
High- Availability 
Computer Systems 

Jim Gray, Digital Equipment Corp. 

Daniel P. Siewiorek, Carnegie Mellon University 

Today's highly 

available systems 

deliver four years of 

uninterrupted service. 

The challenge is to 

build systems with 

100-year mean time to 

failure and one-minute 

repair times. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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aradoxically, the larger a system is, the more critical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- but less likely - 
it is to be highly available. We can build small ultra-available modules, but 
building large systems involving thousands of modules and millions of 

lines of code is a poorly understood art, even though such large systems are a core 
technology of modern society. 

Three decades ago, hardware components were the major source of faults and 
outages. Today, hardware faults are a relatively minor cause of system outages 
when compared with operations, environment, and software faults. Techniques 
and designs that tolerate these broader classes of faults are still in their infancy. 

This article sketches the techniques used to build highly available computer 
systems. 

Historical perspective 

Computers built in the late 1950s offered a 12-hour mean time to failure. A 
maintenance staff of a dozen full-time computer engineers could repair the 
machine in about eight hours. This failure-repair cycle provided 60 percent 
availability. The vacuum tube and relay components of these computers were the 
major sources of failures; they had lifetimes of a few months. So the machines 
rarely operated for more than a day without interruption.' 

Many fault-detection and fault-masking techniques used today were first used 
on these early computers. Diagnostics tested the machine. Self-checking compu- 
tational techniques detected faults while the computation progressed. The pro- 
gram occasionally saved (checkpointed) its state on stable media. After a failure 
and repair, the program read the most recent checkpoint and continued the 
computation from that point. This checkpoint-restart technique let computers that 
failed every few hours perform long-running computations. 

Device improvements have increased computer system availability. By 1980, 
typical well-run computer systems offered 99 percent availability.2 This sounds 
good, but 99 percent availability is 100 minutes of downtime per week. Such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Table 1. Availability of system classes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
System Unavailability Availability 
Type (minutedyear) (in percent) 

Unmanaged 50,000 90 
Managed 5,000 99 
Well-managed 500 99.9 
Fault-tolerant 50 99.99 
High-availability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 99.999 
Very-high-availability .5 99.9999 
Ultra-availability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.05 99.99999 

Availability 
Class 

outages may be acceptable for commer- 
cial back-office computer systems that 
process work in asynchronous batches 
for later reporting. But mission-critical 
and on-line applications cannot toler- 
ate 100 minutes of downtime per week. 
They require high-availability systems 
that deliver 99.999 percent availability: 
at most five minutes of service interrup- 
tion per year. 

The principal consumers of the new 
class of high-availability systems want 
them for process-control, production- 
control, and transaction-processing ap- 
plications. Telephone networks, airports, 
hospitals, factories, and stock exchang- 
es cannot afford to stop because of a 
computer outage. In these applications, 
outages translate directly into reduced 
productivity, damaged equipment, and 
sometimes lost lives. 

Degrees of availability can be charac- 
terized by orders of magnitude. Un- 
managed computer systems on the In- 
ternet typically fail every two weeks 
and average 10 hours to recover. These 
unmanaged computers give about 90 
percent availability. Managed conven- 
tional systems fail several times a year. 
Each failure takes about two hours to 
repair. This translates to 99 percent avail- 
ability.* Current fault-tolerant systems 
fail once every few years and are re- 
paired within a few hours3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- this is 
99.99 percent availability. High-avail- 
ability systems must have fewer failures 
and be designed for faster repair. Their 
requirements are one to three orders of 
magnitude more demanding than cur- 
rent fault-tolerant technologies. 

Table 1 gives the availability of typi- 
cal system classes. Today’s best systems 
are in the high-availability range. As of 
1990, the best general-purpose systems 
have been in the fault-tolerant range. 

As the nines pile up in the availability 
measure, it is easier to think of avail- 
ability in terms of denial of service mea- 
sured in minutes per year. For example, 
99.999 percent availability is about five 
minutes of service denial per year. Even 
this metric is a little cumbersome, so we 
use the concept of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAavailability class or 
simply class by analogy to the hardness 
of diamonds or the class of a clean room. 
Availability class is determined by the 
number of nines in a system’s or mod- 
ule’s availability figure. More formally, 
if the system availability is A ,  the sys- 
tem’s availability class isLlog,,( I / (  1-A))J. 
The rightmost column of Table 1 tabu- 
lates the availability classes of various 
system types. 

The telephone network is a good ex- 
ample of a high-availability system - a 
class 5 system. Its design goal is at most 
two outage hours in 40 years. Unfortu- 
nately, over the last two years there 
have been several major outages of the 
United States telephone system: a na- 
tionwide outage lasting eight hours, and 
a Midwest outage lasting four days. 
These outages show how difficult it is to 
build systems with high availability. 

High availability requires systems 
designed to  tolerate faults - to  detect a 
fault, report it, mask it, and then contin- 
ue service while the faulty component is 
repaired off line. Beyond the usual hard- 
ware and software faults, a high-avail- 
ability system must tolerate other faults: 

Electrical power at a typical site in 
North America fails about twice a year. 
Each failure lasts about an 

Software upgrades or repairs typi- 
cally require interrupting service while 
installing new software. This happens 
at least once a year and typically takes 
an hour. 

Production computer software typi- 
cally has more than one defect per thou- 
sand lines of code. When a system needs 
millions of lines of code, it is likely to 
have thousands of software defects. This 
seems to put a ceiling on the size of 
high-availability systems. The system 
must either be small or be limited to a 
failure rate of one fault per decade. For 
example, the 10-million-line Tandem 
system software has been measured to 
have a 30-year mean time to f a i l ~ r e . ~  

Database reorganization is required 
to add new types of information, to 
reorganize the data so that it can be 
more efficiently processed, or to redis- 
tribute the data among recently added 
storage devices. Such reorganizations 
may happen several times a year and 
typically take several hours. As of 1991, 
no general-purpose system provides 
complete on-line reorganization utili- 
ties. 

Operators sometimes make mistakes 
that lead to system outages. A conser- 
vative estimate is that a system experi- 
ences one such fault a decade. Such 
faults cause an outage of a few hours. 

Faults in these four classes cause more 
than 1,000 minutes of outage per year in 
a typical system. This explains why man- 
aged systems do worse than this but 
well-managed systems do slightly bet- 
ter (see Table 1). 

High-availability systems must mask 
most of these faults. One thousand min- 
utes per year is much more than the 
five-minute-per-year budget allowed for 
high-availability systems. But even fault- 
tolerant and high-availability systems 
cannot tolerate all faults. Ignoring sched- 
uled interruptions to upgrade software 
to newer versions, current fault-toler- 
ant systems typically deliver four years 
of uninterrupted service and then re- 
quire a two-hour repair.3 This translates 
to 99.96 percent availability - about 
one minute of outage per week. 

This article surveys the fault-tolerant 
techniques used to achieve highly avail- 
able systems and sketches approaches 
to the goal of ultra-available systems: 
systems with a 100-year mean-time-to- 
failure rate and a one-minute mean time 
to repair. 

Terminology 

Fault-tolerance discussions benefit 
from terminology and concepts devel- 
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oped by the International 
Federation for Information 
Processing Working Group 
10.4 and by the IEEE Com- 
puter Society Technical 
Committee on Fault-Toler- 
ant Computing. Here we 
present key definitions from 
their results.5 

We can view a system as a 
single module, but most sys- 
tems are composed of mul- 
tiple modules. These mod- 
ules have internal structures, 
which are in turn composed 
of submodules. We discuss 
the behavior of a single mod- 
ule, but the terminology ap- 
plies recursively to modules 
with internal modules. 

Each module has an ideal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
specified behavior and an 
observed actual behavior. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 

failure is deviation of the 
actual behavior from the 
specified behavior. The fail- 

Service interruption 

Failure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Detect 

Fault 

Figure 1. Usually a module’s actual behavior matches its 

specified behavior, and it is in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAservice accomplishmeni 
state. Occasionally, a fault causes an error that becomes 

effective and causes the module to fail (observed behavior 

does not equal specified behavior). Then the module en- 

ters the service interruption state. After the failure is de- 

tected, reported, and corrected or repaired, the module re- 

turns to the service accomplishment state. 

ure occurs because of an error, a defect 
in the module. The cause of the error is 
a fault. The time between the occur- 
rence of the error and the resulting fail- 
ure is the error latency. When the error 
causes a failure, it becomes effective 
(see Figure 1). 

For example, a programmer’s mis- 
take is a fault that creates a latent error 
in the software. When the system exe- 
cutes the erroneous instructions with 
certain data values, they cause a failure 
and the error becomes effective. As a 
second example, a cosmic ray (fault) 
may discharge a memory cell, causing a 
memory error. When the system reads 
the memory, it produces the wrong an- 
swer (memory failure) and the error 
becomes effective. 

The actual module behavior alter- 
nates between service accomplishment 
while the module acts as specified and 
service interruption while module be- 
havior deviates from the specified be- 
havior. Module reliability measures the 
time from an initial instant and the next 
failure event. In a population of identi- 
cal modules that are run until failure, 
the mean time to failure is the average 
time to failure for all modules. Module 
reliability is statistically quantified as 
M T T F  (mean time to failure). Service 
interruption is statistically quantified 
as M T T R  (mean time to repair). Mod-  
ule availability measures the ratio of 
service accomplishment to elapsed time. 

The availability of nonredundant sys- 
tems with repair is statistically quanti- 
fied as MTTF/(MTTF+MTTR). 

Module reliability can be improved 
both by valid construction to reduce 
failures and by error correction. 

Valid construction. Validation can 
remove faults during the construction 
process, thus assuring that the construct- 
ed module conforms to the specified 
module. Because physical components 
fail during operation, validation alone 
cannot assure high availability. 

Error correction. Designs with redun- 
dancy reduce failures by tolerating faults. 
Latent error processing describes the 
practice of trying to detect and repair 
latent errors before they become effec- 
tive. Preventive maintenance is an ex- 
ample. Effective error processing de- 
scribes correction of the error after it 
becomes effective. Effective error pro- 
cessing may either recover from the er- 
ror or mask the error. 

Error masking typically uses redun- 
dant information to deliver the correct 
service and to construct a correct new 
state. Error-correcting codes used for 
electronic, magnetic, and optical stor- 
age are examples of masking. An error- 
recovery mechanism typically denies the 
request and sets the module to an error- 
free state so that it can service subse- 
quent requests. 

Error recoverycan take two 
forms. Backward error recov- 
ery returns to a previous cor- 
rect state. Checkpoint-restart 
is an example. Forward error 
recovery constructs a new cor- 
rect state. Redundancy in time 
- for example, resending a 
damaged message or reread- 
ing a disk block - are exam- 
ples of forward error recov- 
ery. 

In addition to these key 
definitions from the IFIP 
working group,5 the follow- 
ing terminology to categorize 
faults is useful: 

Hardware faul ts .  Failing 
devices. 

Design faults. Faults in soft- 
ware (mostly) and hardware 
design. 

Operations faults. Mistakes 
made by operations and main- 
tenance personnel. 

Environmental faul ts .  Fire, f lood, 
earthquake, power failure, and sabo- 
tage. 

Empirical experience 

There is considerable empirical evi- 
dence about faults and fault tolerance.6 
Failure rates (or failure hazards) for 
software and hardware modules typi- 
cally follow a “bathtub curve.” The rate 
is high for new units (infant mortality), 
then it stabilizes at a low rate. As the 
module ages beyond a certain thresh- 
old, the failure rate increases (maturi- 
t y ) .  Physical stress, decay, and corro- 
sion are the causes of physical device 
aging. Maintenance and redesign cause 
software aging. 

Vendors usually quote the failure rates 
at the bottom of the bathtub (after in- 
fant mortality and before maturity). 
Transient failures often obey a Weibull 
distribution, a negative hyperexponen- 
tial distribution. Many device and soft- 
ware failures are transient - that is, the 
operation may succeed if the device or 
software system is simply reset. Failure 
rates typically increase with use. 

Repair times for a hardware module 
can vary from hours to days, depending 
on the availability of spare modules and 
diagnostic capabilities. For a given or- 
ganization, repair times appear to fol- 
low a Poisson distribution. Good repair 
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... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Comparator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I I 1  I 

Duplex I Triplex I 

Voter 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

Figure 2. Fail-fast and fault-tolerant modules: (a) basic designs, (b) recursive designs stemming from the basic designs. 

success rates are typically 99.9 percent, 
but 95 percent repair success rates are 
common. This is still excellent com- 
pared with the 66 percent repair suc- 
cess rates reported for automobiles. 

Improved devices 

Device reliability has improved enor- 
mously since 1950. Vacuum tubes 
evolved to transistors. Transistors, re- 
sistors, and capacitors were integrated 
on single chips. Today, packages inte- 
grate millions of devices on a single 
chip. These device and packaging revo- 
lutions have increased the reliability of 
digital electronics dramatically: 

Long-lived devices. Integrated-cir- 
cuit devices have long lifetimes. They 
can be disturbed by radiation, but if 
operated at normal temperatures and 
voltages and kept from corrosion, they 
will operate for at least 20 years. 

Reduced power. Integrated circuits 
consume much less power per function. 
The reduced power translates to re- 
duced temperatures and slower device 
aging. 

Fewer connectors. Connections were 
a major source of faults because of me- 
chanical wear and corrosion. Integrat- 
ed circuits have fewer connectors. On- 
chip connections are chemically 
deposited, off-chip connections are sol- 
dered, and wires are printed on circuit 

boards. Today, only backplane connec- 
tions suffer mechanical wear. They in- 
terconnect field-replaceable units (mod- 
ules) and peripheral devices. 

Magnetic storage devices have expe- 
rienced similar improvements. Origi- 
nally, disks were the size of refrigera- 
tors and needed weekly service. Just 10 
years ago, the typical disk was the size 
of a washing machine, consumed about 
2,000 watts of power, and needed ser- 
vice about every six months. Today, 
disks are hand-held units, consume about 
10 watts of power, and have no sched- 
uled service. A modern disk becomes 
obsolete sooner than it is likely to fail. 
The MTTF of a modern disk is about 12 
years; its useful life is probably five 
years. 

Peripheral device cables and connec- 
tors have experienced similar complex- 
ity reductions. A decade ago, disk ca- 
bles were huge. Each disk required 20 
or more control wires. Often disks were 
dual-ported, doubling this number. An 

array of 100 disks needed 4,000 wires 
and 8,000 connectors, and these cables 
and their connectors were a major source 
of faults. Today, modern disk assem- 
blies use fiber-optic cables and connec- 
tors. A 100-disk array can be attached 
with 24 cables and 48 connectors: This is 
more than a 100-fold component reduc- 
tion. In addition, the underlying media 
use less power and have better resis- 
tance to electrical noise. 

Fault - t olerant design 
concepts 

These more reliable devices are com- 
bined to create complex systems. Cer- 
tain design concepts are fundamental to 
making the systems fault tolerant and, 
consequently, highly available. 

Modularity. Designers should hier- 
archically decompose the system into 
modules. For example, a computer may 
have a storage module, which in turn 
has several memory modules. Each 
module is a unit of service, fault con- 
tainment, and repair. If a module fails, 
it is replaced by a new module. 

Fail-fast. Each module should ei- 
ther operate correctly or stop immedi- 
ately. 

Independentfailure modes. Modules 
and interconnections should be designed 
so that if one module fails, the fault does 
not affect other modules. 

Redundancy and repair. Spare mod- 
ules should be installed or configured in 
advance, so when one module fails, the 
second can replace it almost instantly. 
The failed module can be repaired off 
line while the system continues to deliv- 
er service. 

These principles apply to hardware 
faults, design faults, and software faults 
(which are designfaults). However, their 
application varies, so we discuss hard- 
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... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ware first, and then design 
and software faults. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fault- tolerant 
hardware 

The application of the 
modularity, fail-fast, inde- 
pendence, redundancy, and 

Pair-and-spare or dual-dual 

repair concepts to hardware 
fault tolerance is easy to  un- 
demand. Hardware modules 
are physical units such as a 
processor, a communications 
line, or a storage device. De- 
signers use one of two tech- 
nique@* to  make a module 
fail-fast: 

Figure 3. Using redundancy to mask failures. Triple-mod- 

ule-redundancy needs no extra effort to mask a single fault. 
Duplexed modules can tolerate faults by using a pair-and- 

spare or dual-dual design. If any single module fails, the su- 

per module continues operating. 

Self-checking. A module performs 
the operation and also some additional 
work to validate the state. Error-de- 
tecting codes on storage and messages 
are examples of this approach. 

Comparison. Two or more modules 
perform the operation, and a compara- 
tor examines their results. If they dis- 
agree, the modules stop. 

Self-checking has been the mainstay 
for many years, but it requires addition- 
al circuitry and design. However, it will 
likely continue to  dominate storage and 
communications designs because the 
logic is simple and well understood. 

The economies of integrated circuits 
encourage the use of comparison for 
complex processing devices. Because 
comparators are relatively simple, com- 
parison trades additional circuits for 
reduced design time. In custom fault- 
tolerant designs, 30 percent of proces- 
sor circuits and 30 percent of the pro- 
cessor design time are devoted to  

self-checking. Comparison schemes, on 
the other hand, augment general-pur- 
pose circuits with simple comparator 
designs and circuits. The result is a re- 
duction in overall design cost and cir- 
cuit cost. 

Figure 2a shows the basic comparison 
approach. A relatively simple compara- 
tor placed at the module interface can 
compare the outputs of two modules. If 
the outputs match exactly, the compar- 
ator lets the outputs pass through. If the 
outputs do  not match, the comparator 
detects the fault and stops the modules. 
This is a generic technique for making 
fail-fast modules from conventional 
modules. 

If a design uses more than two mod- 
ules, the module can tolerate at least 
one fault because the comparator pass- 
es through the majority output (two out 
of three in the Figure 2a triplex). The 
triplex design is called triple-module- 
redundancy. Figure 2b shows how the 
duplex and triplex designs can be made 
recursive. The modules are N-plexed 

and so are the comparators 
themselves, so comparator 
failures are also detected. 

Self-checking and compar- 
ison provide quick fault de- 
tection. Once a system de- 
tects a fault, it should report 
and mask the fault, as shown 
in Figure 1. 

Figure 3 shows how hard- 
ware fault masking typically 
works with duplexing com- 
parison schemes. The pair- 
and-spare  o r  dual -dual  
scheme combines two fail- 
fast modules to  produce a 
supermodule that continues 
operating, even if one of the 
submodules fails. Because 
each submodule is fail-fast, 

the combination is just the OR of the 
two submodules. The triplexing scheme 
masks failures by having the compara- 
tor pass through the majority output. If 
only one module fails, the outputs of the 
two correct modules will form a major- 
ity and will allow the supermodule to 
function correctly. 

The pair-and-spare scheme requires 
more hardware than triplexing (four 
rather than three modules), but it al- 
lows a choice of two operating modes: 
either two independent fail-fast compu- 
tations running on the two pairs of mod- 
ules or a single high-availability compu- 
tation running on all four modules. 

To understand the benefits of these 
designs, imagine that each module has a 
one-year MTTF, with independent fail- 
ures. Suppose that the duplex system 
fails if the comparator inputs do  not 
agree, and the triplex module fails if 
two of the module inputs do  not agree. 
If there is no repair, the supermodules 
in Figure 2 will have a MTTF of less 
than a year, as shown in Table 2.('This is 

Table 2. MTTF estimates for various architectures using one-year MTTF modules with a four-hour MTTR (E represents a 

small additional cost for the comparators).6 

I Architecture MTTF Class Equation cost  I 
Simplex 1 year 3 MTTF 1 
Duplex -0.5 year 3 =MTTF/2 2 + E  
Triplex 0.8 year 3 =MTTF(5/6) 3 + E  
Pair and spare -0.7 year 3 =MTTF(3/4) 4 + &  
Duplex plus repair >lo3 years 6 =MTTF2/2MTTR 2 + &  
Triplex plus repair >lo6 years 6 =MTTF3/3MTTR 3 f E  
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an instance of the airplane rule: A two- 
engine airplane costs twice as much and 
has twice as many engine problems as a 
one-engine airplane. Redundancy by 
itself does not improve availability or 
reliability. (Redundancy does decrease 
the variance in failure rates.) In fact, 
adding redundancy lessens reliability 
in the cases of duplexing and triplexing. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Redundancy designs require repair to 
dramatically improve availability. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Importance of repair 

If failed modules are repaired or re- 
placed within four hours of their fail- 
ure, then the MTTF of the example 
systems goes from one year to well be- 
yond l ,000years. Their availability goes 
from 99.9 percent to 99.9999 percent 
and their availability class from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 to 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 

a significant improvement. If the sys- 
tem uses thousands of modules, design- 
ers can repeat the construction recur- 
sively to N-plex the entire system and 
get a class 8 supermodule (1,000-year 
MTTF) . 

On-line module repair requires re- 
pair and reinstallation of modules while 
the system is operating. It also requires 
reintegrating the module into the sys- 
tem without interrupting service. Do- 
ing this is not easy; for example, it is not 
trivial to make the contents of a re- 
paired disk identical to that of a neigh- 
boring disk. Similarly, when a proces- 
sor is repaired, it is not easy to set the 
processor state to that of the other pro- 
cessors in the module. Reintegration 
algorithms exist, but they are subtle 
and each uses a different trick. There is 
no overall design methodology for such 
algorithms as yet. Today's on-line inte- 
gration techniques are trade secrets pro- 
tected by patents, because they are a 
key to high-availability computing. 

Improved device 
maintenance 

The declining cost and improved re- 
liability of devices permit a new ap- 
proach to computer maintenance. Com- 
puters can be composed of modules 
called field replaceable units. Each FRU 
has built-in self-tests exploiting one of 
the checking techniques mentioned 
above. These tests let a module diag- 
nose itself and report failures electron- 

ically to the system maintenance pro- 
cessor and visually as a light on the 
module itself. A green light means no 
trouble, yellow means a fault has been 
reported and masked, and red indicates 
a failed unit. This system makes repairs 
easy. The repair person looks for a red 
light and replaces the failed module 
with a spare from inventory. 

FRUs are designed to have a MTTF 
of more than 10 years and to cost less 
than a few thousand dollars, so they can 
be manufactured and stocked in quanti- 
ty. A system can consist of tens or thou- 
sands of FRUs. 

Vendors of fault-tolerant computers 
have carried the FRU concept to its 
logical conclusion with a system called 
cooperative maintenance. When a mod- 
ule fails. the fault-tolerant system con- 
tinues operating because it can tolerate 
any single fault. The system first identi- 
fies the fault within a FRU. It then calls 
the vendor's support center via switched 
telephone lines and announces that a 
new module is needed. The vendor's 
support center sends the new part to the 
site via overnight courier. In the morn- 
ing the customer receives a package 
containing a replacement part and in- 
stallation instructions. The customer 
replaces the part and returns the faulty 
module to the vendor by parcel post. 

Cooperative maintenance has attrac- 
tive economies. Conventional designs 
often require a 2-percent-per-month 
maintenance contract. Paying2 percent 
of the system price each month for main- 
tenance doubles the system price in four 
years. Maintenance is expensive because 
each visit to a customer's site costs the 
vendor about a thousand dollars. Coop- 
erative service can cut maintenance costs 
in half. 

The simple and powerful ideas of fail- 
fast modules and repair via retry or 
spare modules seem to solve the hard- 
ware fault-tolerance problem. They can 
mask almost all physical device failures, 
but they do not mask failures caused by 
hardware design faults. If all the mod- 
ules have faulty designs, then the com- 
parators will not detect the fault. Simi- 
larly, comparison techniques do not 
apply to software -which is all design 
- unless design diversity is used. 

Tolerating design faults 

Tolerating design faults is critical to 
high availability. After fault-masking 

techniques are applied, the vast major- 
ity of the remaining computer faults are 
design faults. (We discuss operations 
and environmental faults later.) 

A study indicates that failures due to 
design (software) faults outnumber hard- 
ware faults by 10 to one. Applying the 
concepts of modularity, fail-fast mod- 
ules, independent failure modes, and 
repair to software and design is the key 
to tolerating these faults. 

Software modularity is well under- 
stood. A software module is a process 
with a private state (no shared memory) 
and a message interface to other soft- 
ware  module^.^ 

The two approaches to fail-fast soft- 
ware are similar to the hardware ap- 
proaches: 

Self-checking. A program typically 
does simple sanity checks of its inputs, 
outputs, and data structures. Program- 
ming for this is called defensive pro-  
gramming. It parallels the double-entry 
bookkeeping and check-digit techniques 
used for centuries in manual accounting 
systems. In defensive programming, if 
some item does not satisfy the integrity 
assertion, the program raises an excep- 
tion (fails fast) or attempts repair. In 
addition, independent processes called 
auditors or watchdogs observe the state. 
If they discover an inconsistency, they 
raise an exception and either fail fast 
the state (erase it) or repair it.'"." 

Comparison. Several modules of 
different design run the same computa- 
tion. A comparator examines their re- 
sults and declares a fault if the outputs 
are not identical. This scheme depends 
on independent failure modes of the 
various modules. 

The third major fault-tolerance con- 
cept is independent failure modes. De- 
sign diversity is the best way to get de- 
signs with independent failure modes. 
For diverse designs, at least three inde- 
pendent groups start with the same spec- 
ification and produce code to imple- 
ment it. This software approach is called 
N-version programming12 because the 
program is written N times. 

Unfortunately, even independent 
groups can make the same mistake, or a 
common mistake can arise from the orig- 
inal specification. Anyone who has giv- 
en a test knows that many students make 
the same mistake on a difficult exam 
question. Nevertheless, independent 
implementations of a specification by 
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independent groups iscurrent- 
ly the best way to approach 
design diversity. 

N-version programming is 
expensive, raising the system 
implementation and mainte- 
nance cost by a factor of N or 
more. Also, it may add unac- 
ceptable time delays to the 
project implementation. Some 
argue that the time and mon- 
ey are better spent on making 
one superreliable designrath- 
er than three marginal designs. 
At present, there is no com- 
parative data to resolve this 
issue. 

The concept of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdesign re- 
pair seems to further damage 
the case for design diversity. 
Recall the airplane rule: Two- 
engine airplanes have twice 
the engine problems of one- 
engine planes. Suppose each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Logical process zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Process pair zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 4. A process pair appears to other processes as a 

single logical process, but it is really two processes execut- 

ing the same program and maintaining approximately the 

same state. The two processes typically run on different 

computers and have some failure-mode independence. In 

addition, process pairs mask Hiesenbugs. 

module of a triplexed design has a 100- 
year MTTF. Without repair, the triple 
will have its first fault in 33 years and its 
next fault in 50 years. The net is an 83- 
year MTTF. If only one module were 
operated, the MTTFwould be 100years. 
So the three-version program module 
has a worse MTTF than any simple pro- 
gram (but the three-version program 
has lower failure variance). Repair is 
needed if N-version programming is to 
improve system MTTF. 

Repairing a design flaw takes weeks 
or months. This is especially true for 
hardware. Even software repair is slow 
when run through a careful program- 
development process. Because the 
MTTF of a triplex is proportional to 
(MTTF3/MTTR), long repair times may 
be a problem for high-availability sys- 
tems. 

Even after the module is repaired, 
how to reintegrate it into the working 
system without interrupting service is 
not clear. For example, suppose the 
failed module is a file server with its 
disk. If the module fails and is out of 
service for a few weeks while the bug is 
fixed, then when it returns, it must re- 
construct the current state. Because it 
has a completely different implementa- 
tion from the other file servers, a spe- 
cial-purpose utility is needed to copy 
the state of a “good” server to the “be- 
ing repaired” server while the good serv- 
er is delivering service. Any files changed 
in the good server also must be changed 
in the server being repaired. The repair 
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utility should itself be an N-version 
program to prevent a single fault in a 
good server or copy operation from 
creating a double fault. Software re- 
pair is not trivial. 

Process pairs and 
transactions 

Process pairs and transactions offer 
a completely different approach to soft- 
ware repair. They generalize the con- 
cept of checkpoint-restart to distribut- 
ed systems. Most errors caused by 
design faults in production hardware 
and software are transient. A transient 
failure will disappear if the operation 
is retried later in a slightly different 
context. Such transient software fail- 
ures have been given the whimsical 
name “Heisenbug” because they dis- 
appear when reexamined. By contrast, 
“Bohrbugs” are good solid bugs. 

Common experience suggests that 
most software faults in production sys- 
tems are transient. When a system fails, 
it is generally restarted and returns to 
service. After all, the system was work- 
ing last week. It was working this morn- 
ing. So why shouldn’t it work now? But 
this commonsense observation is not 
very satisfying. 

In  the most complete study of soft- 
ware faults to date, Ed Adams looked 
at maintenance recordsof North Amer- 
ican IBM systems over a four-year pe- 

.. n 

riod.I3 He found that most 
software faults in produc- 
tion systems are reported 
only once. He described 
such errors as benign bugs. 
Some software faults were 
reported many times, but 
such virulent bugs made up 
significantly less than 1 
percent of all reports. On 
the basis of this observa- 
tion, Adams recommend- 
ed that benign bugs not be 
repaired immediately. Us- 
ing Adam’s data, Harlan 
Mills observed that most 
benign bugs have a MTTF 
in excess of 10,000 years. It 
is safer to ignore such bugs 
than to stop the system, in- 
stall a bug fix, and then 
restart the system. The re- 
pair will require a brief 
outage, and a fault in the 

repair process may cause a second out- 
age. 

The Adams study and several others 
imply that the best short-term approach 
to masking software faults is to restart 
the ~ y s t e m . ~ . ’ ~ , ’ ~  Suppose the restart 
were instantaneous. Then the fault 
would not cause any outage: Simplex 
system unavailability is approximately 
MTTR/MTTF. If the MTTR is zero 
and the MTTF is greater than zero, 
then there is no unavailability. 

Process pairs are a way to get almost 
instant restart. Recall that a process is 
a unit of software modularity that pro- 
vides some service. It has a private 
address space and communicates with 
the other processes and devices via 
messages traveling on sessions. If a 
process fails, it is the unit of repair and 
replacement. A process pair - two 
processes running the same ~ r o g r a m ’ ~  
- gives almost instant replacement 
and repair for a process. 

As Figure 4 shows, during normal 
operation the primaryprocess performs 
all the operations for its clients, and 
the backup process passively watches 
the message flows. The primary pro- 
cess occasionally sends checkpoint mes- 
sages to its backup, much in the style of 
checkpoint-restart designs of the 1950s. 
When the primary process detects an 
inconsistency in its state, it fails fast 
and notifies the backup process. Then 
the backup process becomes the pri- 
mary process, answering all incoming 
requests and providing the service. If 
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the primary process failed 
because of a Heisenbug, the 
backup will not fail and there 
will be no interruption of ser- 
vice. Process pairs also toler- 
ate hardware faults. If the 
hardware supporting the pri- 
mary process fails, the back- 
up running on other hard- 
ware will mask the failure. 

A criticism of process pairs 
is that writing the checkpoint 
and takeover logic makes 
programming even more 
complex. It is analogous to 
writing the repair programs 
for N-version programming. 
Bitter experience shows that 
the code is difficult to write, 
difficult to  test, and difficult 
to maintain. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Transactions automate the 
checkpoint-takeover logic 
and allow “ordinary” pro- 
grams to act as process pairs. 
Using the transaction mech- 
anism, an application design- 
er declares a collection of 
actions (messages, database 
updates, and state changes) 
to have the following prop- 
erties: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

.I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 5. A system-pair design with system replication at 

two sites, Paris and Tokyo. During normal operation each 

system carries half the load. When one fails, the other serves 

all the clients. System pairs mask most hardware, software, 

operations, maintenance, and environmental faults. They 

also allow on-line software and hardware changes. 

*Atomiciry.  Either all the actions 
making up the transaction will be done 
or they will all be undone. This is often 
called the all-or-nothing property. The 
two possible outcomes are commit (all) 
and abort (nothing). 

Consistency. The collection of ac- 
tions is a correct transformation of state. 
It preserves the state invariants (the 
assertions constraining the values that a 
correct state may assume). 

Isolation. Each transaction will be 
isolated from the concurrent execution 
of other concurrent transactions. Even 
if other transactions concurrently read 
and write the inputs and outputs of this 
transaction, it will appear that the trans- 
actions ran sequentially according to  
some global clock. 

Durability. If a transaction commits, 
the effects of its operations will survive 
any subsequent system failures. In par- 
ticular, the system will deliver any com- 
mitted output messages, and the data- 
base state will reflect any committed 
database changes. 

These four transaction properties, 
termed ACID, were first developed by 

the database community. The transac- 
tion mechanism provides a simple ab- 
straction to help Cobol programmers 
deal with errors and faults in conven- 
tional database systems and applica- 
tions. The concept gained many con- 
verts when distributed databases became 
common. A distributed state is so com- 
plex that traditional checkpoint-restart 
schemes require superhuman talents. 

The transaction mechanism is 
easy to understand. The programmer 
declares a transaction by issu- 
ing a Begin-Transaction() verb 
and ends the transaction by issu- 
ing a Commit-Transaction() o r  
AbortPTramaction() verb. Beyond 
that, the underlying transaction me- 
chanism ensures that all actions within 
the Begin-Commit and Begin-Abort 
brackets have the ACID properties. 

Designers can apply the transaction 
concept to  databases, to messages (“ex- 
actly once” message delivery), and to 
main memory (persistent programming 
languages). T o  combine transactions 
with process pairs, a designer declares a 
process pair’s state to be persistent, 
meaning that when the primary process 
fails, the transaction mechanism aborts 

all transactions involved in 
the primary process and re- 
constructs the backup-pro- 
cess state as it stood at the 
start of the in-progress trans- 
actions. The backup process 
then reprocesses the trans- 
actions. 

In this model, the underly- 
ing system implements trans- 
actional storage (storage with 
the ACID properties), trans- 
actional messages (exactly 
once message delivery), and 
process pairs (the basic take- 
over mechanism). This is not 
trivial, but there are at least 
two examples: Tandem’s 
Nonstop Systems and IBM’s 
Cross Recovery Feature 
(XRF). With the underlying 
facilities provided by such 
systems, application pro- 
grammers can write conven- 
tional programs that execute 
as process pairs. The compu- 
tations need only declare 
transaction boundaries. The 
checkpoint-restart logic and 
transaction mechanism are 
handled automatically. 

Operations, 
maintenance, and 
environment 

The previous sections took the nar- 
row “computer” view of fault tolerance, 
but computers rarely cause computer 
failures. One study found that 98 per- 
cent of the unscheduled system outages 
came from outside s o ~ r c e s . ~  High-avail- 
ability systems must tolerate environ- 
mental faults (power failures, fire, flood, 
insurrection, virus, and sabotage), op- 
erations faults, and maintenance faults. 

The declining price and increasing 
automation of computer systems offer a 
straightforward solution to some of these 
problems: system pairs. As Figure 5 
shows, system pairs carry the disk-pair 
and process-pair design one step fur- 
ther. Two nearly identical systems are 
placed at least 1,000 kilometers apart. 
They are on different communication 
grids and power grids, at sites on differ- 
ent earthquake faults and in different 
weather systems. The maintenance per- 
sonnel and operators are different. Cli- 
ents are in session with both systems, 
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but each client preferentially sends work 
to one system or another. Each system 
carries half the load during normal op- 
eration. When one system fails, the oth- 
er system takes over. The transaction 
mechanism steps in to clean up the state 
at takeover. 

Ideally, the systems would have dif- 
ferent designs for additional protection 
against design errors. But the econom- 
ics of designing, installing, operating, 
and maintaining two completely differ- 
ent systems may be prohibitive. Even if 
the systems are identical, they are likely 
to mask most hardware, software, envi- 
ronmental, maintenance, and operations 
faults. 

Clearly, system pairs will mask many 
hardware faults. A hardware fault in 
one system will not cause a fault in the 
other. System pairs will mask mainte- 
nance faults because a maintenance 
person can only touch and break com- 
puters at one site at a time. System pairs 
will ease maintenance. Either system 
can be repaired, moved, replaced, or 
changed without interrupting service. It 
should be possible to install new soft- 
ware or to reorganize the database for 
one system while the other provides 
service. After the upgrade, the new sys- 
tem will catch up with the old system 
and then replace it while the old system 
is upgraded. 

Special-purpose system pairs have 
been operating for decades. IBM’s AAS 
system, the Visa system, and many bank- 
ing systems operate in this way. They 
offer excellent availability and protec- 
tion from environmental and operations 
disasters. But each system has an ad hoc 
design: None provides a general-pur- 
pose version of system pairs. This is an 
area of active development. General- 
purpose support for system pairs will 
emerge during this decade. 

ver the last four decades, com- 
puter reliability and availabil- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 ity have improved by four or- 

ders of magnitude. Techniques to mask 
device failures are well understood. 
Device reliability and design have im- 
proved so maintenance is now rare. 
When needed, maintenance consists of 
replacing a module. Computer opera- 
tions are increasingly automated by soft- 
ware. System pairs mask most environ- 
mental faults, and also mask some 
operations, maintenance, and design 
faults. 

September 1991 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Process System Future 
Fault class Replication pairs pairs techniques 

Hardware 

Design 

Operations 

Environment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1960s 1970s 1980s 1990s 

Figure 6. Evolution of fault-tolerant architectures and their fault class coverage. 

Figure 6 shows the evolution of fault- 
tolerant and high-availability architec- 
tures, and the fault classes they tolerate. 
The density of shading indicates the 
degree to which faults in a class are 
tolerated. During the 1960s, fault-toler- 
ant techniques were mainly used in tele- 
phone switching and aerospace applica- 
tions. Because of the relative 
unreliability of hardware, replication 
was used to tolerate hardware failures. 
The 1970s saw the emergence of com- 
mercial fault-tolerant systems using pro- 
cess pairs coupled with replication to 
tolerate hardware and some design 
faults. The replication of a system at 
two or more sites (systempairs) extend- 
ed fault coverage to include operations 
and environmental faults. The challenge 
of the 1990s is to build on our experi- 
ence and devise architectures that can 
cover all fault classes. 

These advances have come at the cost 
of increased software complexity. Sys- 
tem pairs are more complex than sim- 
plex systems. Software to automate op- 
erations and to  allow fully on-line 
maintenance and change is subtle. A 
minimal system to provide these fea- 
tures will involve millions of lines of 
code. Software systems of that size have 
thousands of faults, and we know of no 
practical technique to  eliminate such 
bugs. 

Techniques to tolerate software faults 
are available, but they take a statistical 
approach. Their statistics are not very 
promising. The best systems offer a 
MTTF measured in tens of years. This is 
unacceptable for applications that in- 
volve lives or control multibillion-dol- 
lar enterprises. But today there is no 
alternative. Building ultra-available sys- 
tems stands as a major challenge for the 
computer industry in the coming de- 
cades. w 
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