
RESEARCH ARTICLE

High-confidence assessment of functional
impact of humanmitochondrial non-
synonymous genome variations by APOGEE

Stefano Castellana1☯, Caterina Fusilli1☯, Gianluigi Mazzoccoli2, Tommaso Biagini1,

Daniele Capocefalo1, Massimo Carella3, Angelo Luigi Vescovi4,5, Tommaso Mazza1*

1 IRCCSCasa Sollievo della Sofferenza, Bioinformatics unit, San Giovanni Rotondo (FG), Italy, 2 IRCCS
Casa Sollievo della Sofferenza, Department of Medical Sciences, Division of Internal Medicine, San Giovanni

Rotondo (FG), Italy, 3 IRCCS Casa Sollievo della Sofferenza, Medical Genetics unit, San Giovanni Rotondo
(FG), Italy, 4 IRCSS Casa Sollievo della Sofferenza, ISBReMIT- Institute for StemCell Biology, Regenerative

Medicine and Innovative Therapies, San Giovanni Rotondo (FG), Italy, 5 University of Milano Bicocca,
Department of Biotechnology and Biosciences, Milan, Italy

☯ These authors contributed equally to this work.
* t.mazza@css-mendel.it

Abstract

24,189 are all the possible non-synonymous amino acid changes potentially affecting the

human mitochondrial DNA. Only a tiny subset was functionally evaluated with certainty so

far, while the pathogenicity of the vast majority was only assessed in-silico by software pre-

dictors. Since these tools proved to be rather incongruent, we have designed and imple-

mented APOGEE, a machine-learning algorithm that outperforms all existing prediction

methods in estimating the harmfulness of mitochondrial non-synonymous genome varia-

tions. We provide a detailed description of the underlying algorithm, of the selected and

manually curated training and test sets of variants, as well as of its classification ability.

Author summary

The mitochondrion is an organelle floating in the cytoplasm of almost all eukaryotic cells.

Its primary function is to generate energy. It contains an independent DNA (mtDNA),

which is inherited maternally in many organisms. This DNA is highly susceptible to muta-

tions since it does not possess the robust DNA repair mechanisms proper of the nuclear

DNA. Mutations in the mtDNA were associated to several inherited and acquired mito-

chondrial diseases, including Alzheimer and Parkinson diseases, and cancer. The as-

sessment of the mutation-disease causal link is an onerous task. It requires important

laboratory skills/equipment and, often, an animal facility, which are not always available

to any laboratory altogether. More and more often, one falls back on software solutions

that rely on structural and functional characteristics of proteins to predict the putative

harmfulness of a mutation. Many have been implemented and tested on the nuclear pro-

teins, but only a few were finely tuned to the “neglected genome”. Our work not only

presents APOGEE, a machine-learning-based predictor that outperforms all existing
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predictors in reliability and sensitivity, but it makes freely available the APOGEE’s predic-

tions for all the mitochondrial missense mutations in MitImpact.

Introduction

Assessing the pathogenicity of genome mutations is a notoriously onerous task both in-vitro

and in-vivo, and occasionally even unviable because of the paucity of funds or of proper analyt-

ical facilities. This is particularly true when dealing with the mitochondrial DNA, which is less

studied, although significantly smaller, than the nuclear counterpart [1]. This task was mas-

sively faced from a computational point of view though, and a growing number of algorithms

and software packages, which elaborate sequence, structural and functional data to yield plau-

sible evaluations of the harmfulness of variant amino acids in the form of pathogenicity scores

and categorical, often dichotomous, variables, were implemented and released over time.

Their assessments of pathogenicity are actual predictions, whose global congruency was

deeply investigated by a few comparative studies [2–7]. Generally, only 60–70% agreement

resulted when considering all the possible human non-synonymous variants. No single predic-

tor emerged, neither in terms of classification accuracy, nor of specificity and sensitivity [6].

Similar results were achieved when considering only a subset of 173 validated disease-causing

mitochondrial mutations taken fromMITOMAP [8]: 64% were deemed possibly or probably

damaging by PolyPhen-2, 62% as being high or medium impact variants by MutationAssessor

and 61% as being deleterious by PROVEAN. The worst performance was achieved by SIFT,

with only 16% of true positives, and by FatHmm that correctly classified only one variant on

173. Even with this subset of validated mutations or with those falling in ultraconserved geno-

mic loci, predictions were broadly incongruent. Reasons for that were ascribed to the intrinsic

differences between computational/statistical methods and reference databases, or between

training datasets and alignment algorithms [2–7]. These facts drove the development of the so

called aggregators or meta-predictors, namely those software packages that yield an evaluation

of pathogenicity based on the outcomes of other reference predictors, as well as of databases of

nuclear and mitochondrial precomputed predictions [9–12]. Even these were contrasting [2].

Due to their high incongruence and since almost all existing predictors were tailored to the

nuclear genome, which is an important contributing factor to their modest classification per-

formance and incongruence, we designed APOGEE. It grounds on three milestones: it feeds

third-party predictors with features that are strictly related to the 13 mitochondrial proteins,

like multi-alignments and amino acids conservation estimates; its reasoning strategy was

tuned on finely curated, non-overlapping, training sets of variations; its predicting model was

based on decision tree learning in order to provide investigable rules of pathogenicity.

Results

The classification engine of APOGEE was built on 100 sets of variants drawn randomly and

with replacement from a training set of 864 known mitochondrial variants. This strategy left

out-of-bag as many test sets of variants on which we calculated an array of performance met-

rics. These were additionally calculated for all aggregated individual predictors and were

reported in Table 1. It is important to notice that our training set overlaps those used by most

of the aggregated software predictors, which are available from http://structure.bmc.lu.se/

VariBench/GrimmDatasets.php, of only 102 on 864 variants.

Performance of the considered predictors were generally low, with elevate misclassification

rates (MCRs) and low Matthew’s Correlation Coefficient (MCCs) for all the investigated

Pathogenicity prediction of mtDNAmissense mutations
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methods, but EFIN that achieved good specificity, accuracy and relatively lowMCR. FatHmm_W

outperformed FatHmm, both in terms of sensitivity and precision. CADD and FatHmmMCRs

were also sensibly low. Among the meta-predictors, CAROL and COVECWMV, which assem-

bled only two (SIFT and PolyPhen2) and three (SIFT, PolyPhen2 andMutationAssessor) primary

scores, respectively, showed decent performances. Pairwise comparisons of predictions revealed

good agreement between all individual tools, but PANTHER that was mostly discordant (S1

Text). On the contrary, the outcomes of the meta-predictors were generally poorly congruent. In

particular, Condel was mostly in disagreement with all the others (S1 Text).

APOGEE outperformed all by achieving the best sensitivity, accuracy, precision, FDR, MCC

andMCR rates and the second highest specificity value (after FatHmm) (Table 1 and Fig 1).

The risk of overfitting was checked against two additional test sets, not overlapping with the

training set (S2 Text). One was made of 153 variants appearing in the latest releases of dbSNP

and MITOMAP, at the time of this writing. The classification rates of APOGEE resulted at

least as high as those reported in Table 1 (cf. Table 2). The latter independent test set was made

Table 1. Performance evaluation calculated on 864 knownmitochondrial non-synonymous variants. Number of available predictions in last column.

TP TN FP FN Specificity
TN/(FP+TN)

Sensitivity
TP/(TP+FN)

Accuracy
(TP+TN)/(P+N)

Precision
TP/(TP+FP)

FDR
FP/(TP+FP)

MCC MCR N Predicted

PolyPhen2* 120 369 263 100 0,58 0,54 0,57 0,31 0,68 0,11 42,61 852

PolyPhen2b# 139 288 344 81 0,46 0,63 0,51 0,29 0,71 0,08 49,88 852

SIFT 31 560 81 191 0,87 0,14 0,68 0,28 0,72 0,02 31,52 863

FatHmm 0 638 3 222 0,99 0,00 0,74 0,00 1,00 -0,03 26,07 863

FatHmm_W 82 473 168 141 0,74 0,39 0,64 0,33 0,67 0,11 35,76 863

PROVEAN 128 329 312 94 0,51 0,58 0,53 0,29 0,71 0,08 47,05 863

MutationAssessor§ 130 331 307 87 0,52 0,59 0,54 0,29 0,70 0,11 46,08 854

EFIN 1 (HD) 69 432 79 154 0,84 0,31 0,68 0,47 0,53 0,18 31,74 734

EFIN 2 (SP) 83 511 130 140 0,79 0,37 0,69 0,39 0,61 0,17 31,25 864

CADD 69 495 146 154 0,77 0,31 0,65 0,32 0,68 0,08 34,72 864

PANTHER 89 353 213 102 0,62 0,47 0,58 0,29 0,71 0,08 41,61 757

PhD-SNP 141 291 350 82 0,45 0,63 0,51 0,28 0,71 0,07 50,00 864

SNAP 128 345 296 95 0,54 0,57 0,55 0,30 0,69 0,09 45,25 864

Meta-predictors

MetaSNP 128 340 301 95 0,53 0,57 0,54 0,29 0,71 0,09 45,83 864

CAROL 117 399 242 106 0,62 0,52 0,59 0,33 0,67 0,13 40,28 864

Condel 85 337 304 138 0,53 0,38 0,49 0,23 0,78 -0,08 51,16 864

COVECWMV 117 374 242 103 0,61 0,53 0,59 0,33 0,67 0,12 41,27 836

MToolBox DS 142 276 365 81 0,43 0,64 0,48 0,28 0,72 0,06 51,62 864

APOGEE Bootstrap 162 564 61 77 0,9 0,68 0,84 0,73 0,27 0,59 15,97 864

*possibly damaging variants considered as benign
#possibly damaging variants considered as harmful
§low and neutral predictions considered as harmless, whilemedium and high impact predictions are considered pathogenic.

https://doi.org/10.1371/journal.pcbi.1005628.t001

Table 2. Performance evaluation calculated on 153 known and unbiasedmitochondrial non-synonymous variants.

N P Total

N 115
TN = 83.33%

23
FP = 16.17%

138

P 5
FN = 33.33%

10
TP = 66.67%

15

Total 120 33 153

https://doi.org/10.1371/journal.pcbi.1005628.t002
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of 48 unbiased variants, on which APOGEE obtained the performance records reported in

Table 3, which are in line with those previously shown.

Discussion

Software predictors of the harmfulness of genomic variations were shown to be incongruent

[2]. The major cause of incongruence was ascribed to two types of circularity issues affecting

both training and test datasets used by data mining-based predictors [13]. Type 1 refers to the

accidental, even if frequent, partial overlap between the training and test datasets. Type 2 con-

sists in deeming all variants of some genes as pathogenic or neutral, for the mere fact of falling

Fig 1. Meta-predictors performance comparisons by receiver operating characteristic curves.

https://doi.org/10.1371/journal.pcbi.1005628.g001

Table 3. Performance evaluation calculated on 48 known and unbiasedmitochondrial non-synonymous variants.

N P Total

N 30
TN = 76.92%

9
FP = 23.08%

39

P 2
FN = 22.22%

7
TP = 77.78%

9

Total 32 16 48

https://doi.org/10.1371/journal.pcbi.1005628.t003
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within a functionally critical gene. The consequence of that was a strong bias towards patho-

genic or neutral predictions for them, and thus an increasingly low prediction sensitivity.

Unfortunately, being the mitochondrial genome very small and each gene relatively little

affected by mutations, both type 1 and 2 problems are unavoidable, even if reducible. Type 2

circularity problem has limited impact on the mtDNA, since for all 13 protein-coding genes,

both true neutral and true harmful missense substitutions are reported, with a proportion of

deleterious variants ranging from 15% to 35%. Considering the low number of genes and the

disproportion between harmful and neutral mutations, the type 2 problem has a globally

reduced effect on the predictions, and will tend to disappear with new findings. In principle,

type I problem might be significantly cut down by finely curating the training sets.

The strategy implemented in APOGEE, which made it the best performer, consisted in

adopting a transparent machine-learning algorithm that yielded a number of decision rules

taken on larger and finely curated training sets. The LMT classifier was not claimed here to

perform better than any other machine learning algorithms by far, but to perfectly fit the need

for a dichotomous classifier that delivers a probability for a variant to be pathogenic, together

with the rule according to which the decision is taken. The extra and decisive step consisted in

tackling the longstanding problem of artifacts and misclassified variants of training sets by (i)

discarding variants if originated from alignment errors; (ii) flipping the outcomes of the pre-

dictions (pathogenic and neutral) when new phenotypes or clinical evidences become avail-

able; (iii) removing false variants corresponding to alleles excluded from multi-allelic sites

after periodic dbSNP update. Some variants of public datasets were indeed poorly annotated

or simply artifacts. We bumped against a number of these along the previous three versions of

the training sets of APOGEE. Several variants from a preceding version of the training set

were updated in the subsequent, either because new experimental evidences reverted their esti-

mated pathological effects, or because they were finally associated with any disease or in case

of multiallelic sites. In particular, a few multiallelic sites were reassessed since only one allele

was actually validated, with the others being deemed artifacts. Other variants were completely

removed since they were found not to map to any assembled mitochondrial sequence present

in dbSNP. 432 core variants were shared among all three datasets, 230 of which were consid-

ered functionally neutral and 202 pathogenic. 215 in 230 were observed to be actually neutral

in all three training sets. 181 in 202 were unanimously considered deleterious.

This preprocessing step contributed to obtain a finely curated and larger training set.

Most classifiers were indeed trained on a handful of known variations, as for example, MTool-

Box DS, which was built on the 53 damaging missense variants available from the Humsavar

dataset (Table 3 in [14]). On the contrary, APOGEE was trained on a total of 223 deleterious

variants.

Future directions

The proportion of neutral and pathogenic amino acid changing variants that occur in a gene

sequence mainly depends on the mutational pressure, genetic drift and both purifying and

adaptive selection. These evolutionary mechanisms are generally considered gene-specific,

thus making difficult the identification of potential deleterious mutations without any knowl-

edge of the gene-specific level of tolerance to mutations. Therefore, taking into account the

evolutionary measure of a gene or of a gene family, meant as the ratio between the non-syn-

onymous and synonymous substitution rates, as calculated in a set of aligned orthologous

sequences [15], could dramatically increase the sensitivity of the predictors. A beneficial effect

might also be conferred by the RVIS index [16], which determines which nuclear genes are

more intolerant to missense mutations. These two indices might provide useful insights in the

Pathogenicity prediction of mtDNAmissense mutations
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understanding of the different evolutionary dynamics of genes and will be integrated in future

releases of APOGEE.

The functional role of each mutant residue is greatly influenced by the co-inherited mis-

sense variants within the very same protein or within structurally/functionally associated pro-

teins. This “coevolutionary issue” has been poorly investigated so far, although it is well known

that human pathogenic mutations can also be present within other species, without no delete-

rious effects, because they are probably compensated by co-inherited intra- or inter- gene

mutations. Currently, a novel computational strategy has been developed in order to identify

human pathogenic mutations that are compensated in extra-specific genomes (Compensated

Pathogenic Deviations), i.e., their damaging effects are counterbalanced by other fixed muta-

tions that are absent in humans [17]. A relevant proportion (3–10%) of human damaging mis-

sense mutations has been identified in mammal and vertebrate protein alignments, indicating

that compensatory mechanisms exist (sequences are assumed to derive from healthy animal

organisms) at different evolutionary ages [17].

The identification of coevolving residue pairs is impeded, at any rate, by the paucity of

appropriate experimental data. Knowledge of the ternary and quaternary structures of mito-

chondrial and nuclear OXPHOS proteins could contribute to resolve the inconsistencies

among computational pathogenicity predictions and diseases association [18]. This aspect will

also be taken into consideration in the next releases of APOGEE.

Materials andmethods

Data sources of training sets of known variants

Variants with known functional effects on mitochondrial proteins were harvested fromMITO-

MAP [8] (accessed July 2015) and dbSNP 144 [19]. In total, we collected 864 non-synonymous

mutations, 228 of which were tagged as “confirmed” or “reported” inMITOMAP. 223 were

already linked to knownmitochondrial genetic disorders (i.e., Leber optic neuropathy (LHON),

mitochondrial encephalomyopathy, lactic acidosis, stroke-like episodes, maternally inherited deaf-

ness or aminoglycoside-induced deafness), or complex diseases such as Alzheimer or cancer. 30

on 228 were confirmed to be pathogenic amino acid changing variants and most of them resulted

to cause LHON. On the other hand, 5 out of 228 (8741:T>G, 8795:A>G, 9055:G>A, 8414:C>T,

3745:G>A) were reported as non-pathogenic, thus exhibiting a likely protective or compensatory

effect on the carrier subjects. The remaining 699 variants were retrieved fromNcbi dbSNP 144

through the Ncbi Variation Reporter tool (http://www.ncbi.nlm.nih.gov/variation/tools/reporter).

Variants with no reported pathological consequences in dbSNP and no overlap with MITOMAP

were considered harmless. In detail, 63 of the 699 dbSNP variants were classified as pathogenic,

being these present in MITOMAP. The remaining variants were considered neutral (cf. Table

4). Hence, the entire variant set consisted of 223 pathogenic (MITOMAP), 5 non-pathogenic

(MITOMAP) and 636 (non-overlapping dbSNP) neutral variations (cf. S1 Table).

Our APOGEE classifier was trained on these datasets, as specified below, and tested also on

two non-overlapping datasets. In particular, we have put together a set of 153 new functional

variants, which came from the latest releases of MITOMAP (accessed in January 2017) and

dbSNP (ver. 147), and additional 48 variants obtained from VariBench [13] (web-site: http://

structure.bmc.lu.se/VariBench/GrimmDatasets.php). We made sure that these variants were

not included in our original training sets.

Assembled predictors in MitImpact

Assessments of pathogenicity were computed by and collected from a number of predictors

(Table 5), provided that these could process batch queries and accepted mitochondrial

Pathogenicity prediction of mtDNAmissense mutations
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protein-coding gene symbols in input [20]. We used EFIN with standard parameters, after

training it on SwissProt (SP) [21] and HumDiv (HD) [22] datasets. Similarly, we queried

CADD 1.3 [23] and obtained two scores, the original and the phred-scaled scores. Being

numeric, we dichotomized the phred scores and classified the variants that exceeded the

threshold of 12 as harmful, as suggested by the authors. Variants were submitted to CADD in

VCF-like data format. We further retrieved predictions from CRAVAT [24], both for mende-

lian (VEST) [25] and cancer (CHASM) [26] diseases. Input variants were specified as Ensembl

Transcript IDs and amino acid substitutions, using the one-letter encoding. It responded to

our query with pairs of p-values and FDRs, one for each input variant. If a prediction was sig-

nificant, i.e., p-value<0.05 and FDR<0.2, we labeled the corresponding variant as pathogenic

(in case of VEST) or driver (in case of CHASM). We applied the weighted version of the

FatHmm prediction algorithm [27] to a list of Uniprot accession numbers and amino acid sub-

stitutions and obtained functional scores and categorical predictions for them. Likewise, we

queried the Meta-SNP server [28], but submitting the fasta sequences of the OXPHOS proteins

and the corresponding lists of amino acid mutations. It returned categorical predictions and

scores for PhD-SNP, SIFT, SNAP and PANTHER [29–32].

MitImpact accounted also for the MtoolBox Disease Scores. We set the pathogenicity

threshold to 0.4311, as described in [14] (details in S1 File), and considered harmful all variants

exceeding it. We additionally included the COVEC 0.4 scores [33]. We run the COVEC

Weighted Majority Rule algorithm and obtained a numerical score for each variant, based on a

consensus of the predictions of SIFT, PolyPhen2 and MutationAssessor. A pathological status

Table 4. Known variants grouped bymitochondrial gene symbol and OXPHOS complex.

Complex Gene # variants # pathogenic
variants (%)

# described in
MITOMAP (%)

# reported in dbSNP (%)

I ATP6 78 19 (24.4%) 22 (28.2%) 62 (79.5%)

ATP8 18 6 (33.3%) 7 (38.9%) 15 (83.3%)

IV COX1 81 25 (30.9%) 25 (30.9%) 62 (76.5%)

COX2 50 14 (28%) 14 (28%) 37 (74%)

COX3 59 10 (16.9%) 10 (16.9%) 49 (83.1%)

III CYB 98 33 (33.7%) 33 (33.7%) 79 (80.6%)

V ND1 103 37 (35.9%) 38 (36.9%) 75 (72.8%)

ND2 60 12 (20%) 12 (20%) 49 (81.7%)

ND3 26 6 (23.1%) 6 (23.1%) 22 (84.6%)

ND4 74 12 (16.2%) 12 (12%) 68 (91.9%)

ND4L 25 3 (12%) 3 (12%) 23 (92%)

ND5 140 28 (20%) 28 (20%) 117 (83.6%)

ND6 52 18 (34.6%) 18 (34.6%) 41 (78.8%)

https://doi.org/10.1371/journal.pcbi.1005628.t004

Table 5. List of assembled predictors and annotations in MitImpact.

Features Tools

Pathogenicity
predictors

PolyPhen2, SIFT, FatHmm, PROVEAN, MutationAssessor, EFIN, CADD,
FatHmm_w, VEST, PANTHER, PhD-SNP, SNAP

Meta predictions CAROL, Condel, COVEC,Meta-SNP,MtoolBox Disease Score

Cancer-specific
predictions

PolyPhen2 transf, SIFT transf,MutationAssessor transf, CHASM

Variant annotations dbSNP 144, COSMIC 68, MITOMAP July 2015

Evolutionary indexes PhyloP100V, PhastCons100V, SiteVar,MISTIC coevo

https://doi.org/10.1371/journal.pcbi.1005628.t005
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was associated to a variant if its COVEC score was positive. Similarly, we computed the Trans-

formed Functional Impact for Cancer (TransFIC) score [34], by providing TransFIC with the

SIFT, PolyPhen2 [22] and MutationAssessor [35] scores, which were already stored in the for-

mer release of MitImpact [36]. TransFIC normalized these scores on a baseline tolerance of

genes, which corresponded to the level of tolerance of germline variants occurring in genes

with dissimilar functions. Functional similarity was assessed on the Gene Ontology Biological

Process annotation (gosbp). The tool yielded a tripartite categorical classification for each vari-

ant given in input, along with the transformed scores.

MitImpact took into consideration also cancer-related information, taken from COSMIC

68 [37]. COSMIC IDs and information on the tumor type, number of examined tumor sam-

ples and mutation frequency for the matching variants were included. Moreover, the conserva-

tion indices PhyloP100V and PhastCons100V [38] were calculated for all the mitochondrial

genomic positions that cause missense substitutions by using the UCSC Gene Tables gateway.

We additionally included information on protein coevolution through the MISTIC [39] web-

server, a tool that predicts coevolving sites within mitochondrial protein sequence alignments.

We retrieved protein alignments from the Ncbi Organelle Genome resource, restricting the

study to Mammals (about 670 species-specific sequences for each gene) and using the human

protein sequences as reference. We then computed the matrix of Mutual Information (MI)

scores (MI Z-scores), which contains the scores of all the possible amino acid pairs, and then

selected only the pairs with scores> 6.5, since these are suggested by the authors to be coevolv-

ing pairs of amino acids. Then, we calculated the frequency of the coevolving amino acids and

the mean MI Z-score for each amino acid site.

These scores were computed for all 24,189 non-synonymous amino acid changes poten-

tially affecting the human mitochondrial DNA and made freely available, as a flat-file with var-

iants as rows and scores as columns, fromMitImpact. Variants were grouped in training and

test sets, as for the previous section, and used to build and verify the APOGEE classifier.

The APOGEE classifier

The predictions of the abovementioned tools were used to feed APOGEE (pAthogenicity Pre-

diction thrOugh loGistic modEl trEe). Its operating logic bases on the classification model of

the Logistic Model Tree (LMT). The choice of yet another meta-predictor was driven by our

intent to offer a transparent classifier, finely tuned on mitochondrial variants and that gives

reproducible and easy-to-understand results. LMT combines the logistic regression models

with tree induction resulting in a single tree. It uniquely provides the user with decision rules

that allow, easily, classifying unknown variants as neutral or harmful. Moreover, LMT has the

advantage of providing explicit class probability estimates and, thus, of helping the user to

intuitively grasp the actual uncertainty behind any evaluation of pathogenicity.

It builds a standard decision tree structure with logistic regression functions at the leaves.

Each leaf may not contain the same function, since variables are independently selected to

maximize the discrimination between neutral and pathogenic mutations. The tree-induction

procedure proceeds in a top-down fashion. It recursively splits the instances (variations) space

and stops when the inferred subdivisions are reasonably “pure”, in the sense that they contain

observations with mostly identical class labels (pathogenic or neutral). In a standard decision

tree framework, a region is labeled with the majority class of the observations in that region.

Formally, we inferred an unknown function f, which can map the predictor variables Xs to

the class label Y:

Y ¼ f ðX
1
; . . . ;XpÞ;
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where Xs were the pathogenicity scores, while the response variable Y was the target class. The

function f(�) was directly inferred from real data, which consisted of a set of n variations, carry-

ing their pathogenicity scores p along with their classes (or labels) y of belonging.

By denoting the n × p data matrix (without labels y) with bold X and the p-dimensional vec-

tor of annotation scores for a single mutation with x, we modeled the posterior class probabili-

ties P(Y|X) using a sigmoid function. For a two-class classification problem, for which we

specify the labels of Y as y = ±1 (with 1 for neutral mutations and -1 for pathological muta-

tions):

P Y ¼ yjx;wð Þ ¼
1

1þ e�ywTx

or, equivalently:

P Y ¼ 1jx;wð Þ ¼
ew

T
x

1þ ewTx
or P Y ¼ �1jx;wð Þ ¼

1

1þ ewTx
:

Here, w is the unknown vector of p weights associated with each predictor. In order to com-

pute the model for each class, we estimated these weights. This was achieved through the mini-

mization of the following logistic cost function:

ŵ ¼ argmin
w

X

n

i¼1

logð1þ e�yiw
TxiÞ:

Once the weights were computed, the final regression model for each class was determined

through a LogitBoost algorithm, which selected the final predictors (xi) to be included in the

model. Therefore, we obtained that:

P Y ¼ yjjx; ŵ
� �

¼
eFjðxÞ

1þ
PJ

k¼1
eFkðxÞ

;

X

J

k¼1

FkðxÞ ¼ 0; J ¼ 2

where Fk(x) was the estimated logistic function of the kth class. The class labels of the mutations

were assigned by the following formula:

y� ¼ argmax
y

PðY ¼ yjx; ŵÞ:

As mentioned earlier, the tree structure gives a disjoint subdivision of the whole instance

space S, spanned by all pathogenicity scores (or predictors) that are present in the data, into

regions St. Every region was represented by a leaf in the tree:

S ¼ t 2 TSt; St \ St0 ¼ ; for t 6¼ t0

A logistic regression function ft was associated to each leaf t 2 T, which included a subset Vt

� V of all pathogenicity scores present in the data and that modeled the class membership

probabilities as P(Y = y|x,w). The weight estimates were zero when the predictor did not con-

tribute to the model. Generalizing the whole LMTmodel:

f ðxÞ ¼
X

t2T

ftðxÞ � Iðx 2 StÞ

where I(x 2 St) is a variable indicator that equals 1 if the observation x belongs to the region St

or zero, otherwise.

Under or over-estimation of the prediction capability of APOGEE would be possible if con-

sidering only one run of the algorithm, in a similar setting with unbalanced class sizes (i.e. 223
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pathogenic vs 641 benign mutations). This dimensional bias was tackled by the implementa-

tion of a bootstrap strategy that, by definition, is based on randomly drawing a sample with

replacement from the observed sample of size n = 223 for pathogenic variants and n = 641 for

tolerated variants. The random sampling was repeated 100 times, resulting in 100-bootstrap

samples. For any given draw, approximately one-third of observations were not selected and

served as test set (out-of-bag (OOB) test set). Subsequently, the LMT was applied to each of the

100-bootstrap samples and a prediction error assessed using the corresponding 100 test sets,

namely those observations not included in the training set due to sampling with replacement.

This measure of prediction error is referred to as leave-one-out bootstrap estimate. [40]. Thus,

the fact of sampling the 70% of all pathogenic variants and the same number of the neutral var-

iants implied that the expected frequencies of inclusion of both types of variants were 50% and

22%, respectively. In brief, for 100 iterations, we run this algorithm:

Step 1: Sampling the training set, as described above;

Step 2: Estimating the LMT;

Step 3: Predicting the pathogenicity of all the mutations stored in the database.

Each iteration gave an estimate of the pathogenicity of the variants in the OOB set. A vari-

ant was deemed harmful if the mean of the probabilities of being harmful, calculated for all

iterations in which it was included in the OOB, resulted> 0.5. Compared to an individual run,

bootstrap replaces the classification rules of an LMTmodel with the probability of being harm-

ful. The classifier was implemented in R, by using the R package Rweka [41] [42].

Availability

APOGEE is freely available in MitImpact [36] at http://mitimpact.css-mendel.it/.
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