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ABSTRACT 

 

LSB steganography is a one of the most widely used methods for implementing covert data channels in 

image file exchanges [1][2]. The low computational complexity and implementation simplicity of the 

algorithm are significant factors for its popularity with the primary reason being low image distortion. 

Many attempts have been made to increase the embedding capacity of LSB algorithms by expanding into 

the second or third binary layers of the image while maintaining a low probability of detection with 

minimal distortive effects [2][3][4]. In this paper, we introduce an advanced technique for covertly 

embedding data within images using redundant number system decomposition over non-standard digital bit 

planes.  Both grayscale and bit-mapped images are equally effective as cover files.  It will be shown that 

this unique steganography method has minimal visual distortive affects while also preserving the cover file 

statistics, making it less susceptible to most general steganography detection algorithms.   
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1. INTRODUCTION  

 
Multimedia steganography involves the means and methods by which information is embedded in 
a digital cover signal and communicated between two actors under the conditions that third-party 
observers will not be able to discern any difference between signals with embedded data and the 
same non-embedded original cover files[1].  One of the simplest and most popular steganographic 
methods involves the manipulation of the least significant bit (LSB) levels of the formatted data 
file [1][2].  The LSB based embedding approach is applicable to both the spatial and transform 
domain where least significant bits (LSB’s) of digital signal values or transform coefficients can 
be manipulated [1].  A quick review of the common digital multimedia formats will show that 
there are well over three dozen main stream formats comprising both uncompressed  and 
compressed (lossy and lossless) types that can use LSB type embedding methods successfully[2].  
Operating within the trade spaces of imperceptibility, robustness, and capacity, we introduce an 
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approach that focuses on maximizing the steganography trade space for one class of multimedia 
files – namely uncompressed image file formats.  
  

In this paper, we propose a new embedding technique which alters the available number of least 
significant bit layers of uncompressed image files.  This technique is based on the development of 
an entirely new redundant number system representation with subsequent remapping of the base 
image file to this new bit plane decomposition. Using a selective value minimization technique, 
data will be inserted into a number of bit planes greater than the traditional LSB levels of the first, 
second or third layer.  In addition, we also present the methods and algorithms necessary to 
demonstrate how using this novel redundant number system will increase the embedding capacity 
without distorting the order statistics, a necessary condition for good protection against 
steganalysis. The rest of the paper is organized as follows. Section 2, reviews image 
steganography and introduces the background on bit-plane decomposition for grayscale and 
bitmapped image files.  Section 3 provides background on the existing works in redundant 
number systems and how this forms the basis for our new system, which is introduced in Section 
4. Section 5 then shows a system level implementation of our approach followed by the final 
Section 6 covering computer simulation results.     
 

2.  IMAGE STEGANOGRAPHY 
  

Image steganography falls under the broader classification of technical steganography what 
includes digital multimedia steganography.  These multimedia methods are usually listed as text, 
audio, image, and video embedding techniques [4].  Figure 1 shows the further breakdown of the 
steganography domain in the context of a larger class of cyberspace threats [5][6].   

Steganography aims to transmit information invisibly embedded as imperceptible alterations in 
common files such as images, audio, text, or video formatted as cover data [7].  Steganalysis is 
juxtaposed to this secret communication method with the primary objective being to unmask the 

Figure 1. Expanded Taxonomy Model of Steganography Domain  
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presence of such hidden data.  The field of digital steganography and steganalysis continues to 
thrive due to the fundamental structure of digitally stored information and the covert channel 
bandwidth that such a structure provides [4][5].   
 
 

If one considers the basic digital formats of the various multimedia files, namely audio, video, 
and still images, it is abundantly clear that there is considerable redundancy, variability, and fault 
tolerance in each of the these formats[8].  Take for example an image pixel with a range of 0 to 
255.  If we vary the individual sample values by several levels, the resultant change is virtually 
imperceptible by most observers. The human visual systems (HVS) will, in general, not notice 
such minor variations in a file, even if these variations are widely implemented across a given file 
[8][9].    
 

The simple fact is that most of the digital multimedia formats are designed to compensate for the 
discrete data variability that may result from normal digital communications or processing errors 
[10].  It is this “flexibility” of the digital data formats that allows for steganography, 
watermarking, and other types of data embedding to exist for these file types.   But even though 
these files can be used for general data embedding that would go unperceived by the HVS, any 
given embedding system could likely be detected by an induced statistical anomaly that is direct 
result of the embedding process[11][12]. Therefore, the goal of all steganography 
implementations is to maximize the covert channel bandwidth while minimizing the probability 
of third party detection [13].  The minimizations of cover distortion, both visual and statistical go 
hand in hand with this primary goal for steganographic techniques. 
 
2.1 LSB Steganography Techniques 
 
There are currently two major trends that are used to implement digital steganographic 
algorithms; those methods that work in the spatial domain, altering the desired characteristics on 
the file itself, and then the methods that work in the transform domain, performing a series of 
changes to the cover image before hiding information [2][5]]. While the algorithms that work in 
the transform domain are more robust, that is, more resistant to attacks, the algorithms that work 
in the spatial domain are simpler and faster [11]. The most popular and frequently used spatial 
domain steganographic method is the Least Significant Bit embedding (LSB) [11][12]. 
 

LSB embedding works by substituting message bits as the LSBs of randomly selected pixels to 
create an altered image called the stego-image [3]. The pixel selection is determined by a secret 
stego key shared by the communicating parties. Altering an LSB does not usually change the 
quality of image to human perception but this scheme is sensitive to a variety of image processing 
attacks like compression, cropping or other image translations [11][13]. Today, the majority of 
steganographic programs available for download from the Internet use this simple technique (e.g. 
Steganos II, S-Tools 4.0, Steghide 0.3, Contraband Hell Edition, Wb Stego 3.5, Encrypt Pic 1.3, 
StegoDos, Wnstorm, Invisible Secrets Pro. The continued popularity of the LSB embedding is 
most likely due to its simplicity as well as the false belief that modifications of pixel values in 
randomly selected pixels are undetectable because of the existence of noise present in most 
natural digital images [9][14].   
 

2.2 Bit-Plane Decomposition  
 
Most of these popular steganography LSB embedding tools focus on the typical 8 level bit-plane 
decomposition for images or amplitude level adjustments in audio formats [1][2] .  These formats 
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are all base on the standard 2L layer representation, where L is the bit representations for a given 
binary value [1][2]. In an image for example, this typical layered decomposition is achieved using 
the Euclidian algorithm for the pixel values in the range of 0 to 255 [4][5].  Audio file formats are 
similarly ranged and the same general LSB steganography and steganalysis methodologies apply 
to these file types as well [15]. 
       

With the least significant bit representation, the lower level values contribute much less to overall 
magnitude of the specific pixel or amplitude value that the upper-most or most significant bit 
values convey [1][2].  For this reason, the lowest levels, say 1, 2 or even 3 are the main target for 
most of the 8-bit LSB data embedding tools [16][17].  We can extend the concept of LSB from 8-
bit format to 24-bit color images by recognizing that the 24-bit image is merely the composite of 
three separate red, green and blue color components, each represented by a byte [16][17].  
The widespread use of LSB embedding techniques has inspired researchers to develop a set of 
common steganalysis methods to detect covert data storage using these low order bit algorithms 
[11].   Most recently, many powerful steganalysis methods capable of detecting LSB embedding 
were proposed [11].  Current state-of-the-art in detection of LSB embedding is represented by the 
RS analysis and Sample Pairs analysis algorithms [11][18].  These analysis tools have uncovered 
the well-known fact that embedding near-to-maximum size messages in images using the LSB 
technique is quite reliably detectable by first and second order statistical analysis.  However, by 
reducing the embedding level and effectively spreading fewer embedded bits around the cover 
image makes the steganalyst’s task much more difficult [15][17][18]. Naturally, the 
steganographer is interested in developing techniques that maximize the overall embedding 
capacity while minimizing the probability of being detected [7].  
 

2.3 LSB Expansion  
 

Given that the current steganalysis approach is to target the structure and statistical characteristics 

of the first few least significant bits, alternative embedding methods are considered to avoid this 

type of detection.  In this regard, any methods that would increase or change the number of 

available lower layer binary groupings would result in an expansion of the available region for 

embedding, improving capacity and similarly elude or evade standardized detection techniques 

[7].   
 

This is the stated goal of this aspect of research and the motivation for developing alternative 

methods to decompose and embed information into digital multimedia files.  This objective 

involved expanding the bit-plane decomposition beyond the standard 8-bit boundary images in an 

attempt to determine if alternative data embedding methods can be optimally employed.  Also 

investigated was how these embedded schemes are affected by other than the normal bit-plane 

and bit-line representations.  Focus was on the most basic of cases involving embedding data into 

uncompressed grayscale images files.  This simplified, first principle approach resulted in the 

development of an alternative redundant number systems which was then used to formulate a 

unique decimal-to-binary mapping function.  Our research involved in the development of this 

new redundant number system mapping is now reviewed.  

 

3. REDUNDANT NUMBER SYSTEMS  
  
As stated, many steganography methods focus on the standard 8 level bit-plane decomposition 
which is based on the standard 2L layer representation [1][2][3].  Figure 2 shows how an image 
can be layer-separated to delineate the binary groupings which form an image.  In reviewing these 
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segmented images it is evident the contribution from these binary groupings increases with each 
successive level. That is layer 1 contributes less to the image structure than does layer 2 and much 
less than layers 7 or 8 [5][7].  For this reason, the lowest level 1 is the main target for most of the 
data embedding tools to minimize detection [11].  A goal for the steganographer is to increase the 
number of available lower layer binary groupings so as to increase the available regions for 
embedding, improving capacity and similarly eluding detection [4][5].     
 

One way to increase the capacity barriers associated with existing embedding systems is to find 
an alternate representation for the pixel value decomposition.  The assuming is that in doing so 
we increase the available covert channel beyond the first one or two layers [19].   Our research 
fundamentally involves expanding the bit-plane decomposition beyond the standard 8-bit 
boundary to determine if alternative data embedding methods can be optimally employed.  We 
then investigate how these embedded schemes are affected by other than the normal bit plane 
representations.  This approach will result in the utilization of redundant number systems which 
will be used to form a decimal to binary mapping function.   We continue by reviewing the 
Fibonacci redundant number system and how it is used to embed data and then introduce a new 
system that offers improved statistical and capacity measures.  
 
3.1 Fibonacci P-Code Redundant Number System 
 

We choose the Fibonacci series due to the deterministic qualities of the basic function. The 
Fibonacci p-code number system is described by a sequence of values generated using a fixed 
rule set [20].   This well-known series is a non-linear numerical sequence described by the 
following recursive function:    
 

                (Eq 1) 
 
 
Where, p is a non-negative integer designating the sequence of values particular to a given p.    
The following Table 1 shows the initial sequence of values for Fibonacci p-codes 0 through 3.  
 
 
 
 

 

Figure 2.  8-level Bit-Plane Decomposition of Grayscale “Lena” Cover Image 
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  Table 1.  Fibonacci p-codes 

 
p-code Initial p-Fibonacci Numbers 

0 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024 
1 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233 
2 1, 1, 1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88, 129, 189 
3 1, 1, 1, 1, 2, 3, 4, 5, 7, 10, 14, 19, 26, 36, 50, 69, 95, 131, 181, 250 

 
A subset of these Fibonacci p-code values is selected from within this table with the conditions 
set limiting any redundant numbers in the set and bounding the set to be the minimum set of 
values required in a summation that is at least equal the value 255.  The concatenated sets for the 
first three Fibonacci series are shown to be:  
 
        𝐹0(𝑖) = {1, 2, 4, 8, 16, 32, 64, 128}   𝐹1(𝑖) = {1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144}                           (Eq. 2)                                         𝐹2(𝑖) = {1, 2, 3, 4, 6, 9, 13, 19, 28, 41, 60, 88} 
 
It is quickly observed that the Fibonacci p-0 series is directly related to the binary power series 
described by the following summation formula:  
 

                                                        𝐹𝑝(𝑖) = ∑ 𝑏𝑖 ∗ 2𝑖𝑛𝑖=0                                                      (Eq. 3) 

 
 Where 𝑏𝑖 ∈ {0,1} is the coefficient for each of the bit-planes with 2𝑖 ∈ {1,2,4,8,16,32,64,128}. 
This being the case, a bijective relation can be established by pairing the p0 Fibonacci series with 
an indexed binary representation to form a unique relationship between integers and the binary 
indexes.  For example, the decimal number 13 is uniquely represented in 8-bit binary form as 
1101.  This bijective relation is widely known and forms the basis of all modern day digital logic 
arithmetic [6].      
 
With the p0 relation well established, we next apply similar rules to define Fibonacci-based 
image decomposition using the concatenated p1 and p2 sequences.  Figure 3 shows the 
Fibonacci-p1 decomposition, an 11 layer bit-plane representation.  The decomposition is achieved 
using the Euclidean algorithm over the domain of the concatenated Fibonacci-p1 sequence. The 
binary groupings for these 11 layers have a somewhat similar visual representation when 
compared to the standard 8-bit decomposition.  Most notable is that there are now 3 lower layers 
that appear to be comprised of random noise-like structure.   Image definition and feature vectors 
only begin to appear in layers 4 and 5.  This aligned closely with our goal; increase the range of 
potential data hiding pixels [6].  
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Figure 3.  11-level Bit-Plane Decomposition using Concatenated Fibonacci-p1 

 
Using this same indexed binary representation method and applying it to the previously defined 
concatenated p1 and p2 Fibonacci sequences gives us a result which is a non-bijective mapping 
[6].  Specifically this is no longer a one-to-one relation between the decimal and indexed binary 
series for both Fibonacci- p1 and p2.  For example, the number 43 has 4 different binary index 
representations when mapped to the 11 bit concatenated Fibonacci-p1 sequence:  
  
                  43 = { (1,0,1,1,0,1,1,0,0,0,0), (1,0,0,0,1,1,1,0,0,0,0), (1,0,1,1,0,0,0,1,0,0,0),  
                             (1,0,0,0,1,0,0,1,0,0,0)} =  {𝑎1,𝑎2, 𝑎3, 𝑎4}          
 
We define {𝑎𝑖} as a set of binary subsets with an elemental length equal to the concatenated 
Fibonacci p-code set length. A decimal representation of an integer in the range of 0 to the 
variable n is then described by 𝑍 = ∑ 𝑏𝑖 ∗ 𝑝1𝑖𝑛𝑖=0 .  Where  𝑏𝑖 ∈ {0,1}  is the coefficient for each 
of the bit-planes and  𝑝1𝑖 is the indexed Fibonacci value for Fibonacci-p1. The property can be 
generalized for all numbers in the target domain [0, 255] by the equation:  
 

      𝐴 = ∑ 𝑏𝑖 ∗ 𝐹𝑖𝑛−1𝑖=0  , Where 𝑏𝑖 ∈ {0,1}  and 𝐹𝑖 is an index Fibonacci number         (Eq. 4)                               
 
These resultant mapping gives us a surjective relationship which is expected based on the fact 
that Fibonacci p1 has 11 elements and Fibonacci p2 has 12 elements in their respective series.     
Naturally then, there cannot be a one-to-one mapping between p1 and p0 or between p2 and p0, 
with p0 again be our true one-to-one decimal to binary relation.  This leads to the issue of how to 
uniquely encode and recover hidden information without exchanging any additional information, 
other than the encoding and decoding algorithms [6].     
      

Several methods for solving the redundant number system uniqueness dilemma have been 
proposed, each with their own set of constraints [19] [20] [21].  The most often cited uniqueness 
scheme is based on the Zeckendorf Theorem [22].  This theorem when used for the Fibonacci 
sequences states that “Each positive integer m can be represented as the sum of monotonic 
distinct numbers in the sequence of code numbers using no two consecutive code numbers”.  
Application of the Zeckendorf theorem will in fact establish the constraints necessary to achieve 
translational uniqueness in a redundant number system.   The aforementioned example for the 
number 43, translated to the Fibonacci-p1 sequence would be (1,0,0,0,1,0,0,1,0,0,0), the only 
sequence of the five possible {𝑎𝑖} set that satisfies the Zeckendorf constraint [22]. Clearly these 
results achieve a bijective relationship for our image decompositions.  
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Based on the progression of this Zeckendorf analysis, a valid blind embedding and decoding 
method for a deterministic redundant number steganography system has been achieved.  
However, a cursory review of this system revealed some significant implementation flaws - 
namely the lack of first and second order statistical preservation.  These faults are of such 
significance in that they essentially negate one the primary purposes of steganography; that covert 
channel communications is difficult to detect.  Experimental results which highlight these flaws 
will be described in the experimental results section below.   
  

We continued then, with our basic research to find a redundant number system that would allow 
us to embed more information over the decomposed image layers while simultaneously reducing 
the chances of detection. These objectives lead us to the development of a new class of 
specialized number systems which we introduce as Adjunctive Numerical Representations. 
 

4. ADJUNCTIVE NUMERICAL REPRESENTATION 
 
It can be shown that the mapping function from a decimal to binary index relation for Fibonacci-
p1 is [0, 375] and is [0, 284] for our Fibonacci-p2 set, both surjective functions.  It was also 
notable that a one-to-one mapping exist between the domain of numbers 0 to 255 and our 
concatenated Fibonacci-p0 series which then forms the basis function used in modern day digital 
computing.   Table 1 defined the p Fibonacci values for p-0 to p-3.  The full range of values for 
an image color value [0, 255] can be expressed using p-0 to p-2.  The summation curves for these 
three series are plotted and shown in Figure 4.   
 

 
 

Figure 4. First Three Fibonacci p-code Summation Plots  

 
From this output, it can be seen that the ideal curve is p0 since this is the bijective relation that is 
necessary for proper integer domain mapping.  Curves p1 and p2 peak at 375 and 274 
respectively and are not the ideal bijective relational systems, even when the constraints of the 
Zeckendorf theorem are applied.  We also saw that the p-1 and p-2 embedding system have non-
ideal results due to distortions in the order statistics [19][20][21][23].  The objective is to design a 
redundant number system (required for multiple bit-plane decomposition) that would closely 
model the characteristics of the idea Fibonacci-p0 and yet continue to preserve the critical digital 
cover file statistical values.        
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We now define those characteristics deemed necessary for our new set of indexing number 
sequences, heretofore referred to as Adjunctive Numerical Representation (ANR) sets.   The 
following five properties define the uniqueness for ANRN set of numbers: 
 

I. ANRN  ≝ [0, ∑ 𝑥𝑖𝑛𝑖=1  ] = [0, N], where , 𝑥𝑖 < 𝑥𝑖+1 
 

II. ∑ 𝑥𝑖𝑛𝑖=1 = 𝑁  ∀  ANRN, where {ANRN | (𝑥1,𝑥2, 𝑥3, … 𝑥𝑛)} 
 

III. ∀ ∈  [0, 𝑁], {𝑇: 𝐴𝑁𝑅𝑁  → 𝐹𝑝(𝑖)}   ∄!  { 𝑎𝑖 },  𝑤ℎ𝑒𝑟𝑒 𝐹𝑝(𝑖)} = ∑ 𝑏𝑖 ∗ 2𝑖𝑛𝑖=0 ),  𝑏𝑖 ∈{0,1} , 𝑝 ∈ 𝑍  
 

IV. ∀ ∈  [0, 𝑁] 𝑖𝑛 𝐴𝑁𝑅𝑁, ∃ min  {𝑇: 𝐴𝑁𝑅𝑁  → 𝐹𝑝(𝑖)} = 𝑚𝑖𝑛 {𝑎𝑖} 
 

V. ∀ ∈  [0, 𝑁] 𝑖𝑛 𝐴𝑁𝑅𝑁, ∃ max { 𝑇: 𝐴𝑁𝑅𝑁  →  𝐹𝑝(𝑖)} = 𝑚𝑎𝑥 {𝑎𝑖} 

 
Property one is derived from the ideal case of Fibonacci-p0 where the series summation results in 
the value 255, the upper bound of the 8-bit digital boundary. The second property ensures that all 
the natural numbers between 0 and N can be represented by the redundant number system ANRN.  
The third property is a necessary condition to ensure the indexed values form a redundant number 
system.  Specifically, this third property ensures that there will be multiple representations of a 
given number, thus aiding in the obfuscation process during data embedding. Finally, the last two 
properties are fundamental rules needed for blind system encoding and decoding, essentially 
stating that a distinct minimum and maximum element must exist for a distinct integer 
representation [19][22][23].  These five properties will then bring us close to the ideal Fibonacci-
p0 case but will lack the totality of it unique properties of the binary number system.  This 
coupled relationship is used to derive the name for our new system: Adjunctive Numerical 
Representation (ANR). 
 
We identify the following sets of numbers as representative subsets for our new ANR255 

redundant system.  These monotonic sets are defined to be consistent with the aforementioned 
number system properties.  The selection of an ANR image decomposition set is based on the five 
properties previously defined.  
 
                                       S1 = {1, 2, 3, 4, 6, 10, 14, 17, 23, 31, 42, 47, 55} 
 
                                       S2 = {1, 2, 3, 4, 5, 6, 7, 8, 15, 36, 43, 57, 68} 
 
                                    S3 = {1, 2, 3, 7, 11, 13, 17, 21, 23, 27, 31, 41, 58}  
 
The reader can easily verify that ∑ 𝑆1𝑖13𝑖=1  = ∑ 𝑆2𝑖13𝑖=1 = ∑ 𝑆3𝑖13𝑖=1  = 255 and that the set of all 
integers from 1 to 255 can be represented by each of these indexed sequences.  The identification 
of these three ANR sets shows that we have expanded the number of available image 
decomposition bit planes from the standard 8 to 13.   
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The plots for these three 13-level sets are shown below in Figure 5 alongside the previously 
plotted curves. Observe that all three of these ANR255 number sets converge to 255.  Note as well 
that the curves also closely model the ideal curve of Fibonacci-p0 over the initial indexing 
interval of approximately 1 to 9.  Property three is verified by noting the number of elements, 13-
levels, in each of the ANR255 series, is greater than the 8 found in Fibonacci-p0.  The final two 
properties define the uniqueness requirement for our new system.  The development of these two 
properties is described in the following section.  

 

4.1 Uniqueness in ANR255 Representations  
 
From the above sections, we identified the need of unique numerical representation for various 
redundant number systems. Specifically we want to find uniqueness in both the Fibonacci and 
ANRN redundant number systems. The notion of a unique representation motivated us to 
investigate various coding techniques and develop a Min-Max bit-plane normalized 
representation that helps us in designing our blind embedding system [22][23]24].  For this we 
postulate the following: 
 

Theorem: Any natural number, Z, within an interval [0, 255] can be represented 

and uniquely identified by a set of monotonic numbers over a concatenated 

Fibonacci p-code or and ANRN set with the binary sequence mapping, 𝑎𝑖 selected 

using the maximum representation, 𝑚𝑎𝑥( {𝑎𝑖 } ), or minimum 

representation, 𝑚𝑖𝑛 ({𝑎𝑖 },  where, {𝑎𝑖} is one of the possible decimal-to-binary 

mappings in the initial translation[23][24].   
 

The maximum and minimum representations of each {𝑎𝑖} in the redundant number system are 
derived from the Euclidian reduction of a given decimal number when represented as indexed 
binary form.  Once in this form the minimum and maximum are determined by lexiconical 
ordering. An as illustrative example of this uniqueness theorem, consider the concatenated 
Fibonacci-p1 and the ANR255 representations of the number 43.  Previously we showed that there 
were 5 representations of this number when mapped into the 11-bit sequence of the previously 
defined Fibonacci-p1 series.  The simple maximum and minimum selection functions define 

     Figure 5.  Fibonacci p-code and Representative ANR255 Summation Plots 
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uniquely represented values as shown in Table 2.  For the ANR255 system the number 43 is 
mapped into 9 different 13 bit binary sets as shown in Table 3.  
 

Table 2. Fibonacci-p1 Representation and Uniqueness 
 

Integer value 43 in representation 
{𝑎𝑖} form for concatenated Fibonacci-p1 

P1={1,2,3,5,8,13,21,34,55,89,144} 

  𝑚𝑎𝑥( {𝑎𝑖  } )  𝑚𝑖𝑛( {𝑎𝑖  } )    𝑎1  = {1,0,1,1,0,1,1,0,0,0,0}    𝑎2  = {1,0,0,0,1,1,1,0,0,0,0}   𝑎3 = {1,0,1,1,0,0,0,1,0,0,0}   𝑎4 = {1,0,0,0,1,0,0,1,0,0,0} 

𝑎4 ={1,0,0,0,1,0,0,1,0,0,0} 
 

 𝑎1  ={1,0,1,1,0,1,1,0,0,0,0} 
 

 
Table 3. ANR255 Representation and Uniqueness for Integer 43 

 
Integer 43 representation 

in {𝑎𝑖} form for new ANR255 

S1={1,2,3,4,6,10,14,17,23,31,42,47,55} 

 𝑚𝑎𝑥( {𝑎𝑖  } ) 
 𝑚𝑖𝑛( {𝑎𝑖  } ) 

a1 = {1,1,1,0,1,0,1,1,0,0,0,0,0} 
a2 = {0,1,0,1,1,0,1,1,0,0,0,0,0} 
a3 = {0,1,0,0,0,1,1,1,0,0,0,0,0} 
a4 = {1,1,0,0,0,0,0,1,1,0,0,0,0} 
a5=  {0,0,1,0,0,0,0,1,1,0,0,0,0} 
a6 = {1,1,1,0,1,0,0,0,0,1,0,0,0} 
a7 = {0,1,0,1,1,0,0,0,0,1,0,0,0} 
a8=  {0,1,0,0,0,1,0,0,0,1,0,0,0} 
a9 = {1,0,0,0,0,0,0,0,0,0,1,0,0} 

 
 
 
a9 ={1,0,0,0,0,0,0,0,0,0,1,0,0} 

 

 
 
a1={1,1,1,0,1,0,1,1,0,0,0,0,0} 

 
To this point we have described some fundamental concepts of redundant number systems.  We 
showed how a set of Fibonacci p-code redundant number systems could be developed into a 
multiple bit-plane encoding and decoding system by adding the Zeckendorf uniqueness 
constraints [22]. We then expressed without proof that these system would fail under steganalysis 
using 1st and 2nd order statistical attacks, the substantiating results which will be shown in the 
experimental analysis below.  A compilation of the aforementioned results lead us to develop the 
new redundant system which embodied the attributes necessary for a high capacity, low statistical 
distortive embedding algorithm using our newly defined adjunctive numerical relationship 
principles.  In the following two sections we describe in general terms how this new system is 
implemented and then present some output from computer simulations with supporting data that 
demonstrates the effectiveness of our new ANR embedding system. 
   

5. SYSTEM IMPLEMENTATION 
 
In this section we present the encoding and decoding process which uses the new multiple bit-
plane decomposition ANR algorithm [6][15].  Figure 6 depicts the individual steps involved in 
our stegonographic system.   The first step in the process is to decompose the image into a fixed 
set of bit planes.  The number of planes to be represented is determined by the number of index 
values for a given ANR255 sequence.  For example, one of the sequences that adheres to the 
properties previoulsy defined for our system was sequence S1.  This was defined by the set 
{1,2,3,4,6,10,14,17,23,31,42,47,55} with unique 13 elements.  The image then will be 
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decomposed into 13 bit planes with the lowest order being 1 and a highest order plane of 55.  The 
conjugate of this in normal image decomposition would be 8 bit planes with 1 as the lowest and 
128 as the highest order bit plane.  Figure 7 shows ANR255 decomposition of the Lena image into 
the 13 layers as defined by the S1 sequence [15].  
 

 
 

Figure 6.  Decomposition Embedding and Decoding System 

   

 

 
Figure 7.  ANR255 -S1 13-Level Bit-Plane Decomposition  

 

 

5.1 Embedding and Extraction Algorithms  
 
Once the image is properly decomposed, preprocessed encrypted data is ready to be stream 
embedded into the first three levels of these separated bit planes.  The location of the embedded 
data is governed by the ANR255 conversion of the image intensity value as described in Table 3.3 
with the selection of min or max being applied to this number set.  The insertion of this streaming 
data can be either adaptively or non-adaptively embedded; the choice of which is guided by 
several factors including the amount of data to be embedded and the desired security of the 
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overall system.   The selection on which bit-plane to embed is based on the vector set from which 
the sample data resides. Figure 8 shows the ANR embedding code with the associated vector 
elements. Once the data is embedded into layers one, two, and three of the 13-layer bit-plane 
decomposition, the cover file is converted to the standard 8 bit-plane representation.  The 
decoding process is simply performed by reading the decimal-based image intensity values and 
extracting the data directly using the appropriate min or max representation of this number in 
ANR255 format.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8. ANR255 -S1 13-Level Bit-Plane Embedding 
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6. COMPUTER SIMULATION 
 
In order to assess our new Ajunctive Numerical Representation algorithm for resistance to first 
and second order steganalytic attacks and measure the embedding capcitity, computer simulations 
were performed over a small database of 30 grayscale images.  The set of files listed below in 
Table 4, and shown in Figure 9 comprise a representative subset of the image files used in our 
experimentation.  
 

Table 4. Representative Image Set  

 

Representative 

 Image Set 
Size 

Embedding 

Capacity 

Per Bit-Plane  

Baseline Stego 

Sensitivity Measure 

Lena 512x512 262,144 0.000 
Barbara 510x510 260,100 0.000 
Baboon  512x512 262,144 2.307 
Peppers 512x512 262,144 0.137 

 
 

The table shows the image size, and the bit level embedding capacity for each of the bit planes. 
For our experments we will be using grayscale images and will limit our total embedding 
capacity to one full capacity LSB level.  Table 4 also provide a baseline measurement of the clean 
images using the Stego Sensitivity Measure (SSM) algorithm [25][26].   
 
The SSM algorithm is designed to detect evidence of localized visual artifacts as an indication of 
steganographic content in the digital image [25]. The methods involves the measurement and 
classification of pixels which are adjacent to a center focus pixel.  Variations from this central 
data point by the surrounding pixels, when proportionally measured, are used to determine if a 
given pixel values has a likelihood of covert information [25][26]. If we consider an image I of 
dimension MxN, we may define a sub-element block, Ib to be dimension mb by nb.  From this sub-
element selection, the adjacent pixel values to the center pixel will be: 
 

Figure 9 ANR255 -S1 Vector 5 Embedding for 3 bit-planes   
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                | 𝑃𝑖𝑗 + 𝑘 −  𝑃𝑖±1 𝑖±1|  ≤ 𝐴                           (Eq. 5) 

 
where A is the defined threshold of the bit-plane under analysis, and P are the pixel values.  
The value k is ranged from: -A, -A+1,…0,…A-1, A [25][26][27].  The pixel comparison 
complexity measure is defined by the relationship:  
 

                                               𝛾(𝑚𝑏 , 𝑛𝑏) =  𝛽𝛽𝑚𝑎𝑥                  (Eq. 6) 

 
Where mb x nb are the blocks under analysis.  The value β shows the count of the adjacent pixel 
pairs meeting the threshold and βmax is the total adjacent pairs [25].   The global value 
summarizes the relationships between these pixel measures and is define as the complexity 
measure of the image.   𝛤 =  1𝐵 ∑ 𝛾𝑏𝐵𝑏=1 (𝑚𝑏 , 𝑛𝑏)                     (Eq. 7) 

 
Typically, an SSM measure falling below 5 is considered to be a clean image, a value between 5 
and 10 is deemed suspicious and measured value above 10 is usually identifies a cover image 
with steganographic content [25][26].  
 
We used the SSM measure for the initial unembedded image as a baseline.  Once the image is 
processed with a set of embedding algorithms, we can correlate the resultant SSM value with the 
baseline in order to make an accurate judgment of the results. 
 
In addition to the SSM, three additional image post-process parametric analysis values were 
collected.  These include the Structural Similarity Measure, SSIM, the peak signal-to-noise ratio 
or PSNR, and the mean squared error or MSE [28].  The SSIM is an improved comparative 
analysis measure when measured against the PSNR or MSE.  The method for calculating this 
index involves the definition of two windows on the image. The measurement between these 
windows of size NxN is given by:  
 

                                          𝑆𝑆𝐼𝑀 (𝑥, 𝑦) =  (2𝑢𝑥𝑢𝑦+𝑐1)(2𝜎𝑥𝑦+𝑐2)(µ𝑥2+ µ𝑦2 + 𝑐1)(𝜎𝑥2+ 𝜎𝑦2+ 𝑐2)                             (Eq.8) 

 
of which the values are represented as: 
 
                               µ𝑥 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑥     µ𝑦 = 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑦 

 
`                       𝜎𝑥2 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑥       𝜎𝑦2 = 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑦                                        (Eq. 9) 

 𝜎𝑥𝑦 = 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑜𝑓 𝑥 𝑎𝑛𝑑 𝑦  
 
               𝑐1 = (𝑘1𝐿 )2 ,  𝑐2 = (𝑘2𝐿 )2     𝑤𝑖𝑡ℎ 𝑘1 = 0.02  𝑎𝑛𝑑 𝑘2 = 0.03  as a basis 
 
 
Even though the SSIM is an improvement over other methods it has not achieved a full 
acceptance by the image processing community.  For this reason, we also provide in our study, 
the classic PSNR and MSE values [29].  
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The PSNR is power ratio measurement for the absolute values between two measured signals. 
This measure is useful in that it can show the effects of noise or signal degradation on a systems 
output following a given digital signal process.  We can then define the signal power between two 
images with the following relationship:  

                                      𝑃𝑆𝑁𝑅 = 10 ∗ 𝑙𝑜𝑔10  (𝑀𝐴𝑋𝐼2𝑀𝑆𝐸 )                                   (Eq. 10) 

 
In the case of our image measures, MAXI is the maximum possible pixel value of the image which 
for a given bit-plane is 255.  Notice that the PSNR uses the calculated mean square error when 
calculated directly between pixel images [30].  This result, MSE, is defined as:  
                                  𝑀𝑆𝐸 =  1𝑀𝑁  ∑ ∑ [𝐼1(𝑖, 𝑗)𝑁𝑗=1𝑀𝑖=1 −  𝐼2(𝑖, 𝑗)]2                          (Eq. 11) 

 
For two images of size M x N iterated over i rows and j columns.   
 

6.1 ANR Direct Embedding Results 

 
With each of the parametric measurements define, we now review the results our new ANR 
embedding technique as compared to other widely used LSB embedding methods. To test the 
effectiveness of proposed ANR embedding algorithm we compared it to a set of LSB embedding 
functions that target data for the 1st, 2nd and 3rd bit-planes.  Data was embedded into each of the 
30 database test images at 10%, 25%, 50% and 100% of the individual images as measured by the 
least significant bit capacity as shown previously in Table 4. The LSB embedding method used 
was direct encoding, essentially resulting in a +/- or bit flipping function to that matches the 
covert data value. Before embedding, data was randomized as a fixed stream of binary data.  This 
ensures that a smooth probability distribution is enforced so as not to skew the original image 
histogram profile.  
 
Table 5 details the results for the Lena image. A complete set of results for each of the four 
representative figures is provided in Appendix 1.   As we interpret these results we begin with the 
initial baseline measures for the SSM shown below as 0 and 215.53 respectively.  The most 
significant value we extract from this data set is the SSM results.  The SSM, initially being 0 is 
increased only slightly in ANR with 100% embedding.  Given that the SSM is one of the most 
effective steganalysis measures against LSB based embedding algorithms an ANR value of 0.22 
is well within the margin of non-detection. The calculated SSM values for a majority of the LSB 
measures shows markedly elevated values that would be highly indicative of covert data present 
in the image.  In general, the PSNR and SSIM values are not of any particular consequence.  
There is a slight drop in the PSNR for 100% embedding using 3 level LSB.  However, in this 
instance with a SSM value of over 28, the image would be flagged regardless.  
      
 The probability of embedded data detection, P(S), is zero in all cases for ANR.  There are some 
significant peaks in this value for the LSB embedding, especially when embedding rates exceed 
50% of capacity. This value, along with the positive Chi2 indicate that the ANR embedding 
algorithms has good second order statistical characteristics [29][30].  The results shown in this 
table indicate the ANR embedding algorithm is an improvement over traditional direct encoded 
LSB embedding methods.   
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When the histograms are considered for these results there does not appear to be any specific or 
dominant indicators as markers for clear steganographic presence.   Shown below in Figure 10 is 
the original unembedded histogram for the Lena image.   Figure 11 is the Lena image histogram 
with 100% embedding using the ANR method.  The final figure, 12 is the same image with 100% 
direct embedding using LSB up to Layer-3.  While some slight peak anomalies exist in all three 
images, detection using double blind histogram analysis of these would graph, by most 
estimations, would be inconclusive. Using automated statistical detection engines, the probability 
of embedded data detection, P(S), is zero for the ANR embedded image but is 37% for the 3-level 
LSB embedding technique.  
 

 

Table 5.  ANR Embedding Results for LENA Image 
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6.2 Embedding Comparison of ANR and Fibonacci  
 

An interpretation of the aforementioned results reveal the resistance of the ANR algorithm to 
normal statistical attacks.  This verifies the original assumptions proposed in this portion of the 
dissertation research – that splitting a multimedia cover into a non-binary based decomposition 
and then spreading the covert data over a larger number of non-standard image levels results in a 
broader dispersion of the covert data with similar decorrelation affects that would be evident in a 
strictly binary-level image decomposition.  This decorrelation affect persist even when the ANR 
deconstructed image is reconstituted to the original binary form, representable for normal digital 
processing and display systems.  
 

Additional characteristics of the ANR embedding algorithm are shown when compared to other 
than LSB embedding techniques.  As one example, earlier we defined a Fibonacci redundant 
number system that is used for several embedding algorithms [15][19][20].  The numerical 
properties for the decomposition, embedding, and reconstitution image values would suggest that 
additional embedding capacity exists in 13 levels versus only the 8 standard levels.  This is 
explore in the following cases by comparing several samples of ANR versus Fibonacci 

Figure 11 LENA Image Histogram for 100% LSB Direct Embedding   

Figure 12 LENA Histogram with 100% ANR Embedding 
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embedding. The first case we show a difference image for the ANR255 when 100% of the 
calculated LSB capacity is used for data embedding.  For the Lena image, this would be 512x512 
or 262,144 data bits.   From the full difference images below in Figure 13, it is shown that 100% 
of the available space only is used in the case of Fibonacci-based embedding while only 
approximately 60% is actually used in the case of direct ANR255 embedding.  This shows the 
ANR embedding capacity is improved by the fact that the information is distributed throughout 
the bit planes with residual space.  

 

 7. SUMMARY 
 
In this paper, we have reviewed the concepts behind redundant number system data embedding 
for bitmapped images [15][19][20][22]. We also introduced a new redundant number system 
embedding algorithm which we refer to as the Adjunctive Numerical Representation or ANR.   
We then showed, using experimental results, how the ANR system is essentially superior to first 
and second order statistical steganalysis attacks.  Hence, the system has the following advantages:  
 

1. Provides a novel and unique representation over a redundant number 

system for any pixel value based on a variety of monotonic number 

system.  

2. System is characterized by blind embedding and decoding, 

eliminating the need for a pre-exchanged dictionary set.  

3. Higher capacity embedding with minimal impact on visible distortions 

or statistical anomalies that may indicate the presence of covert data.  

 
The intent of this research is to introduce the techniques behind the use of alternative number 
systems data embedding. The capabilities described show the need for more comprehensive 
development of detection and analysis methods for LSB steganography beyond what is currently 
in use by cyber defensive systems.  
 

 

 

 

 

 

 

Figure 13 100% Embedding - Fibonacci and 8-bit Difference Decomposition for 
ANR   
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