
High- Availability
Computer Systems

Jim Gray, Digital Equipment Corp.

Daniel P. Siewiorek, Carnegie Mellon University

Today's highly

available systems

deliver four years of

uninterrupted service.

The challenge is to

build systems with

100-year mean time to

failure and one-minute

repair times. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
September 1991

aradoxically, the larger a system is, the more critical zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- but less likely -
it is to be highly available. We can build small ultra-available modules, but
building large systems involving thousands of modules and millions of

lines of code is a poorly understood art, even though such large systems are a core
technology of modern society.

Three decades ago, hardware components were the major source of faults and
outages. Today, hardware faults are a relatively minor cause of system outages
when compared with operations, environment, and software faults. Techniques
and designs that tolerate these broader classes of faults are still in their infancy.

This article sketches the techniques used to build highly available computer
systems.

Historical perspective

Computers built in the late 1950s offered a 12-hour mean time to failure. A
maintenance staff of a dozen full-time computer engineers could repair the
machine in about eight hours. This failure-repair cycle provided 60 percent
availability. The vacuum tube and relay components of these computers were the
major sources of failures; they had lifetimes of a few months. So the machines
rarely operated for more than a day without interruption.'

Many fault-detection and fault-masking techniques used today were first used
on these early computers. Diagnostics tested the machine. Self-checking compu-
tational techniques detected faults while the computation progressed. The pro-
gram occasionally saved (checkpointed) its state on stable media. After a failure
and repair, the program read the most recent checkpoint and continued the
computation from that point. This checkpoint-restart technique let computers that
failed every few hours perform long-running computations.

Device improvements have increased computer system availability. By 1980,
typical well-run computer systems offered 99 percent availability.2 This sounds
good, but 99 percent availability is 100 minutes of downtime per week. Such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I

Authorized licensed use limited to: University of Wisconsin. Downloaded on March 08,2010 at 11:36:50 EST from IEEE Xplore. Restrictions apply.

Table 1. Availability of system classes. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
System Unavailability Availability
Type (minutedyear) (in percent)

Unmanaged 50,000 90
Managed 5,000 99
Well-managed 500 99.9
Fault-tolerant 50 99.99
High-availability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 99.999
Very-high-availability .5 99.9999
Ultra-availability zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.05 99.99999

Availability
Class

outages may be acceptable for commer-
cial back-office computer systems that
process work in asynchronous batches
for later reporting. But mission-critical
and on-line applications cannot toler-
ate 100 minutes of downtime per week.
They require high-availability systems
that deliver 99.999 percent availability:
at most five minutes of service interrup-
tion per year.

The principal consumers of the new
class of high-availability systems want
them for process-control, production-
control, and transaction-processing ap-
plications. Telephone networks, airports,
hospitals, factories, and stock exchang-
es cannot afford to stop because of a
computer outage. In these applications,
outages translate directly into reduced
productivity, damaged equipment, and
sometimes lost lives.

Degrees of availability can be charac-
terized by orders of magnitude. Un-
managed computer systems on the In-
ternet typically fail every two weeks
and average 10 hours to recover. These
unmanaged computers give about 90
percent availability. Managed conven-
tional systems fail several times a year.
Each failure takes about two hours to
repair. This translates to 99 percent avail-
ability.* Current fault-tolerant systems
fail once every few years and are re-
paired within a few hours3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- this is
99.99 percent availability. High-avail-
ability systems must have fewer failures
and be designed for faster repair. Their
requirements are one to three orders of
magnitude more demanding than cur-
rent fault-tolerant technologies.

Table 1 gives the availability of typi-
cal system classes. Today’s best systems
are in the high-availability range. As of
1990, the best general-purpose systems
have been in the fault-tolerant range.

As the nines pile up in the availability
measure, it is easier to think of avail-
ability in terms of denial of service mea-
sured in minutes per year. For example,
99.999 percent availability is about five
minutes of service denial per year. Even
this metric is a little cumbersome, so we
use the concept of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAavailability class or
simply class by analogy to the hardness
of diamonds or the class of a clean room.
Availability class is determined by the
number of nines in a system’s or mod-
ule’s availability figure. More formally,
if the system availability is A , the sys-
tem’s availability class isLlog,,(I / (1-A))J.
The rightmost column of Table 1 tabu-
lates the availability classes of various
system types.

The telephone network is a good ex-
ample of a high-availability system - a
class 5 system. Its design goal is at most
two outage hours in 40 years. Unfortu-
nately, over the last two years there
have been several major outages of the
United States telephone system: a na-
tionwide outage lasting eight hours, and
a Midwest outage lasting four days.
These outages show how difficult it is to
build systems with high availability.

High availability requires systems
designed to tolerate faults - to detect a
fault, report it, mask it, and then contin-
ue service while the faulty component is
repaired off line. Beyond the usual hard-
ware and software faults, a high-avail-
ability system must tolerate other faults:

Electrical power at a typical site in
North America fails about twice a year.
Each failure lasts about an

Software upgrades or repairs typi-
cally require interrupting service while
installing new software. This happens
at least once a year and typically takes
an hour.

Production computer software typi-
cally has more than one defect per thou-
sand lines of code. When a system needs
millions of lines of code, it is likely to
have thousands of software defects. This
seems to put a ceiling on the size of
high-availability systems. The system
must either be small or be limited to a
failure rate of one fault per decade. For
example, the 10-million-line Tandem
system software has been measured to
have a 30-year mean time to f a i l ~ r e . ~

Database reorganization is required
to add new types of information, to
reorganize the data so that it can be
more efficiently processed, or to redis-
tribute the data among recently added
storage devices. Such reorganizations
may happen several times a year and
typically take several hours. As of 1991,
no general-purpose system provides
complete on-line reorganization utili-
ties.

Operators sometimes make mistakes
that lead to system outages. A conser-
vative estimate is that a system experi-
ences one such fault a decade. Such
faults cause an outage of a few hours.

Faults in these four classes cause more
than 1,000 minutes of outage per year in
a typical system. This explains why man-
aged systems do worse than this but
well-managed systems do slightly bet-
ter (see Table 1).

High-availability systems must mask
most of these faults. One thousand min-
utes per year is much more than the
five-minute-per-year budget allowed for
high-availability systems. But even fault-
tolerant and high-availability systems
cannot tolerate all faults. Ignoring sched-
uled interruptions to upgrade software
to newer versions, current fault-toler-
ant systems typically deliver four years
of uninterrupted service and then re-
quire a two-hour repair.3 This translates
to 99.96 percent availability - about
one minute of outage per week.

This article surveys the fault-tolerant
techniques used to achieve highly avail-
able systems and sketches approaches
to the goal of ultra-available systems:
systems with a 100-year mean-time-to-
failure rate and a one-minute mean time
to repair.

Terminology

Fault-tolerance discussions benefit
from terminology and concepts devel-

40 COMPUTER

Authorized licensed use limited to: University of Wisconsin. Downloaded on March 08,2010 at 11:36:50 EST from IEEE Xplore. Restrictions apply.

oped by the International
Federation for Information
Processing Working Group
10.4 and by the IEEE Com-
puter Society Technical
Committee on Fault-Toler-
ant Computing. Here we
present key definitions from
their results.5

We can view a system as a
single module, but most sys-
tems are composed of mul-
tiple modules. These mod-
ules have internal structures,
which are in turn composed
of submodules. We discuss
the behavior of a single mod-
ule, but the terminology ap-
plies recursively to modules
with internal modules.

Each module has an ideal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
specified behavior and an
observed actual behavior. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA

failure is deviation of the
actual behavior from the
specified behavior. The fail-

Service interruption

Failure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Detect

Fault

Figure 1. Usually a module’s actual behavior matches its

specified behavior, and it is in the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAservice accomplishmeni
state. Occasionally, a fault causes an error that becomes

effective and causes the module to fail (observed behavior

does not equal specified behavior). Then the module en-

ters the service interruption state. After the failure is de-

tected, reported, and corrected or repaired, the module re-

turns to the service accomplishment state.

ure occurs because of an error, a defect
in the module. The cause of the error is
a fault. The time between the occur-
rence of the error and the resulting fail-
ure is the error latency. When the error
causes a failure, it becomes effective
(see Figure 1).

For example, a programmer’s mis-
take is a fault that creates a latent error
in the software. When the system exe-
cutes the erroneous instructions with
certain data values, they cause a failure
and the error becomes effective. As a
second example, a cosmic ray (fault)
may discharge a memory cell, causing a
memory error. When the system reads
the memory, it produces the wrong an-
swer (memory failure) and the error
becomes effective.

The actual module behavior alter-
nates between service accomplishment
while the module acts as specified and
service interruption while module be-
havior deviates from the specified be-
havior. Module reliability measures the
time from an initial instant and the next
failure event. In a population of identi-
cal modules that are run until failure,
the mean time to failure is the average
time to failure for all modules. Module
reliability is statistically quantified as
M T T F (mean time to failure). Service
interruption is statistically quantified
as M T T R (mean time to repair). Mod-
ule availability measures the ratio of
service accomplishment to elapsed time.

The availability of nonredundant sys-
tems with repair is statistically quanti-
fied as MTTF/(MTTF+MTTR).

Module reliability can be improved
both by valid construction to reduce
failures and by error correction.

Valid construction. Validation can
remove faults during the construction
process, thus assuring that the construct-
ed module conforms to the specified
module. Because physical components
fail during operation, validation alone
cannot assure high availability.

Error correction. Designs with redun-
dancy reduce failures by tolerating faults.
Latent error processing describes the
practice of trying to detect and repair
latent errors before they become effec-
tive. Preventive maintenance is an ex-
ample. Effective error processing de-
scribes correction of the error after it
becomes effective. Effective error pro-
cessing may either recover from the er-
ror or mask the error.

Error masking typically uses redun-
dant information to deliver the correct
service and to construct a correct new
state. Error-correcting codes used for
electronic, magnetic, and optical stor-
age are examples of masking. An error-
recovery mechanism typically denies the
request and sets the module to an error-
free state so that it can service subse-
quent requests.

Error recoverycan take two
forms. Backward error recov-
ery returns to a previous cor-
rect state. Checkpoint-restart
is an example. Forward error
recovery constructs a new cor-
rect state. Redundancy in time
- for example, resending a
damaged message or reread-
ing a disk block - are exam-
ples of forward error recov-
ery.

In addition to these key
definitions from the IFIP
working group,5 the follow-
ing terminology to categorize
faults is useful:

Hardware faul ts . Failing
devices.

Design faults. Faults in soft-
ware (mostly) and hardware
design.

Operations faults. Mistakes
made by operations and main-
tenance personnel.

Environmental faul ts . Fire, f lood,
earthquake, power failure, and sabo-
tage.

Empirical experience

There is considerable empirical evi-
dence about faults and fault tolerance.6
Failure rates (or failure hazards) for
software and hardware modules typi-
cally follow a “bathtub curve.” The rate
is high for new units (infant mortality),
then it stabilizes at a low rate. As the
module ages beyond a certain thresh-
old, the failure rate increases (maturi-
t y) . Physical stress, decay, and corro-
sion are the causes of physical device
aging. Maintenance and redesign cause
software aging.

Vendors usually quote the failure rates
at the bottom of the bathtub (after in-
fant mortality and before maturity).
Transient failures often obey a Weibull
distribution, a negative hyperexponen-
tial distribution. Many device and soft-
ware failures are transient - that is, the
operation may succeed if the device or
software system is simply reset. Failure
rates typically increase with use.

Repair times for a hardware module
can vary from hours to days, depending
on the availability of spare modules and
diagnostic capabilities. For a given or-
ganization, repair times appear to fol-
low a Poisson distribution. Good repair

September 1991 41

Authorized licensed use limited to: University of Wisconsin. Downloaded on March 08,2010 at 11:36:50 EST from IEEE Xplore. Restrictions apply.

... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Comparator zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I I 1 I

Duplex I Triplex I

Voter
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI

Figure 2. Fail-fast and fault-tolerant modules: (a) basic designs, (b) recursive designs stemming from the basic designs.

success rates are typically 99.9 percent,
but 95 percent repair success rates are
common. This is still excellent com-
pared with the 66 percent repair suc-
cess rates reported for automobiles.

Improved devices

Device reliability has improved enor-
mously since 1950. Vacuum tubes
evolved to transistors. Transistors, re-
sistors, and capacitors were integrated
on single chips. Today, packages inte-
grate millions of devices on a single
chip. These device and packaging revo-
lutions have increased the reliability of
digital electronics dramatically:

Long-lived devices. Integrated-cir-
cuit devices have long lifetimes. They
can be disturbed by radiation, but if
operated at normal temperatures and
voltages and kept from corrosion, they
will operate for at least 20 years.

Reduced power. Integrated circuits
consume much less power per function.
The reduced power translates to re-
duced temperatures and slower device
aging.

Fewer connectors. Connections were
a major source of faults because of me-
chanical wear and corrosion. Integrat-
ed circuits have fewer connectors. On-
chip connections are chemically
deposited, off-chip connections are sol-
dered, and wires are printed on circuit

boards. Today, only backplane connec-
tions suffer mechanical wear. They in-
terconnect field-replaceable units (mod-
ules) and peripheral devices.

Magnetic storage devices have expe-
rienced similar improvements. Origi-
nally, disks were the size of refrigera-
tors and needed weekly service. Just 10
years ago, the typical disk was the size
of a washing machine, consumed about
2,000 watts of power, and needed ser-
vice about every six months. Today,
disks are hand-held units, consume about
10 watts of power, and have no sched-
uled service. A modern disk becomes
obsolete sooner than it is likely to fail.
The MTTF of a modern disk is about 12
years; its useful life is probably five
years.

Peripheral device cables and connec-
tors have experienced similar complex-
ity reductions. A decade ago, disk ca-
bles were huge. Each disk required 20
or more control wires. Often disks were
dual-ported, doubling this number. An

array of 100 disks needed 4,000 wires
and 8,000 connectors, and these cables
and their connectors were a major source
of faults. Today, modern disk assem-
blies use fiber-optic cables and connec-
tors. A 100-disk array can be attached
with 24 cables and 48 connectors: This is
more than a 100-fold component reduc-
tion. In addition, the underlying media
use less power and have better resis-
tance to electrical noise.

Fault - t olerant design
concepts

These more reliable devices are com-
bined to create complex systems. Cer-
tain design concepts are fundamental to
making the systems fault tolerant and,
consequently, highly available.

Modularity. Designers should hier-
archically decompose the system into
modules. For example, a computer may
have a storage module, which in turn
has several memory modules. Each
module is a unit of service, fault con-
tainment, and repair. If a module fails,
it is replaced by a new module.

Fail-fast. Each module should ei-
ther operate correctly or stop immedi-
ately.

Independentfailure modes. Modules
and interconnections should be designed
so that if one module fails, the fault does
not affect other modules.

Redundancy and repair. Spare mod-
ules should be installed or configured in
advance, so when one module fails, the
second can replace it almost instantly.
The failed module can be repaired off
line while the system continues to deliv-
er service.

These principles apply to hardware
faults, design faults, and software faults
(which are designfaults). However, their
application varies, so we discuss hard-

42 COMPUTER

Authorized licensed use limited to: University of Wisconsin. Downloaded on March 08,2010 at 11:36:50 EST from IEEE Xplore. Restrictions apply.

... zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
ware first, and then design
and software faults. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fault- tolerant
hardware

The application of the
modularity, fail-fast, inde-
pendence, redundancy, and

Pair-and-spare or dual-dual

repair concepts to hardware
fault tolerance is easy to un-
demand. Hardware modules
are physical units such as a
processor, a communications
line, or a storage device. De-
signers use one of two tech-
nique@* to make a module
fail-fast:

Figure 3. Using redundancy to mask failures. Triple-mod-

ule-redundancy needs no extra effort to mask a single fault.
Duplexed modules can tolerate faults by using a pair-and-

spare or dual-dual design. If any single module fails, the su-

per module continues operating.

Self-checking. A module performs
the operation and also some additional
work to validate the state. Error-de-
tecting codes on storage and messages
are examples of this approach.

Comparison. Two or more modules
perform the operation, and a compara-
tor examines their results. If they dis-
agree, the modules stop.

Self-checking has been the mainstay
for many years, but it requires addition-
al circuitry and design. However, it will
likely continue to dominate storage and
communications designs because the
logic is simple and well understood.

The economies of integrated circuits
encourage the use of comparison for
complex processing devices. Because
comparators are relatively simple, com-
parison trades additional circuits for
reduced design time. In custom fault-
tolerant designs, 30 percent of proces-
sor circuits and 30 percent of the pro-
cessor design time are devoted to

self-checking. Comparison schemes, on
the other hand, augment general-pur-
pose circuits with simple comparator
designs and circuits. The result is a re-
duction in overall design cost and cir-
cuit cost.

Figure 2a shows the basic comparison
approach. A relatively simple compara-
tor placed at the module interface can
compare the outputs of two modules. If
the outputs match exactly, the compar-
ator lets the outputs pass through. If the
outputs do not match, the comparator
detects the fault and stops the modules.
This is a generic technique for making
fail-fast modules from conventional
modules.

If a design uses more than two mod-
ules, the module can tolerate at least
one fault because the comparator pass-
es through the majority output (two out
of three in the Figure 2a triplex). The
triplex design is called triple-module-
redundancy. Figure 2b shows how the
duplex and triplex designs can be made
recursive. The modules are N-plexed

and so are the comparators
themselves, so comparator
failures are also detected.

Self-checking and compar-
ison provide quick fault de-
tection. Once a system de-
tects a fault, it should report
and mask the fault, as shown
in Figure 1.

Figure 3 shows how hard-
ware fault masking typically
works with duplexing com-
parison schemes. The pair-
and-spare o r dual -dual
scheme combines two fail-
fast modules to produce a
supermodule that continues
operating, even if one of the
submodules fails. Because
each submodule is fail-fast,

the combination is just the OR of the
two submodules. The triplexing scheme
masks failures by having the compara-
tor pass through the majority output. If
only one module fails, the outputs of the
two correct modules will form a major-
ity and will allow the supermodule to
function correctly.

The pair-and-spare scheme requires
more hardware than triplexing (four
rather than three modules), but it al-
lows a choice of two operating modes:
either two independent fail-fast compu-
tations running on the two pairs of mod-
ules or a single high-availability compu-
tation running on all four modules.

To understand the benefits of these
designs, imagine that each module has a
one-year MTTF, with independent fail-
ures. Suppose that the duplex system
fails if the comparator inputs do not
agree, and the triplex module fails if
two of the module inputs do not agree.
If there is no repair, the supermodules
in Figure 2 will have a MTTF of less
than a year, as shown in Table 2.('This is

Table 2. MTTF estimates for various architectures using one-year MTTF modules with a four-hour MTTR (E represents a

small additional cost for the comparators).6

I Architecture MTTF Class Equation cost I
Simplex 1 year 3 MTTF 1
Duplex -0.5 year 3 =MTTF/2 2 + E
Triplex 0.8 year 3 =MTTF(5/6) 3 + E
Pair and spare -0.7 year 3 =MTTF(3/4) 4 + &
Duplex plus repair >lo3 years 6 =MTTF2/2MTTR 2 + &
Triplex plus repair >lo6 years 6 =MTTF3/3MTTR 3 f E

September 1991

~~~ ~- 

43 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 

Authorized licensed use limited to: University of Wisconsin. Downloaded on March 08,2010 at 11:36:50 EST from IEEE Xplore.  Restrictions apply. 



.I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

an instance of the airplane rule: A two- 
engine airplane costs twice as much and 
has twice as many engine problems as a 
one-engine airplane. Redundancy by 
itself does not improve availability or 
reliability. (Redundancy does decrease 
the variance in failure rates.) In fact, 
adding redundancy lessens reliability 
in the cases of duplexing and triplexing. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Redundancy designs require repair to 
dramatically improve availability. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Importance of repair 

If failed modules are repaired or re- 
placed within four hours of their fail- 
ure, then the MTTF of the example 
systems goes from one year to well be- 
yond l ,000years. Their availability goes 
from 99.9 percent to 99.9999 percent 
and their availability class from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 to 6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 

a significant improvement. If the sys- 
tem uses thousands of modules, design- 
ers can repeat the construction recur- 
sively to N-plex the entire system and 
get a class 8 supermodule (1,000-year 
MTTF) . 

On-line module repair requires re- 
pair and reinstallation of modules while 
the system is operating. It also requires 
reintegrating the module into the sys- 
tem without interrupting service. Do- 
ing this is not easy; for example, it is not 
trivial to make the contents of a re- 
paired disk identical to that of a neigh- 
boring disk. Similarly, when a proces- 
sor is repaired, it is not easy to set the 
processor state to that of the other pro- 
cessors in the module. Reintegration 
algorithms exist, but they are subtle 
and each uses a different trick. There is 
no overall design methodology for such 
algorithms as yet. Today's on-line inte- 
gration techniques are trade secrets pro- 
tected by patents, because they are a 
key to high-availability computing. 

Improved device 
maintenance 

The declining cost and improved re- 
liability of devices permit a new ap- 
proach to computer maintenance. Com- 
puters can be composed of modules 
called field replaceable units. Each FRU 
has built-in self-tests exploiting one of 
the checking techniques mentioned 
above. These tests let a module diag- 
nose itself and report failures electron- 

ically to the system maintenance pro- 
cessor and visually as a light on the 
module itself. A green light means no 
trouble, yellow means a fault has been 
reported and masked, and red indicates 
a failed unit. This system makes repairs 
easy. The repair person looks for a red 
light and replaces the failed module 
with a spare from inventory. 

FRUs are designed to have a MTTF 
of more than 10 years and to cost less 
than a few thousand dollars, so they can 
be manufactured and stocked in quanti- 
ty. A system can consist of tens or thou- 
sands of FRUs. 

Vendors of fault-tolerant computers 
have carried the FRU concept to its 
logical conclusion with a system called 
cooperative maintenance. When a mod- 
ule fails. the fault-tolerant system con- 
tinues operating because it can tolerate 
any single fault. The system first identi- 
fies the fault within a FRU. It then calls 
the vendor's support center via switched 
telephone lines and announces that a 
new module is needed. The vendor's 
support center sends the new part to the 
site via overnight courier. In the morn- 
ing the customer receives a package 
containing a replacement part and in- 
stallation instructions. The customer 
replaces the part and returns the faulty 
module to the vendor by parcel post. 

Cooperative maintenance has attrac- 
tive economies. Conventional designs 
often require a 2-percent-per-month 
maintenance contract. Paying2 percent 
of the system price each month for main- 
tenance doubles the system price in four 
years. Maintenance is expensive because 
each visit to a customer's site costs the 
vendor about a thousand dollars. Coop- 
erative service can cut maintenance costs 
in half. 

The simple and powerful ideas of fail- 
fast modules and repair via retry or 
spare modules seem to solve the hard- 
ware fault-tolerance problem. They can 
mask almost all physical device failures, 
but they do not mask failures caused by 
hardware design faults. If all the mod- 
ules have faulty designs, then the com- 
parators will not detect the fault. Simi- 
larly, comparison techniques do not 
apply to software -which is all design 
- unless design diversity is used. 

Tolerating design faults 

Tolerating design faults is critical to 
high availability. After fault-masking 

techniques are applied, the vast major- 
ity of the remaining computer faults are 
design faults. (We discuss operations 
and environmental faults later.) 

A study indicates that failures due to 
design (software) faults outnumber hard- 
ware faults by 10 to one. Applying the 
concepts of modularity, fail-fast mod- 
ules, independent failure modes, and 
repair to software and design is the key 
to tolerating these faults. 

Software modularity is well under- 
stood. A software module is a process 
with a private state (no shared memory) 
and a message interface to other soft- 
ware  module^.^ 

The two approaches to fail-fast soft- 
ware are similar to the hardware ap- 
proaches: 

Self-checking. A program typically 
does simple sanity checks of its inputs, 
outputs, and data structures. Program- 
ming for this is called defensive pro-  
gramming. It parallels the double-entry 
bookkeeping and check-digit techniques 
used for centuries in manual accounting 
systems. In defensive programming, if 
some item does not satisfy the integrity 
assertion, the program raises an excep- 
tion (fails fast) or attempts repair. In 
addition, independent processes called 
auditors or watchdogs observe the state. 
If they discover an inconsistency, they 
raise an exception and either fail fast 
the state (erase it) or repair it.'"." 

Comparison. Several modules of 
different design run the same computa- 
tion. A comparator examines their re- 
sults and declares a fault if the outputs 
are not identical. This scheme depends 
on independent failure modes of the 
various modules. 

The third major fault-tolerance con- 
cept is independent failure modes. De- 
sign diversity is the best way to get de- 
signs with independent failure modes. 
For diverse designs, at least three inde- 
pendent groups start with the same spec- 
ification and produce code to imple- 
ment it. This software approach is called 
N-version programming12 because the 
program is written N times. 

Unfortunately, even independent 
groups can make the same mistake, or a 
common mistake can arise from the orig- 
inal specification. Anyone who has giv- 
en a test knows that many students make 
the same mistake on a difficult exam 
question. Nevertheless, independent 
implementations of a specification by 

44 COMPUTER 

Authorized licensed use limited to: University of Wisconsin. Downloaded on March 08,2010 at 11:36:50 EST from IEEE Xplore.  Restrictions apply. 



independent groups iscurrent- 
ly the best way to approach 
design diversity. 

N-version programming is 
expensive, raising the system 
implementation and mainte- 
nance cost by a factor of N or 
more. Also, it may add unac- 
ceptable time delays to the 
project implementation. Some 
argue that the time and mon- 
ey are better spent on making 
one superreliable designrath- 
er than three marginal designs. 
At present, there is no com- 
parative data to resolve this 
issue. 

The concept of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdesign re- 
pair seems to further damage 
the case for design diversity. 
Recall the airplane rule: Two- 
engine airplanes have twice 
the engine problems of one- 
engine planes. Suppose each zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Logical process zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= Process pair zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 4. A process pair appears to other processes as a 

single logical process, but it is really two processes execut- 

ing the same program and maintaining approximately the 

same state. The two processes typically run on different 

computers and have some failure-mode independence. In 

addition, process pairs mask Hiesenbugs. 

module of a triplexed design has a 100- 
year MTTF. Without repair, the triple 
will have its first fault in 33 years and its 
next fault in 50 years. The net is an 83- 
year MTTF. If only one module were 
operated, the MTTFwould be 100years. 
So the three-version program module 
has a worse MTTF than any simple pro- 
gram (but the three-version program 
has lower failure variance). Repair is 
needed if N-version programming is to 
improve system MTTF. 

Repairing a design flaw takes weeks 
or months. This is especially true for 
hardware. Even software repair is slow 
when run through a careful program- 
development process. Because the 
MTTF of a triplex is proportional to 
(MTTF3/MTTR), long repair times may 
be a problem for high-availability sys- 
tems. 

Even after the module is repaired, 
how to reintegrate it into the working 
system without interrupting service is 
not clear. For example, suppose the 
failed module is a file server with its 
disk. If the module fails and is out of 
service for a few weeks while the bug is 
fixed, then when it returns, it must re- 
construct the current state. Because it 
has a completely different implementa- 
tion from the other file servers, a spe- 
cial-purpose utility is needed to copy 
the state of a “good” server to the “be- 
ing repaired” server while the good serv- 
er is delivering service. Any files changed 
in the good server also must be changed 
in the server being repaired. The repair 

September 1991 

utility should itself be an N-version 
program to prevent a single fault in a 
good server or copy operation from 
creating a double fault. Software re- 
pair is not trivial. 

Process pairs and 
transactions 

Process pairs and transactions offer 
a completely different approach to soft- 
ware repair. They generalize the con- 
cept of checkpoint-restart to distribut- 
ed systems. Most errors caused by 
design faults in production hardware 
and software are transient. A transient 
failure will disappear if the operation 
is retried later in a slightly different 
context. Such transient software fail- 
ures have been given the whimsical 
name “Heisenbug” because they dis- 
appear when reexamined. By contrast, 
“Bohrbugs” are good solid bugs. 

Common experience suggests that 
most software faults in production sys- 
tems are transient. When a system fails, 
it is generally restarted and returns to 
service. After all, the system was work- 
ing last week. It was working this morn- 
ing. So why shouldn’t it work now? But 
this commonsense observation is not 
very satisfying. 

In  the most complete study of soft- 
ware faults to date, Ed Adams looked 
at maintenance recordsof North Amer- 
ican IBM systems over a four-year pe- 

.. n 

riod.I3 He found that most 
software faults in produc- 
tion systems are reported 
only once. He described 
such errors as benign bugs. 
Some software faults were 
reported many times, but 
such virulent bugs made up 
significantly less than 1 
percent of all reports. On 
the basis of this observa- 
tion, Adams recommend- 
ed that benign bugs not be 
repaired immediately. Us- 
ing Adam’s data, Harlan 
Mills observed that most 
benign bugs have a MTTF 
in excess of 10,000 years. It 
is safer to ignore such bugs 
than to stop the system, in- 
stall a bug fix, and then 
restart the system. The re- 
pair will require a brief 
outage, and a fault in the 

repair process may cause a second out- 
age. 

The Adams study and several others 
imply that the best short-term approach 
to masking software faults is to restart 
the ~ y s t e m . ~ . ’ ~ , ’ ~  Suppose the restart 
were instantaneous. Then the fault 
would not cause any outage: Simplex 
system unavailability is approximately 
MTTR/MTTF. If the MTTR is zero 
and the MTTF is greater than zero, 
then there is no unavailability. 

Process pairs are a way to get almost 
instant restart. Recall that a process is 
a unit of software modularity that pro- 
vides some service. It has a private 
address space and communicates with 
the other processes and devices via 
messages traveling on sessions. If a 
process fails, it is the unit of repair and 
replacement. A process pair - two 
processes running the same ~ r o g r a m ’ ~  
- gives almost instant replacement 
and repair for a process. 

As Figure 4 shows, during normal 
operation the primaryprocess performs 
all the operations for its clients, and 
the backup process passively watches 
the message flows. The primary pro- 
cess occasionally sends checkpoint mes- 
sages to its backup, much in the style of 
checkpoint-restart designs of the 1950s. 
When the primary process detects an 
inconsistency in its state, it fails fast 
and notifies the backup process. Then 
the backup process becomes the pri- 
mary process, answering all incoming 
requests and providing the service. If 

45 

I 

Authorized licensed use limited to: University of Wisconsin. Downloaded on March 08,2010 at 11:36:50 EST from IEEE Xplore.  Restrictions apply. 



the primary process failed 
because of a Heisenbug, the 
backup will not fail and there 
will be no interruption of ser- 
vice. Process pairs also toler- 
ate hardware faults. If the 
hardware supporting the pri- 
mary process fails, the back- 
up running on other hard- 
ware will mask the failure. 

A criticism of process pairs 
is that writing the checkpoint 
and takeover logic makes 
programming even more 
complex. It is analogous to 
writing the repair programs 
for N-version programming. 
Bitter experience shows that 
the code is difficult to write, 
difficult to  test, and difficult 
to maintain. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Transactions automate the 
checkpoint-takeover logic 
and allow “ordinary” pro- 
grams to act as process pairs. 
Using the transaction mech- 
anism, an application design- 
er declares a collection of 
actions (messages, database 
updates, and state changes) 
to have the following prop- 
erties: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

.I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 5. A system-pair design with system replication at 

two sites, Paris and Tokyo. During normal operation each 

system carries half the load. When one fails, the other serves 

all the clients. System pairs mask most hardware, software, 

operations, maintenance, and environmental faults. They 

also allow on-line software and hardware changes. 

*Atomiciry.  Either all the actions 
making up the transaction will be done 
or they will all be undone. This is often 
called the all-or-nothing property. The 
two possible outcomes are commit (all) 
and abort (nothing). 

Consistency. The collection of ac- 
tions is a correct transformation of state. 
It preserves the state invariants (the 
assertions constraining the values that a 
correct state may assume). 

Isolation. Each transaction will be 
isolated from the concurrent execution 
of other concurrent transactions. Even 
if other transactions concurrently read 
and write the inputs and outputs of this 
transaction, it will appear that the trans- 
actions ran sequentially according to  
some global clock. 

Durability. If a transaction commits, 
the effects of its operations will survive 
any subsequent system failures. In par- 
ticular, the system will deliver any com- 
mitted output messages, and the data- 
base state will reflect any committed 
database changes. 

These four transaction properties, 
termed ACID, were first developed by 

the database community. The transac- 
tion mechanism provides a simple ab- 
straction to help Cobol programmers 
deal with errors and faults in conven- 
tional database systems and applica- 
tions. The concept gained many con- 
verts when distributed databases became 
common. A distributed state is so com- 
plex that traditional checkpoint-restart 
schemes require superhuman talents. 

The transaction mechanism is 
easy to understand. The programmer 
declares a transaction by issu- 
ing a Begin-Transaction() verb 
and ends the transaction by issu- 
ing a Commit-Transaction() o r  
AbortPTramaction() verb. Beyond 
that, the underlying transaction me- 
chanism ensures that all actions within 
the Begin-Commit and Begin-Abort 
brackets have the ACID properties. 

Designers can apply the transaction 
concept to  databases, to messages (“ex- 
actly once” message delivery), and to 
main memory (persistent programming 
languages). T o  combine transactions 
with process pairs, a designer declares a 
process pair’s state to be persistent, 
meaning that when the primary process 
fails, the transaction mechanism aborts 

all transactions involved in 
the primary process and re- 
constructs the backup-pro- 
cess state as it stood at the 
start of the in-progress trans- 
actions. The backup process 
then reprocesses the trans- 
actions. 

In this model, the underly- 
ing system implements trans- 
actional storage (storage with 
the ACID properties), trans- 
actional messages (exactly 
once message delivery), and 
process pairs (the basic take- 
over mechanism). This is not 
trivial, but there are at least 
two examples: Tandem’s 
Nonstop Systems and IBM’s 
Cross Recovery Feature 
(XRF). With the underlying 
facilities provided by such 
systems, application pro- 
grammers can write conven- 
tional programs that execute 
as process pairs. The compu- 
tations need only declare 
transaction boundaries. The 
checkpoint-restart logic and 
transaction mechanism are 
handled automatically. 

Operations, 
maintenance, and 
environment 

The previous sections took the nar- 
row “computer” view of fault tolerance, 
but computers rarely cause computer 
failures. One study found that 98 per- 
cent of the unscheduled system outages 
came from outside s o ~ r c e s . ~  High-avail- 
ability systems must tolerate environ- 
mental faults (power failures, fire, flood, 
insurrection, virus, and sabotage), op- 
erations faults, and maintenance faults. 

The declining price and increasing 
automation of computer systems offer a 
straightforward solution to some of these 
problems: system pairs. As Figure 5 
shows, system pairs carry the disk-pair 
and process-pair design one step fur- 
ther. Two nearly identical systems are 
placed at least 1,000 kilometers apart. 
They are on different communication 
grids and power grids, at sites on differ- 
ent earthquake faults and in different 
weather systems. The maintenance per- 
sonnel and operators are different. Cli- 
ents are in session with both systems, 

46 COMPUTER 

Authorized licensed use limited to: University of Wisconsin. Downloaded on March 08,2010 at 11:36:50 EST from IEEE Xplore.  Restrictions apply. 



but each client preferentially sends work 
to one system or another. Each system 
carries half the load during normal op- 
eration. When one system fails, the oth- 
er system takes over. The transaction 
mechanism steps in to clean up the state 
at takeover. 

Ideally, the systems would have dif- 
ferent designs for additional protection 
against design errors. But the econom- 
ics of designing, installing, operating, 
and maintaining two completely differ- 
ent systems may be prohibitive. Even if 
the systems are identical, they are likely 
to mask most hardware, software, envi- 
ronmental, maintenance, and operations 
faults. 

Clearly, system pairs will mask many 
hardware faults. A hardware fault in 
one system will not cause a fault in the 
other. System pairs will mask mainte- 
nance faults because a maintenance 
person can only touch and break com- 
puters at one site at a time. System pairs 
will ease maintenance. Either system 
can be repaired, moved, replaced, or 
changed without interrupting service. It 
should be possible to install new soft- 
ware or to reorganize the database for 
one system while the other provides 
service. After the upgrade, the new sys- 
tem will catch up with the old system 
and then replace it while the old system 
is upgraded. 

Special-purpose system pairs have 
been operating for decades. IBM’s AAS 
system, the Visa system, and many bank- 
ing systems operate in this way. They 
offer excellent availability and protec- 
tion from environmental and operations 
disasters. But each system has an ad hoc 
design: None provides a general-pur- 
pose version of system pairs. This is an 
area of active development. General- 
purpose support for system pairs will 
emerge during this decade. 

ver the last four decades, com- 
puter reliability and availabil- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 ity have improved by four or- 

ders of magnitude. Techniques to mask 
device failures are well understood. 
Device reliability and design have im- 
proved so maintenance is now rare. 
When needed, maintenance consists of 
replacing a module. Computer opera- 
tions are increasingly automated by soft- 
ware. System pairs mask most environ- 
mental faults, and also mask some 
operations, maintenance, and design 
faults. 

September 1991 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Process System Future 
Fault class Replication pairs pairs techniques 

Hardware 

Design 

Operations 

Environment zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1960s 1970s 1980s 1990s 

Figure 6. Evolution of fault-tolerant architectures and their fault class coverage. 

Figure 6 shows the evolution of fault- 
tolerant and high-availability architec- 
tures, and the fault classes they tolerate. 
The density of shading indicates the 
degree to which faults in a class are 
tolerated. During the 1960s, fault-toler- 
ant techniques were mainly used in tele- 
phone switching and aerospace applica- 
tions. Because of the relative 
unreliability of hardware, replication 
was used to tolerate hardware failures. 
The 1970s saw the emergence of com- 
mercial fault-tolerant systems using pro- 
cess pairs coupled with replication to 
tolerate hardware and some design 
faults. The replication of a system at 
two or more sites (systempairs) extend- 
ed fault coverage to include operations 
and environmental faults. The challenge 
of the 1990s is to build on our experi- 
ence and devise architectures that can 
cover all fault classes. 

These advances have come at the cost 
of increased software complexity. Sys- 
tem pairs are more complex than sim- 
plex systems. Software to automate op- 
erations and to  allow fully on-line 
maintenance and change is subtle. A 
minimal system to provide these fea- 
tures will involve millions of lines of 
code. Software systems of that size have 
thousands of faults, and we know of no 
practical technique to  eliminate such 
bugs. 

Techniques to tolerate software faults 
are available, but they take a statistical 
approach. Their statistics are not very 
promising. The best systems offer a 
MTTF measured in tens of years. This is 
unacceptable for applications that in- 
volve lives or control multibillion-dol- 
lar enterprises. But today there is no 
alternative. Building ultra-available sys- 
tems stands as a major challenge for the 
computer industry in the coming de- 
cades. w 

References 

1. A. Avizienis, H. Kopetz, and J.C. Laprie, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Dependable Computing and Fault-Toler- 
ant Systems, Springer-Verlag, Vienna, 
1987. 

2. Survey on Computer Security, E. Watan- 
abe, trans., Japan Information Develop- 
ment Corp., Tokyo, 1986. 

3. J. Gray, “A Census of Tandem System 
Availability, 1985-1990,” IEEE Trans. 
Reliability, Vol. 39, No. 4, Oct. 1990, pp. 
409-418. 

4. N. Tullis, “Powering Computer-Con- 
trolled Systems: AC or DC?” Telesis, 
Vol. 11, No. 1, Jan. 1984, pp. 8-14. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5. J.C. Laprie, “Dependable Computing and 
Fault Tolerance: Concepts and Termi- 
nology,” Proc. 15th FTCS, Computer 
Society Press, Los Alamitos, Calif., 1985, 
pp. 2-11. 

6. D.P. Siewiorek and R.W. Swarz, Reliable 
Computer Systems: Design and Evalua- 
tion, Digital Press, Bedford, Mass., 1992. 

7. B.W. Johnson, Design and Analysis of 
Fault Tolerant Digital Systems, Addison- 
Wesley, Reading, Mass., 1989. 

8. D.K. Pradhan, Fault Tolerant Comput- 
ing: Theory and Techniques, Vols. 1, 2, 
Prentice-Hall, Englewood Cliffs, N.J., 
1986. 

9. A S .  Tanenbaum, Operating Systems: 
Design and Implementation, Prentice- 
Hall, Englewood Cliffs, N.J., 1989. 

10. Resilient Computing Systems, Vol. 1, T. 
Anderson, ed., John Wiley, New York, 
1985. 

11. B. Randell, P.A. Lee, and P.C. Treleav- 
en, “Reliability Issues in Computer Sys- 
tem Design,” ACM Computing Surveys, 
Vol. 28, No. 2, Apr. 1978, pp. 123-165. 

12. A. Avizienis, “Software Fault Tolerance,” 
Proc. 1989 IFIP World Computer Conf , 
IFIP Press, Geneva, 1989, pp. 491-497. 

47 

Authorized licensed use limited to: University of Wisconsin. Downloaded on March 08,2010 at 11:36:50 EST from IEEE Xplore.  Restrictions apply. 



13. E. Adams, ‘‘Optimizing Preventative Service of Software Prod- 
ucts,’’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI B M  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ .  R b D ,  Vol. 28, No. 1, Jan. 1984, pp. 2-14. 

14. J. Mourad, “The Reliability of the IBM/XA Operating System,” 
Proc. 15th FTCS, Computer Society Press, Los Alamitos, Calif., 
1985, pp. 76-83. 

15. J. Bartlett, “A Nonstop Kernel,” Eighth Sigops, ACM, New 
York, 1981, pp. 22-29. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Daniel P. Siewiorek is a professor in the School of Computer Science 
and the Carnegie Institute of Technology in the Department of 
Electrical and Computer Engineering at Carnegie Mellon Universi- 
ty. His research interests include computer architectures, reliability 
modeling, fault-tolerant computing, modular design, and design au- 
tomation. 

Siewiorek received a BS in electrical engineering from the Univer- 
sity of Michigan in 1968 and an MS and a PhD in electrical engineer- 
ing from Stanford University in 1969 and 1972. He is an IEEE fellow 
and a member of ACM, Tau Beta Pi, Eta Kappa Nu, and Sigma Xi. 

Jim Gray is with Digital Equipment Corporation’s San Francisco 
Systems Center, where he is working on enhancements to Digital’s 
database and transaction processing systems. Before joining Digital, 
he worked at Tandem on a system dictionary, parallel sort, and a 
distributed structured query language, Nonstop SQL. Before that, 
he worked at IBM Research on projects including System R, SQL/ 
DS, DB2, and IMS-Fast Path. Previously, he worked on Telsim at 
Bell Labs and managed the development of Cal TSS at UC Berkeley, 
where he wrote his doctoral dissertation on the theory of precedence 
parsing. 

Interested readers can write to Gray at Digital Equipment Corp., 
455 Market St., 7th Floor, San Francisco, CA 94105; his Internet 
address is jimgray@sfbay.dec.com. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

The Awards Committee 

of the 

lEEE Computer Society 

solicits nominations for 

the following key 

society awards. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
@ 
Nomination deadline for 1991 award consider- 
ation: October 15. Send a letter giving details and 
any supporting documentation to the Awards 
Committee chair: 

Ralph J. Preiss 
12 Colburn Dr. 

Poughkeepsie, NY 12603 
R.Preiss@Compmail.com 

fax (9 14) 462- 1858 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

W. WALLACE MCDOWELL AWARD 
Outstanding recent theoretical, design, educational, practical, or 

other innovative contributions to computer 
science and engineering. 

TECHNICAL ACHIE VEMENT A WARD 
Outstanding and innovative contributions to the field of computer 

science or computer technology within the past 15 years. 

COMPUTER ENTREPENEUR A WARD 
Managers whose vision and leadership have resulted in growth of 
some segment of the computer industry. Contributions shall have 

occurred at least 15 years ago. 

RICHARD E. MERWIN DSTIIYGUIMED SERVICE A WARD 
Highest service award granted by the Computer Society, in 

recognition of outstanding service to the profession at large, 
including service to the Computer Society or its predecessor 
organizations. Nominee must be a Computer Society member. 

TAYLOR BOOTHAWARD 
Recognizes individuals for their outstanding record in computer 

science and engineering. Criteria include achieving recognition as 
a teacher of reknown in a relevant course; writing an influential 
text in computer science and engineering; leading, inspiring, or 

providing significant educational content during the creation of a 
curriculum in the field; and inspiring others to a career in 

computer science and engineering education. 

48 COMPUTER 

Authorized licensed use limited to: University of Wisconsin. Downloaded on March 08,2010 at 11:36:50 EST from IEEE Xplore.  Restrictions apply. 

mailto:jimgray@sfbay.dec.com
mailto:R.Preiss@Compmail.com

