High Collection Nonimaging Optics

W. T. WELFORD

Optics Section Department of Physics Imperial College of Science, Technology and Medicine University of London London, England

R. WINSTON

Enrico Fermi Institute and Department of Physics University of Chicago Chicago, Illinois

ACADEMIC PRESS, INC. Harcourt Brace Jovanovich, Publishers San Diego New York Berkeley Boston London Sydney Tokyo Toronto

Prejace

xi

Chapter 1 Concentrators and Their Uses

1.1	Concentrating Collectors	1
1.2	Definition of the Concentration Ratio; the Theoretical Maximum	3
1.3	Uses of Concentrators	6

Chapter 2 Some Basic Ideas in Geometrical Optics

The Concepts of Geometrical Optics	9
Formulation of the Ray-Tracing Procedure	10
Elementary Properties of Image-Forming Optical Systems	14
Aberrations in Image-Forming Optical Systems	16
The Effect of Aberrations in an Image-Forming System on the Concentration Ratio	18
The Optical Path Length and Fermat's Principle	20
The Generalized Étendue or Lagrange Invariant and the Phase Space Concept	22
The Skew Invariant	28
Different Versions of the Concentration Ratio	28
	Formulation of the Ray-Tracing Procedure Elementary Properties of Image-Forming Optical Systems Aberrations in Image-Forming Optical Systems The Effect of Aberrations in an Image-Forming System on the Concentration Ratio The Optical Path Length and Fermat's Principle The Generalized Étendue or Lagrange Invariant and the Phase Space Concept The Skew Invariant

Chapter 3 Some Designs of Image-Forming Concentrators

3.1	Introduction	31
3.2	Some General Properties of Ideal Image-Forming Concentrators	31

3.3	Can an Ideal Image-Forming Concentrator Be Designed?	39
3.4	Media with Continuously Varying Refractive Index	44
3.5	Another System of Spherical Symmetry	46
3.6	Image-Forming Mirror Systems	48
3.7	Conclusions on Image-Forming Concentrators	50

Chapter 4 Nonimaging Concentrators: The Compound Parabolic Concentrator

4.1	Light Cones	53
4.2	The Edge-Ray Principle	54
4.3	The Compound Parabolic Concentrator	55
4.4	Properties of the Compound Parabolic Concentrator	62
4.5	Cones and Paraboloids as Concentrators	72

Chapter 5 Developments and Modifications of the Basic Compound Parabolic Concentrator

5.1	Introduction	77
5.2	The Dielectric-Filled CPC with Total Internal Reflection	77
5.3	The CPC with Exit Angle Less Than $\pi/2$	82
5.4	The Concentrator for a Source at a Finite Distance	84
5.5	The Two-Stage CPC	86
5.6	The CPC Designed for Skew Rays	87
5.7	The Truncated CPC	91
5.8	The Lens-Mirror CPC	95

Chapter 6 Developments of the Compound Parabolic Concentrator for Nonplane Absorbers

00
~ ~
02
05
05
08
13

Chapter 7 Flowline Approach to Nonimaging Concentration

7.1	The Concept of the Flowline	115
7.2	Lines of Flow from Lambertian Radiators: 2D Examples	116
7.3	3D Example	118
7.4	A Simplified Method for Calculating Lines of Flow	121

7.5	Properties of the Lines of Flow	122
7.6	Application to Concentrator Design	123
7.7	The Hyperboloid of Revolution as a Concentrator	124
7.8	Elaborations of the Hyperboloid: The Truncated Hyperboloid	125
7.9	The Hyperboloid Combined with a Lens	126
7.10	The Hyperboloid Combined with Two Lenses	127
7.11	Generalized Flowline Concentrators with Refractive Components	127

Chapter 8 Physical Optics Aspects of Concentrators and Collectors

8.1	Introduction	131
8.2	Étendue in the Physical Optics Model	132
8.3	Defining Generalized Radiance	133
8.4	Efficiency of 2D Concentrators in the Scalar Wave Model	134
8.5	Efficiency of 3D Concentrators: An Image-Formation Approach	137
8.6	The Quantum Optics Approach	140
8.7	Resonance Effects	141
8.8	Focusing in Electromagnetic Theory	142
8.9	More about Generalized Radiance	143
8.10	Conclusions	145

Chapter 9 Shape Tolerances and Manufacturing Methods for Nonimaging Optical Components

9.1	Optical Tolerances	147
9.2	Tolerances for Nonimaging Concentrators	148
9.3	Ray-Tracing Results	149
9.4	Peaks in the Emergent Light Distribution	150
9.5	Reflectors for Uniform Illumination	160
9.6	Materials and Manufacture	163

Chapter 10 Applications to Solar Energy Concentration

10.1	The Requirements for Concentrators	165
10.2	Earth-Sun Geometry	167
10.3	Insolation Characteristics	171
10.4	Collector Design	172
10.5	Nonevacuated CPCs	179
10.6	Evacuated CPCs	182
10.7	An Advanced CPC: The Integrated Concentrator	183
10.8	Nonimaging Secondary Concentrators	192

Chapter 11 Illumination of Optical Systems and Instruments

11.1 Introd		uction: The Radiance Theorem	201	
11.2				
11.3	Conventional Illumination Systems for Instruments			
11.4	Nonimaging Optics in Light Collection for Instruments			
11.5	Lasers as Sources for Optical Instruments			
11.6	11.6 Fiber Optics Applications			
11.7				
11.8		ntration of Radiation in Detector Systems Limited		
	•	Detector Noise	215	
11.9	-	Radiation Shields	218	
11.10		l Pumping and General Condensing Problems	219	
11.11	Biolog	ical Analogs	220	
Apper	ndix A	Derivation and Explanation of the Étendue Invari Including the Dynamical Analogy; Derivation of	ant,	
		the Skew Invariant		
A .1	The (Generalized Étendue	223	
A.2	Proof	f of the Generalized Étendue Theorem	225	
A.3	The l	Mechanical Analogies and Liouville's Theorem	227	
A.4	The S	Skew Invariant	228	
A.5 Conventional Photometry and the Étendue				
Anner	ndix B	The Impossibility of Designing a "Perfect"		
		Imaging Optical System: The Corresponding		
		Nonimaging Problem	231	
			231	
Apper	ndix C	The Luneburg Lens	237	
Appendix D		The Geometry of the Basic Compound Parabolic Concentrator	243	
			245	
Appendix E		The θ_i/θ_0 Concentrator	247	
Apper	ndix F	The Concentrator Design for Skew Rays	249	
F.1	The D	ifferential Equation	249	
F.2		atio of Input to Output Areas for the Concentrator	250	
F.3			254	
F.4 Another Proof of the Sine Relation for Skew Rays			255	
F.5 The Frequency Distribution of h			256	

Appendix G	The Truncated Compound Parabolic Concentrator	259
Appendix H	The Differential Equation for the 2D Concentrator Profile with Nonplane Absorber	263
Appendix I	Deriving a Formula for Generalized Radiance	267
Appendix J	Skew Rays in Hyperboloid Concentrator	271
Appendix K	Sine Relation for Hyperboloid Lens Concentrator	273
References		275
Index		281