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Abstract

In this study, we proposed and experimentally demonstrated a high breakdown voltage (BV) and low dynamic ON-

resistance (RON, D) AlGaN/GaN high electron mobility transistor (HEMT) by implanting fluorine ions in the thick SiNx

passivation layer between the gate and drain electrodes. Instead of the fluorine ion implantation in the thin AlGaN

barrier layer, the peak position and vacancy distributions are far from the two-dimensional electron gas (2DEG)

channel in the case of fluorine ion implantation in the thick passivation layer, which effectively suppresses the

direct current (DC) static and pulsed dynamic characteristic degradation. The fluorine ions in the passivation layer

also extend the depletion region and increase the average electric field (E-field) strength between the gate and

drain, leading to an enhanced BV. The BV of the proposed HEMT increases to 803 V from 680 V of the conventional

AlGaN/GaN HEMT (Conv. HEMT) with the same dimensional parameters. The measured RON, D of the proposed

HEMT is only increased by 23% at a high drain quiescent bias of 100 V, while the RON, D of the HEMT with fluorine

ion implantation in the thin AlGaN barrier layer is increased by 98%.
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Background

In recent decades, novel semiconductor materials, such

as GaN, metal oxides, and 2D materials, have been

widely studied to further enhance the energy conversion

and storage efficiency, owing to their superior material

and device properties [1–8]. Among them, GaN-based

AlGaN/GaN high electron mobility transistors (HEMTs)

are good candidates for high power, high frequency, and

low loss applications because of high critical breakdown

field and high electron mobility [9–14]. The breakdown

voltage (BV) is one of the most important design targets,

and the reported values are still far below the theoretical

limit [15, 16]. Therefore, it is of great importance

to further improve the BV, especially not at the cost

of increasing the device size. Several termination

techniques have been proposed to improve the BV, such

as field plate [17–19], fluorine ion implantation [20–22],

and recessed gate-edge termination [23, 24]. Fluorine ions

implanted in the thin AlGaN barrier layer (FBL) [22]

has a simple fabrication process without inducing an

additional parasitic capacitance; however, the peak

position of the fluorine profile and vacancy distributions is

near to the two-dimensional electron gas (2DEG) channel,

which would inevitably cause significant static and

dynamic characteristic degradation.

In this work, a high breakdown voltage and low dy-

namic ON-resistance (RON, D) AlGaN/GaN HEMT with

fluorine ion implantation in the SiNx passivation layer

(FPL HEMT) is experimentally investigated. Unlike in

the case of the fluorine ion implantation in the thin

AlGaN barrier layer, fluorine ion implantation in the

thick passivation layer could keep the peak position of

fluorine and vacancy distributions far away from the

2DEG channel, thus effectively suppress the static and
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dynamic characteristic degradation. Fluorine ions in the

passivation layer as a termination technique are also

used to optimize the surface electric field (E-field) distri-

bution, thus achieving an enhanced BV. In conclusion,

the FPL HEMT demonstrates excellent static character-

istics and dynamic characteristics.

Fabrication Methods

Figure 1 is the three-dimensional schematic of FPL HEMT,

FBL HEMT, and Conv. HEMT, respectively. All devices

feature a gate length LG of 2.5 μm, a gate-source distance

LGS of 1.5 μm, and a gate-drain distance LGD of 10 μm.

The epitaxial AlGaN/GaN heterostructure used for fabri-

cating the FPL HEMT was grown on 6-in (111) silicon

substrate by metal organic chemical vapor deposition

(MOCVD). The epitaxial layers consist of a 2-nm GaN

cap, 23-nm Al0.25Ga0.75N barrier, 1-nm AlN interlayer,

150-nm GaN channel, and 3.5-μm GaN buffer. The Hall

effect measured density and mobility of the 2DEG were

9.5 × 1012 cm−2 and 1500 cm2/Vs, respectively. The

proposed FPL HEMT started with mesa isolation which

was implemented by a high power Cl2/BCl3-based induct-

ively coupled plasma (ICP) etching. Then, a 40-nm-thick

low pressure chemical vapor deposition (LPCVD) SiNx

layer was deposited at 780 °C/300mTorr with a NH3 flow

of 280 sccm and a SiH2Cl2 flow of 70 sccm, yielding a

deposition rate of 3.7 nm/min. The refractive index is mea-

sured by ellipsometer as 1.978, and the N/Si ratio of SiNx

is 1.31 [25]. The crystallinity of LPCVD SiNx is amorph-

ous, which is confirmed by high-resolution transmission

electron microscope (HR-TEM) micrograph (see the inset

of Fig. 1a). After opening the source and drain contact

windows by SF6 plasma dry etching, the Ti/Al/Ni/Au (20/

150/45/55 nm) ohmic contact was deposited and annealed

at 890 °C for 30 s in N2 ambient. The contact resistance of

1Ωmm and sheet resistance of 400Ω/square were ex-

tracted by the linear transmission line method. Next, the

gate metal electrode is formed by Ni/Au (50 nm/150 nm)

deposition and lift-off process. Then, the fluorine ion im-

plantation window (Length of window = 3 μm) is formed

by AZ5214 photoresist, and fluorine ions were implanted

by SEN NV-GSD-HE ion implanter at an energy of 10 keV

at a dose of 1 × 1012 cm−2. Finally, the samples were

annealed at 400 °C for 15min in N2 ambient to complete

the transistor fabrication flow [26].

Results and Discussion

Figure 2 shows the measured secondary ion mass spec-

troscopy (SIMS) profile of fluorine ion concentration

and simulated vacancy concentration by TRIM along the

cut lines: (a) A-A′ of FPL HEMT and (b) B-B′ of FBL

HEMT, respectively. At the same energy and dose of

fluorine ion implantation, the measured peak position

from the surface and maximum concentration of the

fluorine profile is almost the same for the two structures.

In the case of the fluorine ion implantation in the thin

AlGaN barrier layer, the vacancies induced by fluorine

extend to the 2DEG channel region. The distribution of

vacancy concentration is discontinuous at each interface

because the bond energy of every material is different

[27]. However, in the case of the fluorine ion implant-

ation in the thick SiNx passivation layer, the vacancy dis-

tribution is located within the SiNx passivation layer and

far from the 2DEG channel. The vacancies induced by

Fig. 1 Three-dimensional schematic of a FPL HEMT (inset: HR-TEM micrograph of LPCVD SiNx), b FBL HEMT, and c Conv. HEMT
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ion implantation would trap the 2DEG channel, and

2DEG could be easily trapped if the vacancy distribution

is near to the 2DEG [28]. In conclusion, fluorine ion im-

plantation in the thick SiNx passivation layer could

significantly reduce the influence of ion implantation on

the 2DEG channel and suppress the static and dynamic

characteristic degradation effectively.

Figure 3 illuminates the measured I-V transfer charac-

teristics and direct current (DC) output characteristics.

Compared with the Conv. HEMT, both the FPL HEMT

and FBL HEMT show a decrease in IDS and an increase

in static ON-resistance (RON), because the fluorine ions

cause the assisted depletion of the 2DEG in the drift re-

gion and thus decrease the 2DEG density [29]. In

addition, the ion implantation also decreases the 2DEG

mobility. The Hall effect measured 2DEG mobilities of

the FPL and FBL HEMTs are 228 cm2/Vs and 203 cm2/

Vs after ion implantation, respectively. Owing to the

same dose of fluorine ions, the output characteristics

and RON of FPL HEMT and FBL HEMT are almost the

same at a low drain voltage (e.g., VDS < 3 V). However,

when VDS > 3 V, the saturation drain current collapse oc-

curs in the FBL HEMT, because the vacancy profile of

fluorine extends to the 2DEG channel region, and the

2DEG could be easily trapped by these deep level vacan-

cies induced by fluorine when drain voltage is large than

critical drain voltage (e.g., VDS > 3 V) [30], thereby de-

creasing the drain current. The vacancy distribution of

FPL HEMT is far from the 2DEG channel, thus sup-

pressing the saturation drain current collapse effectively.

Figure 4 shows the measured I-V characteristics and

simulated surface E-field distributions on the blocking

state. The BVs of the FPL/FBL/Conv. HEMTs are 803/

746/680 V, respectively. The BV is defined as the drain-

source voltage at the drain current (IDS) of 1 μA/mm

with VGS = − 4 V. The fluorine ions between the gate and

drain as a termination technique reduce the E-field peak

at the gate edge and cause a new E-field peak at the end

of ion implantation region, and thus, FPL HEMT and

FBL HEMT achieve more uniform surface E-field distri-

bution and higher BV than that of the Conv. HEMT.

Compared with FPL HEMT, FBL HEMT has an

Fig. 2 Measured SIMS profile of fluorine ion concentration and simulated vacancy concentration by TRIM along the cut lines. a A-A′. b B-B′

Fig. 3 Measured a I-V transfer characteristics, and b DC output characteristics for three HEMTs
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enhanced electric field modulation effect, because the

fluorine ion profile is near to the 2DEG channel. How-

ever, for the FBL HEMT, ion implantation would inevit-

ably induce additional damages in AlGaN barrier [31,

32], leading to a continuous gate leakage current path of

gate-barrier layer-2DEG; therefore, the BV of FBL

HMET is slightly smaller than that of the FPL HEMT.

Pulsed IDS-VDS measurements [33] under slow switch-

ing were performed to characterize the behavior of dy-

namic ON-resistance (RON, D) of the fabricated AlGaN/

Fig. 4 a Measured off-state I-V characteristics with a gate voltage of−4 V, keeping the substrate floated. b Simulated surface E-field distributions

at VDS = 150 V

Fig. 5 a Schematic depicting application of stress voltage during the pulsed IDS-VDS measurements. Pulsed IDS-VDS characteristics of the fabricated

AlGaN/GaN HEMTs with b FPL HEMT, c FBL HEMT, and d Conv. HEMT (VGS = − 4~0 V; step: 0.5 V)
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GaN HEMTs. Figure 5a is the schematic depicting the

application of stress voltage during the pulsed IDS-VDS

measurements. In pulsed I-V measurements, the gate

and drain electrodes of the GaN HEMTs were subjected

to short voltage pulses before each I-V measurement to

ensure that the devices were in the off-state. The pulse

width is 3 ms and the period is 5 ms. Figure 5 b–d show

the comparison of the pulsed output characteristics of

the devices under (VGS0, VDS0) of (0 V, 0 V) and (0 V,

100 V). It can be seen that there is a slightest degrad-

ation (12.3%) of dynamic ON-resistance for the Conv.

HEMT, owing to the absence of fluorine ion implant-

ation process. In comparison with FBL HEMT, FPL

HEMT has a low degradation of dynamic ON-resistance.

Owing to the passivation layer, the vacancy distribution

is far away from the 2DEG channel and is located within

the passivation layer, which suppresses the charge trap-

ping in the FPL HEMT. Figure 6 summarizes the ratio

values of RON, D/RON for the three HEMTs under (VGS0,

VDS0) from (0 V, 0 V) and (0 V, 100 V) at a step of 20 V.

For the FBL HEMT, the measured RON, D is already in-

creased by 98% of the static one at (VGS0, VDS0) of (0 V,

0 V) and (0 V, 100 V), while the RON, D of the FPL

HEMT is increased by only 23% at a high drain quies-

cent bias of 100 V.

Conclusions

In conclusion, we proposed a novel AlGaN/GaN HEMT

with a high breakdown voltage and low dynamic ON-

resistance. It features fluorine ion implantation in the

thick SiNx passivation layer. Fluorine ion implantation in

passivation layer could effectively suppress electrical

characteristic degradation. The dynamic ON-resistance

is only 1.23 times as larger as the static ON-resistance

after off-state VDS stress of 100 V, while it is 1.98 times

for the FBL HEMT. In addition, the fluorine ions in the

passivation layer also modulate the E-filed distribution

and spread the depletion region; thus, the BV of the

proposed HEMT increases to 803 V from 680 V of con-

ventional AlGaN/GaN HEMT.
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