
 Open access Journal Article DOI:10.1109/TNET.2008.2008646

High-bandwidth network memory system through virtual pipelines — Source link

Banit Agrawal, Timothy Sherwood

Institutions: University of California, Santa Barbara

Published on: 01 Aug 2009 - IEEE ACM Transactions on Networking (IEEE Press)

Topics: Interleaved memory, Memory management, Uniform memory access, Extended memory and
Distributed memory

Related papers:

 Reservation-Based Packet Bufferswith Deterministic Packet Departures

 Achieving efficient packet-based memory system by exploiting correlation of memory requests

 Memory Network Architecture for Packet Processing in Functions Virtualization

 Memory access scheduling

 A novel hybrid SRAM/DRAM memory architecture for fast packet buffers

Share this paper:

View more about this paper here: https://typeset.io/papers/high-bandwidth-network-memory-system-through-virtual-
2st2sdb5tl

https://typeset.io/
https://www.doi.org/10.1109/TNET.2008.2008646
https://typeset.io/papers/high-bandwidth-network-memory-system-through-virtual-2st2sdb5tl
https://typeset.io/authors/banit-agrawal-5m0esml48e
https://typeset.io/authors/timothy-sherwood-3hyuaokxji
https://typeset.io/institutions/university-of-california-santa-barbara-2nv92kbe
https://typeset.io/journals/ieee-acm-transactions-on-networking-258z7e07
https://typeset.io/topics/interleaved-memory-qwiutjyn
https://typeset.io/topics/memory-management-32wzxu7n
https://typeset.io/topics/uniform-memory-access-w8ry12ye
https://typeset.io/topics/extended-memory-8iql2ost
https://typeset.io/topics/distributed-memory-3uk95ox4
https://typeset.io/papers/reservation-based-packet-bufferswith-deterministic-packet-2sf79x4c6g
https://typeset.io/papers/achieving-efficient-packet-based-memory-system-by-exploiting-1ll6w90kt3
https://typeset.io/papers/memory-network-architecture-for-packet-processing-in-2bncp9moam
https://typeset.io/papers/memory-access-scheduling-1ic2ynifah
https://typeset.io/papers/a-novel-hybrid-sram-dram-memory-architecture-for-fast-packet-4r473rbysh
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/high-bandwidth-network-memory-system-through-virtual-2st2sdb5tl
https://twitter.com/intent/tweet?text=High-bandwidth%20network%20memory%20system%20through%20virtual%20pipelines&url=https://typeset.io/papers/high-bandwidth-network-memory-system-through-virtual-2st2sdb5tl
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/high-bandwidth-network-memory-system-through-virtual-2st2sdb5tl
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/high-bandwidth-network-memory-system-through-virtual-2st2sdb5tl
https://typeset.io/papers/high-bandwidth-network-memory-system-through-virtual-2st2sdb5tl

IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 4, AUGUST 2009 1029

High-Bandwidth Network Memory System Through
Virtual Pipelines

Banit Agrawal and Timothy Sherwood, Member, IEEE

Abstract—As network bandwidth increases, designing an effec-
tive memory system for network processors becomes a significant
challenge. The size of the routing tables, the complexity of the
packet classification rules, and the amount of packet buffering
required all continue to grow at a staggering rate. Simply relying
on large, fast SRAMs alone is not likely to be scalable or cost-effec-
tive. Instead, trends point to the use of low-cost commodity DRAM
devices as a means to deliver the worst-case memory performance
that network data-plane algorithms demand. While DRAMs can
deliver a great deal of throughput, the problem is that memory
banking significantly complicates the worst-case analysis, and
specialized algorithms are needed to ensure that specific types of
access patterns are conflict-free.

We introduce virtually pipelined memory, an architectural tech-
nique that efficiently supports high bandwidth, uniform latency
memory accesses, and high-confidence throughput even under
adversarial conditions. Virtual pipelining provides a simple-to-an-
alyze programming model of a deep pipeline (deterministic
latencies) with a completely different physical implementation
(a memory system with banks and probabilistic mapping). This
allows designers to effectively decouple the analysis of their algo-
rithms and data structures from the analysis of the memory buses
and banks. Unlike specialized hardware customized for a specific
data-plane algorithm, our system makes no assumption about the
memory access patterns. We present a mathematical argument
for our system’s ability to provably provide bandwidth with high
confidence and demonstrate its functionality and area overhead
through a synthesizable design. We further show that, even though
our scheme is general purpose to support new applications such
as packet reassembly, it outperforms the state-of-the-art in spe-
cialized packet buffering architectures.

Index Terms—Bank conflicts, DRAM, mean time to stall,
memory, memory controller, MTS, network, packet buffering,
packet reassembly, universal hashing, virtual pipeline, VPNM.

I. INTRODUCTION

W
HILE consumers reap the benefits of ever-increasing

network functionality, the technology underlying these

advances requires armies of engineers and years of design and

validation time. The demands placed on a high-throughput net-

work device are significantly different than those encountered

Manuscript received August 28, 2007; revised June 17, 2008; approved by
IEEE/ACM TRANSACTIONS ON NETWORKING Editor T. Wolf. First published
May 29, 2009; current version published August 19, 2009. This work was sup-
ported in part by NSF Career Grant CCF-0448654 and NSF-CT-T 0524771.
This work is an extended version of the authors’ work in MICRO 39, 2006.

The authors are with the Computer Science Department, University of Cali-
fornia, Santa Barbara, Santa Barbara, CA 93106 USA (e-mail: banit@cs.ucsb.
edu; sherwood@cs.ucsb.edu).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNET.2008.2008646

in the desktop domain. Network components need to reliably

service traffic even under the worst conditions [2]–[6], yet the

underlying memory components on which they are built are

often optimized for common-case performance. The problem

is that network processing, at the highest throughputs, re-

quires massive amounts of memory bandwidth with worst-case

throughput guarantees. A new packet may arrive every 3 ns

for OC-3072, and each packet needs to be buffered, classified

into a service class, looked up in the forwarding table, queued

for switching, rate controlled, and potentially even scanned

for content. Each of these steps may require multiple depen-

dent accesses to large irregular data structures such as trees,

sparse bit-vectors, or directed graphs, usually from the same

memory hierarchy. To make things worse, the size of these

data structures are continuing to grow significantly, memory

for buffering has been increasing almost proportionally with

the line rate (40 to 160 Gbps), routing tables have grown from

100 to 360 K prefixes, and classification rules have increased

from 2000 to 5000 rules in recent years. Network devices

will become increasingly reliant on high-density commodity

DRAM to remain competitive in both pricing and performance.

In this paper, we present virtually pipelined network memory

(VPNM), an idea that shields algorithm and processor designers

from the complexity inherent to commodity memory DRAM

devices that are optimized for common-case performance. The

pipeline provides a programming model and timing abstraction

that greatly eases analysis. A novel memory controller upholds

that abstraction and handles all the complexity of the memory

system, including bank conflicts, bus scheduling, and bursts of

accesses to the exact same address. This frees the programmer

from having to worry about any of these issues, and the memory

can be treated as a flat, deeply pipelined memory with fully de-

terministic latency no matter what the memory access pattern is

(Fig. 1). Building a memory controller that can create such an

illusion requires that we solve several major problems:

• Multiple conflicting requests: Two memory requests that

access the same bank in memory will be in conflict, and

we will need to stall at least one request. To hide these con-

flicts, our memory controller uses per-bank queues along

with a randomized mapping to ensure that independent

memory accesses have a statistically bounded number of

bank conflicts. (Sections III-B and IV-A2)

• Reordering of requests: To resolve bank conflicts, re-

quests need to be reordered, but our virtual pipeline

presents a deterministic (in-order) interface. The latencies

of all memory accesses are normalized through special-

ized queues, and accesses are reordered in a distributed

(per-bank) manner to create the appearance of fully

pipelined memory. (Sections III-C and IV-A4)

1063-6692/$26.00 © 2009 IEEE

Authorized licensed use limited to: MICROSOFT. Downloaded on April 15,2010 at 20:22:58 UTC from IEEE Xplore. Restrictions apply.

1030 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 4, AUGUST 2009

Fig. 1. High-level block diagram of virtual pipeline where each access to
DRAM is normalized to a deterministic latency (D).

• Redundant requests: As repeated requests for the same data

cannot be randomized to different banks, normalizing the

latency for these requests could create the need for gigantic

queues. Instead, we have built a novel form of merging

queues that combines redundant requests and acts as a

cache but provides data playback at the right times to main-

tain the illusion of a pipeline. (Sections III-D and IV-A1)

• Worst-case analysis: In addition to the architectural chal-

lenges listed above, reasoning about the worst-case be-

havior of our system requires careful mathematical anal-

ysis. We show that it is provably hard for even a perfect

adversary to create stalls in our virtual pipeline with greater

effectiveness than random chance. (Sections V-B and V-C)

To quantify the effectiveness of our system, we have per-

formed a rigorous mathematical analysis, executed detailed sim-

ulation, created a synthesizable version, and estimated hard-

ware overheads. In order to show that our approach will actu-

ally provide both high performance and ease of programming,

we have implemented a packet buffering scheme as a demon-

stration of performance and a packet reassembler as a demon-

stration of usefulness, both using our memory system. We show

that, despite the generality of our approach (it does not assume

the head-read, tail-write property) it compares favorably with

several special-purpose packet buffering architectures in both

performance and area (Section VI).

II. RELATED WORK

Dealing with timing variance in the memory system has
certainly been addressed in several different ways in the past.
Broadly, the related work can be broken up into two groups:
scheduling and bank conflict reduction techniques that work in
the common case, and special purpose techniques that aim to
put bounds on worst-case performance for particular classes of
access patterns.

Common-case DRAM Optimizations: Memory bank
conflicts not only effect the total throughput available from
a memory system; they can also significantly increase the
latency of any given access. In the traditional processing do-
main, memory latency can often be the most critical factor
in terms of determining performance, and several researchers
have proposed hiding this latency with bank-aware memory
layout, prefetching [7], and other architectural techniques
[8]–[11]. While latency is critical, traditional machines are far
more tolerant of nonuniform latencies and reordering because
many other mechanisms are in place to ensure the proper

execution order is preserved. For example, in the streaming
memory controller (SMC) architecture, memory conflicts are
reduced by servicing a set of requests from one stream before
switching to a different stream [12]. A second example is the
memory scheduling algorithm, where memory bandwidth is
maximized by reordering various command requests [13]. In
the vector processing domain [14], a long stream requires
conflict-free access for larger number of strides. Rau et al. [15]
use randomization to spread the accesses around the memory
system and, through the use of Galois fields, show that it is
possible to have a pseudorandom function that will work as
well on any possible stride. While address mapping such as
skewing or linear transformations can be used for constant
stride, out-of-order accesses can efficiently handle a larger
number of strides [16]. Corbal et al. [17] present a command
vector memory system (CVMS) where a full vector request is
sent to the memory system instead of individual addresses to
provide higher performance.

While these optimizations are incredibly useful, industrial de-
velopers working on devices for the core will not adopt them due
to the fact that certain deterministic traffic patterns could cause
performance to sink drastically. Dropping a single packet can
have an enormous impact on network throughput (as this causes
a cascade of events up the network stack), and the customer
needs to be confident that the device will uphold its line rate. In
this domain, it would be ideal if there were a general-purpose

way to control banked access such that conflicts never occur.
Sadly, this is not possible in the general case [18]. However, if
the memory access patterns can be carefully constrained, algo-
rithms can be developed that solve certain special cases.

Removing Bank Conflicts in Special Cases: One of the
most important special cases that has been studied is packet
buffering. Packet buffering is one of the most memory-inten-
sive operations that networks need to deal with [3], [4], and
high-speed DRAM is the only way to provide both the den-
sity and performance required by modern routers. However, in
recent years, researchers have shown special methods for map-
ping these packet buffer queues onto banks of memory such that
conflicts are either unlikely [6], [19], [2], [20] or impossible [4],
[3]. These techniques rely on the ability to carefully monitor the
number of places in memory where a read or write may occur
without a bank conflict and to schedule memory requests around
these conflicts in various ways. For example, in [4], a specialized
structure similar to a reorder buffer is used to schedule accesses
to the heads and tails of the different packet buffer queues. The
technique combines clever algorithms with careful microarchi-
tectural design to ensure worst-case bounds on performance
are always met in the case of packet buffering. Randomiza-
tion has also been considered in the packet buffering space. For
example, Kumar et al. present a technique for buffering large
packets by randomly distributing parts of the packet over many
different memory channels [21]. However, this technique can
handle neither small packets nor bank conflicts. Another impor-
tant special case is data-plane algorithms that may also suffer
from memory-bank conflict concerns. Whether these banks of
memory are on- or off-chip, supporting multiple nonconflicting
banked memory accesses requires a significant amount of anal-
ysis and planning. For example, a conflict-reduced tree-lookup
engine was proposed by Baboescu et al. [22]. A tree is broken
into many subtrees, each of which is then mapped to parts of a

Authorized licensed use limited to: MICROSOFT. Downloaded on April 15,2010 at 20:22:58 UTC from IEEE Xplore. Restrictions apply.

AGRAWAL AND SHERWOOD: HIGH-BANDWIDTH NETWORK MEMORY SYSTEM THROUGH VIRTUAL PIPELINES 1031

rotating pipeline. They prove that optimally allocating the sub-
trees is NP-complete and present a heuristic mapping instead.
Similarly in [23], a conflict-free hashing technique is proposed
for longest prefix match (LPM), where conflicts are handled at
an algorithmic level. While the above methods are very pow-
erful, they all require careful layout (by the programmer or hard-
ware designer) of each data structure into the particular bank
structure of the system and allow neither changes to the data
structures nor sharing of the memory hierarchy.

While our approach may have one stall on average once every
cycles (on the order of hours), the benefit is that no time

has to be spent considering the effect of banking on already-
complex data structures. As we will describe in Section III,
a VPNM system uses cryptographically strong randomization,
several new types of queues, and careful probabilistic analysis
to ensure that deterministic latency is efficiently provided with
provably strong confidence.

III. VIRTUALLY PIPELINED MEMORY

Vendors need to have confidence that their devices will op-
erate at the advertised line rates regardless of operating con-
ditions, including when under denial of service attack by ad-
versaries or in the face of unfortunate traffic patterns. For this
reason, most high-end network ASICs do not use any DRAM
for data-plane processing because the banks make worst-case
analysis difficult or impossible. The major exception to this rule
is packet buffering; even today, it requires an amount of memory
that can only be satisfied through DRAM, and a great deal of ef-
fort has been expended to map packet-buffering algorithms into
banks with worst-case bounds. Later in Section VI-A, we com-
pare our implementation against several special-purpose archi-
tectures for packet buffering.

A. Dram Banks

Modern DRAM designs try to expose the internal bank
structure so accesses can be interleaved and the effective
bandwidth can be increased [24], [25]. The various types of
DRAM differ primarily in their interfaces at the chip and bus
level [26]–[28], but the idea of banking is always there. Experi-
mental evidence [28] indicates that on average PC133 SDRAM
works at 60% efficiency and DDR266 SDRAM works at 37%
efficiency, where 80%–85% of the lost efficiency is due to the
bank conflicts. To help address this problem, RDRAMs expose
many more banks [28]. For example, in Samsung Rambus
MR18R162GDF0-CM8, each RDRAM device can contain up
to 32 banks, and each RIMM module can contain up to 16
such devices, so the module can have up to
independent banks [29].

A bank conflict occurs when two accesses require different
rows in the same bank. Only one can be serviced at a time, and
hence, one will be delayed by time steps. is the ratio of
bank access time to data transfer time; in other words, it is the
number of accesses that will have to be skipped before a bank
conflict can be resolved. Throughout this paper, we conserva-
tively assume that there is one transfer per cycle, and we select
the value of [29], [30]. If is smaller, then our approach
will be even more efficient. Besides bank conflicts, DRAM is
also unavailable for incoming requests during the refresh oper-
ation. However, there are techniques such as concurrent refresh

[31], where refresh operation can be done simultaneously with
read/write operation and, with further optimizations, unavail-
ability due to refresh operation could be eliminated.

B. Building a Provably Strong Approach

To prove that our approach will deliver throughput with high
confidence, we consider the best possible adversary and show
that such an adversary can never tractably construct a sequence
of accesses that performs poorly. First, we map the data to banks
in permutations that are provably as good as random. Universal
hashes [32], an idea that has been extended by the cryptography
community, provide a way to ensure that an adversary cannot
figure out the hash function without direct observation of con-
flicts. These hashing techniques are very similar to block ci-
phers, although the complexity is significantly reduced. This re-
duction comes from the fact that a universal hash only needs to
output bits for banks, as opposed to the 64- or 128-bit
outputs required from a block cipher. While a strong crypto-
graphic hash ensures that collisions are impossible for an adver-
sary to discover (which necessarily requires a very large range),
a universal hash (which works over small ranges, such as the
number of banks in our system) only ensures that collisions do
not occur with greater than uniformly random probability.

For bank mapping, we need perfect universal hashing in the
sense that it needs to appear perfectly random (not perfectly
balanced), and universal hashing provides this guarantee. There
could be a chance that we get unlucky and all accesses might
result in bank conflicts, but this is true in the same way that a
hacker might get lucky and guess a cryptographic key on the first
try. The probability of this happening even when an attacker is
trying very hard is what is important, and that can be signifi-
cantly lowered if there is no direct observation of conflicts. The
virtual pipeline provides exactly this functionality and prevents
an adversary from seeing those conflicts through specialized
queues. This latency normalization not only allows us to for-
mally reason about our system; it also shields the processor from
the problem of reordering and greatly simplifies data structure
analysis. While the latency of any given memory access will be
increased significantly over the best possible case, the memory
bandwidth delivered by the entire scheme is almost equal to the
case where there are no bank conflicts. While this may make
little sense in the latency-intolerant world of desktop computing,
this can be a huge benefit in the network space.

C. Distributed Scheduling Around Conflicts

While universal hashing provides the means to prevent our
theoretical adversary from constructing access sequences that
result in more conflicts than a randomly generated sequence,
even in a random assignment of data to banks, a relatively large
number of bank conflicts can occur due to the Birthday Paradox
[33]. In fact, if there was no queuing used, then it would take
only accesses before the first stall would occur if there
are banks. Clearly, we will need to schedule around these
conflicts in order to keep the virtual pipeline timing abstraction.
In our implementation, a controller for each bank is used, and
each bank handles requests in order, but each bank is handled
independently, so the requests to different banks may be handled
out of order. Each bank controller is then in charge of ensuring
that for every access at time , it returns the result at time
for some fixed value of . As long as this holds, there is no

Authorized licensed use limited to: MICROSOFT. Downloaded on April 15,2010 at 20:22:58 UTC from IEEE Xplore. Restrictions apply.

1032 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 4, AUGUST 2009

Fig. 2. An example of how each bank controller will normalize the latency of memory accesses to a fixed delay �� � ���. In all three graphs, the x-axis is cycles,
and each memory access is shown as a row. The light white boxes are the times during which the request is “in the pipeline,” while the dark gray box is the actual
time that it takes to access the bank �� � ���. In this way, a certain number of bank conflicts can be hidden as long as there are not too many requests in a short
amount of time. The graph on the left shows normal operation, while the middle graph shows what happens when there are redundant requests for a single bank,
which therefore do not require bank access. The graph on the right shows what happens when there are too many requests to one bank (A–E) in a short period of
time, thus causing a stall. Later in the analysis section, we will also refer to�, which is the maximum number of overlapping requests that can be handled. In this
case, � is ����� � �.

need for the programmer to worry about the fact that there is
even such a thing as banks.

One major benefit of our design is that the memory sched-
uling and reordering can be done in a fully parallel and indepen-
dent manner. If each memory bank has its own controller, there
is exactly one request per cycle, and each controller ensures that
the result of a request is returned exactly cycles later, then
there is no need to coordinate between the controllers. When it
comes to return the result at time , a bank controller will
know that it is always safe to send the data to the interface be-
cause, by definition, it was the only one to get a request at time .

D. What Can Go Wrong

If there are banks in the system, then any one bank will
only have a 1 in chance of getting a new request on any given
cycle.1 The biggest thing that can go wrong is that we get so
many requests to one bank that one of the queues fills up and we
need to stall. Reducing the probability of this happening even
for the worst-case access pattern requires careful architectural
design and mathematical analysis. In fact, there are two ways a
bank can end up getting more than of the requests.

The first way is that it could be unlucky, and just due to ran-
domness, more than of the requests go to a single bank (be-
cause we map them randomly). By keeping access queues, we
can ensure that the latency is normalized to to handle simulta-
neously occurring bank conflicts. How large that number is and
how long it will take to happen in practice are discussed exten-
sively in Section V. In practice, we find that normalizing to
about 1000 ns is more than enough and is also several orders of
magnitude less than a typical router processing latency of 0.5 to
2 ms [34]. While this a typical example, the actual value of is
dependent on and the size of bank access queue, as described
in Section IV. While there is a constant added delay to due to
universal hashing, the hash function can be fully pipelined, and
then it will not be any big impact to the normalized delay .

The second way we could get many accesses to one bank is
that there could be repeated requests for the same memory line.
The invariant that a request at time is satisfied at time

1This is not to say that each bank will be responsible for exactly ��� of the
requests as in round-robin. Round-robin will not work here because each request
must be satisfied by the one bank that contains its memory. Although we get to
pick the mapping between memory lines and banks, the memory access pattern
will determine which actual memory lines are requested.

Fig. 3. Memory controller block diagram. After an access is mapped to the
proper bank by the universal hash engine �� �, it is sent to the corresponding
bank controller for further processing.

must hold for this case as well, and in Section V-C, we describe
how to design a special merging queue to address this second
problem. The idea behind our merging queue is that redundant
memory accesses are combined into a single access and a single

queue entry internally. If an access A comes at and a redun-
dant access A comes at , a reply still needs to be made at
and at even though internally only one queue entry for
A is maintained. In addition to handling the repeating pattern
“A,A,A,A, ,” we need to handle “A,B,A,B, ” with only two
queue entries. In fact, if we need to handle bank conflicts
without a stall, then we will need to handle up to different
sets of redundant accesses. In Fig. 2, we show how the VPNM
works altogether for different type of accesses.

IV. IMPLEMENTING THE INTERFACE

At a high level, the memory controller implementing our
virtual pipeline interface is essentially a collection of decoupled
memory bank controllers. Each bank controller handles one
memory bank or one group of banks that act together as a single
logical bank. Fig. 3 shows one possible implementation where a
memory controller contains all of the bank controllers on-chip,
and they all share one bus. This would require no modification
to the bus or DRAM architecture.

The performance of our controller is limited by the single
bus to the memory banks. If we have to service one memory
request per cycle, then we need to have one outgoing access
on each cycle to the memory bus, and the bus will become a

Authorized licensed use limited to: MICROSOFT. Downloaded on April 15,2010 at 20:22:58 UTC from IEEE Xplore. Restrictions apply.

AGRAWAL AND SHERWOOD: HIGH-BANDWIDTH NETWORK MEMORY SYSTEM THROUGH VIRTUAL PIPELINES 1033

bottleneck. Hence, to keep up with the incoming address per
cycle and to prevent any accumulation of requests in the bank
controller due to mismatched throughputs, we need to support a
slightly higher number of memory bus transactions per second
than allowed on the interface bus. We call the ratio of the request
rate on the interface bus and request rate of memory bus as bus
scaling ratio . The value of ‘R’ is chosen slightly higher
than 1 to provide slightly higher access rate on the memory side
compared to the interface side. This mismatch ensures that idle
slots in the schedule do not accumulate slowly over time. A
round-robin scheduler arbitrates the bus by granting access to
each bank controller every cycles, where is the number
of banks. It might happen that some of the round-robin slots
are not used when there is no access for the particular bank or
the memory bank is busy, although with further analysis or a
split-bus architecture, this inefficiency can be eliminated.

After the determination of which bank a particular memory
request needs to access, the request is handed off to the appro-
priate bank controller that handles all the timing and scheduling
for that one bank. Almost all of the latencies in the system are
fully deterministic, so there is no need to employ a complicated
scheduling mechanism. The only time the latencies are not fully
deterministic is when there are a sufficient number of memory
accesses to a single bank in a sufficiently small amount of time
that cause the latency normalizing technique to stall. However,
as we will show in Section V, the parameters of the architecture
can be chosen such that this happens extremely infrequently (on
the order of once every trillion requests in the worst case).

Since stalls happen so infrequently and the stall time is also
very low (in the worst case, a full memory access latency), stalls
can be handled in one of two ways. The first way is to simply
stall the controller, where the slowdown would not even be a
fraction of a percent, while the other alternative is to simply drop
the packet (which would be noise compared to packet-loss due
to many other factors). In either case, an attacker cannot leverage
information about a stall unless they can: 1) observe the exact
instant of the stall; 2) remember the exact sequence of accesses
that caused the stall; and 3) replay the stall-causing events with
minor changes (to look for more multiple collisions). With ran-
domization due to universal mapping and a very high value of
mean time to stall (around , as described in Sections V-B
and V-C), the ability to do this will be practically impossible.
If such attacks are believed to be a threat, a further (and sightly
more costly) option is to change the universal mapping function
and reorder the data on the occurrence of multiple stalls (an ex-
pensive operation but certainly possible with frequency on the
order of once a day).

A. Bank Controller Architecture

Solving the challenges described in Section I requires a care-
fully designed bank controller. In particular, it must be able to
queue the bank requests, store the data to a constant delay, and
handle multiple redundant requests.

The architecture block diagram of our bank controller is
shown in Fig. 4. From the figure, we can see that the bank
controller consists of five main components described with the
text next to each block. The primary tasks of these components
include queuing input requests, initiating a memory request,
and sending data to the interface at a prespecified time slot to
ensure the deterministic latency, and each of these components

is designed to address one or more of the challenges men-
tioned earlier. We now describe each of these components in
detail.

1) Delay Storage Buffer: The delay storage buffer stores the
address of each pending and accessing request and stores the ad-
dress and data of waiting requests. Each nonredundant request
will have an entry allocated for it in the delay buffer for a total
of cycles. To account for repeated requests to the same ad-
dress, we associate a counter with each address and data. An in-
crementer/decrementer is associated with each counter to keep
track of the number of unserviced requests for the corresponding
address. The buffer contains rows, where each row contains
an address of bits, a 1-bit address valid flag, a counter of
bits, and data words of bits. The number of rows plays
a pivotal role in deciding the stall rate of the system, which we
discuss in detail in Section V-B. and can be assigned any
design-specific values, whereas the value of depends on the
overall deterministic latency . It should be at least
(for bits). A row is called free when the
counter of that row is zero. A first-zero circuit finds out the first
free row. The free row gets assigned to a new read request, and
the address is written to the address content addressable memory
(CAM). The free row is updated using the first-zero circuit at
the same time. The data words are buffered in the specified
row whenever the read access to memory bank completes. The
buffering of data words in delay storage buffer ensures that we
can handle repeated requests to the same address and can pro-
vide the data words to the interface side after a deterministic
latency .

2) Bank Access Queue: The bank access queue keeps track
of all pending read and write requests that require access to the
memory bank. It can store up to interleaved read or write
requests in FIFO order. The value of is also crucial to dic-
tate the stall rate of the system, which we discuss in detail in
Section V-C. To minimize the area overhead, we just keep a few
bits to store the requests. There is 1 bit per entry to specify the
type of access, i.e., whether the request is a read or write request.
The remaining bits per entry are used only in the case of
read accesses to specify the corresponding row in delay storage
buffer (that way we do not require duplicate copy of address).

3) Write Buffer: The write buffer is organized as a FIFO
structure, which stores the address and data of all incoming write
requests. Unlike read requests, we do not need to wait for the
write requests to complete. We only need to buffer each write
request until it gets scheduled to access the memory bank. The
write buffer can contain a maximum of write requests, where
each request row consists of bits of address and bits of
data. In our case, the value of is chosen as , assuming
equal read and write operations (to make a close comparison to
packet buffering).

4) Circular Delay Buffer: The circular delay buffer stores
the request identifier (id) of every incoming read request in
SRAM memory. Then, the read request is served to the output
interface after the deterministic latency . Hence, we need
a FIFO of length , where. on one end. the request identifier
(which specifies a row in delay storage buffer) for new read re-
quests is added and, on the other end, the request identifier is
read to serve the data to the output interface. This operation
requires one read port and one write port in SRAM memory.
Hence, two-ported memory design increases the area overhead

Authorized licensed use limited to: MICROSOFT. Downloaded on April 15,2010 at 20:22:58 UTC from IEEE Xplore. Restrictions apply.

1034 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 4, AUGUST 2009

Fig. 4. Architecture block diagram of the VPNM bank controller.

and power consumption. This circular delay buffer is the only
component that is accessed every cycle irrespective of the input
requests. This problem motivates the design of our 2-set SRAM
architecture, where in and out pointers are used for writing and
reading, respectively. The size of each SRAM set is , and
the width of each set entry is bits. The valid bit is
1 bit to signify any valid read requests appeared in that cycle,
whereas bits represent the encoded row id of a row in
delay storage buffer. Note that if we just stored the full data
here, instead of a pointer to the delay storage buffer, then we
would need to have a huge number of bytes to buffer all the data
(2 to 3 orders of magnitude more).

As we have to provide a fixed latency of cycles between
an in operation and an out operation, the write pointer in chases

the read pointer out by exactly one cycle delay.} This in pointer
chasing accounts for delay. Then, we latch the output
data for one more cycle to achieve deterministic latency .
The two-set architecture requires only one read-write port, and
both sets can be accessed in parallel (one for in operation and the
other for out operation). This reduces the overall delay and pro-
vides considerable energy and area savings. A sample of pointer
switching with different time of accesses is shown in the two
sets of circular delay buffer in Fig. 4. The end result is that this
buffer lets us normalize the latency to very efficiently.

5) Control Logic: The control logic handles the necessary
communication between components. (While the interconnect
inside the bank controller is drawn as a bus for simplicity, in
fact it is a collection of direct point-to-point connections.) The

Authorized licensed use limited to: MICROSOFT. Downloaded on April 15,2010 at 20:22:58 UTC from IEEE Xplore. Restrictions apply.

AGRAWAL AND SHERWOOD: HIGH-BANDWIDTH NETWORK MEMORY SYSTEM THROUGH VIRTUAL PIPELINES 1035

control logic also controls the interface-side request handling
and memory-side request scheduling. It keeps an encoded read
row for which the memory is currently being accessed so that,
on the completion of the request, the data can be written to this
row in delay storage buffer. It also invalidates the in entry in
the circular delay buffer in case there is no read request in the
current cycle.

B. Controller Operations

At a high level, each memory request goes through four
states: pending, accessing, waiting, and completed. New re-
quests start out as pending, and when the proper request is
actually sent out to the DRAM, the request is accessing. When
the result returns from DRAM the request is waiting (until
total cycles have elapsed), and finally the request is completed

and results are returned to the rest of the system.
When a new read request comes in, all the valid addresses

of the address CAM in the delay storage buffer are searched.
On a match (a redundant access), the matched row counter is
incremented, and the id of the matched row is written to the
circular delay buffer (along with its valid bit). On a mismatch,
a free row is determined using the first zero circuit and is up-
dated with the new address, and the counter is initialized to one.
The id of the corresponding free row is written to the circular
delay buffer. During this mismatch case, we also add the row id
combined with ‘0’ bit (read) to the bank access queue (where it
waits to become accessing). On an incoming write request, the
write address and data is added to write buffer (FIFO). A ‘1’ bit
(write) is written to the bank access queue. The row id is un-
used in this case as we access the write buffer in FIFO order. It
is also searched in the address CAM, and on a match, the ad-
dress valid flag is unset. However, this row cannot be used for
a new read request until all previous read requests are serviced
and the counter reaches zero because the data until the current
cycle is still valid. When the counter reaches zero, then there are
no pending requests for that row, and the row can serve as free
row for the new requests.

During each cycle, the controller scans the bank access queue
and reads from the circular delay buffer. If the bank controller is
granted to schedule a memory bank request, then the first request
in the bank access queue is dequeued for access. In the case of
a read access, the address is read from the delay storage buffer
and put on the memory bank address bus. In the case of write
access, the address and the data words are dequeued from the
write buffer, and the write command is issued to the memory
bank. In the case of no incoming read requests in the current
cycle, the control logic invalidates the current entry of circular
delay buffer. On every cycle, it also reads the -cycle delayed
request id from the circular delay buffer. If it is valid, then the
data is read from the data words present in delay storage buffer,
and the data is put on the interface bus.

C. Stall Conditions

The aim of the VPNM bus controller architecture is to provide
a provably small stall rate in the system through randomization,
but the actual stall rate is a function of the parameters of the
system. There are three different cases that require a stall to
resolve, each of which is influenced by a different subset of the
parameters.

TABLE I
PARAMETERS FOR THE ANALYSIS OF OUR CONTROLLER

1) Delay storage buffer stall: The number of rows in
delay storage buffer are limited, and a row has to be re-
served for cycles for one data output. Hence, if there
are no free rows and it cannot reserve a row for a new
read request, then it results in a delay storage buffer stall.
This stall is mainly dependent on the following parame-
ters: a) number of rows in delay storage buffer; b) de-
terministic delay ; and c) number of banks . The
deterministic delay is determined using the access latency

and the bank request queue size , and this stall anal-
ysis is presented in Section V-B.

2) Bank access queue stall: When a new nonrepeating read/
write request comes to a bank and the size of the bank
access queue is already , then the new request cannot
be accommodated in the queue. This condition results in
bank access queue stall. There are three main parameters
that control this stall: a) average input rate, which is equal
to , where is the number of banks; b) queue size

; and c) the output rate, which is decided by the ratio
of frequency on the memory side and frequency on the

interface side. In Section V-C, we discuss exactly how to
perform the confidence analysis for this stall.

3) Write buffer stall: Write buffer (WB) stall happens when
a write request cannot be added in the write buffer. As we
keep the write buffer equal to half of the bank access queue
size, the chances of stall rate in write buffer are much less
than the stall rate in bank access queue. The analysis of the
write buffer stall is similar to the analysis of bank access
queue and does not dominate the overall stall, so we will
only discuss the bank access queue and delay storage buffer
stall in our mathematical analysis in Section V.

V. ANALYSIS OF DESIGN

The VPNM can stall in the three ways described in
Section IV-C. In any of these cases, the buffer will have
to stall, and it will not be able to take a new request that cycle.
Because we randomize the mapping, we can formally analyze
the probability of this happening. Additionally, because we use
the cryptographic idea of universal hashing, we know that there
is no deterministic way for an adversary to generate conflicts
with greater than random probability unless they can directly
see them. We ensure that the conflicts are not visible through
latency normalization (queuing both before and after a request)
unless many different combinations are tried. We quantify this
number, and the confidence we place in our throughput, as the
mean time to stall (MTS). It is important to maximize the MTS,
a job we can perform through optimization of the parameters
described in Section IV and summarized in Table I.

To evaluate the effect of these parameters on MTS, we per-
formed three types of analysis: simulation (for functionality),

Authorized licensed use limited to: MICROSOFT. Downloaded on April 15,2010 at 20:22:58 UTC from IEEE Xplore. Restrictions apply.

1036 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 4, AUGUST 2009

Fig. 5. Bank request controller simulation using ���� ���, and �����.

mathematical (for MTS), and design (to quantify the hardware
overhead). To get an understanding of the execution behavior of
our design and verify our mathematical models, we have built
functional models in both C and Verilog and synthesized our
design using synopsys design compiler. However, in this paper,
we concentrate on the mathematical analysis of delay storage
buffer stall and bank access queue stall, the calculation of the
MTS for both these cases, the effect of normalized delay, and a
high-level analysis of the hardware required.

A. Simulation of the Design

As described earlier, the number of rows in a delay storage
buffer and the size of bank access queue are important design
parameters to decide the stall rate of the system. In this section,
we present a simple simulation with random accesses just to
provide a look into the intuition behind our approach. Fig. 5
shows the resource utilization over time for one bank controller.
In this illustration, the number of banks is 128, the number of
rows in delay storage buffer is 8, and bank access queue size
is 4. The top bar shows the arrival of requests to the controller,
which is a random process. The utilization of the two critical
resources described above are in the lower two graphs. As seen,
in the window of 2200–2300 cycles, a burst of requests comes
to the controller and almost fills the bank access queue, and four
rows are reserved in the delay storage buffer. Subsequently, the
number of busy rows and pending entries decrease because input
burst requests are serviced, and there is no new incoming request
for some time. We could have seen a stall in a case when a burst
of requests arrive in short time such that it fills up either the
delay storage buffer or the bank access queue. However, queue/
buffer parameters are large enough in this case to not witness
such a stall. In the next sections, we see how these architectural
parameters effect the stall rate through a detailed mathematical
analysis.

B. Delay Storage Buffer (DSB) Stall

A delay buffer entry is needed to store the data associated
with an access for the duration of cycles. A buffer will over-
flow if there are more requests assigned to it over a period of

Fig. 6. MTS variation with number of entries in delay storage buffer ��� for
memory controller with � � ���.

cycles than there are places to store those requests. To cal-
culate the MTS, we need to determine the expected amount of
time we will have to wait until one of the banks gets or
more requests over cycles. The mapping of requests to banks
is random, so we can treat the bank assignments as a random
sequence of integers , where each is drawn
from the uniform distribution on .

If we want to know the probability of stall after cycles, then
for any , we can detect a stall happening when at
least of the symbols are equal to ;

the probability of this is , so the probability

of not having a delay buffer overfill over the given interval is

. Since we are only concerned with the

probability that at least one stall occurs and not how many, we
can conservatively estimate the probability of no stall occurring

over the entire sequence as .

This method assumes that stalls are independent when, in fact,
they are positively correlated, and it actually counts some stalls
multiple times. Solving for a probability of 50% that a stall can
happen, the MTS is

Fig. 6 shows the impact of number of entries in storage delay
buffer on this stall. We take the value of in this
case. Since and are interrelated for this analysis, we select
the optimal combination of and . We set the higher limit
of the MTS value to in all of our analyses.2 Fig. 6 shows
that for , the curve rises sharply with , and we can
get a MTS of for . The curve for follows
very closely to the curve for . Hence, having
is optimal in our case. For lower number of banks ,
we need much higher values of to even reach a MTS value
of .

2An MTS of �	 is around one stall every 15 min with a very aggressive bus
transaction speed of 1 GHz.

Authorized licensed use limited to: MICROSOFT. Downloaded on April 15,2010 at 20:22:58 UTC from IEEE Xplore. Restrictions apply.

AGRAWAL AND SHERWOOD: HIGH-BANDWIDTH NETWORK MEMORY SYSTEM THROUGH VIRTUAL PIPELINES 1037

Fig. 7. Markov model that captures the fail probability of a bank access queue
with � � � and � � �. With probability ���, a new request will arrive at any
given bank, causing there to be � more cycles worth of work.

C. Bank Access Queue (BAQ) Stall

Performing an analysis similar to that presented in
Section V-B will not work for the bank access queue be-
cause there is no fixed window of time over which we can
analyze the system combinatorially. There is state involved
because the queue may cause a stall or not depending on the
amount of work left to be done by the memory bank. To analyze
the stall rate of the bank access queue, we determined that the
queue essentially acts as a probabilistic state machine. Each
state in this machines corresponds to an amount of work left
for the queue to perform (the number of cycles left until the
queue would be empty). The transitions between these states
are probabilistic, based on whether a new request arrives at the
bank controller on any given cycle. If there are no requests in
the queue, then we are at a ground state with no work to be
done. If no new request comes on a cycle, then there is one
cycle less work for the queue to do. We know this because
all the accesses are serialized for a given bank, and as long as
there is something in the queue, work is being done toward its
completion. If a new request comes in, then there is more
cycles worth of work to do. Finally, the queue will overflow if
there is more than worth of work do, as that is the maximum
amount that can be stored.

To do the analysis, we need to combine this abstract state
machine with the probabilities that any transition will occur.
Each cycle, a new request will come to a given bank controller
with probability , and the probability that there will be no new

request is . The probabilistic state machine that we are left
with is a Markov model. In Fig. 7, we can see the probabilistic
model stored both as a directed graph and in an adjacency matrix
form labeled .

The adjacency matrix form has a very nice property: Given
an initial starting state at cycle zero, stored as the vector , to
calculate the probability of landing in any state at cycle one, we
simply multiply by . In the example given, there is proba-
bility P of being in state 2, 1-P of still being in the idle state. This
process can then be repeated, and to get the distribution of states
after time steps, we simply multiply by times, which is,
of course, . Note that the stall state is an absorbing state,

Fig. 8. MTS variation with number of entries in bank access queue ��� for our
controller with � � ���.

so the probability of being in that state should tell us the proba-
bility of there ever being a bank overflow on any of the cycles.
To calculate that probability, we simply need to calculate .

We use this analysis to figure out the impact of bank request
queue size on MTS. The effect of normalized delay can
also be directly seen as is directly proportional to . If we
decrease/increase the value of , then we have to decrease/in-
crease the value of accordingly. For our memory controller
with a value of , the MTS graph is shown in Fig. 8. We
find that for and , the curve for MTS is almost
the same. We can clearly see from the figure that a lower number
of banks can only provide a maximum MTS value
of for even larger values of . Hence, an SDRAM with its
small number of banks cannot achieve a reasonable MTS. How-
ever, for and , we see an exponential increase in
MTS with the increasing value of . We can get an MTS of
for using 32 or 64 banks. If any application does not
demand a high value of MTS but requires a lower value of nor-
malized delay, then we can use the system with a lower value of

and with 32/64 banks. We did not calculate the MTS values
for because the large matrix size makes our anal-
ysis very difficult (the matrix requires more than 2 GB of main
memory).

D. Overall Stall Rate

Now that we have analyzed delay storage buffer (DSB)
stall and bank access queue (BAQ) stall, we present how total
stall rate is effected based on different parameters. The overall
system MTS is decided by whether DSB stalls first or BAQ
stalls first, and hence, it is the minimum of the two. To illustrate
the tradeoff between these two stall rates, Fig. 9 shows the
MTS as a function of both the normalized delay and the total
number of delay buffers. The normalized delay has very crucial
role since it puts pressure on the delay buffers but eases bank
access queue.

The number of banks is fixed to 32, and the bus scaling ratio
to 1.3. We vary the normalized delay up to 1.5 s (shown on
x-axis). The normalized delay also represents the size of
bank access queue because it is directly proportional to .
On the y-axis, we vary the number of rows in the DSB from 8
to 128. The MTS is shown on the z-axis, which is in log scale.

Authorized licensed use limited to: MICROSOFT. Downloaded on April 15,2010 at 20:22:58 UTC from IEEE Xplore. Restrictions apply.

1038 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 4, AUGUST 2009

Fig. 9. Effect of normalized delay and DSB’s rows on total stall rate. While
total MTS is decided by DSB MTS in the lower triangular surface (high delay,
less rows), best design points are shown near the diagonal where DSB and BAQ
compete for deciding the total stall rate.

Fig. 10. Best achievable MTS for a particular normalized delay for different
frequency scaling ratios ���.

The dotted gray lines show the MTS for the delay storage buffer,
while the solid black lines show the total MTS.

When we first take a look at the DSB MTS, we find that as
the delay grows, an increasing number of rows are required to
achieve the optimal MTS. For example, when delay is less than
0.2 s, an upper limit is reached even with less than 24 rows.
However, if delay is increased to more than 1.4 s, 128 rows are
required to reach the upper limit of . The longer the delay,
the more delay buffers are required to prevent stalls.

The total MTS is a combination of the DSB stalls and the
BAQ stalls. The BAQ MTS is dependent on the size of bank ac-
cess queue and the normalized delay. With a very large number
of DSBs, the total MTS grows exponentially with the normal-
ized delay. This is the same result we have shown earlier in
Fig. 8, but here we show that the BAQ stall dictates the total stall
rate when the delay is lower and the number of rows is higher
(upper triangular surface in figure for total MTS). Hence, both
DSB MTS and BAQ MTS are closest along the diagonal line.
These are the most balanced design points, and in the figure,
they are labeled with numbers (1)–(4).

E. Normalized Delay Analysis

In this section, we present the Pareto-optimal results for nor-
malized delay where we find the best achievable MTS for a par-
ticular normalized latency. To find the Pareto-optimal points, we
assume a large delay storage buffer and sweep across a large
set of design parameters to get the best possible MTS for a
given normalized delay. Fig. 10 shows the best MTS possible
for different normalized latencies and for different scaling ra-
tios. The normalized delay is on the x-axis in log scale, whereas
the y-axis shows the MTS, again in log scale. We find that for

, it is difficult to achieve a high MTS even if we in-
crease the delay significantly. On the other hand, for ,
the value of MTS increases exponentially with increasing delay.
For case, we can achieve a MTS of greater than 1 s with
delay higher than 1 s, but an MTS of greater than 1 h is not pos-
sible. However, in the case of and , where we
have to sacrifice the bandwidth a little further, we can achieve
a much higher MTS (more than an hour) with a lower delay
compared to the other cases. While this latency is significant,
it is still far less than several existing special-purpose packet
buffering approaches (as we will discuss later). For nonbuffering
applications, this latency might be hidden through a sufficient
amount of thread-level parallelism (swapping between threads
with deterministic timing) and may further require more packet
buffering (as packets may take longer to egress). We have quan-
tified the extra memory requirements for two high-throughput
applications in Section VI, but a larger study of the system-level
effects of this latency is outside the scope of this work.

F. Hardware Estimation

The structures presented in Section IV ensure that only prob-
abilistically well-formed modes of stall are possible and that
exponential improvements in MTS can be achieved for linear
increases in resources. While the analysis above allows us to
formally analyze the stall rate of our system, it is hard to under-
stand the tradeoffs fully without a careful estimate of the area
and power overhead. To explore this design space, we developed
a hardware overhead analysis tool for our bank controller archi-
tecture that takes these design parameters (
as inputs and provides area and energy consumption for the
set of all bank controllers. We use a validated version of the
Cacti 3.0 tool [35] and our synthesizable Verilog model to de-
sign our overhead tool and use 0.13 m CMOS technology to
evaluate the hardware overhead.

1) Optimal Parameters: Since area overhead is one of the
most critical concerns as it directly affects the cost of the system,
we take the total area overhead of all the bank controllers as our
key design parameter to decide the value of MTS. As a point
of reference, one bank controller (which then needs to be repli-
cated per bank) with and occu-
pies 0.15 mm . We run the hardware overhead tool for several
thousand configurations with varying architectural parameters
and consider the Pareto-optimal design points in terms of area,
MTS, and bandwidth utilization . We also set some baseline
required values of MTS, which are 1 s 1 h ,
and 1 day for an aggressive 1-GHz clock fre-
quency. While this is not small, our example parameter set de-
scribes a design that targets a very aggressive bandwidth system

Authorized licensed use limited to: MICROSOFT. Downloaded on April 15,2010 at 20:22:58 UTC from IEEE Xplore. Restrictions apply.

AGRAWAL AND SHERWOOD: HIGH-BANDWIDTH NETWORK MEMORY SYSTEM THROUGH VIRTUAL PIPELINES 1039

Fig. 11. MTS with area overhead for our memory controller for different fre-
quency ratios ���.

TABLE II
OPTIMAL DESIGN PARAMETERS FOR BEST MTS

AND AREA OVERHEAD COMBINATION

and compares favorably with past special purpose designs (see
Section VI).

The Pareto-optimal curve for our memory controller is shown
in Fig. 11. This figure shows an interesting tradeoff between the
MTS and the utilization of effective bandwidth on the memory
bus side. If we increase the value of , then we get better values
of MTS with effective lower utilization of memory bus. For

, we need 23% extra memory bus bandwidth, but with a much
better stall rate compared to (16% extra bandwidth).
We find that we can choose either (1 s for
about 30 mm) or (1 h for about
30 mm) to get the best values of MTS without compromising
much of the memory bus speed utilization.

We calculate the optimal parameters from Fig. 11 and find
the energy consumption for these optimal parameters. The op-
timal parameters along with all design constraints are shown in
Table II. The table shows that for and , we
need around 32 banks, 32–48 bank access queue entries, and
64–96 storage delay buffer entries with 10–20 nJ energy con-
sumption.

VI. APPLICATIONS MAPPING

To demonstrate the usefulness and generality of our ap-
proach, in this section, we show how our memory system can
be easily used by high-throughput network applications in edge
or core routers. While such commercial routers are almost
always custom-designed to meet the worst-case performance,
recently there has been a great deal of discussion regarding
a new generation of software-centric platforms built around

more general-purpose cores both academically (GENI [36])
and commercially [37]. In the case of programmable routers,
a large number of thread contexts could be used to fill the
virtual pipeline every cycle, fully utilizing the guaranteed
high-memory bandwidth. In addition to the ease of scheduling
that deterministic latency provides, the biggest advantage here
is that nearly complete determinism in our approach provides
complete fairness in access to memory bandwidth and en-
sures total performance isolation in terms of memory system.
However, an analysis of this is beyond the scope of this work.
While many new applications will be written in software/mi-
crocode, many highly memory-intensive applications will be
designed at the hardware and firmware levels to achieve the
desired performance with worst-case guarantees. To demon-
strate the applicability of our approach in this scenario, we
have implemented two different high-speed memory-intensive
data-plane algorithms. By implementing packet buffering on
top of VPNM, we can directly compare against special purpose
hardware designs in terms of performance. While our approach
hides the complexity of banking from the programmer, it
can match and even exceed the performance of past work
that requires specialized bank-aware algorithms. To further
show the usefulness of our system, we have also mapped a
packet reassembler (used in content inspection) to our design, a
memory bound problem for which there is no current bank-safe
algorithm known.

A. Packet Buffering

Packets need to be temporarily buffered from the transmis-
sion line until the scheduler issues a request to forward the
packet to the output port. According to current industry prac-
tice, to avoid losing throughput (especially in edge routers), the
amount of buffering required is [3], where is the line rate
and is the two-way propagation delay through the router. For
160-Gbps line rate and a typical round-trip time of 0.2 s [4], the
buffer size will be 4 GB. The main challenge in packet buffering
is to deal with constantly increasing line rate (10–40 Gbps and
from 40–160 Gbps) and the number of interfaces (order of hun-
dreds to order of thousands).

Using DRAM as intermediate memory for buffering does
not provide full efficiency due to DRAM bank conflicts [2], [4].
In [2], an out-of-order technique has been proposed to reduce
the bank conflict to provide packet buffering requirement for
10 Gbps. Iyer et al. [3] have used a combination of SRAM and
DRAM, where SRAMs are used for storing some head and tail
packets for each queue. This combination allow them to buffer
packets at 40 Gbps using some clever memory management
algorithms [for example, earliest critical queue first (ECQF)].
However, they do not consider the effect of bank conflicts.
Garcia et al. [4] take their approach further by providing a
DRAM subsystem (CFDS) that can handle bank conflicts
(through a long reorder buffer-like structure) and schedule a
request to DRAM every cycles, where can be less than the
random access time of DRAM. A comparison of their approach
and RADS [3] reveals that CFDS requires less head and tail
SRAM and can provide packet buffering at 160 Gbps. The data
granularity for DRAM used in [4] is cells, where the size of
one cell is 64 bytes.

Since our architecture can handle any arbitrary access pat-
terns (they do not have to be structured requests directed by a

Authorized licensed use limited to: MICROSOFT. Downloaded on April 15,2010 at 20:22:58 UTC from IEEE Xplore. Restrictions apply.

1040 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 17, NO. 4, AUGUST 2009

TABLE III
COMPARISON OF PACKET BUFFERING SCHEMES WITH

OUR GENERALIZED ARCHITECTURE

queue management algorithm), the packet buffering will just be
a special case of our system to provide one write access and one
read access. Instead of keeping large head and tail SRAMs to
store packets, we just need to store the head and tail pointers of
each queue in SRAM. On a read from a particular queue, the
head pointer will be incremented by the packet size, whereas a
write to a particular queue will increment the tail pointer by the
packet size. Our universal hash hardware unit randomizes the
address from these pointers uniformly across different banks. In
our approach, a request can be issued per cycle, whereas in [4],
a request can be issued every cycle. Their architecture is very
difficult to design for as they have also said in their paper,
“The implementation of RR scheduling logic for OC-3072 and

is certainly of difficult viability.”
As we just need to store the head and tail pointers for each

queue (rather than actual entries in the queue), we can provide
support for a large number of queues (up to 4096 with an SRAM
size of 32 KB—which can be further increased to support even
more queues). We use the same data granularity used in [4] and
compare our results to [2], RADS [3], and CFDS [4] by taking
into account the throughput, area overhead, normalized delay,
and maximum number of supported interfaces. The compar-
ison results are provided in Table III for 0.13 m technology.
Table III shows that our scheme and CFDS scheme [4] can pro-
vide data throughput of 160 Gbps because memory requests can
be scheduled every cycle in our case and every cycles in CFDS
scheme. However, our scheme requires about 35% less area, in-
troduces 10 times less latency, and can support about five times
the number of interfaces compared to the CFDS scheme.

B. Packet Reassembly

In an intrusion detection/prevention processing node, the con-
tent inspection techniques scan each incoming packet for any
malicious content. Since most of these techniques examine each
packet irrespective of the ordering/sequence of packets, they are
less effective for intrusion detection because a clever attacker
can craft out-of-sequence TCP packets such that the worm/virus
signature is intentionally divided on the boundary of two re-
ordered packets. By doing TCP packet reassembly as a prepro-
cessing step, we can ensure that packets are always scanned in
order. In essence, packet reassembly provides a strong front-end
to effective content inspection.

While Dharmapurikar et al. [38] have proposed a packet
reassembly mechanism that is robust even in the presence
of adversaries, unlike the state-of-the-art in packet buffering
techniques, their algorithm does not consider the presence of
memory banks (and, thus, the bounds on performance are not
tight). Of course, algorithm designers would rather deal with

network problems than mapping their data structures to banks
by hand. VPNM provides exactly that ability, and we have
mapped their technique [38] to a virtually pipelined memory
system. Using the same data granularity for DRAM as in [4]
and processing 64 bytes or less each cycle, we find the need to
perform one DRAM read access for accessing the connection
record, one DRAM access for accessing the corresponding
hole-buffer data structure, one DRAM access to update this
data structure, one DRAM access to write the packet, and
one DRAM access to finally read the packet in the future.
Hence, for each 64-byte packet chunk, five DRAM accesses
are required. Since our memory system can process requests
every cycle, with a 400-MHz RDRAM [28], we can get an
effective throughput of MHz bytes/s Gbps,
which is more than enough to feed the current generation of
content inspection engines. We do require some amount of
extra storage space compared to [38] since we need to store
each packet in FIFO for the duration of three DRAM accesses

, which requires 72 kB of SRAM.

VII. CONCLUSION

Network systems are increasingly asked to perform a va-
riety of memory-intensive tasks at very high throughput. In
order to reliably service traffic with guarantees on throughput,
even under worst-case conditions, specialized techniques
are required to handle the variations in latency caused by
memory banking. Certain algorithms can be carefully mapped
to memory banks in a way that ensures worst-case performance
goals are met, but this is not always possible and requires careful
planning at the algorithm, system, and hardware levels. Instead,
we present a general-purpose technique for separating these two
concerns, virtually pipelined network memory, and show that,
with provably high confidence, it can simultaneously solve the
issues of bank conflicts and bus scheduling for throughput-ori-
ented applications. To achieve this deep virtual pipeline, we
had to solve the challenges of multiple conflicting requests,
reordering of requests, repeated requests, and timing analysis of
the system. We have performed rigorous mathematical analysis
to show that there is on order of one stall in every memory
accesses. Furthermore, we have provided a detailed simulation,
created a synthesizable version to validate implementability,
and estimated hardware overheads to better understand the
tradeoffs. To demonstrate the performance and generality of
our virtually pipelined network memory, we have considered
the problem of packet buffering and packet reassembly. For
packet buffering application, we find that our scheme requires
about 35% less area and about 10 times less latency and can
support about five times more number of interfaces compared to
the best existing scheme for OC-3072 line rate. While we have
presented the packet buffering and reassembly implementation
using our architecture, there is a potential for mapping other
data-plane algorithms into DRAM, including packet classi-
fication, packet inspection, application-oriented networking,
software-centric programmable routers, and interesting future
directions to look at even a broader class of irregular streaming
applications.

REFERENCES

[1] B. Agrawal and T. Sherwood, “Virtually pipelined network memory,”
in Proc. 39th Annu. IEEE/ACM Int. Symp. Microarchit. (MICRO 39),
2006, pp. 197–207.

Authorized licensed use limited to: MICROSOFT. Downloaded on April 15,2010 at 20:22:58 UTC from IEEE Xplore. Restrictions apply.

AGRAWAL AND SHERWOOD: HIGH-BANDWIDTH NETWORK MEMORY SYSTEM THROUGH VIRTUAL PIPELINES 1041

[2] A. Nikologiannis and M. Katevenis, “Efficient per-flow queueing in
DRAM at OC-192 line rate using out-of-order execution techniques,”
in Proc. IEEE Int. Conf. Commun. (ICC’2001), Helsinki, Finland, Jun.
2001, pp. 2048–2052.

[3] S. Iyer, R. R. Kompella, and N. McKeown, “Designing packet buffers
for router linecards,” Stanford Univ., Tech. Rep. TR02-HPNG-031001,
Nov. 2002.

[4] J. Garcia, J. Corbal, L. Cerda, and M. Valero, “Design and implemen-
tation of high-performance memory systems for future packet buffers,”
in Proc. 36th Annu. IEEE/ACM Int. Symp. Microarchit. (MICRO 36),
2003, pp. 373–386.

[5] T. Sherwood, G. Varghese, and B. Calder, “A pipelined memory archi-
tecture for high throughput network processors,” in Proc. 30th Annu.

Int. Symp. Comput. Archit. (ISCA’03), 2003, pp. 288–299.
[6] J. Hasan, S. Chandra, and T. N. Vijaykumar, “Efficient use of memory

bandwidth to improve network processor throughput,” in Proc. 30th

Annu. Int. Symp. Comput. Archit. (ISCA’03), 2003, pp. 300–313.
[7] W. F. Lin, S. K. Reinhardt, and D. Burger, “Reducing DRAM latencies

with an integrated memory hierarchy design,” in Proc. 7th Int. Symp.

High-Perform. Comput. Archit. (HPCA’01), 2001, pp. 301–312.
[8] S. Rixner, “Memory controller optimizations for web servers,” in Proc.

37th Annu. IEEE/ACM Int. Symp. Microarchit. (MICRO 37), 2004, pp.
355–366.

[9] Z. Zhu, Z. Zhang, and X. Zhang, “Fine-grain priority scheduling on
multi-channel memory systems,” in Proc. 8th Int. Symp. High-Perform.

Comput. Archit. (HPCA’02), 2002, pp. 107–116.
[10] J. Shao and B. T. Davis, “A burst scheduling access reordering

mechanism,” in Proc. 13th Int. Symp. High-Perform. Comput. Archit.

(HPCA’07), 2007, pp. 285–294.
[11] B. K. Mathew, S. A. McKee, J. B. Carter, and A. Davis, “Design of

a parallel vector access unit for SDRAM memory systems,” in Proc.

6th Int. Symp. High-Perform. Comput. Archit. (HPCA’00), 2000, pp.
39–48.

[12] S. I. Hong, S. A. McKee, M. H. Salinas, R. H. Klenke, J. H. Aylor,
and W. A. Wulf, “Access order and effective bandwidth for streams
on a direct Rambus memory,” in Proc. 5th Int. Symp. High Perform.

Comput. Archit. (HPCA’99), 1999, pp. 80–89.
[13] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens,

“Memory access scheduling,” in Proc. 27th Annu. Int. Symp. Comput.

Archit. (ISCA’00), 2000, pp. 128–138.
[14] R. Espasa, M. Valero, and J. E. Smith, “Out-of-order vector architec-

tures,” in Proc. 30th Annu. IEEE/ACM Int. Symp. Microarchit. (MICRO

30), 1997, pp. 160–170.
[15] B. R. Rau, “Pseudo-randomly interleaved memory,” in Proc. 18th

Annu. Int. Symp. Comput. Archit. (ISCA’91), 1991, pp. 74–83.
[16] T. Lang, M. Valero, M. Peiron, and E. Ayguade, “Conflict-free access

for streams in multimodule memories,” IEEE Trans. Comput., vol. 44,
no. 5, pp. 634–646, May 1995.

[17] J. Corbal, R. Espasa, and M. Valero, “Command vector memory sys-
tems: High performance at low cost,” in Proc. 1998 Int. Conf. Parallel

Archit. Compilation Tech. (PACT’98), 1998, pp. 68–79.
[18] F. Chung, R. Graham, and G. Varghese, “Parallelism versus memory

allocation in pipelined router forwarding engines,” in Proc. SPAA, P.
B. Gibbons and M. Adler, Eds., 2004, pp. 103–111.

[19] G. A. Bouchard, M. Calle, and R. Ramaswami, “Dynamic random ac-
cess memory system with bank conflict avoidance feature,” U.S. Patent
6 944 731, Sep. 2005.

[20] G. Shrimali and N. McKeown, “Building packet buffers with inter-
leaved memories,” in Proc. Workshop High Perform. Switching and

Routing, Hong Kong, May 2005, pp. 1–5.
[21] S. Kumar, P. Crowley, and J. Turner, “Design of randomized multi-

channel packet storage for high performance routers,” in Proc. 13th

Annu. Symp. High Perform. Interconnects (Hot Interconnects), Palo
Alto, CA, Aug. 2005, pp. 100–106.

[22] F. Baboescu, D. M. Tullsen, G. Rosu, and S. Singh, “A tree based router
search engine architecture with single port memories,” in Proc. 32nd

Annu. Int. Symp. Comput. Archit. (ISCA’05), 2005, pp. 123–133.
[23] J. Hasan, V. Jakkula, S. Cadambi, and S. Chakradhar, “Chisel: A

storage-efficient, collision-free hash-based packet processing archi-
tecture,” in Proc. 33rd Annu. Int. Symp. Comput. Archit. (ISCA 33),
Boston, MA, Jun. 2006, pp. 203–215.

[24] R. Crisp, “Direct Rambus technology: The new main memory stan-
dard,” IEEE Micro, vol. 17, no. 6, pp. 18–28, Nov./Dec. 1997.

[25] M. Gries, “A survey of synchronous RAM architectures,” Computer
Eng. and Networks Lab. (TIK), ETH Zurich, Switzerland, Tech. Rep.
71, Apr. 1999.

[26] B. Davis, B. L. Jacob, and T. N. Mudge, “The new DRAM interfaces:
SDRAM, RDRAM and variants,” in Proc. 3rd Int. Symp. High Perform.

Comput. (ISHPC’00), 2000, pp. 26–31.
[27] V. Cuppu, B. Jacob, B. Davis, and T. Mudge, “A performance compar-

ison of contemporary DRAM architectures,” in Proc. 26th Annu. Int.

Symp. Comput. Archit. (ISCA’99), 1999, pp. 222–233.
[28] RamBus, “RDRAM memory: Leading performance and value over

SDRAM and DDR,” 2001.
[29] Samsung, “Samsung RamBus MR18R162GDF0-CM8 512 MB 16 bit

800 MHz datasheet,” 2005.
[30] J. Truong, “Evolution of network memory,” Samsung Semiconductor,

Inc., Mar. 2005.
[31] T. Kirihata et al., “An 800 MHz embedded dram with a concurrent

refresh mode,” in Proc. IEEE Int. Solid-State Circuits Conf. (ISSCC),
Feb. 2004, pp. 15–19.

[32] J. L. Carter and M. N. Wegman, “Universal classes of hash functions,”
J.Comput. Syst. Sci., vol. 18, pp. 143–154, 1979.

[33] E. Jaulmes, A. Joux, and F. Valette, “On the security of randomized
CBC-MAC beyond the birthday paradox limit: A new construction,”
in Proc. Revised Papers 9th Int. Workshop. Fast Softw. Encryption

(FSE’02), 2002, pp. 237–251.
[34] “Internet core router test: Looking at latency,” 2001

[Online]. Available: http://www.lightreading.com/docu-
ment.asp?doc_id=4009&page_number=7

[35] P. Shivakumar and N. P. Jouppi, “Cacti 3.0: An integrated cache timing,
power and area model,” Western Research Lab (WRL) Res. Rep., Tech.
Rep, 2001/2.

[36] J. Turner, “A proposed architecture for the Geni backbone platform,”
Mar. 2006.

[37] W. Eatherton, “The push of network processing to the top of the
pyramid,” 2005, ANCS’05 Keynote.

[38] S. Dharmapurikar and V. Paxson, “Robust TCP reassembly in the pres-
ence of adversaries,” in Proc. 14th USENIX Security Symp., Baltimore,
MD, Aug. 2005, pp. 65–80.

Banit Agrawal received the B.Tech. degree in in-
strumentation engineering from the Indian Institute
of Technology, Kharagpur, India, in 2001, the M.S.
degree in computer science from the University
of California, Riverside, in 2004, and the Ph.D.
degree in computer science from the University of
California, Santa Barbara, in 2008.

His research interests include memory design
and modeling for high-performance networking,
3-dimensional ICs, dataflow analysis, security/anal-
ysis processors, nanoscale architectures, and

power-aware architectures.
Dr. Agrawal was the recipient of a Dean’s Fellowship during 2007–2008, a

best paper award in the International Symposium on Code Generation and Opti-
mization (CGO) 2006, a best paper nomination in the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, 2006, and an IEEE Micro Top
Pick Award in the Computer Architecture Conference in 2006.

Timothy Sherwood (S’98–M’03) received the B.S.
degree from the University of California, Davis, in
1998, and the M.S. and Ph.D. degrees from the Uni-
versity of California, San Diego, in 2003, where he
worked with Prof. B. Calder.

He joined the University of California, Santa Bar-
bara (UCSB) in 2003, where he is currently an Assis-
tant Professor. His prior work on program phase anal-
ysis methods (a technique for reasoning about and
predicting the behavior of programs over time) has
been cited over 350 times and is now used by Intel,

Hewlett-Packard (HP), and other industry partners to guide the design of their
largest microprocessors. His research interests focus on the area of computer
architecture, specifically in the development of novel high-throughput methods
by which systems can be monitored and analyzed.

Prof. Sherwood was the recipient of a National Science Foundation (NSF)
CAREER Award in 2005, and, for the three consecutive years since joining
UCSB, he has received the IEEE Micro Top Pick Award for novel research con-
tributions of significance to the computing industry.

Authorized licensed use limited to: MICROSOFT. Downloaded on April 15,2010 at 20:22:58 UTC from IEEE Xplore. Restrictions apply.

