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Abstract–This paper will present an obstacle detection system 
that that relies on the 3D information provided by stereo 
reconstruction. The 3D features must be separated in road 
features and obstacle features. Instead of relying on the 
flatness of the road, the vertical road profile is modeled as a 
clothoid, and is estimated from the lateral projection of the 
3D points. The points above the road are selected for 
grouping into objects, based on vicinity criteria and the 
variation of the point density with the distance. The resulted 
objects are used as measurements for a model-based tracking 
algorithm. The resulted system is a high-accuracy, far 
distance obstacle detector, able to function in a large variety 
of real-world scenarios. 
 

I. INTRODUCTION 
 

Detecting the surrounding environment of a moving 
vehicle is a complex and challenging task. One of the most 
important components of the environment is the set of 
obstacles, which can be other vehicles, stationary side 
objects, pedestrians, etc. Detection of the obstacles implies, 
directly or indirectly, the use of some kind of 3D 
information, and this is the reason why the active sensors, 
such as laser or radar, are the prime choice of industry. 
However, the use of a high resolution, high accuracy 
stereovision algorithm provides comparable results in 3D 
estimation, while delivering a larger amount of data, thus 
making the grouping and tracking tasks easier, and 
allowing a subsequent classification of the obstacle. 

Obstacle detection through image processing has 
followed two main trends: single-camera based detection 
and two (or more) camera based detection (stereovision 
based detection). The monocular approach uses techniques 
such as object model fitting [1], color or texture 
segmentation [2,3], symmetry axes [4] etc. The estimation 
of 3D characteristics is done after the detection stage, and 
it is usually performed through a combination of 
knowledge about the objects (such as size), assumptions 
about the characteristics of the road  (such as flat road 
assumption) and knowledge about the camera parameters 
available through calibration.  

The stereovision-based approaches have the advantage 
of directly measuring the 3D coordinates of an image 
feature, this feature being anything from a point to a 
complex structure. The main constraints concerning 
stereovision applications are to minimize the calibration 
and stereo-matching errors in order to increase the 
measurements accuracy and to reduce the complexity of 
stereo-correlation process. The real time capability of the 
method is another important constraint. Such a method was 
proposed in [5]. The full 3D reconstruction of the visible 
scene is performed only on vertical or oblique edges. The 

list of obtained 3D points is grouped into objects based 
solely on density and vicinity criteria. The flat road 
assumption for the ground/obstacle points separation 
process was used. The system detects obstacles of all types, 
outputting them as a list of cuboids having 3D positions 
and sizes. The detected objects are then tracked using a 
multiple object-tracking algorithm, which refines the 
grouping and positioning, and detects the speed and 
orientation.  

An important part in the obstacle detection process is 
the separation of the obstacle points from the road points. 
Most of the roadway obstacle detection methods are based 
on the flat road assumption [6,7]. This is a poor model 
since deviations from the flat road may be as large as or 
larger than the obstacles we wish to detect. In consequence 
the road objects separation and the 3D objects position 
estimation cannot be done. Therefore the non-flat road 
assumption is compulsory for a robust object detection 
method. In literature this assumption was introduced by 
non-flat road approximation by series of planar surface 
sections [8,9] or by modelling of the non-flat roads by 
higher order surfaces [10,11]. For instance the methods 
presented in [11,12,13] are fitting the parameters of a 3D 
clothoid model of the road lane using a monocular image 
and supplementary lane geometry constraints.  

Our approach presented in this paper will model the 
vertical profile of the road surface with such a clothoid 
curve fitted directly on the detected 3D road surface points. 
These 3D road points are detected using a high accuracy 
stereovision method [5]. The obtained vertical profile will 
be used for the road-obstacle separation process in order to 
have a proper grouping of the 3D points in obstacles and 
precise estimation of their 3D position in the driving 
environment. 
 

II. CALIBRATION OF THE STEREO SYSTEM 
 
 In order to reconstruct and measure the 3D environment 
using stereo cameras, the cameras must be calibrated. The 
calibration process estimates the camera’s intrinsic 
parameters (which are related to its internal optical and 
geometrical characteristics) and extrinsic ones (which are 
related to the 3D position and orientation of the camera 
relative to a global world coordinate system). 
 The intrinsic parameters of each camera are calibrated 
individually. The estimated parameters are the focal length 
and the principal point coordinates and the lens distortions. 
The parameters are estimated by minimizing the projection 
error from multiple views of a set of control points placed 
on a coplanar calibration object with known geometry. For 
a stereo system of two cameras, the obtained intrinsic 



 

parameters can be refined by inferring the stereo 
information available. This is done by introducing a new 
constraint in the estimation process which considers also 
the projection error of the control points image coordinates 
from one image to another [15]. 
 The extrinsic parameters of the cameras are estimated 
by minimizing against the extrinsic parameters the 
projection error for a set of 3D control points with 
measured coordinates in a world reference system [16, 17]. 
Due to the requirement that the reconstruction must work 
for far distances, a special calibration field is set up, with 
special targets, covering a distance of at least 40 m, as seen 
in figure 1. The 3D coordinates of each target are known in 
advance. The left and right images of the scene, taken from 
the on-board cameras, are processed and the image position 
of each calibration target is automatically detected based 
on the target’s special shape. 
 

 
 

Fig. 1. The calibration scene and the detected targets 
 
 The obtained extrinsic parameters for each camera are a 
translation vector of the camera in the world coordinate 
system (Tj) and a rotation vector (Rj) relative to the same 
coordinate system. 
 The accuracy of the calibration is essential for the 
performance of the system, and this is the reason why this 
step must be performed with great care and patience. 
 

III. STEREO RECONSTRUCTION 
 
The stereo reconstruction algorithm that is used is mainly 
based on the classical stereovision principles available in 
the existing literature [14]: find pairs of left-right 
correspondent points and map them into the 3D world 
using the stereo system geometry determined by 
calibration.  

Constraints, concerning real-time response of the 
system and high confidence of the reconstructed points, 
must be used. In order to reduce the search space and to 
emphasize the structure of the objects, only edge points of 
the left image are correlated to the right image points. Due 
to the cameras horizontal disparity, a gradient-based 
vertical edge detector was implemented. Non-maxima 
suppression and hysteresis edge linking are being used. By 
focusing to the image edges, not only the response time is 
improved, but also the correlation task is easier, since these 
points are placed in non-uniform image areas.  

Area based correlation is used. For each left edge point, 
the right image correspondent is searched. The sum of 
absolute differences (SAD) function [7] is used as a 
measure of similarity, applied on a local neighborhood 
(5x5 or 7x7 pixels). Parallel processing features of the 
processor are used to implement this function. The search 

is performed along the epipolar line computed from the 
stereo geometry for general camera configuration. 

To have a low rate of false pairs, only strong responses 
of the correlation function are considered as 
correspondents. If the global minimum of the function is 
not strong enough relative to other local minimums than 
the current left image point is not correlated. In figure 2 a 
successful correlation is shown along the first column, 
while the last two columns show ambiguous similarity 
functions with rejected correspondents. Repetitive patterns 
are rejected and only robust pairs are reconstructed.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2: Three correlation scenarios are shown on each column. Left image 

point marked by ‘x’ on row I, right image search area and the epipolar 
line on row II and the correlation function on row III. 

 
A parabola is fitted to a local neighborhood (3 or 5 

points) of the global correlation minimum in order to detect 
the stereo correspondence with sub-pixel accuracy. The 
obtained accuracy is about 1/4 to 1/6 and is dependent of 
the image quality (especially noise level and contrast). Our 
tests proved that the 3-neighbors parabola works better 
than the other one. 
 After this step of finding correspondences, each left-
right pair of points is mapped into a unique 3D point [14]. 
Two 3D projection rays are traced, using the camera 
geometry, one for each point of the pair. By computing the 
intersection of the two projection rays, the coordinates of 
the 3D point are estimated. 
 

IV. VERTICAL ROAD PROFILE ESTIMATION 
 

Many of the obstacle detection methods assume a flat 
road profile. Some take into account the car pitching – 
therefore admitting some degree of vertical profile change 
– but fail to account for a possible curved vertical profile. 
We’ll try to extract the vertical profile of the road by 
approximating it with a first order clothoid curve (in the 
ego-car coordinate system): 
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where: 

α, is the pitch angle of the ego-car 
c0,y – vertical curvature 
c1,y – variation of the vertical curvature 

 
In order to extract the coefficients α, c0,v and c1,v which 



 

will completely describe the vertical profile of the road, 
we’ll make use of the 3D road points reconstructed by 
stereovision. The main advantage of using stereovision is 
the ability of directly extracting the vertical profile, 
independently of the lane detection process, sometimes 
even independently of the presence of any kind of 
delimiters. The key assumption, which makes this possible, 
is that there are none or very few 3D points under the road 
plane. Having a list of 3D points, it is easy to obtain a 
lateral projection in the YOZ plane, like in figure 3. 
 

 
 
Fig. 3: Lateral view of the 3D points set (the projection of the 3D points 

on the YOZ plane) 
 

As easily can be seen, there is a lot of noise in the set of 
points, and therefore a simple fitting of the curve to the 
lower points, or a least-square clothoid fitting is not 
enough. Our approach to detecting the vertical profile takes 
two simplifying assumptions: 

- In the close vicinity of the ego-vehicle (30m), the 
points are on a straight line, and the effect of the 
curvature is sensed only after the 30m interval 

- The effect of roll is negligible for the vertical 
profile detection, that is, the vertical displacement 
due to roll is negligible in comparison to the 
displacement due to pitch and vertical curvature. 

These assumptions allow us to regard the problem as a 
2D curve fitting to a set of 2D points corresponding to the 
lateral projection of the reconstructed 3D points (figure 3). 

With these assumptions, first we want to estimate the 
pitch angle of the ego car coordinate system relative to the 
road surface (angle α from equation 3). The pitch angle is 
extracted using a method similar to the Hough transform 
applied on the lateral projection of the 3D points in the 
near range of 0-30 m (in which we consider the road flat). 
Therefore, an angle histogram is built for each possible 
pitch angle, using the near points. From the point of origin 
of the world coordinate system, uniformly spaced rays are 
cast. The distance between the rays must correspond to the 
acceptable error in pitch angle estimation, and the total set 
of rays must cover all the possible pitch values. The 
process is depicted loosely in figure 4. The points along 
each ray are counted in a polar histogram (a histogram 
having an entry for each ray). This histogram then 
undergoes a smoothing process, by convolution with a 1D 
Gaussian kernel. The result will look similar to figure 5. 

Then the histogram is searched from under the road 
upwards. The first angle having a considerable amount of 
points aligned to it is taken as the pitch angle. 

 

 
 
Fig. 4. The angle search space, depicted by a set of rays. The points along 

these rays will be counted in a polar histogram 
 

 
 

Fig. 5. The polar histogram 
 

 
 

Fig. 6. Finding the ray that represents the pitch angle 
 
After detecting the pitch angle, detection of the curvature 
follows the same pattern. The pitch angle is considered 
known, and then a curvature histogram is built, for each 
possible curvature, but this time only the more distant 3D 
points (> 30 m) are taken into account, because the effect of 
a curvature is felt only in more distant points. The obtained 
vertical clothoid profile of the road is shown in figure 7. The 
variation of the vertical curvature will not be detected due to 
the large errors and to the fact that its value is very small 
and can be safely considered zero. 
 

 
 

Fig. 7. The vertical profile fitted to the ground points 
 

V. GROUPING THE POINTS INTO OBJECTS 
 
We use only 3D points situated above the road surface. The 
road surface is modeled by the following clothoid equation 
in the world coordinates system: 
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The road/obstacle separation (figure 8) of the 3D points 

is done using thee following constraints: 



 

− if  |YW-Y| < ττττ , the point is on the road surface, and 
classified as road point 

− if  (YW-Y) < -ττττ , the point is below the road, and is 
rejected 

− if  (YW-Y) > ττττ , the point is above the road 
The threshold τ is a positive constant and its value is 

chosen depending on the on the error estimation of the 
disparity with the depth, and on the error estimation of the 
clothoid parameters and possible torsion of the road. 

 

 
 

Fig. 8: Lateral view of the road surface in the world coordinate 
system 

 
 Some supplementary constraints are used to restrict the 
3D points above the road: points higher then 4m above the 
road surface, points that are too lateral or too far are 
rejected. The remaining points belong to the so-called Space 
of Interest (SOI) in which is performed the grouping of the 
3D points in objects. For the road geometry we have made 
the following assumptions: in highway and most of country 
road scenarios the horizontal curvature is slowly changing 
and the torsions can be neglected in our detection range (up 
to 100m). Therefore knowing the road vertical profile would 
be enough to characterize the driving surface in the SOI. 

In our SOI, no object is placed above other. Thus, on a 
satellite view of the 3D points in SOI, we are able to 
distinguish regions with high points density, representing 
and locating objects. Regions with low density are assumed 
to contain noisy points and are neglected. The satellite view 
of 3D points is analyzed to identify objects. In figure 9 such 
a view is shown. 

 
 

Fig. 9: Left image and the satellite view of the 3D points 
 

An important observation is that the 3D points are more 
and more rare as the distance grows. To overcome this 
phenomenon, we compress the satellite view of the space, 
depending on distance, in such a way that local density of 
points, in the new space, is kept constant. Regardless the 
distance to an object, in the compressed space, the region 
where that object is located will have the same points 
density. 

The compression factor depends on distance (Z): 
 

k
Z

fZScale ⋅⋅= 1
)(     (5) 

 
Where:    Z – distance 
  F – focal length of the cameras 
  k – is a manually chosen factor, depending on the 
richness of 3D reconstructed points with the current 
reconstruction method. For X and Z axis the values for k 
can be different. 

The k factors are chosen to satisfy two conditions of the 
found objects: 
- to not divide a real object into many smaller objects; 
- to not unify many real objects into one bigger object. 

The equations used to find the position (row, col) in the 
compressed space, of a point (X, Z) in the uncompressed 
space, are: 
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Zmin = low distance limit of SOI 
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The compressed space of the scene depicted in figure 6 
is presented in the figure 10. 
 

 
 

Fig. 10. The compressed space and the identified objects 
 

Also, in figure 10, objects were identified as dense 
regions. 

For the resulted objects their limits along the Y-axis are 
found. In figure 11 the cuboids circumscribing objects are 
shown. 
 

 
 

Fig. 11: Perspective view of object cuboids painted over the image 
 
 
 
 



 

VI. RESULTS 
 

The detection system has been deployed on a standard 1 
GHz Pentium® III personal computer, and the whole 
processing cycle takes less than 100 ms processing time, 
therefore securing a 10 fps detection rate. This makes the 
system suitable for real-time applications. The system has 
been tested in various traffic scenarios, both offline (using 
stored sequences) and online (on-board processing), and 
acted well in both conditions. In all situations the obstacles 
were reliably detected and tracked, and their position, size 
and velocity measured. The detection has proven to have a 
maximum working range of about 90 m, with maximum of 
reliability in the range 10-60 m. The depth measurement 
error is, naturally, higher than one can obtain from a radar 
system, but it is very low for a vision system: less than 10 
cm of error at 10 m, about 30 cm of error at 45 m and about 
2 m of error at 95 m. 
 In figure 12 the detection results on a non-flat road are 
outlined. The scene from figure 6.a is at the end of a 
concave slope. The detected road surface has a concave 
vertical curvature c0,v ≈ 2e-4. The far objects (the two cars at 
71m, respectively 81m and the traffic sign from 91m have 
vertical offsets in the world coordinates system (having the 
XOZ plane coincident with the road surface below the 
current car position) of 0.51m, 0.66m and 0.96m 
respectively, due to the non flat road. But using the non-flat 
road modeled by a vertical clothoid (figure 8) the objects are 
detected correctly on the road surface. 
 

  
Fig. 12: a. Image of the scene with the detected object (cuboids with ID 
and distance); b. Side view of the detected objects and the detected road 

surface; c. Top view of the detected objects. 
 
 The result of obstacle detection in multiple scenarios is 
shown in figures 13 through 15. The system was tested and 
performed well in urban traffic (figure 13), busy highway 
traffic (figure 14) and country roads (figure 15), where the 
main difficulty were the high relative speeds of the 
incoming objects. 
 

 
 

Fig. 13: Detection results in urban traffic 
 

 
 

Fig. 14: Detection results in highway traffic 
 

 
 

Fig. 15: Tracking of incoming traffic on country road 
 

VII. CONCLUSIONS 
 

We have presented a stereovision-based obstacle 
detection system that reconstructs and works on 3D points 
corresponding to the object edges, in a large variety of 
traffic scenarios, and under real-time constraints. Because 
the stereovision module reconstructs any feature in sight 
(that means also the road features) the vertical profile of the 
road was detected. This way a correct road-obstacle 
separation was possible. The grouping of the 3D points in 
relevant objects was greatly improved, and the objects 3D 
positioning accuracy was increased.  
 The functions of this system can be greatly extended in 
the future. An intelligent correlation function should be 
developed, one that can disambiguate, not reject, repetitive 
patterns and reconstruct points from horizontal edges. 
Moreover, because any type of object is detected this 
algorithm can form the basis for any type of specific object 
detection system, such as vehicle detection, pedestrian 
detection, or even traffic sign detection. The classification 
routines can be performed directly on our detected objects, 
with the advantage of reduced search space and additional 
helpful information such as distance, size and speed, which 
can also reduce the class hypotheses. The vertical road 
profile detection from stereovision can be the base for a 3D 
lane detection algorithm, which will give a complete 3D 
description of the driving environment in a lane related 
coordinates system. 
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