond to the query and ranks them using
some ranking algorithm which we refer to as “basic ranker”.
We make the assumption that the basic ranker already pro-
duces a good ranking and that a number of relevant docu-
ments are placed somewhere near the top of the ranked list.
Telescoping is applied to the first few thousands results re-
turned by the search engine to learn a better ranking for the
relevant results. The multiple nested ranker algorithm has
two components: the telescoping procedure and a re-ranking
algorithm. The re-ranking algorithm learns how to score
documents so that the relevant documents receive higher
scores. It uses the set of training queries Q = (q1, ..., q|Q|)
to learn the scoring function. For each query qi we have a
set of documents that were ranked among the top N1 re-
sults by the basic ranker used in the search engine, Di =
(di1, ..., diN1). Some of these documents have manually as-
signed relevance labels, the rest is unlabeled. The training
set for the re-ranking algorithm contains all documents re-
turned for the training queries, D = (D1, ..., D|Q|). The
multiple nested ranker approach uses the RankNet algo-
rithm [2], discussed below. The RankNet learns a neural
net to assign scores to documents. One net is learned for all
training documents. The sets of documents corresponding
to individual queries are sorted by the net output to produce
their ranking.



In the training phase, telescoping determines the subset of
the data used to train the RankNet algorithm. Figure 1 il-
lustrates how telescoping is applied to the results set for each
query. At each stage the RankNet is presented with a new
distribution of the per query results containing subsets of
the high ranked documents. At the first stage the RankNet
is trained on the whole set of the top N1 per query results.
In our experiments we used N1=2500 documents per query.
The training procedure computes the first net, Net1. We
sort each set of documents Di by decreasing score according
to Net1. After that, the training set is modified so that only
the top N2 documents that receive the highest scores accord-
ing to Net1 remain for each query, i.e. D′

i = (d′
i1, ..., d

′
iN2)

and the next training set is D′ = (D′
1, ..., D

′
|Q|). At the sec-

ond stage the RankNet is trained on these sets of top N2

documents. The second stage produces Net2 and only the
N3 top scoring documents per query are kept for the next
training set.

Telescoping is also applied in the test phase. The re-
ranking is done using the same number of stages as during
training. At the first stage Net1 is applied to all N1=2500
documents per test query. Then Net2 is applied to the top
N2 documents that receive the highest scores according to
Net1 and so on. This amounts to fixing the Net1 ranks of
the documents at ranks from N1 to (N2-1) after the first
stage, re-ranking the top N2 documents with Net2, again
fixing the ranks of the documents placed from the rank N2
to (N3-1) after the second stage, re-ranking the top N3 re-
sults with Net3 and so on. Thus, after each telescoping stage
we have a ranked list for all N1 results per query which we
use for the evaluation, as can be seen in Figure 2.

We used four stages with N1=2500, N2=1000, N3=100,
N4=10 and also three stages with N1=2500, N2=100, N3=10.
The same telescoping procedure was applied to the valida-
tion set.

As opposed to boosting, this approach splits the prob-
lem into smaller pieces so that each net has a smaller and
simpler task. Telescoping removes presumably difficult rel-
evant documents at the bottom of the ranked list from the
training set and forces the algorithm to concentrate on the
ranking of the high scoring relevant documents. In addition,
as we decrease the size of the training set roughly exponen-
tially, more sophisticated algorithms can be used to learn
the ranking at later stages.

2.1 RankNet
For completeness, we provide a brief overview of the

RankNet algorithm [2] to give the reader some intuition
about the learning process. We omit the details because
this algorithm is used as a black box within the multiple
nested ranker.

At each stage of the multiple nested ranker the RankNet
algorithm learns how to rank the results so that the relevant
documents appear at the top of the list. To achieve this,
RankNet tries to learn the correct ordering of pairs of doc-
uments in the ranked lists of individual queries. The cost
function of the RankNet algorithm depends on the differ-
ence of the outputs of pairs of consecutive training samples
(x1, x2). The cost is minimized when the document x1 with
a higher relevance label receives a higher score, i.e. when
f(x1) > f(x2).

Burges et al. [2] propose to learn ranking using a prob-
abilistic cost function based on pairs of examples. They

consider models where the learning algorithm is given a set
of pairs of samples [A,B] in Rd together with the target
probabilities P̄AB that sample A is to be ranked higher
than sample B. With models of the form f : Rd 7−→
R, the rank order of a set of examples is specified by the
real values taken by f . More specifically, it is assumed
that f(xi) > f(xj) means that the model ranks xi higher
than xj . With the modeled posterior probabilities Pij ≡
Prob(“xi is ranked higher than xj“) and their target proba-
bilities P̄ij , Burges et al. [2] develop their framework using
the cross entropy cost function

c(oij) = −P̄ij log Pij − (1 − P̄ij) log(1 − Pij)

where oij ≡ f(xi) − f(xj). The map from the outputs to
probabilities is modeled using a logistic function [1]

Pij ≡
eoij

1 + eoij

So that final cost becomes

c(oij) = −P̄ijoij + log(1 + e
oij )

The above cost function is very general. The RankNet
algorithm uses it with the neural network models [12] to
learn the ranking. Burges et al. [2] use a two-layer net with
a single output node.

As a reminder, the neural net output function for the ith
sample is described using the transfer function of each node
in the jth layer of the nodes, gj , and the weights w

ji
kn on the

connections between the nodes in different layers with the
corresponding offsets b

ji
kn. Here the upper indices index the

node layer, and the lower indices index the nodes within each
corresponding layer. The net output function of a two-layer
net with one output node for the ith sample, fi is

fi ≡ f(xi) = g
3(

X

j

w
32
j g

2(
X

k

w
21
jkxk + b

2
j ) + b

3)

The parameters αk of the neural net model are updated de-
pending on their contribution to the cost function measured
as the derivative ∂c

∂αk
. The parameter value is updated using

a positive learning rate ηk as

αk+1 = αk + δαk = αk − ηk
∂c

∂αk

Burges et al. [2] generalize the above derivations to the
ranking problem in the following way. The cost function
becomes a function of the difference of the outputs of two
consecutive training samples: c(f1-f2), assuming that the
first sample has a higher or the same rank as the second
sample. The gradient of the cost becomes

∂c

∂αk

= (
∂f1

∂αk

−
∂f2

∂αk

)c′,

where c′ ≡ c′(f1 − f2). The subscripts denote the index of
the training sample.

All other derivatives also take the form of the difference of
a term depending on x1 and a term depending on x2, which
are coupled by an overall multiplicative factor of c′ which
depends on both.



3. EVALUATION

3.1 NDCG score
We use the normalized discounted cumulative gain mea-

sure (NDCG) [10] averaged over the queries to evaluate the
performance of the multiple nested ranker algorithm. We
choose this performance measure because it incorporates
multiple relevance judgements and depends not only on the
position but also on the relevance score of the document in
the ranked list. Jarvelin et al. [10] showed that NDCG gives
more credit to systems with high precision at top ranks than
other evaluation measures.

Our data was labeled using 5 degrees of relevance, ranging
from “excellent match” to “poor match”. To compute the
NDCG score, we map the relevance levels to numerical val-
ues, with 4 corresponding to the highest level of relevance
and 0 corresponding to the lowest level of relevance. Un-
labeled documents were given rating 0. Jarvelin et al. [10]
used a similar map, with labels ranging from 3 to 0. The
labels can be seen as weights or information gain for the
user [18]. The difference in gain values assigned to highly
relevant and relevant documents changes the NDCG score.
Larger ratios put more weight on precision with respect to
the highly relevant documents, see [18]. We used a relatively
small gain ratio which was sufficiently discriminative in our
experiments.

The NDCG score is computed for the sorted list of results
for the ith query qi as follows:

NDCGqi
= Ni

k
X

j=1

2label(j) − 1

logb(j + 1)

where Ni is the normalization constant chosen so that a per-
fect ordering of the results for the query qi will receive the
score of one. label(j) is the gain value associated with the
label of the document at the jth position of the ranked list.
In the NDCG formula, the sum computes the cumulative
information gain to the user from the already inspected doc-
uments. logb(j + 1) is a discounting function that reduces
document’s gain value as its rank increases. The base of
the logarithm, b, controls the amount of the reduction. We
used b=2 in our experiments which correspond to a sharper
discount. Unlabeled documents affect the NDCG score by
changing the ranks of the labeled documents. Since some
unlabeled documents may be very relevant, NDCGqi

= 1 is
hard to achieve even for a good ranker.

We computed NDCG at the top k=10 document since it is
the number of results usually viewed by users. The NDCG
score is computed for each query and then averaged.

To obtain an intuition about the change in the NDCG
score, consider the following perfect ranking
R=[4,4,3,3,2,2,2,1,1,1]. In this case, NDCG(R)=1. When
we swap the first result with every of the other labels, we
receive the NDCG scores that are plotted in Figure 3. For
example, swapping the first label 4 with the label 2 at the
position five gives a two percentage points decrease in the
NDCG score.

4. DATA
In our experiments we used several thousands queries in

English from August 2005 provided by an Internet search en-
gine. We had 26,744 queries, each with up to 2500 returned
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Figure 3: The change in the NDCG score when
swapping the fist result in the perfect ranking with
each of the other ranks.

Table 1: First data set. Number of queries, number
of unlabeled results per query used for training, val-
idation and testing. We used n={1,3,10}.

Training Validation Test
#Queries 3,514 691 688

# Unlabeled #Labeled*n 1,000 2,500

documents. These documents are the top 2500 results per
query as produced by the basic ranking algorithm.

The document vectors have query-dependent features ex-
tracted from the query and four document sources: the an-
chor text, the URL, the document title and the body of the
text. They also have some query-independent features. The
document vectors had around 400 features many of which
were weighted counts.

For each query there is a number of manually labeled re-
sults. As mentioned before, five degrees of relevance were
used for labeling this data set, ranging from 4 (meaning “ex-
cellent match”) to 0 (meaning “poor match”). Unlabeled
documents were given label -1. Since originally the labels
were produced for evaluation and comparison of top ranked
documents, some documents with label 0 are quite relevant.
Burges et al. [2] found that adding randomly chosen un-
labeled documents as additional examples of low relevance
documents to the training set helps to improve the perfor-
mance. We had a similar approach in our experiments. At
each stage of telescoping, we sampled the current training
sets for individual queries in the following way. We used
all labeled documents and added at random a certain num-
ber n of unlabeled results for the same query. This number
was a multiple of the total number of labeled results, we
used n = {1, 3, 10}. The unlabeled documents were rated 0
during training.

The number of unlabeled examples included in the train-
ing set had a noticeable impact on the performance. We
tried a few values of the multiplicative factor n, ranging
from 0 to 10. The performance with no unlabeled examples
was not satisfactory. The other values gave similar perfor-
mance; in all experiments described here we included in the
training set three times as many unlabeled examples per
query as there are labeled.

To speed up the training, we also sampled the original val-
idation set by keeping all the labeled documents and adding
at random 1000 unlabeled documents per query. We did
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Figure 4: NDCG score vs. pair-wise accuracy on
the validation set for 30 training epochs at the first
stage of telescoping.

not change the distribution of the documents in the test set
and used all labeled and unlabeled documents available for
a given query.

5. EXPERIMENTS ON A SUBSET OF THE
DATA

5.1 Small Data Set
To validate our approach, we used a subset of the data in

the first set of the experiments, see Table 1.

5.2 Effect of the RankNet Cost Function
As outlined in section 2.1, the cost function of the RankNet

algorithm depends on the difference of the outputs of two
consecutive training samples. Due to the current form of
the cost function, the RankNet algorithm tries to learn the
correct pair-wise ordering of the documents regardless of
their position in the ranked list. It is, therefore, possible
that during training the net improves the pair-wise error by
significantly moving up documents that are at the bottom
of the list even at the price of slightly moving down some
of the relevant results at the top of the list. Telescoping
is designed to alleviate this problem by removing the diffi-
cult documents at the low ranks and making the ranker to
concentrate on the top results.

First, we needed to verify this assumption. Averaged over
all queries, the pair-wise error and the NDCG are very well
correlated. Figure 4 shows the pair-wise accuracy and the
NDCG score on the validation set averaged over the queries
after each of the training iterations at the first telescop-
ing stage. In this example, the correlation coefficient is
0.946. However, there are cases where their changes are
anti-correlated. For single queries this effect can be quite
striking, as illustrated in Figure 5. Figure 5 shows the dis-
tribution of labels for a particular query over the ranks after
the first and the second epochs of training. As before, la-
bel “4” stands for ”excellent match”, label “0” means “poor
match”, and label “-1” is used for unlabeled documents.

Figure 5 clearly shows how some documents with label
“1”, which are poor match, improve their ranks by over
1000 positions in the ranked list, moving from the ranks
between 2000 and 2500 to the ranks between 500 and 1000.
At the same time, the documents with labels “4”, “3” and
“2” that were at the top positions after the first epoch of
training are moved a few ranks to the left after the second
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Figure 5: The distribution of labels over ranks for
one query between the training epochs 1 and 2.

epoch. Thousands of pair-wise errors incurred by placing
the documents with label “1” at the position 2000-2500,
lower than many documents with label “0”, are repaired
and there are only few new errors introduced by shifting the
highly relevant documents to lower ranks. Therefore, the
pair-wise accuracy increases. However, only the positions of
these latter documents are important for the NDCG score
as well as for the user.

5.3 Results for the Small Data Set
First, we used 4 telescoping stages with the number of

top results for telescoping being N1 = 2500, N2 = 1000,
N3 = 100, N4 = 10. We included 3 unlabeled examples per
each labeled result in the training set at each stage.

Previous results with the RankNet algorithm showed that
a two-layer net outperforms the RankNet with a linear net
and other related approaches on this task [2]. At the first
stage of telescoping, the data sets are not changed, and the
net is computed and used on all 2,500 results per query.
Therefore, we use the performance of a two-layer net at the
first stage as our baseline. We tried different numbers of
hidden nodes (nH). As shown in Table 2, on this data set a
two-layer net with 4 hidden nodes had the best performance
on the validation and the test set after the first stage. Thus,
for this data set our baseline is the average NDCG score of
0.451. Using telescoping with a linear net improves the av-
erage NDCG score by over 2 percentage points from 0.445
to 0.473. The multiple nested ranker with linear nets out-
performs the baseline and also achieves the same or better
performance than the multiple nested ranker with two-layer
nets for the numbers of the hidden nodes that we tried.
Table 2 shows that the multiple nested ranker approach im-
proves the performance for almost all neural net parameters
that we tried. The two-layer net with two hidden nodes had
the worst performance. However, this net performed similar
to the net with four hidden nodes when we used a differ-
ent proportion of unlabeled results in the training set. The
linear net and the two-layer net with nH = {4, 8, 16, 32}
hidden nodes achieved an over 2 percentage points increase
in the NDCG score between the first and the last stages of
telescoping. The largest increase was for the nH = {16, 32}.
However, the NDCG of these nets for the first stage of tele-
scoping was lower than for the linear net. There was an
insignificant decrease in the NDCG score between the third
and the last stages of telescoping for nH = {4, 8}. These
nets achieve an improvement of the NDCG score compared
to the first stage of telescoping, showing that our approach



Table 2: First data set. Average NDCG score at the
top 10 results for a linear net (nH=0) and a two-
layer net with different numbers of hidden nodes
nH. Telescoping with 4 stages St.

St nH av. NDCG St nH av. NDCG
1 0 0.445 (± 0.023) 1 8 0.436 (± 0.022)
2 0 0.460 (± 0.022) 2 8 0.452 (± 0.022)
3 0 0.470 (± 0.022) 3 8 0.470 (± 0.022)
4 0 0.473 (± 0.022) 4 8 0.468 (± 0.022)
1 2 0.450 (± 0.022) 1 16 0.436 (± 0.023)
2 2 0.455 (± 0.022) 2 16 0.456 (± 0.022)
3 2 0.444 (± 0.023) 3 16 0.466 (± 0.022)
4 2 0.454 (± 0.023) 4 16 0.472 (± 0.022)
1 4 0.451 (± 0.022) 1 32 0.436 (± 0.022)
2 4 0.449 (± 0.022) 2 32 0.443 (± 0.022)
3 4 0.473 (± 0.022) 3 32 0.463 (± 0.022)
4 4 0.469 (± 0.022) 4 32 0.473 (± 0.022)
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Figure 6: Difference in average numbers of results
with particular label in the first top ten results be-
tween the first and the second (Diff(1000, 2500)) and
between the second and the third (Diff(100, 1000))
stages.

is not sensitive to the choice of the net parameters.
Figure 6 illustrates the effect of telescoping on the distri-

bution of relevant documents at the top ten positions in the
ranked list. It shows the difference in average numbers of re-
sults with a particular label between the subsequent stages
of telescoping. The actual numerical values of the difference
are small because for most queries there are only a few rel-
evant results and not all queries have results with the top 2
levels of relevance. There is no difference between the 3 and
4 stages because these numbers are computed for the top 10
results at the 3 stage which become the training set for the
last stage; therefore the last step is omitted in the figure.
Compared to the first stage, the number of unlabeled exam-
ples at top ten ranks at the second stage decreased and the
number of labeled relevant examples increased. Unlabeled
examples and low relevance examples with label 0 and do not
contribute to the NDCG score directly, but they affect the
ranks and thus the contribution of other labeled examples.
At the third stage, the number of unlabeled results decreased
and the largest increase was for the results with label 0 cor-
responding to the label “poor match”. However, since the
number of relevant labeled examples increased as well, the
overall NDCG score improved. During training, unlabeled
examples are used as examples with label zero. Therefore,
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Figure 7: Average number of results with label “ex-
cellent” or “good” match at the top ten ranks.

Table 3: NDCG scores averaged over 11 random
reshufflings of the training set with the linear net.

Stage av. NDCG Stage av. NDCG
1 0.444 (±0.002) 3 0.470 (±0.001)
2 0.459 (±0.001) 4 0.473 (±0.002)

it is interesting to see that the RankNet prefers to improve
the ranks of documents with the label “poor match” but not
the ranks of unlabeled documents. This may be attributed
to the aforementioned property of labeling. Many of the
results with label 0 that are placed among the first 1000
by the first net and among the first 100 by the second net
may be in fact quite relevant. Whereas the randomly chosen
unlabeled documents are probably not relevant.

Figure 7 shows the average number of results with the two
highest levels of relevance at each of the top ten positions in
the ranked list. We plotted the results for the test set and for
all stages of telescoping. The right most columns correspond
to the last stage of telescoping. In five out of ten cases, the
top 10 stage has most documents labeled “excellent match”
or “good match”. In seven out of ten cases, there are more
results with label “excellent match” or “good match” in the
final ranking than at the first stage which is reflected in the
higher NDCG score.

To see whether the multiple nested ranker is sensitive to
the initial parameters of the training the neural nets, we ran
this experiment over 11 random reshufflings of the training
set with the linear net. Table 3 shows the NDCG scores
averaged over 11 runs for the test using the linear net. It
can be seen that the performance is very stable.

5.4 Importance of Individual Stages
Since the number of telescoping stages that we used in the

previous set of experiments was rather arbitrary, we investi-
gated the contribution of each stage individually. As shown
in Figure 7, the distribution of the relevant documents at
the top of the ranked list after second stage improves rela-
tive to the first stage for most of the ranks. This means that
the first net separates the relevant and irrelevant documents
quite well. It was however, interesting to see, whether the
first net can already produce a good separation of relevant
documents so that only the top 100 need to be re-ranked.
We used telescoping with fewer stages, omitting the sec-
ond stage with 1000 top ranked results as the training set.



Table 4: First data set. Average NDCG score at
the top 10 results for a linear net (nH=0) and
a two-layer net with different numbers of hidden
nodes (nH). Telescoping with 3 stages St.

St nH av. NDCG St nH av. NDCG
1 0 0.445 (±0.023) 1 8 0.436 (±0.022)
2 0 0.469 (±0.022) 2 8 0.468 (±0.022)
3 0 0.473 (±0.022) 3 8 0.466 (±0.022)
1 2 0.450 (±0.022) 1 16 0.436 (±0.023)
2 2 0.468 (±0.022) 2 16 0.453 (±0.022)
3 2 0.469 (±0.022) 3 16 0.464 (±0.022)
1 4 0.451 (±0.022) 1 32 0.436 (±0.022)
2 4 0.463 (±0.022) 2 32 0.470 (±0.022)
3 4 0.458 (±0.022) 3 32 0.471 (±0.022)

Table 5: Second data set. Number of queries,
number of unlabeled results per query used for
training, validation and testing. We used n={1,2,3}.

Training Validation Test
#Queries 23,407 1,132 2,205

# Unlabeled #Labeled*n 300 2,500

Table 4 shows the results. It appears that the first net is
sufficient to place relevant documents that can be learned
efficiently at the top 100 positions of the ranked list. For
all net parameters, the NDCG improvement from the 2500
directly to 100 stage as shown in Table 4 is comparable to
the improvement between these two stages when the 1000
stage is used in between.

6. EXPERIMENTS ON THE FULL DATA SET
For our second data set we used the whole training set, a

subset of the validation set and the full test set, see Table 5.
Again, at each telescoping stage, we sampled the training set
by keeping all the labeled documents and adding at random
some unlabeled documents. We did not change the test set.
Table 6 shows the NDCG scores at each stage of telescoping
for this data set. Similar to our first experiments, the mul-
tiple nested ranker with a linear net achieves a significant
improvement in the NDCG score from 0.461 to 0.483. For
this data set, the linear net outperformed all two-layer nets
that we tried. On this data set, the two-layer net improves
the NDCG score between each stage of telescoping.

We repeated this experiment over 5 random reshufflings
of the training set with the linear net. As in the previous
case, the multiple nested ranker appears very robust to the
initial setting, see Table 7. When we used fewer telescoping
stages with a linear net and omitted the second stage with
the top 1000 results, the improvement was very similar to
the improvement achieved with four telescoping stages, from
0.462 to 0.480. The NDCG score after the first stage with
the top 2500 results was 0.462; the NDCG score after the
second stage with the top 100 results was 0.467 and the
NDCG score with the top 10 results was 0.48.

7. ANALYSIS
The experimental results presented here showed that tele-

scoping improves the precision at the top ranks robustly over

Table 6: Second data set. Average NDCG score
at the top 10 results for a linear net (nH=0) and
a two-layer net with different numbers of hidden
nodes. Telescoping with 4 stages.

St nH av. NDCG St nH av. NDCG
1 0 0.462 (± 0.013) 1 4 0.455 (± 0.013)
2 0 0.467 (± 0.013) 2 4 0.470 (± 0.013)
3 0 0.479 (± 0.013) 3 4 0.479 (± 0.013)
4 0 0.483 (± 0.013) 4 4 0.481 (± 0.013)
1 2 0.454 (± 0.013) 1 8 0.444 (± 0.013)
2 2 0.465 (± 0.013) 2 8 0.457 (± 0.013)
3 2 0.477 (± 0.013) 3 8 0.480 (± 0.013)
4 2 0.479 (± 0.013) 4 8 0.483 (± 0.013)

Table 7: Second data set, NDCG scores on the
test set, averaged over 5 random reshufflings of the
training set for the linear net.

Stage av. NDCG Stage av. NDCG
1 0.459 (±0.001) 3 0.479 (±0.001)
2 0.468 (±0.000) 4 0.481 (±0.001)

the number of settings. The improvement on the large data
set was similar to the improvement on the small data set.
The exact number of the telescoping stages also did not ap-
pear to be crucial for the performance of our approach. The
multiple nested ranker with three telescoping stages gave
the same improvement as with four stages.

The number of hidden nodes in the two-layer neural net
that we used in our experiments is much more important
for the performance. However, the relative improvement
due to telescoping was over two percentage points for most
parameters that we tried. The two exceptions were the net
with two hidden nodes for the small data set and the net
with four hidden nodes for the small data set with three
telescoping stages. In our preliminary experiments, the net
with two hidden nodes also showed a two point improvement
in the NDCG score on the small data set when we included
more unlabeled examples for each training example. The
role of the unlabeled examples needs further investigation.
They are considered to be labeled as not relevant during
the training phase. However, the fact that they are placed
among the top 100 and 10 at the last stages of telescoping
suggests that they may also be relevant.

Since the training set is pruned after each stage, it is pos-
sible that some of the relevant documents are excluded from
the following re-ranking. It is not a problem when the major
focus is high accuracy. The ranks of those documents remain
fixed at each of the following stages. Since all of them were
below rank 10, they do not contribute to the NDCG score
at any of the stages. In our experiments, the fraction of the
relevant documents that were placed at ranks below 1000 af-
ter the first stage and below 100 after the second stage was
very small. This supports the claim that RankNet produces
a good ranking at every stage by placing relevant documents
near the top of the results list. The multiple nested ranker
approach refines their ranking by improving the ranks of the
highly relevant documents.



8. RELATED APPROACHES
The high scoring documents from the top positions on

the results list have been used extensively in the variants of
relevance feedback to expand the query and compute new
weights for the query terms [15, 14]. Although these ap-
proaches also perform ranking in stages, at each stage the
retrieval algorithm is often applied to the whole document
collection.

He et al. [5] used the user-specific information for re-
ranking the top n documents. Document’s score was changed
by some predefined factor on the basis of the genre or domain
preference provided by the user. Xiao et al. [19] re-rank the
top n results using an additional similarity score computed
based on the query and the document title.

Boosting [3] performs learning in stages. A new distribu-
tion of the data points is generated at each stage depend-
ing on the performance of the weak learner at the previous
stage. Boosting puts more weight on learning the examples
which were difficult for the previous learner. The aim of
telescoping is, on the contrary, to exclude such difficult data
points, i.e. low scoring high relevance documents, and to
concentrate the learning on the top scoring results. In ad-
dition, boosting does not control the size of the training set
for the subsequent learner. As we reduce the training set
size roughly exponentially, more sophisticated rankers can
be used at later stages.

Shen et al. [17] is one of the closely related approaches to
re-ranking. They use a variant of the perceptron learning
algorithm to learn new ranks for the top scoring results. One
variant of their algorithm learns to separate the top r scoring
results from the rest. This algorithm can be extended to
work in stages similar to telescoping by separating the top
r = {2500, 1000, 100, 10} results. However, this approach
would not exclude low ranking high relevance documents
from the training set on later stages.

9. CONCLUSION AND FUTURE WORK
We presented the multiple nested ranker algorithm for an

efficient re-ranking of the high scoring results at the top of
the ranked list. We applied this approach to real world data.
Our experiments showed that at each telescoping stage the
RankNet ranker learns the ranking for a new distribution of
documents. The ranker concentrates on the relevant docu-
ments which are placed near the top of the ranked list. The
improvement in the averaged NDCG score confirms that the
new sub-problems are easier to learn so that in the end a
better ranking of the top few documents is computed.

The fact that the low scoring documents are removed from
the training set at later stages of training, can be viewed as
an attempt to introduce the information about the rank of
the documents into the training procedure of the RankNet
algorithm. The next step in the development of this algo-
rithm will be to modify the RankNet algorithm to use this
information directly during training.
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