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High Amplitude, Ultrashort, Longitudinal Strain Solitons in Sapphire
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We demonstrate the development of high-amplitude picosecond strain pulses in a sapphire single
crystal into an ultrafast compressional soliton train. For this purpose, large-intensity light pulses were
used to excite a metal film, yielding a 2 orders of magnitude higher strain than that achieved in earlier
studies. Propagation of the packets is monitored over a distance of several millimeters by means of
Brillouin light scattering. A one-parameter model, based on the Korteweg–de Vries–Burgers equation,
simultaneously explains the observed behavior at all strains and temperatures under study. We predict up
to 11 solitons in the train, reaching pressures as high as 40 kbar and 0.5 ps temporal widths.
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FIG. 1. Top view of the Brillouin scattering configuration in

ricane’’). The output beam of the laser carries 0.75 mJ per the crystal.
In recent years, picosecond longitudinal acoustic pulses
have been applied successfully to analyze nanometer-
sized structures and thin-film multilayers [1–3]. In a
conventional picosecond ultrasonics setup, a minute frac-
tion of the energy of an optical laser pulse (typically
0:1 mJ=cm2) is converted to a coherent acoustic strain of
the order of 10�5, depending on the transducer used. At
these low strains nonlinear effects play no role unless the
strain pulse is allowed to propagate over long distances.

In a pioneering series of experiments in large crystals
at low temperatures, Hao et al. [4,5] demonstrated that
indeed a propagation distance of millimeters is sufficient
to convert a low-strain wave packet into a soliton and an
oscillating tail. These results were shown to be consistent
with simulations based on the Korteweg–de Vries (KdV)
equation in one dimension, signifying that the lattice
itself provides sufficient dispersion for soliton develop-
ment. The combination of high strain values on short
length scales sets the stage for a range of striking non-
linear phenomena. Extension to higher strains may lead to
solitons over much shorter distances, as well as the gen-
eration of extremely fast solitons and soliton trains.
Breakup has been demonstrated experimentally of long-
wavelength disturbances in water basins and liquid-gas
mixtures into soliton trains of considerably higher fre-
quencies [6,7]. Until now, no attempts have been made to
find similar phenomena in the field of ultrashort acoustic
pulses in solids. Recent experiments have shown atomic
motion under high impulsive strain [8–10] and the devel-
opment of shock waves in metal films [11,12]. However,
those experiments focused only on the propagation over
micrometer distances, much too short to obtain ultrafast
soliton trains.

In this Letter, we demonstrate for the first time the de-
velopment of high-amplitude strain pulses into a soliton
train in sapphire at low temperatures. We increase the
strain amplitude of the wave packets in picosecond
ultrasonics by 2 orders of magnitude using an amplified
ultrafast Ti:sapphire laser system (Spectra Physics ‘‘Hur-
0031-9007=02=89(28)=285504(4)$20.00
pulse at a repetition rate of 1.0 kHz and is lightly focused
to a spot of several millimeters in diameter onto the
sample. The sample is a sapphire single crystal of 5�
11� 10-mm3 dimensions, with the c axis perpendicular
to the 5� 11-mm2 surface. A 1000- �A chromium film is
deposited onto this surface. The crystal is mounted into
an optical cryostat to perform experiments down to liquid
helium temperatures. The optical pump fluence is varied
by changing the position of the focusing lens, the upper
limit being the damage threshold of our transducer at
�15 mJ=cm2.

Transient changes of the refractive index due to the
presence of the acoustic wave packets are detected by
means of Brillouin scattering. Momentum conservation
selects a narrow range of Fourier components of the
acoustic wave packet. The frequency-shifted optical
beam is analyzed with a quintuple-pass Fabry-Pérot in-
terferometer and detected by a gated photon-counting
system. This setup has been used recently to observe
mode-locked acoustic wave packets [13,14] and coherent,
monochromatic phonon beams [15,16]. Acoustic fre-
quency components up to �30 GHz in sapphire can be
studied using the scattering configuration through the
side windows of the cryostat (see Fig. 1). Our choice of
the metal transducer guarantees an initial wave packet
with GHz components [17]. The excellent attachment of
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chromium to sapphire and the small acoustic mismatch
results in an acoustic reflection coefficient at the interface
of only 10%.

Brillouin scattering is the ideal technique to study the
development of the wave packet into soliton trains be-
cause the propagation distance can be continuously varied
and the expected spatial walk-off between the solitons
corresponds to wave vectors around the typical scattering
wave vector, yielding excellent sensitivity. We have
chosen to focus the Brillouin laser tightly to a waist of
�4 �m, to achieve an optimal spatial resolution in the
propagation direction.

Numerical simulations of the Korteweg–de Vries–
Burgers (KdV-Burgers) equation were performed using a
discrete, implicit scheme of second order accuracy and
three-level quadratic approximation in time [18]. In those
cases where solitons were formed, part of the simulation
was further evolved using the analytical methods for
soliton trains of Ref. [19]. In all calculations, we use the
known parameters for the elastic constants of second and
third order and the phonon dispersion around the c axis of
sapphire [5].

Figure 2 shows typical traces of the acoustic power vs
propagation distance at 22 GHz, at room temperature and
for six values of the pump fluence. Note the vertical
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FIG. 2. Acoustic power at 22 GHz as a function of propaga-
tion distance in the sapphire crystal, at room temperature.
Points: experimental data. Lines: numerical simulations.
Arrows indicate vertical offsets. Up to 0.5 mm, traces have
been vertically divided by 4. Inset (a): power spectrum of the
initial wave packet used in simulations, with Brillouin inten-
sity (points) obtained at different scattering angles. (b) Initial
waveform used in simulations. (c) Time-domain waveforms
after 5 mm of propagation, in the moving-frame coordinate t�
z=c0, obtained from simulations with corresponding values of
acoustic strain s0.
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rescaling and horizontal expansion in the figure for the
first 0.5 mm propagation distance. At all fluences the
Brillouin intensity initially sharply decreases with dis-
tance, followed by a weak and slow oscillation.
Simulations have been included in the figure using the
KdV-Burgers equation. For the viscosity of sapphire at
room temperature we took 4:54� 10�4 Ns=m2 [20].
Fitted values for the initial acoustic strain s0, the single
adjustable parameter of the model (except for the overall
amplitude), are presented as numbers in Fig. 2(c). Good
agreement between theoretical and experimental traces is
obtained for values of s0 around 10�3, which corresponds
to a transient pressure of 10 kbar. These values coincide
with the absolute Brillouin intensity, gauged against the
measured thermal phonon background in the absence of
strain pulses. Further, temporal traces obtained from the
simulation after a 5-mm propagation distance are in-
cluded in Fig. 2(c), which exhibit the typical shape of
the damped N-wave solution of the Burgers equation [21].
From these simulations we conclude that, at room tem-
perature, the degree of self-steepening does not reach the
critical value in order to bring dispersion into play.

The propagation at intermediate temperatures is
shown in Fig. 3 and shows the typical crossover from
overdamped to virtually undamped propagation. Again,
simulations have been performed succesfully, by tak-
ing a linear temperature dependence of the viscosity
above 100 K [16]. This makes our simulation adjustable
parameter-free. The onset of fast oscillations in the
propagation, between 50 and 100 K, signifies the forma-
tion of solitons, as we show in the following section.
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FIG. 3. Traces of the 22 GHz frequency component for differ-
ent temperatures, at a pump fluence of 4:9 mJ=cm2. Points:
experimental data. Lines: simulations based on the KdV-
Burgers equation. Inset: values for the viscosity � used in the
simulations.
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FIG. 4. (a) Scans of the 22 GHz Fourier component of the
acoustic wave packet, for different pump fluences, at a tem-
perature of 5 K. Points: experimental data. Lines: simulations
based on the KdV equation. (b) Values for the acoustic strain
obtained for the simulations at temperatures of 293 and 5 K.
(c) Time domain traces, for several propagation distances z,
obtained from simulations based on the KdV equation, for an
initial strain of 1:75� 10�3. (d) Fourier transform of the
experimental scan of (a) at 6:5 mJ=cm2.
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Simulations in the crossover regime have not been per-
formed, because the specific anharmonic process in-
volved in the damping is not known. At a temperature
of 5 K, however, we may neglect damping completely.

Finally, we present traces taken at a temperature of 5 K,
again at 22 GHz, and for a range of pump fluences [see
Fig. 4(a)]. We observe for all curves an initial decay
reminiscent of the behavior at higher temperatures, but
slightly faster. Beyond a propagation distance of a few
hundred micrometers, we can discern fast oscillations in
the acoustic power, with a period decreasing with increas-
ing pump fluence. After a propagation length of several
millimeters, the characteristic oscillations become less
distinct.

At this point we show that this behavior can readily be
simulated by the KdV equation. In the present simula-
tions, proper corrections were made for the strain values
to account for the temperature-dependent absorption
changes in the transducer [see Fig. 4(b)], leaving us again
without any adjustable parameters. The results are plotted
in Fig. 4(a) and show a remarkable agreement up to
several millimeters propagation length. General features
such as the initial decay, fast oscillations, and the tran-
sition from an oscillatory to a more complex behavior
after several millimeters are correctly reproduced by the
calculations.

Figure 4(c) shows the simulated successive stages of
the development of the wave packet into a soliton train.
Inspection of the experimental data and the simulations
reveals that the initial decay of the Brillouin intensity is
produced by self-steepening of the wave packet and con-
comitant up-conversion of the acoustic energy to frequen-
cies as high as 1 THz, i.e., beyond the experimental
window. Only at these high frequencies, phonon disper-
sion provides enough phase accumulation to balance self-
steepening and initiate soliton formation in the leading
part and the so-called radiative tail in the trailing part.
The variations of the Brillouin intensity vs propaga-
tion distance can then indeed be traced back to Bragg
scattering off the soliton train, with resonance length
	res � 1=
B as indicated in the figure (
B denotes the
Brillouin frequency). Two solitons of different ampli-
tudes and consequently different velocities v1; v2 would
already result in one oscillation, with a period of  �
c20=�v1 � v2�
B, c0 being the sound velocity. For a veloc-
ity difference of 10�3c0, this will give an oscillation with
a period of  � 0:51 mm. N solitons produce �N � 1�!
spatial resonances at maximum, resulting in a compli-
cated beating pattern as a function of propagation dis-
tance, as we observe experimentally. We examine in
Fig. 4(d) the spatial-Fourier transform of one of the ex-
perimentally obtained diagrams of Fig. 4(a) and resolve
at least nine distinct contributing frequencies. This di-
rectly poses a lower limit on the number of solitons (and
tail) of N � 5. From the simulation it can further be
observed that the distances between the solitons are al-
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most equal, implying degeneracy of many spatial reso-
nances and a reduction of the number of experimentally
observable beating frequencies. The limited propagation
length in our experiments unfortunately prevents an exact
determination of the number of solitons in the train
directly from the spatial-Fourier spectrum of Fig. 4(d).
However, accurate knowledge of all material parameters
and experimental conditions allows us to define a proto-
type wave packet, the soliton train of Fig. 4(c), that is
consistent with all our experimental data.

The bold extrapolation from the GHz Brillouin-
scattering data to the THz characteristics of the wave
packet is in our opinion justified by the excellent agree-
ment between the experimental and computed behavior.
285504-3
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In the problem of nonlinear wave propagation, one cannot
simply separate the behavior of the high- and low-
frequency components of the wave packet: they are in-
herently coupled and interlaced. This fact allows one to
draw detailed conclusions on the evolution of high-
frequency components, once the low-frequency behavior
is assessed to sufficient precision as we did using Bril-
louin spectroscopy. A viscously damped N wave must
evolve according to a typical diffusive scaling law [21],
which explains the slowing down of the oscillations in the
high-temperature Brillouin data. KdV solitons propagate
with constant velocity and therefore will exhibit a con-
stant oscillation period in the Brillouin signal. As the
KdV soliton is a one-parameter entity, its amplitude and
width follow directly from this velocity. Inelastic light
scattering thus forms a unique monitor of soliton-train
evolution inside a crystal, despite the fact that the solitons
consist of very high-frequency components, far beyond
the bandwidth of a Brillouin spectrometer.

In conclusion, we have efficiently generated planar,
high-intensity acoustic wave packets of picosecond dura-
tion and monitored their propagation using Brillouin
scattering. High-intensity optical excitation yields a 2 or-
ders of magnitude higher strain and correspondingly
higher conversion of absorbed energy to coherent phonons
than conventional picosecond ultrasonics. Experiments at
low temperature have been described successfully by the
KdV equation. From these calculations, we predict the
development of an acoustic soliton train of up to 11 indi-
vidual solitons, reaching a strain as high as 4� 10�3, a
subpicosecond time duration, and a 5-nm spatial width.
Further measurements show that solitons can be formed
at temperatures as high as 50 K. Above 100 K, damping of
high acoustic frequencies completely eliminates the role
of dispersion, resulting in weak shock wave formation.

Potential applications of intense subpicosecond acous-
tic pulses are in strain-induced chemistry and surface
science, and possibly switching of synchrotron beams
[22,23]. Further, the small acoustic wavelength and
highly localized energy content make ultrashort acoustic
solitons a potentially suitable vehicle for patterning or
imaging of nanometer-scaled objects. The feasibility to
generate these pulses up to liquid nitrogen temperatures
may therefore be of technological relevance. Research at
even higher nondestructive excitation intensities will be
possible but requires a stronger or embedded transducer.
Intense subpicosecond acoustic wave packets will cer-
tainly open up new areas of fundamental research on
vibrational dynamics [24] and phonon localization in
glasses [25,26]. Finally, the single-cycle pulse shape and
quadratic nonlinearity provide a new and fascinating
playground for fundamental studies on one- and higher-
dimensional solitons, in analogy with their optical coun-
terparts [27,28].
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