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Abstract

The research presented in this paper aims to bridge the gap between the latest

scientific advances in autonomous vehicle localization and the industrial state of

the art in autonomous warehousing. Notwithstanding great scientific progress in

the past decades, industrial autonomous warehousing systems still rely on exter-

nal infrastructure for obtaining their precise location. This approach increases

warehouse installation costs and decreases system reliability, as it is sensitive to

measurement outliers and the external localization infrastructure can get dirty

or damaged. Several approaches, well studied in scientific literature, are capable

of determining vehicle position based only on information provided by on board

sensors, most commonly wheel encoders and laser scanners. However, scientific

results published to date either do not provide sufficient accuracy for indus-

trial applications, or have not been extensively tested in realistic, industrial-like

operating conditions. In this paper, we combine several well established al-

gorithms into a high-precision localization pipeline, capable of computing the

pose of an autonomous forklift to sub-centimeter precision. The algorithms use

only odometry information from wheel encoders and range readings from an on

board laser scanner. The effectiveness of the proposed solution is evaluated by
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an extensive experiment that lasted for several days, and was performed in a

realistic industrial-like environment.

Keywords: high-accuracy localization, autonomous warehousing, autonomous

ground vehicle

1. Introduction

Notwithstanding the recent very successful examples of large scale use of

autonomous mobile delivery vehicles such as Kiva Systems [1], today’s manu-

facturing and logistics facilities are still largely dependent on manually operated

vehicles [2]. Although numerous commercial solutions using autonomous ground5

vehicles (AGVs) do exist, e.g., automated material handling vehicles by Swiss-

log1 and Euroimpianti2 or Komatsu’s autonomous haul systems for the mining

industry3, significant improvements can be made in terms of their level of au-

tonomy and deployment cost. In particular, the industrial state of the art for

vehicle localization requires additional infrastructure, usually in the form of re-10

flective markers or electromagnetic guides, for accurately determining vehicle

pose [3]. This approach suffers from numerous disadvantages, as the markers

have a high installation cost, requiring many man-hours of work by qualified

personnel, they are sensitive to false positive readings and to changes in the

environment which may obstruct the field of view of the vehicle, and they can15

get damaged or dirty in harsh industrial environments. Relevant contemporary

literature, such as [4, 5, 6] unanimously identifies the ability of AGVs to self-

localize without additional infrastructure as one of the key technologies that

will increase their performance and flexibility, thus enabling their widespread

use.20

Because self-localization is a basic prerequisite for autonomous vehicle op-

eration, this subject has been receiving significant scientific attention from the

1http://www.swisslog.com/en/Solutions/HCS/Material-Handling-Automation
2http://www.skilledrobots.com/products/agv
3http://www.komatsu.com.au/AboutKomatsu/Technology/Pages/AHS.aspx
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earliest beginnings of mobile robotics. Different sensors have been used for this

purpose, the most common ones being wheel encoders, contact switches, sonar

arrays, 2D and 3D laser scanners, mono, stereo and RGBD cameras. A nice25

overview of relevant references for the different approaches can be found in [7].

For localization in the plane, i.e. on flat terrain, 2D laser scanners have been

shown to provide the best accuracy, robustness and speed [8]. Additionally, the

vast majority of AGVs deployed today is already equipped with laser scanners

for safety and localization (using artificial landmarks) purposes, so we are fo-30

cusing on this type of sensor throughout the rest of the paper. Advances in

computational power at the turn of the century have made new classes of prob-

abilistic methods computationally feasible. Since then, the AMCL4 method

[9] has established itself as the de facto standard in academic research. The

method is based on a particle filter which fuses odometry information provided35

by wheel encoders with laser scanner range readings to provide robust localiza-

tion with reported accuracy between 0.05m and 0.1m [10, 11]. Because it is a

multi-hypothesis method, it is able to deal with situations when the robot is

temporarily ”lost”. These features make the method suitable for most academic

research work in mobile robotics. Its effectiveness has led researchers to con-40

sider robot localization in the plane to be a ”solved problem” and move on to

other research topics, such as localization in 3D space. However, the accuracy

required by material handling applications is typically within 0.01m and 0.5◦,

so the industry has continued relying on additional infrastructure to ensure the

required accuracy.45

In the past five years, the prospect of widespread industrial adoption of

autonomous vehicles, with enhanced performance and flexibility and reduced

deployment costs, has spurred vigorous research activity related to precise lo-

calization without artificial landmarks. A popular approach for obtaining high

precision while maintaining robustness is to combine AMCL with scan match-50

ing. Estimates obtained by AMCL are refined by matching the laser readings

4Adaptive Monte Carlo localization

3



to map features. This approach is used very successfully in [7]. The authors

performed extensive experiments with a holonomic vehicle in a laboratory en-

vironment, using a vision-based tracking system for evaluating the results with

millimetre accuracy. In a static environment, they were able to achieve localiza-55

tion and positioning errors at taught-in locations well below 0.005m and 0.2◦.

Slightly higher, but still sub-centimetre errors were reported in the presence of

dynamic obstacles (people walking by). In a similar setup, tracking accuracy of

taught-in trajectories was examined [12]. By manually teaching-in the trajec-

tories, the authors avoid using a global map. Point-to-line scan matching [13]60

is used for trajectory tracking in the robot’s local coordinate system. Accuracy

was evaluated by measuring the minimal distance to the reference trajectory

and milimeter accuracy is reported. It should be noted that the experimental

environment was small and completely static. The work presented in [14] fo-

cuses on seamless transition between marker based, map based and pure SLAM65

(localization without an a priori map) scenarios. The reported preliminary eval-

uation in a large scale warehouse, on a single trajectory, had errors within 0.05m

and 0.5◦ most of the time. In their later work, the same authors examine the

accuracy of 2D localization as a prerequisite for 3D mapping [15], in extensive

experiments in a large scale warehouse. They do not use odometry information70

from wheel encoders. Instead they use Point-to-Line Iterative Closest Point (P-

L-ICP) [13] to simulate odometry. They do not use the localization estimate

as feedback for the position controller (they rely on the artificial landmarks

for control) and report a mean positioning error of 0.052m and 0.012◦. An-

other very promising approach is based on the Normal distributions transform75

(NDT) introduced by [16]. The NDT is a piecewise continuous representation,

which represents the space as a set of normal distributions. It enables a more

compact and more accurate representation of the environment, compared to

grid-based representations. Authors in [17] formulate Monte Carlo localization

(MCL) using the Normal distributions transform (NDT) as underlying repre-80

sentation for map and data. They evaluate their approach using offline data

sets, in closed loop with a smaller AGV in a laboratory environment and in a
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real warehouse with an industrial AGV in open loop (localization estimate is

not used as control feedback for the vehicle). They achieve localization accuracy

of 0.014m and 0.074◦ in laboratory conditions and below 0.03m in the industrial85

setting. The NDT-MCL algorithm is extended in [18] to dual-timescales, i.e., a

dynamically updated short-term map is used for localization in addition to the

a priori provided static map. This approach improves localization performance

in highly dynamic environments, reducing localization errors below 0.02m in a

laboratory setting. In our previous work [19], we evaluated an approach which90

fused readings from several laser scanners mounted at different heights. The

average localization error was below 0.06m, while the maximum error was kept

within 0.1m at all times during an experiment in an industrial setting, which

does not quite satisfy industrial requirements.

The approach pursued in this paper combines AMCL, scan matching and95

Discrete Fourier Transform (DFT)-based pose estimate refinement into one al-

gorithm stack for high-precision localization in industrial indoor environments.

We describe all components of the localization algorithm and provide extensive

experimental results, which confirm the accuracy, robustness and reliability of

our approach. The experiments have been performed in an industrial warehouse100

setting, with a full sized autonomous forklift. The localization module is work-

ing in closed loop with the vehicle control module, so any significant localization

error would cause a failure in path execution. During three days and 19 hours

of total travel time, the vehicle has logged over eight kilometers, relying only

on map information and its sensor readings, without a single failure or operator105

intervention. The results are evaluated using a methodology similar to [7]. Be-

cause vehicle positioning is most critical at docking stations, when picking up

and delivering pallets, we defined 6 docking stations in the warehouse layout.

The vehicle was repeatedly visiting the docking stations and these positions

were used for evaluating localization accuracy. Making a fair comparison with110

results from other authors is difficult, mainly because of a lack of standard-

ization. Some attempts at standardization are beeing made [20, 21], however,

these are currently not applicable to industrial systems. In state of the art re-
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search mentioned above, the vehicles, experimental environment and evaluation

methods vary vastly. Experimental platforms range from holonomic laboratory115

robots to non holonomic industrial forklifts weighting several tons. Some exper-

iments are performed in laboratory conditions, while others are performed in

actual in-production warehouses. Different evaluation methods include absolute

errors with respect to a reference localization system, relative errors computed

with respect to taught-in poses, static errors, dynamic errors or Absolute Tra-120

jectory Errors (ATE) [20]. Notwithstanding the lack of standardized methods

for comparison, to the best of our knowledge, no localization algorithm to date

has been evaluated in comparably realistic industrial conditions which provides

better localization accuracy at taught-in docking positions. Therefore, the main

contribution of this paper is a rigorously validated AGV localization algorithm,125

which satisfies demanding industrial requirements and provides an improvement

over the state of the art. Furthermore, in addition to the localization algorithm,

we also describe the path planning and tracking algorithms that have been im-

plemented on the vehicle and used for the experiment. Together with the local-

ization module, they constitute a complete, experimentally verified positioning130

solution for autonomous warehousing.

The paper is organized as follows. The focal point of the paper is Section

2, where we provide a detailed description of our localization algorithm stack.

In Section 3 we describe the industrial platform and the environment in which

we performed our experiments. The positioning algorithm used for experimen-135

tal validation is described in Section 4. The results of extensive experimental

validation are described in Section 5. Concluding remarks and an outline of our

future work plans are provided in Section 6.

2. The localization algorithm stack

In this section, we present the main contribution of our work, a localization140

algorithm stack capable of providing sub-centimeter localization accuracy in in-

dustrial environments, in real time. It consists of three algorithms which are
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executed sequentially, each one providing a better and more accurate vehicle

pose estimate. The described algorithm stack is general, in the sense that it

makes minimal assumptions on the properties of the vehicle and of the environ-145

ment. No assumptions are made regarding the vehicle kinematics, shape or size,

or the layout of the environment. We assume that the vehicle is moving on flat

terrain and that an occupancy grid map of the environment is available a pri-

ori. Furthermore, we assume that the vehicle is equipped with wheel encoders

and a laser range scanner. These assumptions are valid in the vast majority of150

industrial warehousing scenarios.

2.1. Localization overview

A high-level overview of the localization system is depicted in Figure 1.

The first step is using the robust AMCL (Adaptive Monte Carlo Localization)

algorithm [9], which fuses odometry data with laser range readings to provide a155

robot pose estimate with a known covariance. That result is used as the initial

estimate for the scan matching ICP algorithm [13], similarly to the approach

in [7]. Finally, the obtained result, which typically has a very good orientation

estimate, is used as the initial estimate in a discrete Fourier transform method,

which returns the final result. These steps, along with the input data used at160

each step, are shown in Figure 2.

2.2. Map of the environment

In order to localize itself in the testing area, a mobile robot must have a

known map of its environment. In this work we use the gmapping ROS package,

which implements the algorithm described in [22]. The method features a highly165

efficient Rao-Blackwellized particle filter for learning grid maps from laser range

data. In our experiments, we used a map built with a constant resolution of

5cm (shown in Figure 8). Even though the size of a single map cell is 5 cm, it is

possible to achieve much better localization accuracy, because the localization

algorithms use laser distance measurements to hundreds of points from different170

directions, which are implicitly averaged to return the location of the vehicle

with an accuracy much better than the 5cm resolution of map.
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Figure 1: An overview of the proposed localization system. It is an algorithm stack consisting

of three steps: Adaptive Monte Carlo Localization, Iterative Closest Point optimization and

a Fourier Transform-based position refinement, yielding the final pose estimate.

2.3. Adaptive Monte Carlo Localization

We use Adaptive Monte Carlo Localization (AMCL) algorithm as described

in [9] and implemented in the AMCL ROS package. The method is also known as175

Kullback-Leibler Distance (KLD) sampling for particle filters. This method can

be applied to any mobile robot moving in the 2-dimensional space, providing

odometry and range sensor measurements (laser, sonar, etc.).

Each step of the AMCLmethod is composed of two parts: motion update and

sensor update. When the robot moves, odometry data is used to predict its next180

position. Because of uncertainties in odometry measurements, the estimated

position is represented by a number of particles distributed around the estimated

position depending on the measurement uncertainty. The number of particles

varies depending on their density. Distances measured by the range scanner are

used to calculate the probability that a robot is at a position represented by each185

of the particles generated by the motion prediction. Laser sensor calibration is
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Figure 2: A view of the localization system structure showing the data used by each particular

component of the localization stack. The initial AMCL step fuses odometry and laser read-

ings, matched against a 2D map of the environment, in order to provide a rough pose estimate,

based on the previous estimate. The ICP performs high-precision matching of the laser mea-

surements against the 2D map, providing very accurate orientation and position estimates.

Small jitters in the position estimate are finally filtered by the Fourier Transform-based step.

The final, highly accurate pose estimate is fed back to the AMCL algorithm.

a prerequisite for highly accurate pose estimation.

The DFT result, if found, is fed back to the AMCL by updating its pose

estimate periodically. In the case when the DFT result is not found (vehicle is

lost), AMCL works independently until the robot find its approximate location,190

and the DFT returns a result. In this case AMCL guarantees are kept.

2.4. Iterative closest point

Iterative closest point (ICP) is well known algorithm, extensively used in

computer vision. The implementation used within this paper is the one pre-

sented in [13] using point to line metrics. The algorithm uses two point clouds

and tries to find the transformation that will best fit one to the other using a

certain type of metrics. The first point cloud is the one acquired using laser

range scanner:

xmi = dmi · cos(αmin +∆ · i)
ymi = dmi · sin(αmin +∆ · i)

(1)
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where xmi and ymi are the coordinates of the i-th point, dmi is the i-th distance

returned by range scanner, αmin is the angular offset of the first beam w.r.t.

the orientation of the laser range finder and ∆ is the angular distance between

two beams. The second data cloud represents virtual measurements acquired

from the map and the current estimate of the location:

xoi = xe + dvi · cos(αmin +∆ · i+ θe)

yoi = ye + dvi · sin(αmin +∆ · i+ θe)
(2)

where dvi is the minimal positive value for which the map position (xoi, yoi) is

occupied, xe, ye and θe are the estimated position and orientation of the vehicle

respectively. dvi represents virtual measurements, and to get the second data

cloud, the following equations are used:

xvi = dvi · cos(αmin +∆ · i)
yvi = dvi · sin(αmin +∆ · i)

(3)

where xvi and yvi represent the i-th virtual measurement data cloud point.

The ICP algorithm represents an efficient method of fitting the two data

clouds as best as possible. Since, in reality, there is a difference between the

map and real working area, in order to reduce possible errors, some of the points

in the point cloud are discarded if they do not satisfy the following conditions:

|dmi − dvi| < ǫ (4)

The choice of ǫ is crucial for the correct working of the algorithm because it de-

termines the maximal allowed error between the estimated and the real position195

of the vehicle, but on the other hand it can have an influence on the precision

of the cloud fitting in situations when there are small differences between the

map and the working area. The solution is to have an adaptive ǫ that is re-

duced during different iterations of the ICP algorithm, since every iteration of

the algorithm should theoretically reduce the position error. Unlike the outlier200

rejection method presented in [13], it is not necessary to define the exact number

of points to be used for ICP, which could in many cases improve the accuracy

of the pose estimate.
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The number of cloud points that satisfy (4) is a measure that determines

the success of scan matching, and in case when the number of matching points205

is too small, it is considered that localization is unsuccessful, and the obtained

result is discarded.

2.5. Localization result improvement using Discrete Fourier Transform

The results obtained using AMCL with ICP are much more precise than

the ones obtained using only AMCL, with very good orientation estimate, but210

a slightly unstable estimate of position. To stabilize the position estimate, a

method based on the Discrete Fourier Transform is used, which assumes a very

accurate orientation estimate.

The basic idea is illustrated by Figure 3, under the assumption that the

position of the vehicle is in the middle of a perfectly round room, as shown in215

Figure 3a. If the initial estimate of the vehicle is moved toward the upper right,

as shown in Figure 3b, then the N = 1440 distance measurements of dmi and

dvi have shapes as depicted in Figure 3c. The difference dmi−dvi has sinusoidal
shape with a period of 1440 where the amplitude of the sinusoid represents the

offset of the real position with respect to the estimated position and the phase220

offset represents the direction. The amplitude and the phase of the sinusoidal

function with the period equal to the number of data points can actually be

obtained as the first element of the discrete Fourier transform.

The first element of the discrete Fourier transform of dmi − dvi is:

X1 =
N−1∑

n=0

(dmn − dvn) · e−2·π·i·n/N (5)

=

N−1∑

n=0

(dmn · e−2·π·i·n/N − dvn · e−2·π·i·n/N ) (6)

Using equations (1) and (3), under the assumption that the scan range is 2π
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and that the starting angle is −π, the following equations stand:

∆ = 2 · π/N
αmin = −π
xmn = dmn · cos(−π + 2πn/N) = −dmn · cos(2πn/N)

ymn = dmn · sin(−π + 2πn/N) = −dmn · sin(2πn/N)

xvn = dvi · cos(−π + 2πn/N) = −dvi · cos(2πn/N)

yvn = dvi · sin(−π + 2πn/N) = −dvi · sin(2πn/N)

(7)

From equations (7) the following equations can be derived:

dvne
−2πin/N = dvn cos(2πn/N)− i · dvn sin(2πn/N) (8)

= −xvn + iyvn (9)

dmne
−2πin/N = dmn cos(2πn/N)− i · dmn sin(2πn/N) (10)

= −xmn + iymn (11)

then equation (6) becomes:

X1 =
∑N−1

n=0
(xm(n) + i · ym(n))

−∑N−1

n=0
(xv(n) + i · yv(n))

(12)

Under the assumption that the distance between the real and assumed position

is small compared to the measured area, the following stands:

∑N−1

n=0
(xv(n) + i · yv(n)) ≈

∑N−1

n=0
(xm(n) + i · ym(n))

+N · xerr +N · yerr · i
(13)

where xerr and yerr are offsets from the virtual to the real position of the vehicle.

From equations (12) and (13), it follows:

X1 ≈ −N · xerr −N · yerr · i (14)

From the discussion above, we conclude that the calculation of the first

element of the Discrete Fourier Transform returns the position offset from the225

estimated to the real position. Since there is a difference between real and virtual

measurements, only measurements that satisfy the condition (4) are taken into
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account. The procedure is iterated several times in order to achieve sufficient

precision of the localization estimate. Figure 4 demonstrates the effectiveness of

the method in the rectangular room. In the event when the estimated position is230

moved for 5m in x and y direction, the amplitude and phase of a discrete Fourier

transform are shown in Figure 4e, and show that the offset from estimated to the

real position of the vehicle corresponds to the amplitude of the first element in

DFT (
√
52 + 52 , 2.36 rad = 135◦). The precision reached after three iterations

is shown in Table 1.235

Table 1: Position error by algorithm iteration, for the example depicted in Figure 4.

Step errx/m erry/m

0 5 5

1 0.11843 0.1183

2 0.0003 0.0003
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(a) The ”real” scan, obtained by a sensor placed

in the center of a perfectly round room.

(b) The ”virtual” scan, which would be obtained

under the (false) assumption that the sensor is

displaced from the room center.

� ��� ���� ����
�

�

��

��

��

��

��

��

��

��

�

�

	
��
�
�
���

����
���	
��
�
�
���

(c) Graphs of the ”real” and ”virtual” measurements, i.e., scans from (a) and

(b). The difference between the two scans has the shape of the green graph.

Figure 3: An illustrative example of the DFT-based localization estimate improvement, in a

circular workspace. By examining the amplitude and phase of the difference between the two

scans (c), we can estimate the magnitude and direction of the offset between the actual sensor

position (a) and the (false) initial estimate (b).
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(a) The ”real” scan, obtained by a sensor placed

in the center of a square-shaped room.

(b) The ”virtual” scan, which would be obtained

under the (false) assumption that the sensor is

displaced from the room center.
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(c) Graphs of the ”real” and ”virtual” measure-

ments, i.e., scans from (a) and (b).
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(d) The difference between the two scans, i.e.,

the blue and green graphs depicted in (c).
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(e) Fourier transform of the difference signal (d). The ampllitude and phase

of the first component, used to compute the position estimate offset, is high-

lighted in red.
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Figure 5: The skilled 1000 autonomous forklift at the Euroimpianti testing facility in Schio.

3. System description

In this section, we introduce the vehicle, present its mathematical model and

describe the environment in which the experiments were performed.

3.1. The Skilled 1000 autonomous forklift

The experiments presented within this paper were conducted using the Skilled240

1000 autonomous forklift, shown in Figure 5. This is a next-generation pro-

totype vehicle manufactured by Euroimpianti company. The vehicle has one

steering wheel in the front and two support wheels at the rear, configured in a

tricycle steering system. It is controlled by controlling the velocity and the angle

of the front wheel. Figure 6 shows the steering configuration of the vehicle.245

The following equations describe the motion of the vehicle in its local coor-

dinate system.

vx = cos(θ) · v1

vy = 0

ψ̇ = sin(θ) · v1
a

(15)

where vx and vy represent translational velocities in x and y direction, ψ̇ is the

vehicle yaw rate, v1 is the linear velocity of the front wheel (traction), θ is the
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steering angle of the front wheel and a is the distance between passive wheels

and driven wheel (see Figure 6). The distance a is directly measurable from

the vehicle’s geometry, whereas v1 and θ can be obtained from motor encoder

values using the following equations:

v1 = ωd · s1

θ = (αs − s2) · s3
(16)

where ωd is the rotational velocity of the traction motor, αs is the angle travelled

by the steering motor and s1, s2 and s3 are scaling parameters obtained by

vehicle calibration. Velocities transformed into the global coordinate system

are expressed as:

vxg = cos(ψ) · vx
vyg = sin(ψ) · vx

(17)

where vxg, vyg are velocities in the global coordinate system in the x and y

directions respectively. The odometry-based position estimate is obtained by

integrating velocities. Since the controller operates on discrete time samples,

integration is approximated by:

xk = xk−1 + vxg(k) · Ts
yk = yk−1 + vyg(k) · Ts
ψk = ψk−1 + ψ̇(k) · Ts

(18)

where Ts is the sampling time and xk, yk and ψk represent the odometry-based

pose of the vehicle at time step k.

The vehicle is equipped with four on-board lasers, three of those are safety

lasers Sick S300 located at the ground level used to safely stop the vehicle if it

comes too close to a moving or static obstacle. The fourth laser is the navigation250

laser Sick NAV350, a laser range scanner with the view angle of 360◦. It provides

the functionality of localizing the vehicle in 2-D space using reflective markers

mounted in the environment. Range data from the navigation laser are used for

the localization method presented within this paper.

Due to the prototype nature of the presented navigation and localization255

system, all of the algorithms were implemented on notebook PC that was inter-
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Figure 6: The car-like kinematics of the LGV. The front wheel is used for both steering and

traction. The unactuated rear wheels, located sideways from the forks, are for stabilization

only.

faced to several systems of the vehicle (Figure 7). Communication to the motor

drives over CAN bus is used for gathering odometry data and for controlling ve-

hicle motion. The ethernet interface was used for receiving range data from the

NAV350 scanner. The ModbusTCP protocol was used for communicating with260

the system computer in order to enable and disable particular safety features

when approaching a docking station. Data from the safety scanners (not used

in the work presented in this paper) was retrieved through the RS422 interface.

All of the algorithms described within this paper were running on the lap-

top PC under the Ubuntu 14.04 operating system. The algorithms were imple-265
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Figure 7: Interfacing of the control computer to the vehicle. By connecting our computer to

the CAN Bus we can override the commands sent by the standard QNX-based controller and

have full control over vehicle motion. Laser range readings from the NAV350 and the S300

are received over TCP/IP and RS422 respectively.

mented within the Robot Operating System (ROS) framework [23].

3.2. The testing environment

The localization experiments have been performed at the Euroimpianti man-

ufacturing and testing facility in Schio (VI), Italy. The floorplan of the facility

is shown in Figure 8. It consists of a 80m by 50m main hall and a 20m by270

50m storage area. The main hall is used for assembling and testing palletiza-

tion lines and AGVs, with over 30 people working there on a typical day. This

facility provided a realistic unstructured operating environment for evaluating

the accuracy of our localization algorithms. At the time our experiments were

performed, two tire storage lines were being assembled in the southern and275
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Figure 8: Floorplan of the Euroimpianti facility. The occupancy grid map used in the exper-

iments is overlaid with the architectural CAD drawing (red lines). The resolution of the map

is 5cm per pixel. Blue lines correspond to all paths travelled by the vehicle during the exper-

iments. Red capital letters denote the docking stations, i.e. locations at which localization

accuracy is evaluated. The green rectangle denotes the approximate area where ground truth

information was provided by the reflective marker system.

south-western corridors, and this entire area was inaccessible to our vehicle. An

approximately 45m by 15m area (marked by the green rectangle in Figure 8)

was equipped with reflective markers providing ground truth information on

vehicle pose.

Our experiments were performed in the eastern part of the facility. Six280

locations within the marker equipped area were chosen as docking stations where

the localization system accuracy was evaluated. We used the northern hallway

to drive the vehicle over longer distances, in order to check the robustness of

our system to extensive vehicle motion. All paths taken by the vehicle during
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(a) Testing area equipped with reflective mark-

ers. The occasional motion of the big palletiz-

ing robots is a small source of dynamics at 2.5m

height.

(b) Northern hallway with the high stack storage

shelf. Occasional loading and unloading items

was another source of dynamics at 2.5m.

Figure 9: Photographs of the testing environment at the Euroimpianti facility. The environ-

ment at 2.5m height is mostly static, however, some occasional dynamics are present.

the experiments are shown with blue lines in Figure 8. Photographs of the285

experimental area are shown in Figure 9.

4. Vehicle positioning system

In order to experimentally verify the proposed localization algorithm on the

LGV1000, a properly designed vehicle navigation system is necessary. Since the

existing vehicle navigation system only works with predefined waypoints and290

paths, and we wanted to have more freedom in experimenting with the vehicle,

we implemented a navigation system capable of autonomously planning its path.

Forklift delivery missions usually consist of two distinct parts: point-to-point

navigation and docking. In the navigation phase, the vehicle should take the

shortest path from its current location to the docking station. In the docking295

phase, the vehicle must precisely align its orientation in order to position its

forks correctly for pallet pickup or delivery. In this section, we describe the

implementation details of motion control components that handle both of these

tasks.
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4.1. Point-to-point navigation300

The primary goal of point to point motion controllers is to safely navigate

the vehicle along the shortest obstacle-free path from an initial location towards

a desired destination in the vehicle working space. Obviously, this functionality

can be achieved by integration of the path planning and the path tracking al-

gorithms. Therefore, the first step at the navigation system design phase is the305

selection and implementation of an appropriate path planning algorithm. Unlike

most practical AGV systems in which the vehicles follow paths along predeter-

mined path network, we decided to implement a free-ranging motion scheme

which enables planning and execution of motions within the entire obstacle-

free space. The adoption of the free-ranging motion scheme is more suitable310

for performing localization experiments as it allows for easy definition of arbi-

trary motion sequences within any part of the dynamic working environment.

An important aspect that had to be considered during the design of the path

planing algorithm is related to path feasibility due to the non-holonomic vehicle

constraints.315

Considering the desired free-ranging properties together with the path fea-

sibility requirements, we decided to implement a path planning method based

on the use of a state lattice. The state lattice, introduced in [24], represents a

sampled vehicle state space which encodes feasible motions by design. The first

step in the design of a path planning algorithm based on the use of a state lattice320

is the state lattice construction process. In this process, a vehicle state vector

[x, y, ψ] is uniformly sampled all over the vehicle workspace and the interval

[0, 2π], respectively. In this work we use the state lattice with π/8 orientation

resolution and 0.25m distance between any two adjacent states in the x − y

plane. At the second step a boundary value problem (BVP) is solved in order325

to generate feasible motions (motion primitives) connecting one sampled state

to a certain number of nearby states (Figure 10a). The number of states that

each state is connected to, as well as the state sampling density is chosen based

on the size of the vehicle, the size of workspace, and vehicle steering limitations.

Since states are sampled uniformly over x and y, the calculated motion primi-330
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tives can easily be translated to any other discrete state in the working space.

The overall path planning problem is then reduced to finding an appropriate

sequence of motion primitives π = (p0, · · · , pn), which represents the resulting

vehicle path connecting the initial and desired vehicle states (Figure 10b). The

constructed state lattice can easily be represented in a form of a directed graph335

G = 〈V, E〉. Each node v ∈ V represents a valid vehicle pose, while each edge

e ∈ E represents a feasible motion with respect to the non-holonomic vehicle

constraints. In this way, the overall path planning problem is reduced to a

graph search problem and thus any graph search algorithm can be used to find

a path between any two sampled states. In this work we have implemented the340

well-known A* search algorithm which uses Euclidean distance as a heuristic

function. During the process of searching for the shortest path, each candidate

path segment is also checked for collision against static obstacles in the working

space. For this purpose the vehicle workspace is divided into cells. A cell is

considered occupied if an obstacle is present in any part of it. The implemented345

collision detection mechanism detects collisions by checking the availability of

all cells that are to be occupied by the vehicle during the execution of the can-

didate path segment. In case a collision has been detected, the corresponding

path segment is excluded from the set of candidate segments. This procedure

yields an obstacle-free path towards the desired vehicle’s pose.350

Once the path planning algorithm has been implemented, it was necessary to

implement an appropriate path tracking algorithm to ensure that the vehicle can

accurately follow the calculated path. For this purpose we have implemented

the pure pursuit path tracking algorithm [25]. The parameters of this algorithm

have been experimentally adjusted to values which ensure a precise path follow-355

ing as well as accurate vehicle positioning. The described path planning and

path tracking algorithms have been implemented within a custom ROS package

intended for execution on the on-board PC of the vehicle.
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(a) Visualization of the state lattice around one

of the discrete states in the working space.

(b) Example of resulting vehicle path comprising

a sequence of state lattice segments.

Figure 10: Path planning in free space, based on the use of a state lattice. The final path is

obtained by ”stitching together” a sequence of lattice segments, ensuring continuous change

of vehicle orientation.

4.2. Docking manoeuvres

The main requirement for docking is that the vehicle goes into the docking360

station following the docking line (line going out of the docking station perpen-

dicular to the dock). Since the dock can have an arbitrary orientation and by

entering a docking station, the vehicle is in reality going into an obstacle, the

path planning presented in Section 4.1 cannot be used for docking manoeuvres

and it is necessary to develop new path planning procedures suitable for these365

special cases. A possible solution is to use the path planning procedure from

Section 4.1 to arrive at the graph node as close as possible to the docking line

with the closest possible orientation and then calculate a continuous path con-

sisting of two segments. The first transtion segment connects the pose of the

mentioned graph node to the docking line using smooth continuous curve where370

the orientation of the end of the segment corresponds to the orientation of the

docking line. The second segment follows the docking line until the vehicle ar-

rives at the docking station. General path of the docking manoeuvre is shown

in Figure 11.

In the case when the orientation of the vehicle w.r.t to the orientation of375
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Figure 11: The two-segment docking path. The docking line (blue) ensures straight vehicle

motion for picking up and delivering pallets. The transition segment (red) ensures a smooth

transition between the initial pose of the vehicle and the docking line.

the goal point is greater than δmax(dependent on the configuration of the ve-

hicle) or when distance from the vehicle to the docking line is greater then

dmax(dependent on the configuration of the vehicle), the motion is assumed not

feasible.

The only problem remaining is the choice of a nonlinear function for the first

segment. Given that the starting and ending orientation are going to be similar,

the following function is chosen:

f(x) = a(1− cos(b · x)). (19)

If (xs, ys, ψs) is the starting pose and (xe, ye, ψe) is the end pose of the segment,

then the following is the relative pose of the end pose with respect to the start

pose:

xr = (xe − xs) cos(−ψs)− (ye − ys) sin(−ψs)

yr = (xe − xs) sin(−ψs) + (ye − ys) cos(−ψs)

ψr = ψe − ψs

(20)

The problem comes down to the following: find parameters a and b such that:

yr = a(1− cos(b · xr))
dy
dt = b sin(b · xr)
dy
dt = tan(ψr)

(21)
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(a) Transition segment shapes for a range of dif-

ferent initial offsets in the x coordinate.
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(b) Transition segment shapes for a range of dif-

ferent initial offsets in the y coordinate.

Figure 12: Transition segment shapes for different initial offsets x and y coordinates respec-

tively.

Since equation (19) is periodic, there is an infinite number of solutions to the

equation (21). To avoid this problem, the range of a and b is limited in such a

way that only the first solution is found:

a ∈ [−0.5yr,−1.5yr] ∪ [0.5yr, 1.5yr]

b ∈ [ π
2xr

, 3π
2xr

]
(22)

The solution to the equation (21) (parameters a, b) with constraints (22) is380

found numerically.

Figure 12 shows graphs of the transition segment for different x and y coor-

dinates. The path segment, defined by a set of points distributed from starting

pose to the ending pose, can be calculated by selecting N equally distributed

points in the range [0, xr], and using equation (19) to calculate the y coordinate385

of each point. This procedure returns a set of points (xri, yri) that represent

path points in the coordinate frame of the starting pose. To acquire the path

segment in the global coordinate frame, points (xri, yri) have to be converted
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using the inverse of the equation (20):

xi = xri cos(ψs)− yri sin(ψs) + xs

yi = xri sin(ψs) + yri cos(ψs) + ys
(23)

During pallet pickup, the assumption that the pallet orientation and position390

are known is sound, since it is aligned before reaching the pickup location.

Planning of the docking maneouver starts when the vehicle reaches the position

assumed to be close to the docking line and with the similar orientation. Unlike

the method presented in 4.1, which is calculated offline, approach presented

within this section is fast enough to be calculated online.395

5. Experimental evaluation

In the period between March 10 and March 13 2015, we performed con-

tinuous localization experiments with a LGV1000 vehicle prototype at the Eu-

roimpianti facility in Schio (Vicenza, Italy). By continuous, we mean that there

was no manual intervention in the localization estimate during the experimental400

period. During this time, the vehicle was in motion for over 19 hours, logging a

total path of over 8.5km and performing 287 docking manoeuvres at designated

docking stations. All the relevant data was recorded using the rosbag tool from

ROS. In the remainder of this section we explain the methodology used to eval-

uate the accuracy of our localization algorithm and present the experimental405

results.

5.1. Methodology description

The goal of our experiment was twofold:

1. verify that the localization accuracy of our algorithm stack is within

0.015m and 0.5◦ at designated docking stations410

2. assert that the localization error does not systematically increase with

long-term and long-range vehicle motion
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These requirements stem from industry practice, as AGVs perform repetitive

tasks over extended periods of time. The necessary localization accuracy is

set by commonplace warehousing system design practice, where (de)palletizing415

manipulators operate on predefined trajectories, without measuring the exact

position of the pallets. Therefore, pallet placement must be performed with

high accuracy.

Figure 13: Docking poses at which localization accuracy is evaluated. The positions were

chosen to span the whole area covered by the reflective markers, where accuracy evaluation

can be performed.

To verify the accuracy of our localization algorithm, we performed repeated

docking manoeuvres at six different poses in the environment, depicted in Fig-420

ure 13. At these poses we evaluate both localization accuracy and positioning

accuracy. A state of the art reflective marker based system, installed in the

eastern corridor (area marked by green rectangle in Figure 8) was used for ob-
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taining ground truth information on vehicle pose. In the evaluation of results,

we follow the methodology presented in [7]. In order to avoid the inaccuracies425

introduced by the non real-time nature of the computer running the algorithm

and the lack of timestamp synchronization with the NAV350 scanner, accuracy

is evaluated once the vehicle reaches its target pose and stops its motion. Addi-

tional inaccuracies could be introduced by the mapping procedure, as the map

was generated from odometry and laser scanner data only, without using ground430

truth information, as well as by the limited accuracy of the marker based system

itself. Therefore, we analyse relative errors, with respect to the reference poses

depicted in Figure 13. The pose reached by the vehicle upon the first docking

manoeuvre at each respective docking station is taken as the reference pose. For

every subsequent pose, the positioning error is computed as the deviation from435

the reference pose, as reported by the marker based localization system. The

localization error is computed as the difference between this positioning error,

and the positioning error reported by our localization algorithm.

During the experiment, the vehicle was operated in three modes: manual,

semi-automatic with goals provided manually by the operator, and fully auto-440

matic, cyclically executing a sequence of missions loaded from a file. The goal

was to verify that the localization error does not systematically increase as the

vehicle operates for extended periods of time and traverses greater distances.

Furthermore, by changing mission sequences from time to time, we made sure

that different approach paths were taken by the vehicle, thus verifying the ro-445

bustness of our approach. It is also important to point out that the testing

facility was fully operational for the whole duration of the experiment. Work-

ers and other vehicles, both autonomous and human operated, were constantly

present in the environment. However, due to the fact that the NAV350 scanner

is mounted at 2.5m, which is standard for this vehicle model, the dynamics of450

the environment visible to the scanner was low. Only occasional changes were

visible, when objects were moved to/from high stack storage shelves.
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5.2. Localization accuracy

The localization accuracy results are summarized in Table 2, Table 3 and

in Figure 14 (red boxplots). Out of the total 287 docking manoeuvres, the455

localization estimate provided by our algorithm was within required tolerance

276 times, that is in 96% of cases. The average error is 0.87cm with a standard

deviation of 0.42cm. As Figure 14b shows, the orientation estimate was accurate

at all times.

Table 2: Average localization errors and corresponding standard deviaitons (Sd).

Position error Orientation error

Algorithm Average/cm Sd/cm Average/◦ Sd/◦

AMCL 3.89 3.28 1.27 1.04

AMCL with ICP 1.61 1.03 0.13 0.07

Full stack 0.87 0.42 0.13 0.07

Out of the six docking stations, localization accuracy was over 95% at four460

stations. The worst accuracy was achieved at docks F and E. These docks are

distinguished by two features. Firstly, they lie at the border of the reflective

marker area, so the ground truth information reported at these docks suffers

from outliers. Furthermore, the number of measurements at these docks is sig-

nificantly lower than at the other docks. This is due to the fact that both465

docks are located in parts of the facility which were for a significant amount of

time allocated to other activities, and were therefore inaccessible for our exper-

iments. The small number of measurements makes these locations inadequate

for statistical analysis of the results, however we decided to include them for

completeness.470

To examine the evolution of localization errors in time, in Figure 15 we

display errors from all docking maneuvers as individual data points, ordered by

their time stamp. Again, it is obvious that the orientation errors are almost

an order of magnitude smaller than the industrial requirement. A total of 11
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Table 3: Localization accuracy summary per docking station.

Dock Number of dockings
Number of localizations

within requirements
Percentage

A 82 78 95.12%

B 71 70 98.59%

C 100 99 99.00%

D 25 24 96.00%

E 5 2 40.00%

F 10 8 80.00%

All 287 276 96.17%
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Figure 14: Box plots of positioning and localization errors at the docking stations. Positioning

errors (blue) have larger average values and a higher dispersion, caused by inaccuracies in the

path following implementation.

distance errors are greater than the required 1.5cm, with two significant outliers475

around 3cm, one around 2cm and the remainder well below 2cm. There is no

visible trend that would indicate a systematic increase of errors after 19 hours

of continuous operation. This can also be interpreted as a property of the

environment, i.e., the absence of a systematic error that increases with time
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indicates that the environment is ”static enough” to allow our algorithm to run480

successfully with a static map.
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Figure 15: Evolution of localization errors (position and orientation) in time. Each data point

represents one docking manoeuvre. There is no visible trend that would indicate a systematic

increase in localization accuracy over time.

5.3. Accuracy improvements through scan matching and DFT

Our localization algorithm stack is composed of three components: AMCL,

scan matching and DFT. In this section, we analyse the contribution of each

individual component to the overall accuracy of our stack. To this end, we have485

extracted the localization estimates provided by AMCL only, and by AMCL

with scan matching (without the DFT step) and compared their accuracy to

the accuracy of the full localization stack.

The results of the comparison are summarized in Table 2, Table 4 and Fig-

ure 16. They indicate that each component of the localization stack delivers490
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Table 4: Localization accuracy by docking station, for individual steps of the algorithm.

Percentage of localizations within requirements

Dock AMCL only AMCL with ICP Full stack

A 15.85 35.37 95.12

B 29.58 87.32 98.59

C 13.00 35.00 99.00

D 16.00 32.00 96.00

E 20.00 20.00 40.00

F 20.00 40.00 80.00

All 18.22 49.15 96.17

A B C D E F All

Docking stations

0.00

0.02

0.04

0.06

0.08

0.10

0.12

S
ta

ti
c

p
o
s
it
io

n
e
rr

o
rs

/m

Localization errors (AMCL with scan matching)

Localization errors (full stack)

(a) Position estimate errors obtained by using

AMCL with scan matching, compared to errors

obtained by using the full localization stack.
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Figure 16: Boxplots of localization errors at the docking stations, using AMCL with scan

matching and only AMCL respectively, compared to the errors obtained by using the full

localization stack (AMCL with scan matching and DFT).

a significant increase of accuracy with respect to the previous step. Both the

average error and the standard deviation are reduced roughly by half with each

algorithm step. This observation is consistent over all docking stations. We

conclude that with our implementations of the scan matching and DFT algo-
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rithms, all three algorithm stack components are necessary to achieve a high495

percentage of localizations that satisfy industrial requirements.

5.4. Positioning accuracy

Although the main contribution of this paper lies in the localization al-

gorithm, and the positioning system was implemented simply as a means of

validating localization accuracy, for the sake of completeness we also evaluate500

positioning accuracy. During the run of the experiment, positioning accuracy

was occasionally checked by placing pallets at the docking stations and hav-

ing the vehicle transport them between different stations. Two snapshots of a

delivery mission between dock C and dock D are shown in Figure 17.

(a) Pallet pickup at docking station C. (b) Pallet stacking at docking station D.

Figure 17: Snapshots of a pallet delivery mission between docking station C and docking

station D. This is one of the delivery missions that was repeated cyclically during the course

of the experiment. On some runs, real pallets were used in order to visually demonstrate the

accuracy of the localization and positioning system.

The analysis results are depicted by the blue boxplots in Figure 14 and the505

vehicle positioning errors at the six docking stations are depicted in Figure 18.

The average positioning error is 1.3cm with 0.6cm standard deviation, which

comes very close to satisfying the industrial requirements. Scatter plots in

Figure 18 also reveal that the vast majority of positioning errors have acceptably

small values. However, the discrepancy between localization and positioning is510

very obvious in the case of orientation errors, depicted in Figure 14b. The main
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reason for the relatively poor performance of the positioning system with respect

to orientation accuracy is a flaw in the path following algorithm design. Path

following is implemented as a pure pursuit algorithm, which uses a look-ahead

distance parameter to steer the vehicle towards a point on the path which is at515

some distance from the current position of the vehicle. With a straight path

(which the final approach segment of a docking maneuver always is), bigger

look-ahead distances result in more stable orientation of the vehicle. However,

in our current implementation, as the vehicle approaches the final point on its

trajectory, the look-ahead distance starts shrinking (because there are no further520

points to track), steering the vehicle more aggressively towards the goal. The

result is that even very small position errors will result in significant changes in

orientation when close to the goal.

Looking at the positioning accuracy scatter plots in Figure 18, there is a

noticeable bias, i.e., the blue crosses are predominantly grouped on one side525

of the origin (zero error), marked by the red circle. This is a consequence of

the tolerance margin of the positioning system and can be better understood

by looking at the docking paths, depicted in Figure 19 for docking station A.

In our experimental procedure, when we sent a vehicle to a docking station for

the first time, the pose obtained after this initial manoeuvre was used as the530

pose reference for all subsequent dockings. Because the positioning algorithm

requires a small tolerance value, it would stop the vehicle shortly before reaching

the goal pose.
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(a) Docking station A. (b) Docking station B.

(c) Docking station C. (d) Docking station D.

(e) Docking station E. (f) Docking station F.

Figure 18: Vehicle positioning accuracy at the docking stations. Red circles represent the

initial docking manoeuvre and the blue crosses represent subsequent dockings. The bias is

due to the limited accuracy of the positioning algorithm implementation.
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by the vehicle to approach docking station A.
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(b) A zoomed-in view of some of the paths exe-

cuted by the vehicle to approach docking station

A.

Figure 19: Several paths executed by the vehicle at docking station A. This docking station

was always approached along the negative x-axis. The zoomed-in view reveals the accuracy

limits of the marker-based localization system, which is around 2cm.
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6. Conclusions and future work

In this paper we have presented an algorithm stack for high-precision lo-535

calization of autonomous ground vehicles in industrial environments. Through

an extensive experiment in a realistic industrial environment, we have demon-

strated that the algorithm is capable of maintaining a localization estimate over

extended periods of time, that is accurate to sub-centimetre and sub-degree

levels. This algorithm presents a clear improvement over the industrial state of540

the art, as it can provide the required levels of accuracy and robustness, while

requiring no external infrastructure. At the same time, it is competitive with re-

spect to the most recent scientific research results. In our implementation, the

DFT-based position estimate refinement that we propose has enabled a 50%

reduction in the average localization error. Moreover, this improvement has545

enabled our system to satisfy industrial requirements for localization accuracy

in over 96% of evaluated measurements.

In future work, we plan to improve the algorithm performance during vehi-

cle motion by implementing an accurate time stamping mechanism for odome-

try and laser data. Furthermore, we plan to implement several improvements550

to the navigation and path following algorithms, in order to raise the vehicle

positioning accuracy to the level that can satisfy industrial requirements. Fi-

nally, we plan to deploy the described algorithm to a customer site in order to

evaluate it on a time scale of weeks and months. The data gathered during

such an extended timespan would enable us to address the challenging and still555

unanswered questions regarding long-term autonomous vehicle operation in a

changing environment.
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