
High Accuracy Stereo Vision System for Far 

Distance Obstacle Detection 
 

Prof. Sergiu Nedevschi,  

Radu Danescu, Dan Frentiu, Tiberiu Marita, 

Florin Oniga, Ciprian Pocol 
 

Technical University of Cluj-Napoca 
Department of Computer Science 
sergiu.nedevschi@cs.utcluj.ro 

 

Dr. Rolf Schmidt 

Dr. Thorsten Graf 
 

Volkswagen AG 
Group Research, Electronics 

rolf4.schmidt@volkswagen.de 
thorsten.graf@volkswagen.de  

 

 
Abstract 

 

This paper presents a high accuracy stereo vision system 

for obstacle detection and vehicle environment perception 

in a large variety of traffic scenarios, from highway to 

urban. The system detects obstacles of all types, even at 

high distance, outputting them as a list of cuboids having a 

position in 3D coordinates, size and speed. 

 
1. Motivation 
 
Driven by the desire to control a continuously growing 
traffic density and a higher comp lexity in traffic control 
modern information society is in search of new solutions.  
European’s mobility doubles in the past 30 years from 17 to 
35 km per day, fleet increases even up to a factor of four 
[14]. Common goal remains the increase of traffic safety 
for all road users, even if the number of injuries decreases 
by 50% annually (Germany, 1980 until 2000) [15]. Passive 
safety measures played a main role in the past. In the future 
active systems so-called advanced driver assistance systems 
(ADAS) will become more and more important as a major 
part in electronic innovations for vehicles [16].  

 
2. Advanced Driver Assistance Systems  
 
ADAS will not only boost driving comfort and safety but 
also traffic flow. Today there are already active systems 
available for many cars, i.e. ABS (anti-lock brake system), 
ESP (electronic stability program) or BA (brake assistant). 
ACC (autonomous cruise control) increases driving comfort 
and will become available for high-volume cars in the near 
future.  
 
Looking into major national [12] and international [13] 
research activities, points up current three-stage trends in 
R&D:  
 

• Comfort functions to simplify driving tasks in 
monotonous situations, i.e. ACC 

• Warning functions to warn the driver in critical 
situations, i.e. lane departure warning 

• Safety function to reduce or avoid 
crashworthiness, i.e. emergency braking. 

The development focuses more and more on the interaction 
between vehicles and their driving environment. First of all 
this includes a detection and interpretation of the driving 
environment by means of several sensor systems. The 
necessary abstraction layer of the environment is 
determined by the ADAS application itself: a simple 
longitudinal control task for ACC needs only distance and 
speed measurements of the target driving ahead, whereas 
warning and safety functions in much more complex 
driving situations have a need for dimensions of potentially 
dangerous obstacles. Comprehensive and reliable detection 
of the driving environment in complex situations like traffic 
jams on highways or inner city areas require much better 
sensor information like from a stereo vision sensor.  
 

Obstacle detection through image processing has followed 
two main trends: single-camera based detection and two (or 
more) camera based detection (stereovision based 
detection). The monocular approach uses techniques such 
as object model fitting [1], color segmentation [2], or 
detection of specific characteristics such as texture [3] or 
symmetry axes [4,5,6]. The measurement of 3D 
characteristics is done after the detection stage, and it is 
usually performed through a combination of knowledge 
about the objects (such as size), assumptions about the 
characteristics of the road and knowledge about the camera 
parameters through calibration. The stereovision-based 
approaches have the advantage of directly estimating the 
3D coordinates of an image feature, this feature being 
anything from a point to a complex structure. Stereovision 
involves finding correspondences from the left to the right 
image. The search for correspondences is a difficult, time 
demanding task, which is not free from the possibility of 
errors. Obstacle detection techniques involving stereovision 
use different approaches in order to make some 
simplifications of the classic problem and achieve real-time 
capabilities. For instance, [7] uses stereovision only to 
measure the distance of an object after it has been detected 
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from monocular images, [8] detects the obstacle points 
from their stereo disparity compared to the expected 
disparity of a road point, [9] detects obstacle features by 
performing two correlation processes, one under the 
assumption that the feature is part of a vertical surface and 
another under the assumption that it is part of a horizontal 
surface, and comparing the quality of the matching in each 
of the cases. A stereovision system that uses no 
correspondence search at all, but warps images instead and 
then performs subtraction is presented in [10]. 
 
Our approach performs a full 3D reconstruction of the 
visible scene, the only limitation being that the 
reconstructed points must lie on vertical or oblique edges. 
The list of obtained 3D points is grouped into objects based 
solely on density and vicinity criteria. In this way, the 
system detects  obstacles of all types, outputting them as a 
list of cuboids having 3D positions and sizes, without 
having to make any assumption about their type. 
Subsequent classification techniques can be employed for 
discrimination, if needed. The detected objects are then 
tracked using a multiple object tracking algorithm, which 
refines the grouping and positioning, and detects the speed. 
 

3. Environment Model 
 
All 3D entities (points, objects) are expressed in the world 
coordinate system, which is depicted in figure 1. This 
coordinate system, which is actually a car coordinate 
system, has its origin on the ground in the front of the car, 
and its Z axis points in our direction of travel. This last 
property is carefully ensured at camera calibration time. 
 
Figure 2 shows the position of the left and the right cameras 
in the world coordinate system. This position is completely 
determined by the translation vectors TL and TR, and the 
rotation matrices RL and RR between the cameras and the 
world coordinate systems. These parameters are essential 
for the stereo reconstruction process and for the epipolar 
line computation procedure. 

 
 

Figure 1: The world coordinate system 
 
In order to estimate the translation vectors and the rotation 
matrices, camera calibration is performed after the cameras 
are mounted and fixed on the car. A general-purpose 
calibration technique is used. 
 
The objects are represented as cuboids, having position, 
size and velocity.  The position (X, Y, Z) and velocity (vX 
and vZ) are expressed for the central lower point C of the 
object. 

 
 

Figure 2: The cameras coordinate systems  
 

4. Extracting 3D Information by Stereovision 
 

The stereo reconstruction algorithm used is mainly based 
on the classical stereovision principles available in the 
existing literature [11]: find pairs of left-right 
correspondent points and map them into the 3D world using 
the stereo system geometry determined by calibration.  
 
Constraints, concerning real-time response of the system 
and high confidence of the reconstructed points, must be 
used. In order to reduce the search space and to emphasize 
the structure of the objects, only edge points of the left 
image are correlated to the right image points. Due to the 
cameras horizontal disparity, a gradient-based vertical edge 
detector was implemented. Non-maxima suppression and 
hysteresis edge linking are being used. By focusing to the 
image edges, not only the response time is improved, but 
also the correlation task is easier, since these points are 
placed in non-uniform image areas.  
 
Area based correlation is used. For each left edge point, the 
right image correspondent is searched. The sum of absolute 
differences (SAD) function [9] is used as a measure of 
similarity, applied on a local neighborhood (5x5 or 7x7 
pixels). Parallel processing features of the processor are 
used to implement this function. The search is performed 
along the epipolar line computed from the stereo geometry. 
Two modes are used: image rectification, search along the 
horizontal line or without rectification and the search is 
performed along the epipolar line determined by the system 
geometry.  
 
To have a low rate of false pairs, only strong responses of 
the correlation function are considered as correspondents. If 
the global minimum of the function is not strong enough 
relative to other local minimums than the current left image 
point is not correlated. In figure 3 a successful correlation is 
shown along the first column, while the last two columns 
show ambiguous similarity functions with rejected 
correspondents. Repetitive patterns are rejected and only 
robust pairs are reconstructed. 
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To achieve a better 3D depth resolution, the sub-pixel right 
correspondent is computed by fitting a parabola to the 
correlation function [9]. 

 
 

Figure 3: Three correlation scenarios are shown on each 
column. Left image point marked by ‘x’ on row a), right 

image search area and the epipolar line on row b) and the 
correlation function (lower means better match) on row c) 

 
The parabola is fitted to a local neighborhood (3 or 5 
points) of the global minimum. The obtained accuracy is 
about 1/4 to 1/6 pixels. This accuracy is dependent of the 
image quality (especially noise level and contrast). Our 
tests proved that the 3-neighbors parabola works better than 
the other one. 
 

 
 

Figure 4: Linear piecewise approximation of the 
correlation function for 5 points. Two parabolas fitted to 3 
and 5 neighbors are presented. The sub-pixel displacement 

‘d’ for the 3-neighbors parabola is shown. 
 
After this step of finding correspondences, each left-right 
pair of points is mapped into a unique 3D point [11]. Two 
3D projection rays are traced, using the camera geometry, 
one for each point of the pair. By computing the 
intersection of the two projection rays, the coordinates of 
the 3D point are determined. The reconstruction formulas 
are simple, when image rectification is used, or complex, if 
the original images are used for correlation.  
 
While image rectification provides a simple search area for 
correspondents and straightforward 3D reconstruction, the 
general geometry mode, without rectification, provides a 
better resolution since no image re-sampling is done. 

 
5. Grouping 3D Points into Objects 
 
We use only 3D points situated at the level of traffic 
objects. Objects implied in traffic are just above the road. 
Points at the road level and too high points are rejected. 
Also points that are too lateral or too far are rejected. The 
remaining points belong to the so-called Space of Interest 
(SOI). Our SOI is a parallelepiped, which is parallel with 
the road and just above it. The road is assumed to be planar. 
 
The extrinsic parameters of the cameras are calibrated 
before the test drive. The cameras are fix with respect to the 
car. Thus, the cameras move together with the car. The 
angles between the car and the road surface will change due 
to static and dynamic factors. The loading of the car is a 
static factor. Acceleration, deceleration and steering are 
dynamic factors, which also cause the car to change its 
pitch and roll angles with respect to the road surface. To 
obtain these two angles we measure the distance between 
the car’s chassis and wheels because the wheels are on the 
road surface. Four sensors are mounted between the chassis 
and wheels arms. The pitch and roll angles being computed, 
the SOI can be placed just above the road. The height of 
SOI is chosen to contain just the tallest vehicle. 
In our SOI, no object is placed above other. Thus, on a 
satellite view of the 3D points in SOI, we are able to 
distinguish regions with high points density, representing 
and locating objects. Regions with low density are assumed 
to contain noisy points and are neglected. The satellite view 
of 3D points is analyzed to identify objects. In figure 5 such 
a view is shown. 

 
 

Figure 5: Left image and the satellite view of the 3D points 
 

An important observation is that the 3D points are more 
and more rare as the distance grows. To overcome this 
phenomenon, we compress the satellite view of the space, 
depending on distance, in such a way that local density of 
points, in the new space, is kept constant. Regardless the 
distance to an object, in the compressed space, the region 
where that object is located will have the same points 
density. 
The compression factor depends on distance (Z): 

a) 

b) 

c) 
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Where:    Z – distance 
  F – focal length of the cameras 
  k – is a manually chosen factor, depending on the 
richness of 3D reconstructed points with the current 
reconstruction method. For X and Z axis  the values for k 
can be different. 
  
The k factors are chosen to satisfy two conditions of the 
found objects: 
- to not divide a real object into many smaller objects; 
- to not unify many real objects into one bigger object. 
 
The equations used to find the position (row, col) in the 
compressed space, of a point (X, Z) in the uncompressed 
space, are: 
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The compressed space of the scene depicted in figure 6 is 
presented in the figure 8.: 
 

 
 

Figure 6. The compressed space and the identified objects 
 
Also, in figure 6, objects were identified as dense regions. 
 
For the resulted objects their limits along the Y-axis are 
found. In figure 7 the cuboids circumscribing objects are 
shown. 
 
6. Object Tracking 
 
Object tracking is used in order to obtain more stable 
results, and also to estimate the velocity of an object along 
the axes X and Z. The Y coordinate is tracked separately, 
using a simplified approach of simply averaging the current 
coordinate by the last detected coordinate. 
 
The mathematical support of object tracking is the linear 
Kalman filter. The position of the object is considered to be 
in a uniform motion, with constant velocity. The position 
and speed parameters of the object along the axes X and Z 
at the moment k  are components of the state vector X(k  ) 
that we try to evaluate through the tracking process. 

 
 

Figure 7: Perspective view of object cuboids painted over 
the image 

 
The actual detection of the object will form the 
measurement vector Y(k  ), which consists only of the 
coordinates of the detected object. 
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The evolution of the X vector is expressed by the linear 
equation: 
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where the state transition matrix A(k  ) is 
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The steps of tracking a single object are: 

•  Prediction: a new position of the object is computed 
using the last state vector and the transition matrix, 
through equation (1). The prediction of the Y 
coordinate is the last Y coordin  ate. 

•  Measurement: around the predicted position (pX ,pY, 

pZ) we search for objects resulted from grouping 
which have the distance to the prediction below a 
threshold. The distance is computed by equation (2), 
which gives different weights to displacements along 
the three coordinate axes, and take into consideration 
also the current object speed, which is seen as an 
indetermination factor.  
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 The objects that satisfy the vicinity condition are used 
to form an envelope whose position is computed and 
used as measurement, and the size of the envelope is 
used as the current measurement of the tracked 
object’s size. By creating an envelope object out of the 
objects near a track we can join objects that were 
previously detected as separate. This merging becomes 
effective only if the separated objects have the same 
trajectory. This is ensured by the object-track 
association, when track compete for objects, and a 
false object joining won’t last for too long. 

• Update: The measurement and the prediction are used 
to update the state vector X through the equations of 
the Kalman filter. The Y coordinate and the object’s 
size are tracked by averaging the current measurement 
with the past measurements. If in the current frame 
there is no measurement that can be associated to the 
track, the prediction is used as output of the tracking 
system. The track is considered lost after a number of 
frames without measurement. 

 
Tracking multiple objects adds a little bit more complexity 
to the algorithm presented above. We have to decide which 
detected object belongs to which track, or if a detected 
object starts a new track.  
 
The association between detected objects and tracks is done 
using a modified nearest-neighbor method, using the 
distance expressed by equation (2). Each object is 
compared against each track. The objects are labeled 
employing the nearest track identity number, provided that 
there is at least one track that has a sufficient low distance 
to the object. The modification from the classical nearest-
neighbor scheme is that we introduce an “age discount” in 
the distance comparison, and in this way we give priority to 
the older, more established tracks. This discounting 
mechanism is achieved by sorting the tracks in the reverse 
order of their age (the older ones first). If we compare an 
object to a track and the object already was labeled with the 
label of another track, we change the owner of the object 
only if the distance object-current track is lower than the 
distance to the older track minus a fixed quantity, the age 
discount. 
 
For every object that cannot be assigned to an existing track 
and that fulfills some specific conditions, a new track is 
initialized. A new track is started for a single object, which 
has a reasonable size. There is no object joining in the 
initialization phase of a track. In this way we avoid 
initializing tracks to noise objects, and thus amplifying the 
noise. Tracks are aborted if the association process fails for 
a predefined number of frames 
 
A tracking validation process based on the image of the 
object is employed in order to ensure that there is no track 
switching from one object to another. If an object is tracked 
for several frames and therefore its size is well established 
an image of the object is taken using its projection in the 

left image (figure 8, a), normalized to a 20x20 pixel size 
and stored (figure 8, b). In subsequent frames this image is 
matched against a 40x40 pixel normalized search area 
around the tracked object. If the matching fails for more 
frames, the track is aborted. 
 

    
                 a)          b) 

 

Figure 8: A tracked object a) and its normalized image b) 
 

 
 

Figure 9: The search area used for validation 
 

7. Results 
 
The detection system has been deployed on a standard 1 
GHz Pentium® III personal computer, and the whole 
processing cycle takes less than 100 ms processing time, 
therefore securing a 10 fps detection rate. This makes the 
system suitable for real-time applications. The system has 
been tested in various traffic scenarios, both offline (using 
stored sequences) and online (on-board processing), and 
acted well in both conditions. Tests covered as much traffic 
conditions as possible: urban, as in figure 10, highway, as 
in figure 11, or country road (figure 12). In all situations the 
obstacles were reliably detected and tracked, and their 
position, size and velocity measured. The detection has 
proven to have a maximum working range of about 90 m, 
with maximum of reliability in the range 10-60 m. The 
position measurement error is, naturally, higher than one 
can obtain from a radar system, but it is very low for a 
vision system: less than 10 cm of error at 10 m, about 30 
cm of error at 45 m and about 2 m of error at 95 m. 

 
 

Figure 10: Detection results in urban traffic 

296



 

 
 

Figure 11: Detection results in highway traffic 
 

 
Figure 12: Tracking of incoming traffic on country road 

 
The edge performance of tracking is best shown in figure 
14, where we have incoming traffic, and relative speeds of 
more than 200 km/h. Nevertheless, the incoming objects are 
correctly tracked and their speeds are estimated. In this 
situation our vehicle is moving at 100 km/h and the 
incoming vehicles are moving at 120 km/h. The highest 
errors in speed estimation happen for the objects outside the 
road (barriers, trees, bushes) which are very poorly 
delimited one from another and therefore it is very difficult 
to estimate the motion from one frame to another. 

 
8. Conclusions 
 
We have presented a stereovision-based obstacle detection 
system that reconstructs and works on 3D points 
corresponding to the object edges, in a large variety of 
traffic scenarios, and under real-time constraints. The 
system is suitable to vehicle environment perception and to 
be integrated in a driving assistance application. The 
functions of this system can be greatly extended in the 
future. An intelligent correlation function should be 
developed, one that can disambiguate, not reject, repetitive 
patterns and reconstruct points from horizontal edges. 
Because the stereovision module reconstructs any feature in 
sight, it means that it reconstructs also the road features, 
and therefore it can form the basis for a 3D lane detection 
algorithm. Moreover, because any type of object is detected 
this algorithm can form the basis for any type of specific 
object detection system, such as vehicle detection, 
pedestrian detection, or even traffic sign detection. The 
classification routines can be performed directly on our 
detected objects, with the advantage of reduced search 
space and additional helpful information such as distance, 
size and speed, which can also reduce the class hypotheses. 
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