
High Assurance Services Computing

Jing Dong · Raymond Paul · Liang-Jie Zhang
Editors

High Assurance Services
Computing

123

Editors
Jing Dong
Department of Computer Science
University of Texas, Dallas
2601 N. Floyd Road
P.O. Box 830688
Richardson TX 75083

jdong@utdallas.edu

Raymond Paul
Department of Defense
4502 7th St. NE.,
Washington DC 20017
USA

Liang-Jie Zhang
IBM Research

USA
zhanglj@us.ibm.com

ISBN 978-0-387-87657-3 e-ISBN 978-0-387-87658-0
DOI 10.1007/978-0-387-87658-0
Springer Dordrecht Heidelberg London New York

c© Springer Science+Business Media, LLC 2009
All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York,
NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in
connection with any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

USA

raymond.paul@osd.mil

Library of Congress Control Number: 2009928694

19 Skyline Dr.
Hawthorne NY 10532

Table of Contents

Preface ..VII

Chapter 1 Translucent Replication for Service Level Assurance.....................1
Vladimir Stantchev and Miroslaw Malek

Chapter 2 Trustworthiness Assessment Framework for Net-Centric
Systems ...19

Raymond Paul, Jing Dong, I-Ling Yen, and Farokh Bastani

Chapter 3 A Trust Monitoring Architecture for Service-Based Software45
Mohammad Gias Uddin and Mohammad Zulkernine

Chapter 4 Human Interoperability Enterprise for High-Assurance
Systems ...65

Raymond Paul, Stefania Brown-VanHoozer, and Arif Ghafoor

Chapter 5 Service Composition Quality Evaluation in SPICE Platform89
Paolo Falcarin

Chapter 6 High-Assurance Service Systems ..103
Jay Bayne

VI

Chapter 7 A Graph Grammar Approach to Behavior Verification
of Web Services.. 127

Chunying Zhao, Kang Zhang

Chapter 8 A Formal Framework for Developing High Assurance Event
Driven Service-Oriented Systems .. 145

Manuel Peralta, Supratik Mukhpadhyay, and Ramesh Bharadwaj

Chapter 9 Towards A Dependable Software Paradigm
for Service-Oriented Computing.. 163

Xiaoxing Ma, S.C. Cheung, Chun Cao, Feng Xu, Jian Lu

Chapter 10 Developing Dependable Systems by Maximizing Component
Diversity ... 193

Jeff Tian, Suku Nair, LiGuo Huang, Nasser Alaeddine and Michael F. Siok

Chapter 11 High Assurance BPEL Process Models 219
Mark Robinson, Hui Shen, Jianwei Niu

Chapter 12 Specifying Enterprise Web-Oriented Architecture................... 241
Longji Tang, Yajing Zhao, Jing Dong

Chapter 13 Designing an SOA for P2P On-Demand Video Delivery 261
Zhenghua Fu, Jun-Jang Jeng, Hui Lei, and Chao Liang

Chapter 14 A Coverage Relationship Model for Test Case Selection
and Ranking for Multi-version Software .. 285

Wei-Tek Tsai, Xinyu Zhou, Raymond A. Paul, Yinong Chen, Xiaoying Bai

About the Editors .. 313

About the Authors... 315

Index... 323

Table of Contents

Preface

Services computing is an emerging discipline cross-cutting the science, engi-

neering and technology. It bridges the gap between Business Services and IT Ser-
vices. The scope of services computing covers the whole lifecycle of services in-
novation research and practice that includes services modeling, creation,
deployment, discovery, composition, analysis, and management. The goal of ser-
vices computing is to facilitate the application of loosely-coupled services and
computing technology for building systems more efficiently and effectively. The
core technology suite includes Service-Oriented Architecture (SOA) and Web ser-
vices. SOA is a common platform for implementing large scale distributed appli-
cations by composing services, which are platform independent components run-
ning on different hosts of a network. It offers native capabilities, such as
publication, discovery, selection and binding for creating new applications by
combining services as basic building blocks. A repository of existing services in-
dependent of the underlying infrastructures can be discovered and composed in an
application. The requester and the provider exchange messages via the network
through standard protocols.

SOA is now being deployed in mission-critical applications in domains that in-
clude space, health-care, electronic commerce, telecommunication, and military.
Many critical systems require multiple high assurance, including reliability, safety,
dependability, security, and availability. Failures of such systems may cause the
loss of human lives and finance. For example, the reliability of aircraft/spacecraft
navigation and guidance control systems can affect human lives; the correctness
and timeliness of military command and control systems can be crucial to the suc-
cess of defense missions; the failure of a medical process-control system can cause
death or injury to the patient; the failure of a banking system can cause property
losses for many clients; the failure of a security management system in a network
server can cause chaos and result in financial or intellectual property losses; the
failure of railroad control systems can cause delays and subsequent financial

VIII

losses or can even lead to catastrophic life threatening failures. In modern human
society, our reliance on computer systems can be observed in our daily lives.
From the current trend, our reliance on high assurance systems will grow at an in-
creasing pace. Thus, there is a pressing need for developing computer systems
whose quality can be guaranteed to a high degree; otherwise, we will risk the well-
being of societies at the hands of computer hardware and software failures or mis-
uses by human intruders. Existing methods dealing with such constraints may be
not readily applied in service-oriented environment. Different from traditional
computer-based systems, services are typically third-part entities. There is no
standard way to define high assurance properties in service specifications. Service
interfaces normally focus on the descriptions of functional aspects, such as input,
output, pre/post conditions (IOPE). The high assurance properties of a service are
generally unclear or defined in an ad hoc manner in the service interfaces. This
poses new challenges on service discoveries with high assurance requirements.

A successful service needs to provide the required functionality and the neces-
sary Quality of Service (QoS). The QoS parameters are typically specified in ser-
vice level agreements (SLAs) that the service provider needs to guarantee and
their violation will be penalized appropriately. The QoS constraints that a service
provider guarantees may include run-time properties, such as timeliness, transac-
tion rate, and availability, as well as design-time properties, such as language of
service and compliance. Such high assurance guarantees are difficult to ensure
when services are spatially distributed over a network subject to active attacks,
network congestion, and link delays, which may pose a formidable challenge in
delivering services that meet the SLAs.

There are a number of important issues in high assurance services computing:

 How to describe, assess, and ensure Quality of Service in service-oriented sys-
tems?

 How to manage and evaluate dependability of service compositions from indi-
vidual services?

 How to analyze and assess the trustworthiness of service requestors and service
providers?

 How to facilitate service creations and executions?
 How to verify service behavior and service level agreement?
 How to engineer service-oriented systems?
 How to test service applications?

This book is a collection of fourteen chapters solving some of these problems.

About This Volume

Chapter 1 defines separate levels of Quality of Service (QoS) assurance within
a service-oriented architecture. Each of these levels includes replication options

Preface

IX

that can bring substantial benefits toward high assurance of run-time related non-
functional properties (NFP) in complex environments. Experimental results based
on architectural translucency in health care applications showed an increase of
50% on the NFP levels with more stable QoS levels. The NFP representation has
been formalized for automating runtime assurance and matching between required
and provided QoS levels. System reconfiguration techniques for the different lev-
els within an SOA will dynamically adapt the architecture so that it provides QoS
assurance at different loads.

Chapter 2 considers the challenges of assessing highly critical net-centric sys-
tems. A trustworthiness ontology is developed to capture the trustworthiness as-
pects and their correlations as well as to model various classes of system entities
and their integrations. The ontology provides information to guide the trustworthi-
ness analysis and data collection. Based on the ontology, a trustworthiness as-
sessment framework is developed. In the framework, systematic steps are formu-
lated to achieve trustworthiness assessments. Techniques and tools to perform the
assessments in each step are incorporated in the ontology to allow the actual
analysis and derivation of assessment results. A holistic assessment technique is
developed to provide a single overall measure of the trustworthiness of a system
or a subsystem.

Chapter 3 presents a monitoring architecture for managing trust rules in service
interactions. The trust rules identify the contexts of trust concerns and snapshot
system events encapsulating a service outcome that is crucial to the target system.
The proposed architecture, called Trust Architecture for Monitoring, may reside in
each service provider, which allows the analysis of the trustworthiness of users
based on trust rules and calculation schemes. A service requestor is penalized for
the violation of trust rules and rewarded otherwise, which thus facilitates the quan-
tification of its trustworthiness. Incorporating the recommendations from similar
service providers may help collaborative decision making. The performance over-
head of the architecture has been evaluated based on the monitoring of a prototype
trust-aware file-sharing grid.

Chapter 4 addresses the key policy challenges of human interoperability enter-
prise (HIE) and highlights major steps that can lead to the development of a holis-
tic interoperability policy framework for engineering high-assurance systems. The
human performance criteria for high-assurance and trustworthy systems are elabo-
rated. The HIE systems are designed by integrating core technology components
and methodologies drawn from the area of human cognitive engineering. The key
challenges and elicit solutions of HIE systems are closely related to the techno-
logical areas including Human-Centered Computing, Information, Knowledge and
Intelligence Management, service-oriented architecture, and behavioral sciences.

Chapter 5 describes the architecture of the Service Execution Environment that
hides the complexity of the communication environment and the Service Creation
Environment to help service developer in evaluating the quality of an orchestra-
tion of telecom-IT services. Both static and dynamic non-functional properties are
aggregated by the Aggregator service that calculates the overall aggregated non-

Preface

X

functional properties of a service composition designed by the developer, relying
also on the Monitor manager which provides live values of dynamic non-
functional properties such as response time.

Chapter 6 introduces a performance measurement framework for cyberphysical
systems. The framework includes a cyberspatial reference model for establishing
the identity and location of servers and clients in distributed high-assurance ser-
vice systems. It also defines a set of service performance indices to measure the
reliability, availability, safety, security and timeliness properties. An application
neutral, yet operational definition of value useful in high assurance service sys-
tems is developed for defining their respective value propositions.

Chapter 7 applies graph grammars for verifying the behavior of service-
oriented systems. The behavior verification problem is cast to a visual language
parsing problem. A behavior graph is parsed with user-specified rule-based con-
straints/properties expressed by a graph grammar. A parsing result indicates
whether the observed behavior satisfies its requirements or not. A parsing error
represents a potential problem in the service behavior. The approach allows devel-
opers to check the acceptable sequence of message exchanges between services
confirming to some requirements/specifications.

Chapter 8 provides a distributed service-oriented asynchronous framework in
an event-driven formal synchronous programming environment. This model-
driven framework is based on a synchronous programming language SOL (Secure
Operations Language) that has capabilities of handling service invocations asyn-
chronously and provides strong typing to ensure enforcement of information flow
and security policies. The clients' requirements and the service level agreements
can be ensured in the service-oriented systems that have been formally verified.
An infrastructure for deploying and protecting time- and mission-critical applica-
tions on a distributed computing platform is developed especially in a hostile
computing environment, such as the Internet, where critical information is con-
veyed to principals in a manner that is secure, safe, timely, and reliable.

Chapter 9 offers a coordination model for building dynamically adaptive ser-
vice oriented systems. Each service is situated in and coordinated by an active ar-
chitectural context, which mediates the interactions among the services. The archi-
tecture of service oriented applications is self-adaptive for bridging the gaps
between environment, system and application goals with an ontology-based ap-
proach. An access control model is proposed for secure service coordination logic
as well as keeping service autonomy discretionarily with a decentralized authori-
zation mechanism. Three classes of trust relationships are also identified for a trust
management framework to help the understanding and assurance of the trustwor-
thiness of service oriented applications.

Chapter 10 develops a generalized and comprehensive framework to evaluate
and maximize diversity for general service-oriented systems. The dependability at-
tributes of individual service components under diverse operational conditions are
evaluated. The internal assessments of services are linked to their external de-
pendability attributes. The preferences of a specific set of stakeholders can also be

Preface

XI

used to assess the relative importance and trade-off among dependability attrib-
utes. The evaluation framework also includes an overall methodology that maxi-
mizes system diversity using a mathematical optimization technique for ensuring
system dependability via diversity maximization that combines collective
strengths of individual services while avoid, complement, or tolerate individual
flaws or weaknesses.

Chapter 11 transforms the BPEL processes into Unified Modeling Language
(UML) sequence diagrams for consistency analysis. Since sequence diagrams are
intuitive and show temporal-based execution naturally, they help to ease the learn-
ing curve of BPEL’s nomenclature and reduce errors. Two examples have demon-
strated the discovery of certain errors in the sequence diagrams with tool support.

Chapter 12 specifies both structurally and behaviorally the Enterprise Web-
Oriented Architecture (EWOA) and analyzes its software quality attributes. The
specification of the EWOA is based on a generic model of the Enterprise Service-
Oriented Architecture. The EWOA style consists of a set of design principals
based on REST and Web 2.0, a set of architectural elements of infrastructure,
management, process, and a set of software quality attributes. Based on the analy-
sis of the security and manageability issues of EWOA, the pure RESTful system
architecture with RESTful QoS governance and a hybrid approach with both
REST and SOAP for enterprise are proposed.

Chapter 13 outlines a service oriented architecture for the Peer-Assisted Con-
tenT Service (PACTS) that is a video on demand streaming system. The PACTS
organizes elements of traditional video streaming and peer to peer computing into
loosely-coupled composable middleware services and distributing them among
participating entities for high-quality low-cost video streaming at a large scale and
in real time. The implementation of PACTS has demonstrates effectively offload
server’s bandwidth demand without sacrificing the service quality and in dynamic
settings with system churns. It shows significantly reduces bandwidth utilization
at the server by leveraging peer assistance. The service level agreement specifica-
tion is modeled to differentiate QoS to end users based on their bandwidth contri-
butions to the system to derive the minimum and maximum QoS level given a
bandwidth budget at the server side.

Chapter 14 proposes a Model-based Adaptive Test (MAT) for multi-versioned
software based on the Coverage Relationship Model (CRM) for case selection and
ranking technique to eliminate redundant test cases and rank the test cases accord-
ing to their potency and coverage. It can be applied in various domains, such as
web service group testing, n-version applications, regression testing, and specifi-
cation-based application testing. Two adaptive test cases ranking algorithms are
provided by using the coverage probability. Experiments are conducted using the
proposed techniques. The experiment results indicate that the CRM-based test
case selection algorithm can eliminate redundant test cases while maintaining the
quality and effectiveness of testing.

Preface

XII

This book is intended particularly for practitioners, researchers, and scientists
in services computing, high assurance system engineering, dependable and secure
systems, and software engineering. The book can also be used either as a textbook
for advanced undergraduate or graduate students in a software engineering or a
services computing course, or as a reference book for advanced training courses in
the field.

Acknowledgements

We would like to take this opportunity to express our sincere appreciation to all
the authors for their contributions and cooperation, and to all the reviewers for
their support and professionalism. We are grateful to Springer Publishing Editor
Susan Lagerstrom-Fife and her assistant Sharon Palleschi for their assistance in
publishing this volume.

Jing Dong
Raymond A. Paul
Liang-Jie Zhang

Preface

Chapter 1

Translucent Replication for Service Level
Assurance

Vladimir Stantchev*1 and Miroslaw Malek**

* International Computer Science Institute, Berkeley, California (vstantch@icsi.berkeley.edu)

** Humboldt-University at Berlin, Germany

Abstract: Web services are emerging as the technology of choice for providing
functionality in distributed computing environments. They facilitate the integra-
tion of different systems to seamless IT supporting infrastructure for business
processes. Designing a service-oriented architecture (SOA) for this task provides a
set of technical services and composition techniques that offer business services
from them. There are two basic aspects of a successful service offering: to provide
the needed functionality and to provide the needed Quality of Service (QoS). Mis-
sion-critical applications in health care require high and stable QoS levels. The
complexity of different web service platforms and integration aspects make the
high assurance of such run-time related nonfunctional properties (NFPs) a non-
trivial task. Experimental approaches such as architectural translucency can pro-
vide better understanding of optimized reconfigurations and assure high and stable
QoS levels in mission-critical clinical environments.

1. Introduction

Web services are emerging as a dominating technology for providing and combin-
ing functionality in distributed systems. A service-oriented architecture (SOA) of-
fers native capabilities, such as publication, discovery, selection and binding [1].
Since services are basic building blocks for the creation of new applications, the
area of composite services is introduced on top of native capabilities. It governs
the way applications are developed from basic services. Here, richer interface de-

1 Vladimir Stantchev is also a senior lecturer at the Fachhochschule fuer Oekonomie und
Management in Berlin, Germany

J. Dong et al. (eds.), High Assurance Services Computing,
DOI 10.1007/978-0-387-87658-0_1, © Springer Science+Business Media, LLC 2009

2

finitions than the Web Service Description Language (WSDL) are needed and
they can be provided in the form of contracts [2, 3].

There are two basic aspects of a successful service offering: to provide the
needed functionality and to provide the needed Quality of Service (QoS). QoS pa-
rameters are part of the nonfunctional properties (NFPs) of a service, typically
specified in service level agreements (SLAs). We distinguish between runtime re-
lated and design-time related NFPs. Run-time related NFPs are performance
oriented. Examples are response time, transaction rate, availability. Design-time
related NFPs such as language of service and compliance are typically set during
design time and do not change during runtime. Run-time related NFPs can change
during runtime when service usage patterns differ (times of extensive usage by
many users are followed by times of rare usage), or when failures occur. Such
failures can occur within the service, as well as in the network components that lie
between user and service. NFPs and QoS are regarded (together with semantics)
as topics that encompass all three levels of services within an SOA (basic services,
composite services, managed services) [1].

Formalization and specification of NFPs and their SLAs is currently a very ac-
tive research field. The enforcement of these levels for runtime-related NFPs can-
not be done automatically a priori, due to the changes in service usage and net-
work availability. An approach to dynamically adapt service performance to these
changes can ensure continuous meeting of service levels. Providing such dynami-
cally reconfigurable runtime architectures is regarded as one of the main research
challenges in the area of service foundations [1]. Such approach should employ
service reconfiguration at runtime, as changes in source code of a service are not a
feasible option. One approach to identify possible reconfigurations in an SOA and
evaluate their implication is called architectural translucency [4]. It describes the
notion that different levels in an SOA can have different implications to service
levels of NFPs and that understanding these implications is key to provide service
level assurance. A central aspect of this approach is to evaluate different replica-
tion configurations at the operating system (OS) and serviceware (SW) level and
how they affect web service performance.
Health care applications often require high and stable QoS levels. This is particu-
larly true for clinical environments where mission-critical IT systems support life-
saving activities.

In order to apply architectural translucency to address high assurance of NFPs
in such clinical environments, several questions arise. First, what is the relation
between replication and assured service levels, especially concerning runtime re-
lated NFPs (Section 2) and how can we formally represent performance aspects
(Section 3). Second, what methods are well suited to research this relation and to
recommend optimized replication configurations (Section 4). Finally, what are the
possibilities to integrate automated assurance of service levels in a clinical envi-
ronment based on these recommendations (Section 5).

V. Stantchev and M. Malek

3

2. Service Level Assurance of Performance

This section describes the effect of web service replication on performance,
presents architectural translucency as approach to decide optimized reconfigura-
tions and the importance of the OS and SW levels as places for possible replica-
tions.

2.1 Replication and Performance

Performance, more specifically transaction rate, is defined as the system output
() that represents the number of successfully served requests from a total of in-

put () requests during a period of time . This is a generalized view of the equa-
tion model presented in [5], where it is referred to as throughput Xa.

The performance of a serial composed service chain is determined by the ser-
vice with the lowest performance. If that service is Service N then its performance
can be defined as follows:

The performance of a serial composed service chain that includes Service N
would be:

The performance of replicated composed service chain that includes Service N
would be:

This definition corresponds to transaction rate as NFP.
Another typical run-time related NFP is response time. The average response

time can be derived from the transaction rate as follows:

1 Translucent Replication for Service Level Assurance

4

Therefore, replication has advantageous effects on service chain performance
when no replica synchronization is required. This applies to transaction rate and
response time as NFPs in a SOA.

The traditional view of availability is as a binary metric that describes status.
Status can be "up" or "down" at a single point of time. A well-known extension is
to compute the percentage of time, on average, that a system is available during a
certain period. This results in statements where a system is described as having
99.99% availability, for example.

There are several extended definitions of availability that address the inherent
limitations of this definition – availability should be considered as a spectrum, ra-
ther as a binary metric. It should also reflect QoS aspects. One possibility is to
measure availability by examining variations in system QoS metrics over time [6].
Therefore, assurance of stable QoS metrics leads to better availability.

2.2 Architectural Translucency

The complexity involved in providing a single web service is often underesti-
mated. A look at hardware platforms, even commodity hardware, reveals complex
microprocessors and processing architecture. Standard OSs are far away from mi-
crokernel designs and contain a large number of OS extensions. These are called
modules in a Linux system and drivers in a Windows system. Beside typical de-
vice drivers, extensions include network protocol implementations, file systems
and virus detectors. Typical component environments such as .NET and J2EE of-
ten serve as the middleware for providing web services [7], here referred to as ser-
viceware. A look at the application programming interfaces of these environments
reveals their complexity.

One general problem in such complex environments is where to introduce a
certain measure (e.g., replication), so that the system can assure optimized per-
formance at certain loads.

Much work has been done in the area of QoS-aware web service discovery [8],
QoS-aware platforms and middleware [9,10,11,12], and context-aware services
[13]. However, all of these approaches do not address assurance of service levels
by a single service, but rather deal with the composition of services where aggre-
gated NFP levels would satisfy a specific requirement.

The existing standards for specification of QoS characteristics in a service-
oriented environment can be grouped according to their main focus: software de-
sign/process description (e.g. UML Profile for QoS and QML - QoS Modeling

V. Stantchev and M. Malek

5

Language) [14], service/component description (e.g. WS-Policy) and SLA-centric
approaches (e.g. WSLA - Web Service Level Agreements [15], WSOL - Web
Service Offerings Language [16], SLAng - Service Level Agreement definition
language [17] and WS-Agreement [18]).

Extensive research concerning NFPs exists in the field of CORBA (Common
Object Request Broker Architecture), particularly in the areas of real-time support
[19,20], replication as approach for dependability [21,22,23,24], adaptivity and
reflection [25,26], as well as mobility [27,28]. Similar approaches involving repli-
cation have been proposed for J2EE-based web services [29,30,31].

To the best of the authors’ knowledge, there are no other published works that
address the question where and how an optimized reconfiguration can be intro-
duced in the complex of hardware, OS and component environment in order to op-
timize the NFPs of web services. Of particular interest is to evaluate whether re-
configurations at one level are generally more advantageous than others. This is
the main objective of architectural translucency as an approach for service level
improvement and assurance. The approach is an extension of architectural ap-
proaches that aim to improve NFPs in one location, e.g., reliability at the OS level
[32], scalability by clustering of web servers [33] or email servers, as well as in-
troducing software RAID approaches [6]. Architectural translucency defines le-
vels that encompass these approaches and compares replication configurations at
the different levels. These levels are: hardware, operating system and serviceware.

Failures at the network level lead to network partitions. There is currently no
convincing way to mathematically model network partitions [34]. Furthermore, it
is NP-hard to derive a partition model from link and node failure models [35].
Currently, architectural translucency does not address questions of network avail-
ability and performance. Nevertheless, there are several promising approaches that
can be combined with architectural translucency in order to incorporate network
availability in overall availability of distributed systems. One possible way is to
incorporate network failures in availability metrics that define Availclient = Availnet-

work×Availservice [34]. Better assignment of object replicas to nodes can further im-
prove availability in such settings [36].

2.3 Experimental Computer Science

Architectural translucency can be classified in the field of experimental computer
science [37]. There are three key ideas in experimental computer science – a hypo-
thesis to be tested, an apparatus to be measured, and systematic analysis of the da-
ta to see whether it supports the hypothesis [37]. The hypothesis is that replica-
tions at different levels and in different ways have different effect on web service
run-time related NFPs (specifically performance). The apparatus consists of typi-
cal platforms for web services (Windows Server with .NET and Internet Informa-
tion Server (IIS), UNIX with WebSphere) and web service benchmarks. Tools like

1 Translucent Replication for Service Level Assurance

6

Microsoft Application Center Test (ACT) and HP LoadRunner allow for auto-
mated testing of web services during long periods and with different loads. They
also facilitate the gathering of large amounts of test data. Statistical tools such as
SPSS [38] and R [39] are well suited to further analyze this data.

3. Performance Models

Some approaches to model performance-related aspects of a system are described
in [40,41,42,43]. One promising approach to analytically model multi-tier Internet
applications was recently published in [44]. The model is based on a network of
queues where the queues represent different application tiers. This research effort
is similar to efforts of Kounev and Buchmann [45] and, more recently, Bennani
and Menasce [46]. The second work is based on previous research published in
[47,5,48,49,50]. Kounev and Buchmann also use a network of queues to predict
performance of a specific two tier application and solve the model numerically us-
ing existing analysis software. Bennani and Menasce model a multi-tier Internet
service that serves multiple types of transactions. The model is again based on a
network of queues with customers belonging to multiple classes.

There are some other recent efforts to model multitier applications. These are
often extensions of single-tier models. One approach [51] considers server provi-
sioning only for the Java application tier and uses an M/G/1/PS model for each
server in this particular tier. Another approach [52] models the same tier as a
G/G/N queue. Other works have modeled an entire multi-tier application using a
single queue (e.g., a M/GI/1/PS queue in [53]).

Various works describe complex queuing models. Such models can capture si-
multaneous resource demands and parallel subpaths within a tier of a multitier ap-
plication. One example is Layered Queuing Networks (LQNs). They are an adap-
tation of Extended Queuing Networks which account for the fact that software
servers run atop of other layers of servers, thus giving complex combinations of
simultaneous resource requests [54,55,56,57,58]. The focus of these works lies
primarily on Enterprise Java Beans-based application tiers.

Extensive work exists in the area of modeling of single-tier Internet applica-
tions, most commonly HTTP servers. One of the early works [59] introduced a
network of four queues to model static HTTP servers. Two of the queues model
the web server, and two – the Internet communication network. Another approach
[60] also presented a queuing model and related average response time to availa-
ble resources. A GPS-based (Generalized Processor Sharing) queuing model of a
single resource (e.g., CPU) at a web server was proposed in [61,62]. A G/G/1
queuing model was suggested in [63], a M/M/1 queuing model to compute web
request response times – in [64]. One web server model with performance control
as objective was introduced in [65]. Menasce [66] presented in 2003 a combina-
tion of a Markov chain and a queuing network model, an idea originally presented

V. Stantchev and M. Malek

7

in [67]. Despite these tremendous developments such models still cannot fully re-
flect the complexity of the three layers of web service platforms concerning NFPs.
Therefore, experimental methods can help to further enhance our knowledge of
optimized configurations in such complex settings.

4. Translucent Replication

In service-oriented computing (SOC) a node receives a stream of requests,
processes them and sends back a stream of results. From an operating system point
of view there exist two general strategies for request processing – threaded request
processing and event-driven request processing. There are two questions that arc-
hitectural translucency can address in this context:

1. Are there ways to introduce (or alter default) replication settings at the OS and
SW level?

2. Can a system assure optimized performance (or other QoS) by reconfiguring
such OS or SW settings?

4.1 Threaded Request Processing

When implementing pure threaded request processing an OS creates a thread for
each client request. The whole request and maybe its subsequent ones from the
same client are processed in the context of this newly created thread. This ap-
proach offers good parallelization of request processing and good utilization of
available resources. Main disadvantage is the large overhead of the thread life-
cycle (creation, management, deletion). Modern OSs address this by employing
thread pools – a specific number of request processing threads are created in ad-
vance and left idle. The OS can then dynamically assign them to incoming re-
quests. Implementations differ in handling new requests if all worker threads are
busy.

4.2 Event-driven Request Processing

With pure event-driven request processing the OS processes all requests within a
single worker thread. Arriving requests are stored in a queue which is used as in-
put for the worker thread. The worker fetches and processes the requests one at a
time. The per request overhead here is minimal (managing the request queue) and
a queuing policy with request priorities can be introduced. The approach is never-

1 Translucent Replication for Service Level Assurance

8

theless contradictory with a key goal of architectural translucency – to ensure high
resource utilization. The low degree of parallelism can result in longer idle times.

4.3 Thread and Process Replication

At operating system level there are two general ways for functional replication –
replication of threads and replication of processes. While in the former a node
creates a new thread to process a client request, in the latter it creates a new
process to handle an incoming request. Generally, it can be assumed that a per-
thread replication should be more favorable to performance as per-process replica-
tion, as the overhead of process management is larger from an OS point of view.
The research of this hypothesis requires knowledge about the mechanisms to con-
trol this type of replication at the OS level of typical platforms for web services.

4.4 Levels

The hypothesis is that there are different levels (HW, OS, SW) where a service
provider can introduce replication and different ways to replicate at each level.
Furthermore, there are differences in web service performance when the provider
applies them. The objective is to define these different ways of replication and
find reconfiguration techniques for them. High assurance during runtime often
makes hardware changes unfeasible or costly. Therefore, in this chapter we focus
on architectural translucency aspects at the OS and SW level.

4.4.1 Operating System Level

When working with typical OS/Middleware configurations for SOC (Windows
Server 2003 with IIS 6 and the .NET Framework, or UNIX and IBM WebSphere)
a service provider has to consider several specifics.

Pure threaded or event-driven implementations are rare. There are different de-
sign patterns for hybrid implementations (staged request processing, thread pools,
reactor pattern).

Windows 2003 with IIS 6 uses the thread pools pattern – when deploying a
web service in IIS 6 it creates one process for the service that also contains a num-
ber of precreated threads. While IIS 5 allowed only changing the number of these
threads per web service process (number specified in the configuration file ma-
chine.config), IIS 6 allows also specifying the number of process replicas to serve
multiple requests. Furthermore, IIS 6 ignores threading parameters known from
IIS 5 such as maxWorkerThreads and minFreeThreads, as threading optimiza-

V. Stantchev and M. Malek

9

tion is automated. A test of replication alternatives at the OS level involves speci-
fying a higher number of process replicas for a web service (see Figure 1).
WebSphere also uses the tread pools pattern; configuration settings are accessible
via the application server menu. The menu item Thread-Pools contains an over-
view of the existing thread pools within the application server. By selecting Web
Container the specific parameters of the thread pool can be configured. The set-
tings for processes and the Java Virtual Machine (JVM) are accessible in the
group Java and Process Management, menu Process Definition.

Service Process

Thread Replica1

Thread Replica …

Thread Replica …

Thread Replica n

Per-thread Replication

Requests Responses

Service Process Replica 1

Thread Replica 1

Thread Replica n

Thread Replica 1

Thread Replica n

Per-process Replication

Requests Responses
Service Process Replica 2

Fig. 1. Replication at OS Level: Per-process Replication vs. Per-thread Replication

Fig. 2. Replication at OS Level: Advantage of Per-process Replication vs. Per-thread Replication

1 Translucent Replication for Service Level Assurance

10

Tests have demonstrated that having two process replicas per web service in-
stead of one can lead to throughput increases of up to 50% under higher loads
(more than 40 simultaneous client requests, see Figure 2). This applies to services
that are already optimized using asynchronous requests and minimizing need for
exclusive hardware access (e.g., hard disk). Performance is also far more stable
with confidence intervals of 99%.

4.4.2 Serviceware Level

Nodes in SOC typically use an application server to manage and host services.
Such application server corresponds to the serviceware level of the presented ap-
proach. It simplifies generic service management tasks, e.g., service configuration,
deployment, connection (with other services) or monitoring. These tasks are often
done using service containers.

Services within a service container can be composed using two general struc-
tures: direct composition and composition via a service bus. Direct composition of
services within a service container resembles the component programming para-
digm: services are explicitly connected with other required services at deployment
time. As precondition the required services must be available. The service bus
concept connects all deployed services to a central bus which is responsible for
request routing to the services. This allows more complex interactions such as the
publish/subscribe approach known from enterprise application integration.

When looking at replication at the serviceware level there are two basic alterna-
tives – replication of service containers (see Figure 3) or replication of services
within service containers (see Figure 4).

Service Container Replica 1

Service 1

Service 2

Service 3

Service Container Replica 2

Service 1

Service 2

Service 3

Fig. 3. Replication of a Service Container

V. Stantchev and M. Malek

11

Service Container

Service 1 Replica 1

Service 1 Replica 2

Service 2 Replica 1

Service 2 Replica 2

Service 3 Replica 1

Service 3 Replica 2

Fig. 4. Replication of Services within a Service Container

Number of Requests

D
ur

at
io

n
in

 m
s

Level of Assured
Performance

Fig. 5. High Assurance through Serviceware Replication

From an object-oriented point of view both these alternatives can be imple-
mented by instantiating new service or container objects. An objective of architec-
tural translucency is to allow for such reconfigurations without reprogramming.

1 Translucent Replication for Service Level Assurance

12

When dealing with replication at the serviceware level using WebSphere, the
question is how to distribute instances in different Web Containers (Web Contain-
ers serve as service containers in WebSphere). Possible ways are to use another
main context or to change the main context manually within the EARs. Manual
change is done by editing the file application.xml in the META-INF directory.
The service provider has to edit the pairs of names so that there is no match within
a pair, especially concerning the elements display-name, web-uri and context-
root. Names of web archive (WAR) files also have to be adapted accordingly be-
fore packing the EAR with jar.

Our results here show distinct performance advantages for replication within a
service container as compared to replication of service containers. Furthermore,
when we focus on aspects of high assurance we observe substantially higher con-
fidence intervals in performance stability, as shown exemplarily in Figure 5. The
required response time (30ms) is assured for all but 16 requests from 22 000 re-
quests overall, resulting in an assurance rate higher than 99.9 percent. Our frame-
work deals also with these delayed requests by a resubmission after a certain time-
frame expires.

5. High Assurance in the Operating Room

The application scenario focuses on the surgical sector. It is not only one of the
largest cost factors in health care but also a place where failures to provide timely
needed information can be perilous, endangering life and health of a patient.

Pre- and postoperative processes are key factor for the effective and safe utili-
zation of the surgical sector.

5.1 Perioperative and Postoperative Processes

The perioperative processes start with a notification from an operating room nurse
or an anesthesia nurse, that the staff should transport the next patient to the operat-
ing room. Then a transport service or a nurse moves the patient from the ward to
the operating room area. In the main registration area clinicians transfer the patient
from the ward bed to an operating room table. Afterward the patient resides in the
induction area, where he is anesthetized. Then clinicians move the patient to the
operating room, where the preparation for the operation starts, for example opera-
tion specific bedding, sterile coverage etc. The surgery starts with the cut and fi-
nishes with the suture. After the surgery clinicians transport the patient to the post
anesthesia recovery unit, where he is moved again to the ward bed and recovers
from anesthesia. After the recovery the staff transports the patient back to the
ward.

V. Stantchev and M. Malek

13

There is an extensive usage and movement of things (devices, instruments,
beds) related with these processes. Furthermore, such devices and instruments
need a preparation (e.g., disinfection) prior to usage. Proximity of clinicians to
such things typically indicates intended or current usage. Therefore, position in-
formation is a key input for the planning and steering process.

Furthermore, there are high requirements regarding performance and other
NFPs that the IT infrastructure needs to satisfy.

5.2 Technology Environment and Architectural Approach

There exist a variety of position sensing systems than are suited for deployment in
such environments [68]. An integration of such system, together with a hospital
information system (HIS) and enterprise resource planning system (ERP) can pro-
vide the needed functionality to optimize surgical processes.

Figure 6 shows our integration approach within an SOA. Here the WLAN posi-
tioning system, the HIS and the ERP system are integrated in the SOA with wrap-
pers that provide web service interfaces to the enterprise service bus (ESB). Clini-
cians are using Tablet PCs as mobile devices; Devices and patients are equipped
with WLAN tags.

The usage of an SOA in such mission-critical environments depends heavily on
the high assurance of run-time related NFPs. For example, data about position of
monitored objects (more than 10000) has to be available within 5 seconds. The AT
engine is responsible for service QoS assurance by monitoring and management.
In a first step, it measures performance of services in their standard configurations
at the OS and serviceware levels. We then import the QoS requirements and eva-
luate them. We presented a structure for their formalization in [69]. Using these
formalized requirements, the AT engine configures the proper settings at each ser-
vice platform. During runtime, when the engine notices that for example a service
is experiencing higher loads, it dynamically reconfigures the replication settings of
the service platform to further provide the expected QoS.

Representation and further information processing are depicted in the upper
part of the figure. The system provides portal-based access to process-related in-
formation. Examples are electronic patient records (EPRs) or case definitions that
are extracted from the HIS and visualized on the Tablet PC. Which patient record
or case definition is visualized depends on the current location of the Tablet PC
and otherWLAN-enabled objects that surround it (e.g., patient tags).
Furthermore, the system offers more complex planning, steering and evaluation
functions. These are provided by composite services.

1 Translucent Replication for Service Level Assurance

14

Fig. 6. Architectural view of the solution. HIS - hospital information system, ERP - enterprise
resource planning system, AT - architectural translucency

6. Summary

Mission-critical environments in clinics require high assurance of performance
and other run-time related NFPs. Typical platforms for providing web services are
complex and hardly predictable. Seamless IT support of processes often requires
integration of different off-the-shelf systems such as HIS and ERP. Location
awareness can optimize usage planning, monitoring and steering of resources in
clinical environments. Position sensing systems based on radio technology (e.g.,
RFID, WLAN) provide such information and are key components of clinical IT
support. The design of an SOA is a promising approach to integrate these different
systems. Such integration typically requires the development of web service
wrappers around the interfaces of the systems and leads to further increases in
complexity. This makes QoS assurance even more compelling. A definition and
separation of levels within an SOA, as well as a look at replication options at these
levels can bring substantial benefits toward high assurance of run-time related
NFPs in such complex environments. Experimental approaches such as architec-
tural translucency are well suited for this task and can increase assured NFP levels
by 50%. They can also provide more stable QoS levels.

Automated run time assurance further requires formalization of NFP represen-
tation and matching between required and provided QoS levels. Furthermore, au-
tomated assurance systems need to provide integrated system reconfiguration

V. Stantchev and M. Malek

15

techniques for the different levels within an SOA. Such run time reconfiguration
will dynamically adapt the architecture so that it provides QoS assurance at differ-
ent loads.

References

[1] Michael P. Papazoglou, Paolo Traverso, Schahram Dustdar, and Frank Leymann. Service-
oriented computing: State of the art and research challenges. Computer, 40(11):38–45, Nov.
2007.

[2] Nikola Milanovic and Miroslaw Malek. Current solutions for web service composition. IEEE
Internet Computing, 8(6):51–59, 2004.

[3] Francisco Curbera. Component contracts in service-oriented architectures. Computer,
40(11):74–80, Nov. 2007.

[4] Vladimir Stantchev and Miroslaw Malek. Architectural Translucency in Service-oriented Ar-
chitectures. IEE Proceedings - Software, 153(1):31–37, February 2006.

[5] Daniel A. Menascé. QoS issues in Web services. Internet Computing, IEEE, 6(6):72–75,
2002.

[6] A. Brown and D.A. Patterson. Towards Availability Benchmarks: A Case Study of Software
RAID Systems. Proceedings of the 2000 USENIX Annual Technical Conference, 2000.

[7] Gerry Miller. The web services debate: .net vs. j2ee. Commun. ACM, 46(6):64–67, 2003.
[8] Y. Makripoulias, C. Makris, Y. Panagis, E. Sakkopoulos, P. Adamopoulou, M. Pontikaki,

and A. Tsakalidis. Towards Ubiquitous Computing with Quality of Web Service Support.
Upgrade, The European Journal for the Informatics Professional, VI(5):29–34, 2005.

[9] S.S. Yau, Yu Wang, Dazhi Huang, and H.P. In. Situation-aware contract specification lan-
guage for middleware for ubiquitous computing. Distributed Computing Systems, 2003.
FTDCS 2003. Proceedings. The Ninth IEEE Workshop on Future Trends of, pages 93–99,
28-30 May 2003.

[10] L. Zeng, B. Benatallah, A.H.H. Ngu, M. Dumas, J. Kalagnanam, and H. Chang. QoS-aware
middleware for Web services composition. IEEE Transactions on Software Engineering,
30(5):311–327, 2004.

[11] G. Canfora, M. Di Penta, R. Esposito, and M.L. Villani. An approach for QoS-aware service
composition based on genetic algorithms. Proceedings of the 2005 conference on Genetic and
evolutionary computation, pages 1069–1075, 2005.

[12] A. Solberg, S. Amundsen, J.Ø. Aagedal, and F. Eliassen. A Framework for QoS-Aware
Service Composition. Proceedings of 2nd ACM International Conference on Service
Oriented Computing, 2004.

[13] Y. Tokairin, K. Yamanaka, H. Takahashi, T. Suganuma, and N. Shiratori. An effective QoS
control scheme for ubiquitous services based on context information management. cec-eee,
00:619–625, 2007.

[14] Svend Frolund and Jari Koistinen. Quality of services specification in distributed object sys-
tems design. In COOTS’98: Proceedings of the 4th USENIX Conference on Object-Oriented
Technologies and Systems (COOTS), pages 1–1, Berkeley, CA, USA, 1998. USENIX Assoc.

[15] H. Ludwig, A. Keller, A. Dan, R.P. King, and R. Franck. Web Service Level Agreement
(WSLA) Language Specification. IBM Corporation, 2002.

[16] V. Tosic, K. Patel, and B. Pagurek. WSOL-Web Service Offerings Language. Web Servic-
es, E-Business, and the Semantic Web: CAiSE 2002 International Workshop, WES 2002, To-
ronto, Canada, May 27-28, 2002: Revised Papers, 2002.

1 Translucent Replication for Service Level Assurance

16

[17] D.D. Lamanna, J. Skene, and W. Emmerich. SLAng: A Language for Defining Service Lev-
el Agreements. Proc. of the 9th IEEE Workshop on Future Trends in Distributed Computing
Systems-FTDCS, pages 100–106, 2003.

[18] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, J. Pruyne, J. Rofrano, S. Tu-
ecke, and M. Xu. Web Services Agreement Specification (WS-Agreement). Global Grid Fo-
rum GRAAP-WG, Draft, August, 2004.

[19] A. Polze and L. Sha. Composite Objects: Real-Time Programming with CORBA. In Pro-
ceedings of 24th Euromicro Conference, Network Computing Workshop, Vol. II, pp.: 997-
1004, Vaesteras, Sweden, August 1998.

[20] W. Feng. Dynamic client-side scheduling in a real-time corba system. In COMPSAC, pages
332–333. IEEE Computer Society, 1999.

[21] Pascal Felber, Rachid Guerraoui, and André Schiper. Replication of corba objects. In Sacha
Krakowiak and Santosh K. Shrivastava, editors, Advances in Distributed Systems, volume
1752 of Lecture Notes in Computer Science, pages 254–276. Springer, 1999.

[22] V. Marangozova and D. Hagimont. An infrastructure for corba component replication. In
Judith M. Bishop, editor, Component Deployment, volume 2370 of Lecture Notes in Com-
puter Science, pages 222–232. Springer, 2002.

[23] M. Werner. Replikation in CORE. Bericht an das Graduiertenkolleg
"Kommunikationsbasierte Systeme", Oct 1996.

[24] Pascal Felber and Priya Narasimhan. Reconciling replication and transactions for the end-to-
end reliability of corba applications. In Meersman and Tari [70], pages 737–754.

[25] Pierre-Charles David and Thomas Ledoux. An infrastructure for adaptable middleware. In
Meersman and Tari [70], pages 773–790.

[26] Sebastian Gutierrez-Nolasco and Nalini Venkatasubramanian. A reflective middleware
framework for communication in dynamic environments. In Meersman and Tari [70], pages
791–808.

[27] Gregory Biegel, Vinny Cahill, and Mads Haahr. A dynamic proxy based architecture to
support distributed java objects in a mobile environment. In Meersman and Tari [70], pages
809–826.

[28] Sandeep Adwankar. Mobile corba. In DOA ’01: Proceedings of the Third International
Symposium on Distributed Objects and Applications, page 52, Los Alamitos, CA, USA,
2001. IEEE Computer Society.

[29] O. Babaoglu, A. Bartoli, V. Maverick, S. Patarin, J. Vuckovic, and H. Wu. A Framework
for Prototyping J2EE Replication Algorithms.

[30] Etienne Antoniutti Di Muro. A software architecture for translucent replication. In DSM
’05: Proceedings of the 2nd international doctoral symposium on Middleware, pages 1–5,
New York, NY, USA, 2005. ACM.

[31] Lei Gao, Mike Dahlin, Amol Nayate, Jiandan Zheng, and Arun Iyengar. Application specif-
ic data replication for edge services. In WWW ’03: Proceedings of the 12th international con-
ference on World Wide Web, pages 449–460, New York, NY, USA, 2003. ACM.

[32] Michael M. Swift, Brian N. Bershad, and Henry M. Levy. Improving the reliability of
commodity operating systems. ACM Trans. Comput. Syst., 23(1):77–110, 2005.

[33] Armando Fox, Steven D. Gribble, Yatin Chawathe, Eric A. Brewer, and Paul Gauthier.
Cluster-based scalable network services. In SOSP ’97: Proceedings of the sixteenth ACM
symposium on Operating systems principles, pages 78–91, New York, NY, USA, 1997.
ACM.

[34] Haifeng Yu and Amin Vahdat. The costs and limits of availability for replicated services.
ACM Trans. Comput. Syst., 24(1):70–113, 2006.

[35] A. Rosenthal. Computing the Reliability of Complex Networks. SIAM Journal on Applied
Mathematics, 32(2):384–393, 1977.

[36] Haifeng Yu and Phillip B. Gibbons. Optimal inter-object correlation when replicating for
availability. In PODC ’07: Proceedings of the twenty-sixth annual ACM symposium on Prin-
ciples of distributed computing, pages 254–263, New York, NY, USA, 2007. ACM.

V. Stantchev and M. Malek

17

[37] Peter J. Denning. Acm president’s letter: What is experimental computer science? Commun.
ACM, 23(10):543–544, 1980.

[38] M.J. Norušis and S. Inc. SPSS 11.0 Guide to Data Analysis. Prentice Hall, 2002.
[39] B.D. Ripley. The R project in statistical computing. MSOR Connections. The newsletter of

the LTSN Maths, Stats & OR Network, 1(1):23–25, 2001.
[40] Ann T. Tai, William H. Sanders, Leon Alkalai, Savio N. Chau, and Kam S. Tso. Performa-

bility analysis of guarded-operation duration: a translation approach for reward model solu-
tions. Perform. Eval., 56(1-4):249–276, 2004.

[41] Krishna R. Pattipati and Samir A. Shah. On the computational aspects of performability
models of fault-tolerant computer systems. IEEE Trans. Computers, 39(6):832–836, 1990.

[42] Gianfranco Ciardo, Raymond A. Marie, Bruno Sericola, and Kishor S. Trivedi. Performabil-
ty analysis using semi-markov reward processes. IEEE Trans. Computers, 39(10):1251–1264,
1990.

[43] Kishor S. Trivedi, Antonio Puliafito, and Dimitris Logothetis. From stochastic petri nets to
markov regenerative stochastic petri nets. In Patrick W. Dowd and Erol Gelenbe, editors,
MASCOTS, pages 194–198. IEEE Computer Society, 1995.

[44] Bhuvan Urgaonkar, Giovanni Pacifici, Prashant Shenoy, Mike Spreitzer, and Asser Tantawi.
An analytical model for multi-tier internet services and its applications. In SIGMETRICS
’05: Proceedings of the 2005 ACM SIGMETRICS international conference on Measurement
and modeling of computer systems, pages 291–302, New York, NY, USA, 2005. ACM.

[45] S. Kounev and A. Buchmann. Performance Modeling and Evaluation of Large-Scale J2EE
Applications. Proc. of the 29th International Conference of the Computer Measurement
Group (CMG) on Resource Management and Performance Evaluation of Enterprise Compu-
ting Systems-CMG2003, 2003.

[46] Mohamed N. Bennani and Daniel A. Menascé. Resource allocation for autonomic data cen-
ters using analytic performance models. In ICAC ’05: Proceedings of the Second Internation-
al Conference on Autonomic Computing, pages 229–240, Washington, DC, USA, 2005.
IEEE Computer Society.

[47] Daniel A. Menascé, Larry W. Dowdy, and Virgílio A.F. Almeida. Performance by Design:
Computer Capacity Planning By Example. Prentice-Hall, Inc., Upper Saddle River, NJ, USA,
2004.

[48] Daniel A. Menascé, Virgílio A. F. Almeida, Rudolf Riedi, Flávia Ribeiro, Rodrigo Fonseca,
and Jr. Wagner Meira. In search of invariants for e-business workloads. In EC ’00: Proceed-
ings of the 2nd ACM conference on Electronic commerce, pages 56–65, New York, NY,
USA, 2000. ACM.

[49] Daniel A. Menascé and Virgílio A. F. Almeida. Scaling for e-business. Prentice Hall PTR
Upper Saddle River, NJ, 2000.

[50] Daniel A. Menascé, Virgílio A.F. Almeida, and Larry W. Dowdy. Capacity Planning and
Performance Modeling: From Mainframes to Client-Server Systems.Prentice-Hall, Inc., Up-
per Saddle River, NJ, USA, 1999.

[51] Daniel Villela, Prashant Pradhan, and Dan Rubenstein. Provisioning servers in the applica-
tion tier for e-commerce systems. ACM Transactions on Internet Technology (TOIT), 7(1):7,
2007.

[52] S. Ranjan, J. Rolia, H. Fu, and E. Knightly. QoS-driven server migration for Internet data
centers. Quality of Service, 2002. Tenth IEEE International Workshop on, pages 3–12, 2002.

[53] A. Kamra, V. Misra, and EM Nahum. Yaksha: a self-tuning controller for managing the per-
formance of 3-tiered Web sites. Quality of Service, 2004. IWQOS 2004. Twelfth IEEE Inter-
national Workshop on, pages 47–56, 2004.

[54] J.A. Rolia, K.C. Sevcik, et al. The Method of Layers. IEEE Transactions on Software Engi-
neering, 21(8):689–700, 1995.

[55] E.D. Lazowska, J. Zahorjan, G.S. Graham, and K.C. Sevcik. Quantitative system perfor-
mance: computer system analysis using queueing network models. Prentice-Hall, Inc. Upper
Saddle River, NJ, USA, 1984.

1 Translucent Replication for Service Level Assurance

18

[56] C.M. Woodside and G. Raghunath. General Bypass Architecture for High-Performance Dis-
tributed Applications. Proceedings of the Sixth IFIP WG6. 3 Conference on Performance of
Computer Networks: Data Communications and their Performance, pages 51–65, 1996.

[57] Roy Gregory Franks. Performance analysis of distributed server systems. PhD thesis, Otta-
wa, Ont., Canada, Canada, 2000. Adviser-C. Murray Woodside.

[58] J. Xu, A. Oufimtsev, M. Woodside, and L. Murphy. Performance modeling and prediction
of enterprise JavaBeans with layered queuing network templates. ACM SIGSOFT Software
Engineering Notes, 31(2), 2005.

[59] Louis P. Slothouber. A model of web server performance. In Proceedings of the Fifth Inter-
national World Wide Web Conference, 1996.

[60] R. Doyle, J. Chase, O. Asad, W. Jin, and A. Vahdat. Model-Based Resource Provisioning in
a Web Service Utility. Proc. of the 4th USENIX Symp. on Internet Technologies and Sys-
tems.

[61] Abhishek Chandra, Weibo Gong, and Prashant Shenoy. Dynamic resource allocation for
shared data centers using online measurements. In SIGMETRICS ’03: Proceedings of the
2003 ACM SIGMETRICS international conference on Measurement and modeling of com-
puter systems, pages 300–301, New York, NY, USA, 2003. ACM.

[62] A. Chandra, P. Goyal, and P. Shenoy. Quantifying the Benefits of Resource Multiplexing in
On-Demand Data Centers. Proceedings of the First Workshop on Algorithms and Architec-
tures for Self-Managing Systems, 2003.

[63] B. Urgaonkar and P. Shenoy. Cataclysm: Handling Extreme Overloads in Internet Services.
Proceedings of the 23rd Annual ACM SIGACT-SIGOPS Symposium on Principles of Distri-
buted Computing (PODC), 2004.

[64] R. Levy, J. Nagarajarao, G. Pacifici, A. Spreitzer, A. Tantawi, and A. Youssef. Performance
management for cluster based Web services. Integrated Network Management, IFIP/IEEE
Eighth International Symposium on, pages 247–261, 2003.

[65] Tarek F. Abdelzaher, Kang G. Shin, and Nina Bhatti. Performance guarantees for web serv-
er end-systems: A control-theoretical approach. IEEE Transactions on Parallel and Distri-
buted Systems, 13(1):80–96, 2002.

[66] Daniel A. Menascé. Web server software architectures. Internet Computing, IEEE, 7(6):78–
81, 2003.

[67] G. Bolch, S. Greiner, H. de Meer, and K.S. Trivedi. Queueing networks and Markov chains:
modeling and performance evaluation with computer science applications. Wiley-
Interscience New York, NY, USA, 1998.

[68] Vladimir Stantchev, Trung Dang Hoang, Tino Schulz, and Ilja Ratchinski. Optimizing clini-
cal processes with position-sensing. IT Professional, 10(2):31–37, 2008.

[69] Vladimir Stantchev and Christian Schröpfer. Techniques for service level enforcement in
web-services based systems. In The 10th International Conference on Information Integration
and Web-based Applications and Services (iiWAS2008),New York, NY, USA, 11 2008.
ACM.

[70] Robert Meersman and Zahir Tari, editors. On the Move to Meaningful Internet Systems,
Confederated International Conferences DOA, CoopIS and ODBASE 2002, Irvine, Califor-
nia, USA, Proceedings, volume 2519 of Lecture Notes in Computer Science. Springer, 2002.

V. Stantchev and M. Malek

Chapter 2

Trustworthiness Assessment Framework for
Net-Centric Systems

Raymond Paul**, Jing Dong*, I-Ling Yen*, and Farokh Bastani*,

*University of Texas at Dallas, Richardson, Texas, USA

**Department of Defense, USA

Abstract Modern applications are becoming increasingly large-scale and net-
work-centric, involving a variety of different types of system entities. Also, the as-
surance requirements for these systems are evolving due to the continuing emer-
gence of new threats from new operational environments. To assure the
trustworthiness of these systems to a sufficiently high degree of confidence is a
challenging task. Most existing methods require different specialized assessment
techniques for not only different types of system entities but also different trust-
worthiness aspects. Also, most existing techniques lack consideration of the over-
all system trustworthiness assessment from an integrated system perspective or
fail to provide a holistic view. To address these problems, we develop an ontolo-
gy-based approach to provide systematic guidelines for net-centric system assess-
ment. The ontology-based approach captures evolving system trustworthiness as-
pects and effectively models their relationships and correlations. It can also
organize system entities and associate appropriate assessment techniques for each
class of system entities and their integrations.

1. Introduction

Due to the advances of computer and networking technologies, many applications
are becoming large-scale and network-centric. A net-centric system (NCS) typi-
cally involves a distributed set of sensors, actuators, processors, software, along
with a variety of other resources interconnected together by a network and inte-
racting with and controlled by end users. Operational scenarios range from tele-
control and tele-monitoring systems to distributed coordination and communica-
tion systems, command and control systems, emergency response, and other areas.

J. Dong et al. (eds.), High Assurance Services Computing,
DOI 10.1007/978-0-387-87658-0_2, © Springer Science+Business Media, LLC 2009

