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Quantum cryptography and quantum key distribution (QKD) have been the most successful applications

of quantum information processing, highlighting the unique capability of quantum mechanics, through the

no-cloning theorem, to securely share encryption keys between two parties. Here, we present an approach to

high-capacity, high-efficiency QKD by exploiting cross-disciplinary ideas from quantum information theory and

the theory of light scattering of aperiodic photonic media. We propose a unique type of entangled-photon source,

as well as a physical mechanism for efficiently sharing keys. The key-sharing protocol combines entanglement

with the mathematical properties of a recursive sequence to allow a realization of the physical conditions necessary

for implementation of the no-cloning principle for QKD, while the source produces entangled photons whose

orbital angular momenta (OAM) are in a superposition of Fibonacci numbers. The source is used to implement

a particular physical realization of the protocol by randomly encoding the Fibonacci sequence onto entangled

OAM states, allowing secure generation of long keys from few photons. Unlike in polarization-based protocols,

reference frame alignment is unnecessary, while the required experimental setup is simpler than other OAM-based

protocols capable of achieving the same capacity and its complexity grows less rapidly with increasing range of

OAM used.
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I. INTRODUCTION

Much recent work in quantum key distribution (QKD) has

shifted from the use of two-dimensional polarization spaces to

larger Hilbert spaces. Increasing the dimension of the effective

Hilbert space increases coding capacity, as well as allowing

use of higher-dimensional nonorthogonal bases in security

checks, thereby increasing detectable eavesdropper-induced

error rates [1–5]. The most promising way to achieve larger

Hilbert spaces is via optical orbital angular momentum (OAM)

[6–8]. However, the only practical way to produce entangled

OAM states is with spontaneous parametric down-conversion

(SPDC), in which generating efficiencies drop rapidly with

increasing OAM. The complexity of the apparatus for using

such high-dimensional states in applications also increases

rapidly with the size of Hilbert space.

Recently, optical beams carrying single OAM states have

been produced using planar plasmonic interfaces [9]. Distinc-

tive scattering resonances in nanoplasmonic Vogel spiral arrays

have also been demonstrated to carry OAM modes [10]. Vogel

spirals have been shown to support photonic band gaps with

band-edge modes carrying multiple OAM values distributed

among the Fibonacci numbers [11,12]. It has been analytically

demonstrated that Vogel spiral arrays can generate multiple

OAM states encoding well-defined numerical sequences in

their far-field radiation patterns [13]. In the case of golden

angle (GA) spirals, the generated states carry OAM that follow

the Fibonacci sequence. (Recall that the Fibonacci sequence

*dalnegro@bu.edu
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[14] obeys the recurrence relation Fn = Fn−1 + Fn−2, with

initial values F1 = 1 and F2 = 2.)

Here, we propose a different type of entangled QKD

protocol which makes use of the automatic appearance of

nonorthogonal states in the intermediate stages, formed from

superpositions of elements arising randomly from among

a fixed discrete set. Although the general principle behind

the protocol can be applied using other physical degrees of

freedom, such as phase, we will primarily focus on illustrating

the idea here using optical OAM states. A source of entangled

Fibonacci-valued OAM states based on a Vogel spiral is

arranged so that these nonorthogonal states naturally appear

and randomly change with each entangled pair. The protocol

works due to combined action of the random nonorthogonal

intermediate states together with the fact that if one participant

receives a particular Fibonacci number, there is still a twofold

uncertainty in the Fibonacci number the other receives. We

combine a GA spiral array with SPDC in a nonlinear crystal

to engineer a source of entangled light, producing photon

pairs whose OAM values always sum to a Fibonacci number,

allowing efficient production of states with large OAM values

that can be exploited in new ways. We show that the properties

of these states allow encryption keys with large numbers of

digits to be generated by much smaller numbers of photons,

exceeding the two bits per photon provided by quantum dense

coding [15], while maintaining high security.

The proposed Fibonacci protocol has a number of advan-

tages. Please note the following, for example: (i) The protocol

is high capacity in the sense that it allows secure generation

of long keys from few photons. The number of digits of the

key that can be carried per photon is limited only by practical

considerations, not by any matter of principle. (ii) If carried

out in free space, irrelevant photons coming from ambient light
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tend to be automatically screened out since only photons with

Fibonacci-valued OAM (or other physical degree of freedom)

contribute. (iii) Fewer of the detected entangled pairs have to

be discarded by the legitimate users after basis comparison

than is the case in BB84 or E91 protocols (see Sec. IV).

Combined with the increased key capacity per photon and the

ability to vary the detection bases in a passive and automatic

manner (see the next paragraph), this has potential to greatly

speed up key generation rates. (iv) Beyond the first few, the

Fibonacci numbers have gaps between them, greatly reducing

misattribution errors. (v) From a purely mathematical point of

view, Fibonacci coding is more efficient than binary coding for

some purposes [16]. (vii) Unlike the case in polarization-based

QKD, no reference frame alignment is needed.

A further significant advantage of the procedure to be

described is as follows. Any OAM-based analog of standard

QKD protocols, with randomly modulated preparation and

detection bases, for high values (say up to l = 100) of OAM

would require active modulation of bases in a 100-dimensional

space, and this modulation needs to be done after each trial.

This would be extremely complicated; even for a three-state

basis, the procedure used in [5], for example, involves actively

displacing multiple holograms by precise amounts. Increasing

the size of the basis would correspondingly increase the

complexity, making the use of very large bases prohibitively

difficult. For such high-dimensional spaces, the protocol

described here involves a technically much simpler procedure:

modulation only occurs between two fixed bases, and can be

done passively by means of beam splitters with appropriate

reflection and transmission coefficients. Going to larger basis

sets involves only the addition of more detectors and beam

splitters and (if the detection procedure of Sec. VI is used)

additional images superimposed on a hologram.

The outline of the paper is as follows. We describe the

most general setting in Sec. II, before narrowing our focus

to the specific implementation involving Fibonacci-valued

OAM for the remainder of the paper. In Sec. III, we describe

the source of Fibonacci-valued OAM-entangled photon pairs,

before explaining in detail the QKD protocol in Sec. IV. For

most trials, the classical information exchange between the

two users of the system simply requires them to tell each

other which measurement basis was used on the trial; however,

on some of the trials some additional information is needed.

One way of exchanging this information while minimizing the

useful information gained by unauthorized parties listening in

on the classical channel is discussed in Sec. V. Section VI

describes briefly describes one possible means of detecting

and sorting the OAM superposition states required for the

protocol, with more detailed explanation in the Appendix. It is

then shown in Sec. VII that the capacity of the system can be

doubled by one additional change to the setup. Brief discussion

of turbulence effects and OAM sorting errors is given in

Sec. VIII, before discussion and conclusions in Sec. IX.

II. GENERAL APPROACH

Consider some physical variable x; for example OAM,

phase, frequency, time, etc. Appropriate filters can be placed

at the input of a down-conversion crystal, selecting out some

discrete subset of x values Xin = {x1,x2, . . . ,xN }. Filters at

output (identical filters in both outgoing beams) similarly

select out a set of values Xout = {x ′
1,x

′
2, . . . ,x

′
N } in such a

way that each element of Xin can uniquely be written as a sum

of two elements in Xout. If x is a conserved quantity, then we

know that the ingoing value xn and the outgoing values x ′
m1

and x ′
m2

must obey

xn = x ′
m1

+ x ′
m2

. (1)

If x is not conserved, then some additional means must

be implemented to enforce such a relation. More generally,

we could replace the summation requirement of Eq. (1)

by any relation of the form xn = f (x ′
m1

,x ′
m2

) with some

function f (x,y) which is only required to be single-valued

and symmetric, f (x,y) = f (y,x). However, we will restrict

ourselves to the linear relation of Eq. (1). The incoming

value then determines the two outgoing values; but, which

of the outgoing photons has which value is not determined,

so that bipartite outgoing states carrying these values will be

entangled. This ordering ambiguity is the key to much that

follows in Sec. IV. Under these conditions, regardless of the

physical nature of the variable x, the protocol then proceeds as

described in the next section. Only the means of enforcing the

summation condition and the means of carrying out the sorting

and detection will differ for different physical variables.

If Xin and Xout are taken to be subsets of the same larger

set X (Xin,Xout ⊂ X), then a very natural way to satisfy the

relation (1) is to let X be a collection of consecutive Fibonacci

numbers, in which the Fibonacci recurrence relation Fn =
Fn−1 + Fn−2 automatically enforces the required relationship.

This is the case we will focus on here, although it should be

noted that any other two-term recurrence relation will work

just as well.

We now focus specifically on the details of the protocol

using the Fibonacci relation. This relation can be imprinted

on a number of physical variables, but we will illustrate the

idea by concentrating on the specific case of photon orbital

angular momentum. This not only provides an example in

which the physics is simple and where a conservation law is

available to automatically enforce the summation relation of

Eq. (1), but it also allows an opportunity to illustrate the use of

a different type of entangled OAM source based on scattering

from Fibonacci spirals combined with spontaneous parametric

down-conversion.

III. ENTANGLED FIBONACCI SPIRAL SOURCE

Before describing the proposed QKD protocol, we discuss

a different entangled light source which may be used to

physically implement the OAM-based realization of it. A

Vogel spiral is an array of N particles with polar positions

(rn,θn) given in terms of scaling factor a0 and divergence angle

α by rn =
√

na0 and θn = nα. An array of point scatterers, as

in Fig. 1(a), is then represented by a density function:

ρ(r,θ ) =
N

∑

n=1

δ(r −
√

na0)δ(θ − nα). (2)

The Fraunhofer far field of Vogel spirals can be calculated

analytically, within scalar diffraction theory, for arbitrary α and

a0 [13]. In cylindrical coordinates, the far field of a diffracted
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FIG. 1. (Color online.) (a) Schematic of GA spiral Fibonacci

OAM generator. (b) Far-field pattern of GA spiral within a 2◦

half-angle cone for a structure with 2000 particles and a0 = 9.28 μm

at 405 nm. (c) Hankel transform of image in (b). (d) Sum of (c) over

k, with peaks at Fibonacci values.

input beam is [13]

E∞(νr ,νθ ) = E0

N
∑

n=1

ej2π
√

na0νr cos(νθ−nα), (3)

where (νr ,νθ ) are the Fourier conjugate variables of (r,θ ). As

seen in Fig. 1(c), Fourier-Hankel analysis of the calculated

far-field radiation [Fig. 1(b)] is performed to decompose it

into radial and azimuthal components, providing the OAM

values [11,13,17]. We see in Fig. 1(d) that for GA spirals, the

OAM azimuthal numbers follow the Fibonacci sequence. This

follows directly from the geometrical properties of GA spirals

encoded in the far-field patterns [11,13]. Figure 2 then shows

a schematic of our full QKD setup, in which the properties

of the spiral source lead to a different approach to high-

capacity QKD. Filters after the crystal can be used to equalize

the probability of detecting different Fibonacci numbers,

compensating for the different production amplitudes seen in

Fig. 1(d).

Although down-conversion offers low-pair-production

rates, and the post-selection involved in the protocol described

below will lower the output rate further, it should be noted that

the spiral source can be strongly pumped. When combined

with the fact that multiple digits of the key can be produced

with a single photon pair, the number of pairs needed to

generate a key of given length can be made competitive to the

number needed in other entanglement-based protocols, which

also involve post-selection and low-production rates.

IV. FIBONACCI PROTOCOL WITH OAM STATES

In E91 [18] and BB84 [19] protocols, photon polarization

provides digits of a key (assigning, for example, 1 to horizontal

polarization and 0 to vertical) and also provides security

against eavesdropping: Alice and Bob each randomly pick

D

L

L

D

Spiral SPDC

Bob’s Lab

Alice’s Lab

State can be
prepared by Alice
or Bob, or by a
third party.

Two-photon
output state:

Pump

Fibonacci Source

Classical
communication

FIG. 2. (Color online.) Setup for QKD with Fibonacci-valued

OAM. A laser interacts with a Vogel spiral array, producing intense

superpositions of states with Fibonacci OAM, l = Fn, that then pump

the nonlinear crystal, producing signal-idler pairs through SPDC.

The OAM sorters (labeled L) are arranged to only allow photons to

reach the arrays of single-photon detectors if they also are Fibonacci

valued. Similarly, the devices labeled D only allow passage of allowed

“diagonal” superpositions of the form 1√
2
(|Fn〉 + |Fn+2〉).

one of two complementary bases in which to measure the

photon polarization, keeping only photons for which the bases

match. Eavesdropping is detectable by a drop in polarization

correlations. OAM analogs of these protocols work in a similar

manner, but with increased key generation capacity [2–5],

allowing multiple-digit segments of key to be transmitted by

a single photon. The increasing capacity in the latter case is,

however, accompanied by a much greater degree of technical

complication.

In the present case, light coming from the entangle spiral

source of the previous section will be in a superposition

of states with OAM equal to Fibonacci numbers. For the

protocol, we choose N consecutive Fibonacci values F =
{Fn0

,Fn0+1, . . . ,Fn0+N−1}, and assign a block of binary digits

to each in such a way that equal numbers of 0′s and 1′s occur.

If OAM values in this set are used, each photon generates

enough digits to encode log2 N bits of information. Here, we

assume N = 8 to illustrate the potential for high capacity. For

example, the Fibonacci numbers from 3 to 89 may be assigned

three-digit blocks as follows:

3 = 000 8 = 010 21 = 100 55 = 110

5 = 001 13 = 011 34 = 101 89 = 111. (4)

Three digits of the key are then carried by the OAM of

each photon. The SPDC spiral bandwidth (the range of

OAM values) must be sufficient to span the largest gap in

F . The entangled OAM bandwidths that can be reached

experimentally are increasing rapidly; for example, a down-

conversion bandwidth of over 40 has been achieved in [20],

and recently entanglement between photons with OAM on the

order of 600 has been demonstrated [21]. So, the values used

here are well within current practicality. Greater bandwidths
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allow larger sets F , increasing the information capacity. For

simplicity, assume here that OAM sorters [22–24] only allow

positive OAM values to reach the detectors. (We remove this

restriction below.)

The setup is shown in Fig. 2. The Fibonacci source may

belong to either Alice or Bob, or to a third party, with each of

the two legitimate participants, Alice and Bob, receiving half

of each entangled pair on which to make their measurements.

In each of the two laboratories, there is a beam splitter directing

some fixed proportion of the beam to an OAM sorter (L) and

the remainder to a different type of detection stage (D). This

second arrangement D is designed to detect various pairwise

OAM superpositions of the form |Fn〉 + |Fn+2〉. (See Sec. VI

below for more detail on how the D-type superposition states

sorting can be accomplished.) The sorters are arranged to direct

any non-Fibonacci values away from the detectors.

The states leaving the spiral and entering the down-

conversion crystal are superposition states of the form
∑n0+N−1

n=n0
|Fn〉. Down-conversion breaks each Fn into two

lower OAM values. The outgoing values are not a priori

Fibonacci valued, but OAM sorters can be arranged to

block any outgoing states that are not Fibonacci, and more

specifically, to block any values that are not in F . (Thus, any

values not in F at either the transmission or detection end

are blocked; this protects against various possible problems,

such as turbulence-induced OAM changes, that could arise

otherwise.) For collinear SPDC (either type I or type II), OAM

conservation implies Fni
+ Fns

= Fn. Together with Fibonacci

recurrence relation and the restriction to outgoing values in

F , this forces Fni
and Fns

to be the two Fibonacci numbers

immediately preceding Fn: the signal and idler values are Fn−1

and Fn−2. However, either value can be in either beam, so the

result is an OAM-entangled outgoing state:
∑

n

{|Fn−1〉A|Fn−2〉B + |Fn−1〉A|Fn−2〉B} . (5)

Note that if pump values Fn between 3 and 89 are used, then

only values of Fni
and Fns

between 1 and 54 should appear.

In the absence of eavesdropping, there are three possible

cases for the outcomes at Alice’s and Bob’s detectors:

(1) The beam splitters in both laboratories send the two

photons to the L sorters. So, both Alice and Bob detect a

definite OAM value. If Alice measures value Fm, then Bob

must measure either Fm−1 or Fm+1. Exchange of a single bit of

information each way (using the scheme described in Sec. V,

for example) allows them to determine each other’s values,

and therefore the pump value. The exchange carries some

information about Alice’s and Bob’s values, but not enough

for anyone listening on the classical line to uniquely determine

the key values (see Sec. V for details). Alice and Bob can then

reconstruct each other’s values, and add them to get the pump

value. The pump value can then be used as the key. Or they

could instead, by prior arrangement, agree to use either Alice’s

or Bob’s value for the key on trials where both measurements

are L type.

(2) The beam splitter in one laboratory sends the photon

to the L sorter, while in the other laboratory the photon

goes to the D sorter. If, for example, Alice (in the L basis)

measures value Fm, then Bob (in the D basis) must receive

the superposition state |Fm−1〉 + |Fm+1〉. One bit of classical

information is exchanged again, but in this case it need not

contain any information about the outcome, just information

about whether each participant detected a given event in the D

detectors or the L detectors. Once each knows that the other

has detected an event in the opposite detector type, that is

sufficient for each to know the other’s state. For that segment

of the key, they can then agree to use the value obtained by

whoever got the L-type signal.

(3) The beam splitters in both laboratories send the two

photons to theD sorters. In this case, both Alice and Bob

receive superposition states, and the pump itself remains a

superposition. Alice and Bob can not uniquely determine each

other’s value or the pump value, so the trial is discarded.

Therefore, only one in four trials has to be discarded, in

contrast to BB84 or Ekert protocols, which require discarding

half. The classical information exchange carries information

about the actual measured values (as opposed to the measure-

ment bases) in only 1
3

of the trials that are kept.

The states obtained in the L-type measurement are

nonorthogonal to the states in the D-type measurement, just

as states of the horizontal-vertical basis are nonorthogonal to

the diagonal-basis states in the BB84 and Ekert protocols.

But, it is an unusual feature of the current case that, while

the states that can be detected in the L-type measurement

(the OAM eigenstates) form a mutually orthogonal set among

themselves, those found in the D-type measurements are not

all orthogonal to each other: the latter states form a chain,

where each state is nonorthogonal to the two adjacent states in

the chain.

If an eavesdropper is acting, say on the photon heading to

Bob, she does not know which type of detection (D or L)

will occur in Alice’s and Bob’s laboratories. If Alice measures

an eigenstate, then the state arriving at Bob’s end should be

a superposition, whereas if Alice measures a superposition,

then the state heading toward Bob should be an eigenstate. If

Eve makes a D-type measurement when Bob’s photon is in an

L state or if she makes an L-type measurement when Bob’s

photon is in a D state, a 50% chance of error is introduced

into Bob’s measurements, which will become apparent when

he compares a random subset of his trials with Alice’s.

In more detail: (i) Suppose Eve makes a D-type measure-

ment on a photon which is actually in the eigenstate |Fm〉.
She will detect one of the two superpositions |Fm〉 + |Fm−2〉
or |Fm〉 + |Fm+2〉, each with 50% probability, and send on a

copy of it. If Bob receives one of these superpositions and

makes an L measurement, he will see one of the values Fm,

Fm−2, or Fm+2, with respective probabilities of 1
2
, 1

4
, 1

4
. In

Eve’s absence, he should only see Fm with 100% probability.

(ii) On the other hand, suppose Eve makes an L-type

measurement on a photon which is actually in the superposition

state |Fm〉 + |Fm−2〉. She will detect one of the two eigenstates

|Fm〉 or |Fm−2〉, each with 50% probability, and send on a copy

of it. If Bob receives one of these eigenstates and makes a D

measurement, he will see one of the superpositions |Fm〉 +
|Fm−2〉, |Fm〉 + |Fm+2〉, or |Fm−2〉 + |Fm−4〉, with respective

probabilities of 1
2
, 1

4
, 1

4
. In Eve’s absence, he should only see

|Fm〉 + |Fm−2〉 with 100% probability.

In either of these two cases, if Eve is acting on a fraction η

of the trials, then when Bob compares his results with Alice’s,

the two will find that their outcomes are inconsistent a fraction
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f of the time, where

f = (fraction of times Eve interferes)

× (fraction of times Eve guesses wrong basis)

× (fraction of time wrong basis leads to error) (6)

= η ×
(

1
2

)

×
(

1
2

)

(7)

=
η

4
, (8)

which is exactly the same as for the BB84 or Eckert protocols.

One potential misconception should be noted at this point,

regarding the notion of “orthogonal bases.” In standard QKD

protocols such as the BB84 and Ekert protocols, two or more

sets of bases are used for polarization measurements. These

bases are nonorthogonal both in the physical three-dimensional

state and in the Hilbert space. Each polarization vector

defines both a direction in physical space and a state in the

Hilbert space; in other words, there is a direct correspondence

between directions in the physical plane perpendicular to the

propagation direction and directions in the Hilbert space. In

the case of orbital angular momentum, this correspondence

breaks down: states that are orthogonal in Hilbert space are

not necessarily associated to orthogonal vectors in physical

space. It is the nonorthogonality of states in Hilbert space, not

in physical three-dimensional space, that is essential to QKD.

Exposure of eavesdropping in the protocol presented here uses

states that are nonorthogonal to each other in Hilbert space,

but these states do not have associated nonorthogonal physical

spatial vectors.

V. CLASSICAL COMMUNICATION EXCHANGE

As discussed in Sec. IV, on 2
3

of the trials that survive

the basis comparison and sifting the classical and potentially

public exchange need only contain information about which

measurement basis was used by each party. On the remaining
1
3

of the surviving trials, the classical exchange must carry

some information about the actual values that were measured

by Alice and Bob, so that they may reconstruct each other’s

values. Obviously, this needs to be done in such a way that

anyone else listening over the public channel can not also

determine the values. We now discuss one way in which this

can be done. (Of course, anyone listening on both the classical

and quantum channels can determine the values, but only at the

expense of introducing errors and being detected, as described

in the last section.)

Imagine a photon with OAM in F (take l = Fn = 21 as

an example) entering the crystal. Suppose both Alice and Bob

make L-type measurements, so that each obtains an OAM

eigenvalue a result. As in Sec. IV, the setup is arranged so that

the two OAM values they obtain must be the two Fibonacci

values preceding that of the pump (Fn−2 = 8 and Fn−1 = 13 in

our example). However, which reaches Bob and which reaches

Alice is undetermined, so there are two possibilities [Fig. 3(a)].

Suppose Bob receives li = 8 and Alice receives ls = 13. Then,

Alice does not know if Bob has 8 or 21 (the value before hers,

or the one after). Similarly, Bob does not know if Alice has

5 or 13. To determine each other’s values, each must send

one classical (potentially public) bit to the other. By prior

agreement, they can then use either Alice’s or Bob’s value as

Pump

Pump

l = 21

l = 13
B

l = 8
A

Alice: Does Bob have l =5 or l =13?

Bob: Does Alice have l =8 or l =21?

B B

A Al = 21

l = 8
B

l = 13
A

Alice: Does Bob have l =8 or l =21?

Bob: Does Alice have l =5 or l =13?

B B

A A

-------- OR ----------
(a)

(b)

Basis A
(Diagonal)

--OR–

H

V

Basis B
(Vertical and
Horizontal)

y
A xA

y
B

x
B

y
B

x
B

FIG. 3. (Color online.) Possible outcomes (a) for the example of

l = 21. Neither Alice nor Bob knows the value received by the other;

each knows that the two transmitted values must be adjacent Fibonacci

numbers, but neither knows if the other’s value is larger or smaller

than their own. Ambiguity from the superposition of these replaces the

ambiguity introduced in standard protocols by the nonorthogonality

of the possible polarization bases (b), where a vector along one axis

in the A basis could be measured along either axis in the B basis.

one segment of the key, or add their values in order to use the

pump value Fn = 21.

One possible scheme for the classical information exchange

is the following. Alice first sends either a 0 or 1 to Bob in the

following manner:

Alice has 1 2 3 5 8 13 21 34 55

Alice sends 0 0 1 1 0 0 1 1 0
. (9)

Once Bob receives this information, he can determine Alice’s

value since he already knows it has to be one of the two values

adjacent to his. Then, if he determines that Alice’s value

is even, he sends one bit to Alice according to the same

scheme she used; if Alice’s value is odd, he uses the conjugate

scheme with zeros and ones interchanged. Alice then has

sufficient information to figure out his value as well. But,

for an eavesdropper listening in on the classical channel, the

information exchanged is insufficient to determine the value

since each classical exchange leads to ambiguous results for

her:

Eve sees 00 01 10 11

l could be 3,21,34,89 3,5,13,21 8,55,89 5,13,34,55
.

(10)

(In the top row, the first digit in each pair is the bit sent by Alice,

the second is that sent by Bob.) Note that each l value except

8 can be represented by two different classical exchanges,

and that each exchange can represent three or four different

l values: if Eve intercepts the classical exchange (but not the

quantum exchange), she has a probability of only 1
4

to 1
3

of

correctly guessing the value of Fn, with the average probability

of a correct guess being 27.08%. This probability drops as

the number N of Fibonacci values used increases. Alice and

Bob can determine each other’s values, while Eve can not.
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This is possible only because of the combined action of the

entanglement and the use of a recurrence relation.

The classical exchange clearly carries some information

about the key, but the setup is designed to keep the mutual

information between the outcomes of the classical exchange

and those of the photon exchange sufficiently low so that those

listening to the public exchange can not uniquely reconstruct

the key. This level of mutual information is, however, sufficient

for the legitimate users since each had already started with half

of the needed information.

The protocol utilizes two complementary sources of am-

biguity for secure communication: uncertainty in how the

OAM Fibonacci state is decomposed between Alice and

Bob [Fig. 3(a)] minimizes the information an eavesdropper

could obtain from the classical exchange (as discussed above),

whereas Eve reveals her interception of the quantum channel

through her inability to know which of the two detection

bases will be used in Alice’s and Bob’s labs (as discussed in

Sec. IV).

VI. DISTINGUISHING SUPERPOSITIONS

We now look at one way that the D-type sorter required for

the OAM-based protocol may be implemented. Any such de-

tection system will need to preserve phases between different

OAM basis states contained in the superposition, so that Alice

and Bob can avoid being fooled by mistaking an incoherent

mixture of eigenstates for the required coherent superposition.

Various methods of detecting superpositions can be imagined,

with varying degrees of practicality. They all require use of the

fact that photons can interfere with themselves. Here, we focus

on one particular method, making use of holographic matched

filtering; this is essentially a generalization of a method used in

[25] to distinguish different images by means of single-photon

probes.

The general idea (described in more detail in the Appendix)

is to use a multiple-exposure hologram designed to distinguish

between several different states of light: each incoming state

produces a different output after the hologram. It is important

to realize that this can be done at the single-photon level [25].

We will use interference between modes propagating in a

single direction, but the hologram can also be used to cause

different input states to produce output with different spatial

momentum modes, as well. (This was the approach actually

used in [25].) Moreover, holograms have been produced

which have superpositions of up to 10 000 different patterns

[26], allowing the ability to distinguish between very large

numbers of different single-photon states. In this way we can

easily distinguish between different OAM superpositions. This

amounts to designing a device that directly sorts the particular

superpositions of interest, rather than the more usual case of

devices that sort the eigenstates. This holographic approach is

simply an optical implementation of the well-known informa-

tion processing technique of matched filtering [27]. Also, note

that this method works both for the spatially structured photons

examined in [25] and for the OAM-structured photons in which

we are interested since OAM states are really just states with

extended spatial structure in the azimuthal direction. See the

Appendix for a more detailed technical description of how the

method works.

VII. DOUBLING THE INFORMATION CAPACITY

We assumed above that only positive OAM values were

used. The OAM sorters before the detectors in Fig. 1 allow

diversion of negative OAM away from the detectors, keeping

only positive signal and idler values. This in turn implies

that only positive OAM pump photons contribute. However,

negative OAM values are also created by the source, at the

same rate as the positive values. It is to our advantage to

expand the setup to make use of these, rather than letting half

of the created photons go to waste. When we do this, we find

that the number of bits of key generation per photon can be

doubled.

Alice and Bob can record both positive and negative OAM

values, and let each other know the signs they received. They

then only keep trials on which they received the same signs.

Each positive or negative Fibonacci number can then represent

a four-digit binary string:

l Binary string l Binary string

3 0000 −3 1000

5 0001 −5 1001

8 0010 −8 1010

13 0011 −13 1011

21 0100 −21 1100

34 0101 −34 1101

55 0110 −55 1110

89 0111 −89 1111

So we now have 16 possible outcomes for the key segment,

with each segment capable of encoding 4 bits of information

via a single photon.

VIII. TURBULENCE AND MEASUREMENT ERRORS

One important consideration in evaluating the usefulness of

any communication channel is the effect of noise on the system,

and the error rate produced as a result. In the present case, the

main source of noise in the communication channel itself (as

opposed to noise in the detection system) is turbulence, which

has the effect of adding random spatially varying fluctuations

to the phase of the optical wavefront. Like all forms of

communication with OAM, the realization of the Fibonacci

protocol described in this paper is sensitive to the effects of

turbulence, which can turn a single well-defined input OAM

value into a broad distribution of outgoing values. In the

scheme being discussed, turbulence will introduce losses and

thereby decrease the transmission rate; however, the structure

of the protocol provides a large measure of protection against

errors in the measurement of the photon pairs that survive.

The effects of turbulence on OAM states can be analyzed

using the methods described in [28]. We define a conditional

probability P (l|l0) for the detection of OAM value l given that

the value l0 was sent. This probability is given by

P (l|l0) =
1

2π

∫ ∞

0

∫ 2π

0

R(r,z)Cφ(r,
θ )e−il
l 
θdr d(
θ ),

(11)

where

Cφ(r,
θ ) = e− 1
2
Dφ [|2r sin(
θ/2)|] (12)
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is the angular coherence function. The phase structure function

Dφ(|
x|) = 〈|φ(x) − φ(x + 
x)|2〉 (13)

is given in the Kolmogorov model [29,30] by

Dφ(|
x|) = 6.88

(


x

r0

)5/3

. (14)

For horizontal line-of-sight communication, the Fried param-

eter r0 can be taken to be

r0 = 3.02
(

k2zC2
n

)−3/5
, (15)

where k = 2π
λ

is the wave number of the photon and C2
n

is the index of refraction structure constant. Typically, C2
n

ranges from about 10−16–10−17 m−2/3 for weak turbulence,

to 10−12–10−13 m−2/3 for strong turbulence. The probability

of transmission without an error is then given by p ≡
P (l0|l0). The probability of the particular error l0 → l0 + 
l

is P (l0 + 
l|l0), while the probability of any error occurring

(for given l0) is 1 − p. OAM eigenstates are particularly

vulnerable to errors due to turbulence-induced mixing of

OAM states; for example, in the case of initial value l0 = 0

(Fig. 4), the probability of error-free propagation drops rapidly

with distance in the presence of reasonable turbulence levels,

limiting the error-free transmission range to well under a

kilometer. The highest probability error is due to the nearest-

neighbor transition 
l = 1, also plotted in Fig. 4, which grows

correspondingly with distance. The transition probabilities

drop with increasing 
l.

In the present situation, however, only Fibonacci-valued

outcomes for l are measured; photons which make transitions

to non-Fibonacci values are discarded and do not contribute to

the error rate. Thus, only transitions from Fibonacci values to

Fibonacci values are relevant, and the dominant transitions are

to the nearest Fibonacci-valued neighbors, as in Fig. 5, where

the probabilities of transitions from the Fibonacci number

l0 = 5 to its nearest Fibonacci neighbors 3 and 8 are plotted

versus distance for strong turbulence. Because of the gaps

between the Fibonacci numbers and the reduced transition

FIG. 4. (Color online) For initial value l0 = 0, probability of

measuring values l = 0 and 1 versus propagation distance in the

presence of turbulence. The solid curves represent the probability

of transmission with no error (
l = 0), while the dashed curves

represent the probability of the dominant 
l = 1 error. The error

probabilities start becoming appreciable after distances on the order

of a 100 m for strong turbulence (C2
n = 10−12 m−2/3, blue curves

online). For weak turbulence (C2
n = 10−12 m−2/3, red curves online),

the errors accumulate more slowly, but still become appreciable after

a few kilometers.

FIG. 5. (Color online) For initial value l0 = 5, probability of

measuring values of the nearest Fibonacci-valued neighbors l = 3

(
l = −2) and l = 8 (
l = +3). The probabilities are plotted versus

distance for strong turbulence (C2
n = 10−12 m−2/3). The error rates are

similar to the strong turbulence case of Fig. 4 for 
l = 2, but an order

of magnitude lower for 
l = 3. They continue to drop rapidly as l0
increases (see Fig. 6).

probabilities for larger 
l, the error rate is therefore smaller in

the Fibonacci scheme than in other OAM-based protocols. The

errors are correspondingly smaller as the range of Fibonacci

numbers used is shifted to higher values. This is shown in

Fig. 6, where nearest Fibonacci neighbor transitions are shown

at three distances in the presence of strong turbulence. With

each increase in initial l0 = Fn, the probability of a transition

to neighboring Fibonacci values decreases significantly. Thus,

by avoiding the use of the lowest-lying Fibonacci values in the

encoding alphabet, transmission errors can be made negligible.

The process of sorting the OAM values at the end will

similarly have reduced errors due to the gaps between the

values being used. Once the sorting has been done and the

digital OAM values have been converted into binary numbers,

the analysis of error rates, error correction, and privacy

amplification are identical to those involved in any other QKD

protocol.

The price to be paid for the low error rate, of course, will

be a high rate of loss: any photons making transitions from

Fibonacci to non-Fibonacci values will be lost from the system.

FIG. 6. (Color online) Given initial angular momentum Fn, the

probability of measuring values of the next lower nearest Fibonacci-

valued neighbor l = Fn−1 at several distances z. The probabilities are

plotted versus initial Fn for strong turbulence (C2
n = 10−12 m−2/3).

The induced error rates become rapidly smaller as Fn increases. (Note

that transitions upward to the next higher nearest Fibonacci neighbor

can also be obtained from this plot since the probability of l0 = Fn →
l = Fn+1 and of l0 = Fn+1 → l = Fn are equal.)

032312-7



SIMON, LAWRENCE, TREVINO, DAL NEGRO, AND SERGIENKO PHYSICAL REVIEW A 87, 032312 (2013)

FIG. 7. (Color online) Loss rate versus distance for strong (C2
n =

10−12 m−2/3, red online) and weak (C2
n = 10−17 m−2/3, blue online)

turbulence.

Figure 7 plots these transmission losses for l0 = 5 and 34 for

strong and weak turbulence. We see that the losses accumulate

rapidly with distance. This can be compensated for to some

extent by the fact that the source can be strongly pumped,

putting out a high initial rate of pair production; only one

photon pair per pulse needs to survive in order to generate

a key segment. But, losses in the presence of turbulence are

over 99% after only about 35 m for l0 = 34 and 350–500 km

(depending on degree of turbulence) for l0 = 5, so it is clear

that the OAM-based realization of the Fibonacci protocol can

only be useful for applications involving short distances or

situations in which turbulence is expected to be negligible.

(This could be the case, for example, if multimode fibers can

be engineered that can carry multiple Fibonacci OAM values.)

We see from the plot that there is an essential tradeoff involved:

use of high-l values can lead to extremely low error rates, but

only over short distances, while lower values of l can travel

longer distances but at the expense of higher error rates.

We stress again that the basic protocol can be implemented

in terms of other degrees of freedom instead of angular

momentum. The analysis of losses and transmission errors

will be different for each physical implementation since each

degree of freedom will have its own unique physical sources

of disruption. However, it should be expected that in all

implementations, there should be low error rates due to the

gaps between the allowed values. Implementations based on

encoding in phase shifts or time bins, in particular, will be

largely immune to the turbulent effects that are the source

of so much trouble for free-space angular-momentum-based

communication, and so should be much more promising for

simultaneously achieving long distances and low error rates.

IX. DISCUSSION AND CONCLUSIONS

We have proposed a different form of high-capacity, high-

efficiency quantum cryptography, and described a specific

physical realization of it using specially engineered OAM-

entangled states of light and the recurrence properties of the

Fibonacci sequence. We have also introduced a type of OAM-

entangled two-photon source that is capable of producing the

states needed for this particular realization of the protocol.

The proposed approach is general enough to lead to different

QKD implementations using other physical variables aside

from OAM, such as by encoding Fibonacci numbers onto

phase shifts. This latter variation, which is currently under

investigation, is an especially promising avenue due to the fact

that phase encoding is more stable against turbulence and other

disruptive effects than OAM encoding.

We iterate once again that the basic principles described

here are much more general than the specific realization

detailed in this paper. For example, the protocol depends

only on the structure of the Fibonacci recurrence relation,

not on the initial values used: changing the starting values

(F1 = 1, F2 = 2) of the sequence does not change anything

fundamental. Thus, an identical procedure will also work for

the Lucas sequence [14], which obeys the Fibonacci recursion

relations but starts from different initial values. More generally,

similar protocols can be constructed using other two-term

recurrence relations in place of the Fibonacci relation.

Note added in proof. Recently, an experimental verification

of the far-field spectrum simulation displayed in Fig. 1 has

been published [31].
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APPENDIX: HOLOGRAPHIC SORTING

OF SUPERPOSITIONS

Here, we describe in more detail one method of carrying

out the sorting of superposition states that was described

in more schematically in Sec. VI. We will eventually want

to distinguish between multiple possible objects by matched

filtering. But, start first by supposing that we want to compare

an unknown object U0(x) to a single known object C0(x). The

setup for forming the hologram is shown in Fig. 8. The object

C0(x0) is placed in the (x0,y0) plane and the blank hologram

in the (x,y) plane. The image of the object is superposed with

a reference beam R(x) in the hologram plane. Assume that the

reference beam is a plane wave propagating with wave vector

k, which may be at a nonzero angle to the z axis. Then, in the

z

x

y

x

y

Lens

Object plane
(known object)

Hologram
plane

f f

Reference
Beam

0

0

C C0

FIG. 8. Creating the hologram. C0(x) is a known object whose

Fourier transform is to be stored on the hologram using plane-wave

reference beam R.

032312-8



HIGH-CAPACITY QUANTUM FIBONACCI CODING FOR . . . PHYSICAL REVIEW A 87, 032312 (2013)

z

x

y

x

y

Lens

Object
plane

Hologram
plane

f f

x’

y’

Lens

f

0

0

f

Object plane
(unknown object)

U
0 E

0
C

U E’

FIG. 9. Using the hologram as matched filter to detect whether

an unknown object U0(x) matches the stored object C(x).

hologram plane the incident field is

E(x) = R(x) + C(x), (A1)

where

R(x) = R0e
ik·x, (A2)

C(x) = −
i

λf

∫

C0(x)e
ik
f

x·x0d2x0. (A3)

(For simplicity, the fields are treated as scalars here.) The

transmittance of the hologram will then be proportional to the

incident intensity:

t(x) ∝ |E(x)|2 (A4)

= R2
0 + |C(x)|2 + R0C(x)e−ik·x + R0C

∗(x)eik·x .

(A5)

The relevant term is the last one, which we will denote by

t ′(x):

t ′(x) = R0C
∗(x)eik·x . (A6)

Once the hologram has been constructed, it is used in the

4f setup shown in Fig. 9. Place the unknown object U0(x0)

in the (x0,y0) plane and the previously prepared hologram in

the (x,y) plane. The field incident on the hologram from the

object is now

U (x) = −
i

λf

∫

U0(x
′
0) e

ik
f

x·x′
0 d2x ′

0. (A7)

The relevant part of the transmitted field just after the

hologram is

E(x) = U (x)t ′(x) (A8)

=
R0

(λf )2
eik·x

∫

U0(x
′
0) C∗

0 (x0)

× e
ik
f

x·(x
′
0−x0)

d2x0d
2x ′

0. (A9)

The field in the final (x ′,y ′) plane is

E′(x
′) =

(

−
i

λf

) ∫

E(x)e
ik
f

x·x′
d2x. (A10)

Using Eq. (A9) and carrying out the x integration, we have

E′(x
′) = −

(

4π2iR0

(λf )3

)∫

U0(x
′
0) C∗

0 (x0)

× δ(2)

[

k

f
(x

′
0 − x0 + x

′ + f k̂)

]

d2x0d
2x ′

0

(A11)

∆0

∆k

ak

0

Ci

Cj

FIG. 10. (Color online) Array of images stored on lattice of

nonoverlapping cells, forming a tiling of the hologram. Images {Ck}
are stored on cells {
k} centered at points {ak}. Each cell is a copy of

a unit cell 
0 centered at the origin.

= K

∫

U0(x
′
0 − x0 + x

′ + f k̂)

×C∗
0 (x0) d2x0, (A12)

where K = − f

k
( 4π2iR0

(λf )3 ) = − 2πiR0

c2 and c is the speed of

light.

Now, suppose that instead of a single object, the image

stored on the hologram is of a collection of objects Ci . These

images are contained in nonoverlapping cells 
i , centered at

an array of points ai (Fig. 10). We will assume that the 
i are

displaced copies of some 
0 centered at the origin. We will

assume here that each of the images uses the same reference

beam of wave vector k, although different reference beams can

be used for each if desired. The total stored object is therefore

of the form

C0(x) =
∑

k

Ck(x + ak), (A13)

where Ck(x + ak) is nonzero only on 
k [or equivalently,

Ck(x) is nonzero only on 
0]. We assume that the Ci are

orthogonal to each other in the usual sense,

∫

Cj (x)Ck(x)d2x = δjk (A14)

(so the Cj could be Laguerre-Gauss functions for example)

and that 
0 is sufficiently large that the orthogonality relation

is still approximately true when carried out only over 
0; in

other words, the images of the Ck drop to approximately zero

intensity near the edges of the 
k .

Assume now that the unknown object happens to be one

of the objects whose images are stored on the hologram; for

example, suppose that U0(x) = Cj (x). Inserting the array of

stored images, Eq. (A13) into Eq. (A12), we find then that

the field at detector j is given by a correlation function which
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compares the j th image with all the others,

E′
j (x

′) = K
∑

k

∫

Cj (x0 − x
′ + f k̂)C∗

k (x0 + ak)d2x0

= K
∑

k

∫

Cj (x0)C∗
k (x0 + ak + x

′ − f k̂)d2x0.

Suppose we place a set of detectors in the output plane at an ar-

ray of points given by x ′
n = f k̂ − an, for n = 1,2, . . . . Then,

E′
j (x

′
n) = K

∑

k

∫

Cj (x0)C∗
k (x0 + ak − an)d2x0. (A15)

The Cj and Ck functions will only be nonzero at the same

time if they are evaluated in the same 
k; this forces ak = an,

and so k = n:

E′
j (x

′
n) = K

∫

Cj (x0)C∗
n(x0)d2x0. (A16)

But, by the orthogonality relation, we finally have

E′
j (x

′
n) = Kδjn. (A17)

Thus, only one of the detectors will fire, and which one fires

will identify which of the {Ck} the object was.

To detect the desired superposition, we then carry out the

following procedure. First note from Eq. (A17) that regardless

of the input OAM, the output field from the hologram is

(approximately) constant over the area of the given cell;

thus, these output fields carry no OAM. Since these outputs

all have l = 0 and the same propagation direction, they are

indistinguishable except for their exit location. So, if we

erase the information about which cell the output leaves, then

the two possibilities in each superposition state will be able

to interfere with each other. We may replace the detectors

at the different possible output locations by pinholes, then

allow the light from these pinholes to fall on an opaque

screen or on a detector. If there are two possible paths

the photon could have taken (two OAM eigenstates in the

superposition) and therefore the photon could have exited

through either of two pinholes, then these two possibilities

will constructively interfere only at certain possible locations

on the screen. We can easily arrange for the interference

maxima from different pinhole pairs to be located at distinct

positions from the maxima for other pairs. If necessary, phase

shifts can be added selectively before some of the pinholes to

steer the maxima to locations where they can be more easily

distinguished. Thus, from the locations of the detections at the

final outputs, we can determine which two OAM components

were present in the incoming superposition. This effectively

acts as a sorter for superposition states. Note that an incoherent

mixture of photons will not produce the required interference

pattern.
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