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ABSTRACT 
 
The 1000 Genomes Project (1kGP), launched in 2008, is the largest fully open resource of               
whole genome sequencing (WGS) data consented for public distribution of raw sequence data             
without access or use restrictions. The final (phase 3) 2015 release of 1kGP included 2,504               
unrelated samples from 26 populations, representing five continental regions of the world and             
was based on a combination of technologies including low coverage WGS (mean depth 7.4X),              
high coverage whole exome sequencing (mean depth 65.7X), and microarray genotyping. Here,            
we present a new, high coverage WGS resource encompassing the original 2,504 1kGP             
samples, as well as an additional 698 related samples that result in 602 complete trios in the                 
1kGP cohort. We sequenced this expanded 1kGP cohort of 3,202 samples to a targeted depth               
of 30X using Illumina NovaSeq 6000 instruments. We performed SNV/INDEL calling against the             
GRCh38 reference using GATK’s HaplotypeCaller, and generated a comprehensive set of SVs            
by integrating multiple analytic methods through a sophisticated machine learning model,           
upgrading the 1kGP dataset to current state-of-the-art standards. Using this strategy, we            
defined over 111 million SNVs, 14 million INDELs, and ~170 thousand SVs across the entire               
cohort of 3,202 samples with estimated false discovery rate (FDR) of 0.3%, 1.0%, and 1.8%,               
respectively. By comparison to the low-coverage phase 3 callset, we observed substantial            
improvements in variant discovery and estimated FDR that were facilitated by high coverage             
re-sequencing and expansion of the cohort. Specifically, we called 7% more SNVs, 59% more              
INDELs, and 170% more SVs per genome than the phase 3 callset. Moreover, we leveraged               
the presence of families in the cohort to achieve superior haplotype phasing accuracy and we               
demonstrate improvements that the high coverage panel brings especially for INDEL imputation.            
We make all the data generated as part of this project publicly available and we envision this                 
updated version of the 1kGP callset to become the new de facto public resource for the                
worldwide scientific community working on genomics and genetics. 
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INTRODUCTION 
 
The 1000 Genomes Project (1kGP) was the first large scale whole genome sequencing (WGS)              
effort to deliver a catalog of human genetic variation 1–4. The project sampled participants from              
26 populations across 5 continental regions of the world. Spanning seven years of data              
generation and analysis, it culminated in 2015 with a publication of the final, phase 3, variant                
callset3,4 consisting of 2,504 unrelated samples, a subset of which is from the HapMap              
collection 5. The set of 2,504 samples was selected with the goal to maximize the discovery of                
single nucleotide variants (SNVs) at minor allele frequencies (MAF) of 1% or higher in diverse               
populations, hence related samples were not included. The phase 3 callset was generated             
based on the combination of low coverage WGS (mean depth 7.4X), high-coverage whole             
exome sequencing (WES, mean depth 65.7X), and microarray genotyping data. It included 84.7             
million SNVs, and 3.6 million short insertions and deletions (INDELs), as well as a separate set                
of 60,000 structural variants (SVs; alterations ≥50bp). The 1kGP resources have been            
collectively cited over 15,000 times to date and have been utilized for foundational applications              
such as genotype imputation, eQTL mapping, variant pathogenicity prioritization, population          
history, and evolutionary genetics studies6–15. While the phase 3 dataset captured the vast             
majority of common variants (MAF > 1%) in the population (>99% of SNVs and >85 %                
INDELs)3, detection of rare variants (MAF <= 1%) was limited due to low sequencing coverage               
outside of the coding regions of the genome.  
 
Here, we present high coverage WGS and comprehensive analyses of the original 2,504 1kGP              
samples, as well as additional 698 related samples. These related samples were not included              
as part of the phase 3 callset, but now provide complete WGS on 602 trios in the 1kGP cohort.                   
A small subset of these pedigrees have been sequenced previously as part of various efforts,               
such as Platinum Genomes16, Complete Genomics3, and the Human Genome Structural Variant            
Consortium (HGSVC), which generated long-read WGS from Pacific Biosciences (PacBio),          
Bionano Genomics, and Strand-seq technology17,18; however, this is the first time that nearly all              
1kGP trios have been sequenced at high coverage and jointly analyzed for the discovery and               
genotyping of genomic variation across the size and frequency spectrum, ranging from SNVs to              
large and complex SVs in a singular resource. We sequenced the expanded cohort of 3,202               
samples to a targeted depth of 30X (minimum 27X, mean 34X) genome coverage using Illumina               
NovaSeq 6000 instruments. We aligned reads to the GRCh38 reference and performed            
SNV/INDEL calling using GATK’s HaplotypeCaller. Using this strategy, we called over 111            
million SNVs and over 14 million INDELs with false discovery rate (FDR) of 0.3% and 1.0%,                
respectively, across the entire cohort of 3,202 samples. We also discovered and genotyped a              
comprehensive set of SVs, including insertions, deletions, duplications, inversions, and          
multiallelic copy number variants (CNVs), by integrating multiple algorithms and analytic           
pipelines19,20. Comparison with previous low coverage sequencing performed in phase 3 of the             
1kGP demonstrated significant improvements in sensitivity and specificity in the SNV, INDEL            
and SV callsets, highlighting that the re-sequencing effort and expansion of the cohort to include               
trios brought significant value to the field.  
 
One of the major applications of the phase 3 1kGP callset has been its widespread use as a                  
reference panel for variant imputation in sparse, array-based genotyping data with a goal of              
improving the statistical power of downstream genome-wide association studies (GWAS) and           
facilitating fine-mapping of causal variants. We leveraged the presence of full trios in the              
expanded 1kGP cohort and performed haplotype phasing of SNVs and INDELs using a             
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statistical phasing approach with pedigree-based correction. We demonstrate the power that           
inclusion of family members has on improving the accuracy of phasing and show how it               
compares to the phase 3 version. Finally, we evaluate the imputation performance of the high               
coverage panel and demonstrate improvements especially in INDEL imputation as compared to            
the phase 3 panel.  
 
Over the past few years, the cost of high coverage WGS has decreased dramatically which,               
combined with substantial progress in analytics tools, has contributed to the emergence of             
several population-scale high coverage WGS panels, such as the Genome Aggregation           
Database (gnomAD; 15,708 WGS and 125,848 WES samples) 21, Trans-Omics for Precision           
Medicine (TOPMed: https://www.nhlbiwgs.org/; 138,000 samples)22, or the UK Biobank (UKBB:          
https://www.ukbiobank.ac.uk/; goal to sequence 500,000 samples by 2023) to name a few.            
These growing resources, many fold larger in sample size than the 1kGP cohort, enable              
continuous expansion of the catalog of genetic variation in the human population and facilitate              
discoveries that improve human health. Unlike the 1kGP, most of the recent large scale WGS               
efforts have restrictions on public data sharing as they are often linked to clinical data, which                
amplifies privacy concerns. As a consequence, only aggregate population-level allele          
frequencies are available for public access in most cases. In contrast, samples within the 1kGP               
cohort have been consented for full public release of genetic information which allows for              
unrestricted sharing of the complete sample-level genotype (GT) data. This enables granting            
access to a downloadable reference imputation panel, as well as use of the dataset for methods                
development and benchmarking, among other applications. All the data generated as part of             
this project including BAM files, VCFs, and functional annotations, has been made publicly             
available (see the Data Access section). We envision this updated version of the 1kGP cohort to                
become the new de facto public resource for the worldwide scientific community working on              
genomics and genetics. 
 
 
RESULTS 
 
Overview of SNV and INDEL calls across the 3,202 1kGP samples. We performed WGS of               
the original 2,504 1kGP unrelated samples as well as additional 698 related samples, which              
completed 602 parent-child trios in the 1kGP cohort and brought the total number of sequenced               
samples to 3,202 (Figure 1A, Table S1). The final variant callset across the 3,202 samples               
contains 111,048,944 SNVs and 14,435,076 INDELs. The mean SNV density across the            
callable genome was 39.46 per 1kb of sequence. Chromosome X (30.16 SNVs per 1kb)              
displayed the lowest density across all chromosomes, followed by chromosome 1 (36.46 SNVs             
per 1kb) among the autosomes, whereas chromosome 19 (43.21 SNVs per 1kb) had the              
highest density overall (Table S2). Figure 1B summarizes variant counts by alternate allele             
frequency (AF), restricted to unrelated samples to prevent overestimation of AF in the             
population. We found 74,264,978 (59.2%) variants were singletons (allele count (AC) = 1) or              
doubletons (AC = 2); 33,008,491 (26.3%) variants to be rare (AC > 2 and AF <= 0.01), and                  
18,210,551 (14.5%) variants to be common (AF > 0.01). Overall, we found 19,239,888 (15.3%)              
total variants called were novel, defined as not reported in dbSNP build 151. Among the novel                
variants, 83.5% are singletons or doubletons, 11.8% are rare, and 4.6% are common variants.              
As expected, we see a higher percentage of novel variants among singleton and doubleton              
categories.  
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The callset contains 117,175,809 variant sites of which 6.5% (7,676,044) are multiallelic. We             
divided the genome into easy, medium, and hard regions as defined in the CCDG functional               
equivalence paper23. Easy refers to parts of the genome that are mostly unique and where we                
can confidently call variants, hard is made up of low complexity and repetitive regions, and any                
region that did not fall into the two categories was classified as medium. We looked at the                 
distribution of multiallelic sites across the three sets of regions and found that although hard               
regions only make up 8% of the genome they contain 38% of all the multiallelic sites, compared                 
to easy regions that make up 70% and contain 40% of sites. About 50% of the sites in hard                   
regions are multiallelic but that drops down to ~15% in the filtered phased callset (described in                
the “Haplotype phasing of high quality SNVs and INDELs'' section) suggesting that many of              
these variants might be of poor quality. This is not surprising as hard regions are made up of                  
low complexity and repeat elements that make it harder to call variants confidently.  
 
At a per sample level, we called an average of 5,038,683 small variants total (Figure 1C, top                 
panel). This includes an average of 4,080,991 SNVs, 420,645 short insertions, and 451,276             
short deletions per genome, across samples from all populations (Figure 1C, bottom 3 panels;              
mixed and complex variants and multi-nucleotide polymorphisms (MNPs) were not included in            
the breakdown). We observed an average transition to transversion ratio (Ti/Tv) of 2.01 and              
heterozygous to non-reference homozygous ratio (Het/Hom) of 1.70 (Figure S1), consistent with            
expectations for WGS data. As expected, the average number of variant sites was higher in the                
individuals from African populations, with 4,653,521 SNVs, 465,797 short insertions, and           
503,995 short deletions per genome. In line with that, we also observed a higher Het/Hom ratio                
of 2.03 among the AFR samples (Figure S1). We also noticed higher variability in the number of                 
variants in individuals belonging to the admixed American population. On average, we called             
21,800 novel variant sites per sample across all populations, with African and South Asian              
populations containing more novel sites than Europeans, East Asians, and Admixed Americans            
(Figure S2).  
 
Lastly, we determined the FDR of the high coverage callset by comparing genotype calls from               
sample NA12878 to the high confidence calls from the Genome in a Bottle (GIAB) NA12878               
callset24 (see precision vs. recall plot in Figure S3). Using this approach, we calculated an FDR                
of 0.3% for SNVs with sensitivity of 99.7%, and an FDR of 1% for INDELs with sensitivity of                  
98%. 
 
Overview of structural variation across the 3,202 1kGP samples. We generated an SV             
callset across all 3,202 1kGP samples with short read sequencing data. These SV genotypes              
were discovered and integrated from three analytic pipelines: GATK-SV19, svtools20 and           
Absinthe (see Methods, Table S5). This final ensemble callset included 170,242 loci, comprised             
of 89,269 deletions, 24,068 duplications, 674 multiallelic CNVs (mCNVs), 51,829 insertions, 956            
inversions, 3,430 complex SVs (CPX) consisting of a combination of multiple SV signatures,             
and 16 inter-chromosomal translocations (CTX, Figure 2A). The size and allele frequency            
distribution of SVs followed expectations; Mobile element signatures were observed for ALU            
(200-300 bp), SVA (1-2 kb), and LINE1 (5-6 kb) variants. Most SVs were rare, and SV allele                 
frequencies were inversely correlated with SV size (Figure 2B, C). On average, ~9,266 SVs              
were discovered in each genome (see Figure 2D). The distribution of SVs observed per              
individual followed expectations for ancestry with the greatest number of SVs per genome             
derived from African populations (Figure 2E) 25. The specificity of the SV callset was also quite               
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high, with a de novo SV rate of 1.8%, which represents the combination of false positive SVs in                  
children, false negative SVs in parents, and cell line artifacts in probands (Figure 2F). 
 
Comparison of SNV and INDEL calls against the 1kGP phase 3 callset. We compared our               
SNV and INDEL calls against the phase 3 callset to quantify the improvements brought by high                
coverage sequencing and pipeline upgrades. A direct comparison to the original callset was not              
possible as the phase 3 dataset was aligned to the GRCh37 reference. To overcome this issue,                
we used the GRCh38 version of the phase 3 callset, which was generated by dbSNP, European                
Genome-phenome Archive (EGA), and European Variation Archive (EVA) 26 by lifting over the            
coordinates of variant sites using dbSNP build 149 27. Due to the high number of liftover failures                
on chromosomes X and Y, the comparison was limited to autosomes. On average, about              
10,465 sites failed to liftover in autosomes, whereas the number of sites that failed to liftover in                 
chromosome X and Y was 2,020,268 and 55,528, respectively. The liftover failures occur when              
the coordinate position has been moved to a different chromosome in the new build or due to                 
inability to resolve the reference allele or strand changes. For consistency, we limited the              
comparison of the SNV/INDEL calls to the 2,504 samples that are common between the high               
coverage and the phase 3 datasets.  
 
When restricted to autosomes, the 2,504-sample high coverage callset included 94.84 million            
SNVs and 9.08 million INDELs, as compared to 78.24 million SNVs and 3.15 million INDELs in                
the phase 3 callset. Figure 3A,B shows the breakdown of SNVs and INDELs from the two                
datasets into singleton (AC=1), rare (AC > 1 and AF <= 0.01), and common (AF > 0.01) bins                  
based on non-reference AF. We called ~15 million more singleton SNVs and ~4 million more               
rare SNVs in high coverage as compared to phase 3, whereas the number of common variants                
remained similar. We called ~3 times more INDELs in the high coverage callset, with increase in                
INDEL counts observed across the entire AF spectrum. The phase 3 callset contained only              
4,377 singleton INDEL calls, as compared to 2,999,027 in the high coverage dataset. The low               
number of ultra-rare INDEL calls in the phase 3 set can be attributed to more stringent filtering                 
applied to INDELs as compared to biallelic SNVs, as INDELs were harder to call with low                
coverage sequencing 3. We also called significantly more longer INDELs. The lifted-over phase 3             
set contains only 17 INDELs that are >50bp in size, whereas the high coverage callset contains                
192,583 calls in this size range (Figure S4). Notably, the original phase 3 callset on GRCh37                
contained 2,285 INDELs that are >50bp with the largest being 661bp insertion. We suspect the               
larger INDELs failed liftover and did not make it into the GRCh38 callset. 
 
Overall, we recalled 94.7% of phase 3 variants in the high coverage callset. More than 95% of                 
phase 3 variants in the easy genomic regions were recalled in the high coverage callset,               
compared to 88% and 73% in medium and hard regions, respectively (Figure 3C). The SNV               
recall rate was higher than the INDEL recall rate in the easy and medium regions whereas it                 
was lower in the hard regions, suggesting there might be more false positives among SNV calls                
in the hard regions. We observed high correlation of AF among shared variants between the               
high coverage and phase 3 callsets, with Spearman correlation coefficient (rho) of >0.95 for              
both SNV and INDEL across all regions, except for INDELs in the hard region where it drops to                  
0.9 (Figure 3D). 
 
At a per sample level, there are ~4.3 million variant sites on average in the phase 3 dataset                  
compared to ~4.9 million in the high coverage set (Figure 3E). On average, 84% of variant loci                 
called per sample in the high coverage callset were discovered in phase 3. We calculated FDR                

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted February 7, 2021. ; https://doi.org/10.1101/2021.02.06.430068doi: bioRxiv preprint 

https://paperpile.com/c/xhTqX9/xYC1
https://paperpile.com/c/xhTqX9/37Hg
https://paperpile.com/c/xhTqX9/SzWNH
https://doi.org/10.1101/2021.02.06.430068
http://creativecommons.org/licenses/by-nd/4.0/


of the 2,504-sample high coverage and the phase 3 callsets by comparing the genotype calls               
from sample NA12878 to high confidence calls for the same sample from the GIAB24. We               
excluded any variants from both the callsets that fell into regions in GRCh38 that could not be                 
lifted over from GRCh37 (see Table S3). Overall the FDR among SNVs was 0.3% in the high                 
coverage, compared to 1.2% in the phase 3 callset. Among INDELs, FDR was 1.1% in the high                 
coverage as compared to 12.6% in the phase 3 callset. Figure 3F shows FDR for the two sets in                   
rare (AF <= 0.01), common (AF > 0.01 and AF <= 0.05), and very common (AF > 0.05) AF bins.                    
As expected, in both callsets, FDR for SNVs decreases for high AF variants. We see the                
opposite trend for phase 3 INDELs because there are very few calls in the rare and common AF                  
bins compared to very common. 
 
Evaluation of the SV callset against the 1kGP phase 3 callset. This ensemble SV callset               
was benchmarked against the 1kGP phase 3 SVs (7.4X average coverage) 4 on the 2,504              
shared samples to assess the quality and unique value brought by high coverage sequencing              
and genotyping capabilities of new analytic pipelines. The current ensemble SV callset            
discovered over two-fold more SV sites than phase 3 (166,752 vs. 68,698), and encompassed              
87.4% of the phase 3 SV calls (Figure 4A). This increased sensitivity and high overlap of phase                 
3 SVs was consistent across all SV classes (Figure 4A), and per genome, with an average of                 
9,266 SVs detected in the current ensemble callset compared to 3,431 SVs in the phase 3                
callset (Figure 4B).  
 
The high coverage SV callset provided significant added value in terms of the discovery of SVs                
that alter gene function by comparison to the phase 3 low-coverage SV dataset. Consistent with               
previous large population studies19, we observed that biallelic SVs in each genome resulted in              
probable loss of function (pLoF) of 119 protein coding genes, complete copy gain (CG) of 24                
genes, and duplications of intragenic exons (IED) of 6 genes. The same analyses of the               
low-coverage phase 3 callset predicted an average of 32 genes disrupted by SVs per genome               
(30 pLoF, 1 CG and 1 IEDs; Figure 4C). The 1kGP dataset also offered an estimate in the                  
population diversity of functional SV variation, where African populations had the highest            
number of pLoF SVs per genome, (Figure 4D), with similar patterns observed for CG and IED                
SVs that altered protein coding gene sequences (Figure S11). 
 
Haplotype phasing of high quality SNVs and INDELs. We performed haplotype phasing of             
high quality autosomal SNVs and INDELs across the 3,202-sample 1kGP cohort using            
statistical phasing with pedigree-based correction, as implemented in the SHAPEIT2-duohmm          
software 28,29. Phasing of the high quality SNVs and INDELs on chromosome X was performed              
using statistical phasing, as implemented in the Eagle2 software 30, which, unlike           
SHAPEIT2-duohmm, supports ploidy-aware phasing. We defined high quality SNVs and          
INDELs by applying the following set of filtering criteria: 1) VQSR PASS; 2) GT missingness rate                
< 5%; 2) Hardy Weinberg Equilibrium (HWE) exact test31 p-value > 1e-10 in at least one of the 5                   
super-populations (EUR, EAS, SAS, AMR, AFR); and 3) mendelian error rate (MER) for sites              
with complete trio calls ≤ 5%. Additionally, we excluded all sites with minor allele count (MAC) <                 
2, as singletons are not informative for phasing. The resulting set of high quality variants that                
went into phasing consisted of 72,065,314 sites on chromosome 1-22 and chromosome X             
(Figure 5A), which included 61,411,215 SNVs, 9,954,481 INDELs, and 699,618 MNPs (counts            
at the ALT allele-level) (Figure S5).  
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We evaluated phasing accuracy of the phased panel by computing switch error rate (SER)              
among pairs of consecutive heterozygous sites in sample NA12878 (child in a full trio in the                
expanded 3,202-sample cohort). As the phasing truth set against which the evaluation was             
performed, we used the extensively validated, haplotype-resolved Platinum Genome NA12878          
callset generated by Illumina 16. The SER among SNVs and INDELs across all autosomes was              
0.074% (1,754 switches among 2,338,955 assessed SNV/INDEL heterozygous pairs),         
indicating high accuracy of phasing. As expected, chromosome X, which was phased without             
pedigree-based correction, displayed higher SER as compared to autosomes (SER=0.491%;          
362 switches among 73,794 assessed SNV/INDEL heterozygous pairs total; Figure S6; Table            
S4). We did not observe a significant difference in phasing accuracy between SNVs and              
INDELs, other than on chromosome X, where SER for INDELs was 2.01% (187 switches among               
9,298 assessed INDEL heterozygous pairs total) as compared to 0.51% for SNVs (328 switches              
among 64,583 assessed SNV heterozygous pairs total) (Figure S7). In addition to assessing             
SER genome-wide, we also assessed it at the following four MAF bins: 1) (0%, 0.1%]; 2) (0.1%,                 
1%]; 3) (1%, 10%]; and 4) (10%, 50%]. While we noticed an expected increase in SER with                 
decrease in MAF, the SER remained low throughout the entire MAF spectrum, reaching a              
maximum of 1.2% in the (0, 0.1%] MAF bin across autosomes (Figure 5B, violet solid line; see                 
Figure S6 for per chromosome breakdown). Such high phasing accuracy at the low end of the                
MAF spectrum can be attributed to both the presence of family members in the expanded 1kGP                
cohort (Figure 5B, dashed violet line with open triangles vs. dashed violet line with open               
diamonds) as well as to pedigree-based correction applied after statistical phasing (Figure 5B,             
solid violet line vs. dashed violet line with open triangles). 
 
Finally, we compared phasing accuracy of the high coverage family-based panel against the             
phase 3 panel. The phase 3 panel was phased using statistical phasing with family-based              
scaffold (built from chip array data on the entire 1kGP cohort including related samples), without               
pedigree-based correction, as no trios were sequenced as part of the phase 3 panel 3. We               
observed an order of magnitude lower SER in the high coverage as compared to the phase 3                 
panel, across the entire MAF spectrum (Figure 5B, solid violet vs. solid aqua line). This               
significant improvement in SER underscores the power that inclusion of trios has on the quality               
of haplotype phasing in the upgraded panel. It is worth noting that the phasing accuracy of the                 
2,504-sample phase 3 dataset was slightly better than that of the 2,504-sample high coverage              
dataset (Figure 5B, solid aqua line vs. dashed violet line with open diamonds) due to the fact                 
that the latter dataset was phased using statistical phasing alone, without the family-based             
scaffold.  
 
Imputation performance of the high coverage 3,202-sample SNV/INDEL panel. To assess           
imputation performance, we imputed a set of 279 diverse samples from the Simons Genome              
Diversity Project (SGDP)32 using IMPUTE2 software33 with the high coverage and the phase 3              
panels separately as the reference. We evaluated the accuracy of imputed genotypes by             
computing the squared correlation (R 2) between imputed allele dosages and dosages from            
WGS data across 110 samples, 22 from each of the five super-populations (the maximum              
number of samples in all populations). For the high coverage panel, the aggregate R 2 between               
imputed SNV genotypes and WGS genotypes for EUR and SAS samples reaches 0.88 at an AF                
of 0.2%, and increases at more common variant frequencies (Figure 5C). Imputation of AFR,              
EAS, and AMR samples attains an R 2 ≥0.8 at AF of 3%, 5%, and 5%, respectively. In general,                  
INDELs are imputed with lower accuracy than SNVs, reaching an R 2 >0.8 at an alternate allele                
frequency of 5% in EUR and SAS samples, and 20% in AFR, EAS, and AMR samples. Figures                 
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5D and 5E compare the imputation accuracy of the phase 3 and high coverage panels for SNVs                 
and INDELs across sites shared between the panels. Using the high coverage reference panel              
leads to a significant increase in imputation performance compared to the phase 3 panel for               
SNVs and INDELs across all super-populations. These differences are largest for EUR (high             
coverage panel SNP R 2=0.98 at 0.1% AF; phase 3 panel SNP R 2=0.49 at 0.1% AF) and SAS                 
samples (high coverage panel SNP R 2=0.99 at 0.2% AF; phase 3 panel SNP R 2=0.85 at 0.2%                
AF). Differences in imputation performance between the panels are most pronounced for            
INDELs which see a 9.6-fold increase in the accuracy of imputing EUR samples (AF=0.1%),              
4.2-fold increase in SAS (AF=0.2%), 8.9-fold increase in AFR (AF=0.1%), 0.29-fold increase in             
EAS (AF=0.1%), and 9-fold increase in AMR (AF=0.2%) samples when using the high coverage              
panel. 
 
 
DISCUSSION  
 
We present results from high coverage WGS of the expanded 1kGP cohort, consisting of 2,504               
original samples as well as additional 698 related samples, completing 602 trios in the cohort.               
We called >111 million SNVs, >14 million INDELs, and ~170,000 SVs across the 3,202              
samples, using state-of-the-art methods. When compared to the low coverage phase 3 1kGP             
dataset published in 2015, the variant counts in the high coverage callset reflect an estimated               
increase of 258,505 SNVs (1.07-fold), 321,965 INDELs (1.59-fold), and 5,835 (2.7-fold) SVs per             
genome, and a cohort-level increase of 16.6 million SNV, 5.9 million INDEL, and ~100 thousand               
SV loci, across the original 2,504 unrelated samples. As expected, given that the phase 3               
dataset identified nearly all common SNVs (MAF > 1%) in the population, the vast majority of                
the new SNVs identified here were in the rare MAF spectrum (AC ≤ 2). Since limitations of the                  
low coverage sequencing had a greater negative impact on INDEL as compared to SNV calling               
in the phase 3 dataset, we observed gains in INDEL counts across the entire MAF spectrum,                
with gains in the rare end of the spectrum being the most pronounced. 
 
We acknowledge that a direct comparison of the high coverage 1kGP SNV/INDEL dataset             
against the phase 3 set was impossible due to differences in genomic builds that were used for                 
variant calling during generation of the two callsets. To address this, we used a version of the                 
phase 3 dataset that was lifted over from the GRCh37 to the GRCh38 reference. As a result,                 
over 2 million variants (99% of which are on chromosomes X and Y) that failed the lift-over had                  
to be excluded from the comparative analysis. Importantly, we were not positioned to dissect the               
impact of various factors that likely contributed to differences in variant calls between the high               
coverage and phase 3 datasets. Differences in sequencing platforms and read length (phase 3:              
Illumina HiSeq 2000 and HiSeq 2500, 76 bp or 101 bp paired-end reads; high coverage:               
Illumina NovaSeq 6000, 150 bp paired-end reads), library preparation (phase 3: PCR-based;            
high coverage: PCR-free), sequencing coverage (phase 3: mean depth 7.4X; high coverage:            
mean depth 34X), reference genome (phase 3: GRCh37; high coverage: GRCh38), alignment            
software (phase 3: BWA 0.5.9; high coverage: BWA-MEM 0.7.15 ), as well as in downstream              
bioinformatics pipeline most likely all contributed to various degrees to the differences in variant              
calls that we described here. Overall, despite major differences in data generation and analysis,              
we found high concordance between the high coverage and the phase 3 SNV/INDEL callset.              
Nearly 95% of small variants from the phase 3 callset were recalled in the high coverage                
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dataset with AF correlation of 0.90-0.975, depending on the region of the genome. 
 
The SVs presented here provide a significant increase over the phase 3 callset, both in the                
number of SVs detected per genome (9,266 vs. 3,431) and in the number of SVs predicted to                 
directly alter gene function (149 vs. 32 per genome) across these populations. Notably, one              
limitation of the 1kGP dataset is the use of cell line DNA, which can include somatic mutations                 
that arise during cell proliferation. In agreement with the Polaris project34, we observed             
aneuploidy of allosomes in 0.94% of the samples, and sub-chromosomal level mosaic CNVs on              
multiple autosomes (Figure S12). We further performed manual inspection of all large CNVs             
(>50Kb, n = 3717), as well as benchmarked large inversions against Strand-seq (n = 256), and                
the variants that lack support were labeled as ‘LowQual’ in the SV callset so that they can be                  
easily excluded from future analyses. This data, coupled with the availability of inheritance             
information from 602 complete trios and the independent availability of long read WGS,             
Strand-seq, and optical mapping data on 34 of these samples 18, provides an unprecedented             
open access SV resource for methods development and genomic studies.  
 
Inclusion of 602 trios in the expanded 1kGP cohort led to high accuracy of SNV/INDEL               
haplotype phasing due to both an increase in long-range haplotype sharing between related             
samples which facilitates phasing, and pedigree-based correction applied after statistical          
phasing to ensure consistency of phased haplotypes with the pedigree structure. We also             
demonstrate that the phased high coverage SNV/INDEL panel exhibits an order of magnitude             
higher phasing accuracy as compared to the phase 3 dataset across the entire MAF spectrum.               
Importantly, improvements in small variant calling, coupled with higher phasing accuracy of the             
high coverage panel, translated into significantly better imputation accuracy, especially for           
INDELs, across all of the 1kGP super-populations when the high coverage panel was used as               
the reference for imputation as compared to the phase 3 panel.  
 
For more than a decade, the 1000 Genomes collection has been a key resource in the field of                  
genomics. These datasets have produced scientific insights into population genetics and           
genome biology, as well as provided an openly sharable resource that has been widely used in                
methods development and testing as well as for technical validation. By generating high             
coverage sequencing data for the complete phase 3 set of 2,504 unrelated individuals and              
completing 602 trios with 698 additional samples, we have updated this critical resource with              
benchmarks and standards for a new generation of large-scale international whole genome            
sequencing initiatives. Our state of the art SNV, INDEL, and SV callsets, freely released,              
provide the most accurate and comprehensive catalog of variation compiled to date across this              
diverse genomic resource, particularly in rare SNVs and all classes of indels and SVs that were                
challenging to detect using earlier sequencing and analysis methods on low coverage data. We              
also present an improved phasing and imputation panel leveraging full sequence from trios that              
outperforms the existing imputation panels. Importantly, this panel is fully public and can be              
freely downloaded and used in combination with other panels and for use with any target               
dataset. Although many larger sequencing projects have now been conducted, the open nature             
of the 1000 Genomes samples will continue to make this a foundational resource for the               
community in the years to come. 
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METHODS 
 
Data collection, WGS library preparation and sequencing. DNA extracted from          
lymphoblastoid cell lines (LCL) was ordered from the Coriell Institute for Medical Research for              
each of the 3,202 1kGP samples. Whole genome sequencing (WGS) libraries were prepared             
using the Truseq DNA PCR-free (450bp) Library Preparation Kit in accordance with the             
manufacturer’s instructions. Briefly, 1ug of DNA was sheared using a Covaris LE220 sonicator             
(adaptive focused acoustics). DNA fragments underwent bead-based size selection and were           
subsequently end-repaired, adenylated, and ligated to Illumina sequencing adapters. Final          
libraries were evaluated using fluorescent-based assays including qPCR with the Universal           
KAPA Library Quantification Kit and Fragment Analyzer (Advanced Analytics) or BioAnalyzer           
(Agilent 2100). Libraries were sequenced on an Illumina Novaseq 6000 sequencer using 2 x              
150bp cycles.  
 
Alignment and SNV/INDEL calling. Read alignment to the human reference genome GRCh38,            
duplicate marking, and Base Quality Score Recalibration (BQSR) were performed according to            
the functional equivalence pipeline standard developed for the Centers for Common Disease            
Genomics project 23. SNV and INDEL calling was performed using GATK version 3.5, as              
described below. For variant discovery we used HaplotypeCaller in GVCF mode 35 with            
sex-dependent ploidy settings on chromosome X and Y. Specifically, variant discovery on            
chromosome X was performed using diploid settings in females, diploid settings on PAR regions              
in males, and haploid settings on non-PAR regions in males. Variant discovery on chromosome              
Y was performed with haploid settings in males and was skipped entirely in females. We               
combined GVCFs in batches of ~200 samples using CombineGVCFs and joint-genotyped all            
3,202 samples with GenotypeGVCFs. We then used VariantRecalibrator to train the Variant            
Quality Score Recalibration (VQSR) model using “maxGaussians 8” and “maxGaussians 4”           
parameters for SNVs and INDELs, respectively. We applied the VQSR model to the joint callset               
using ApplyRecalibration with truth sensitivity levels of 99.8% for SNVs and 99.0% for INDELs.              
Variant annotations were performed using SnpEff 36 and BCFtools37. SnpEff was used to             
annotate variant effect prediction and BCFtools was used to annotate membership and allele             
frequency from various variant databases like 1kGP phase 3 3, cosmic (v79)           
(https://cancer.sanger.ac.uk/cosmic)38, dbNSFP (v3.2a)39,40, dbSNP (v151)27 and ExAC (v0.3)41. 
 
Quality control of sequence data. We ran a number of quality control (QC) tools to look for                 
quality issues, sample swaps, and contamination issues. We ran FastQC          
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) on the raw sequence data to       
assess yield and raw base qualities. We ran Picard CollectMultipleMetrics and           
CollectWGSMetrics (http://broadinstitute.github.io/picard/) on the aligned BAM to collect        
alignment and insert size metrics. Picard CollectGcBiasMetrics was run to compute normalized            
coverage across multiple GC bins. Reads duplication metrics were quantified by running Picard             
MarkDuplicates on the BAM.  
 
All the samples had at least 27X mean coverage across the genome (average per sample               
coverage: 34X, range: 27X-71X) and at least 91% of the bases at base quality score 30 or                 
higher (Figure S8A, B). The mean duplicate rate across the samples was 9% but there were 5                 
samples that had a duplicate rate greater than 20 (Figure S8C). The median per sample insert                
size was 433 bp (Figure S8D). Higher duplication rate is a known issue with Illumina’s patterned                
flow cell that uses exclusion amplification clustering method to increase data output, but this              
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chemistry is very sensitive to library loading concentrations. Higher loading concentrations can            
lead to low throughput because of polyclonal clusters being formed in the nanowells of the               
patterned flow cell, whereas low concentration can lead to pad hopping which increases the              
duplication rate. VerifyBamID 42 was run in chip-free mode to estimate the likelihood of sample              
contamination. We use a cutoff of 2% to flag any sample for contamination and none of the                 
samples reached the cutoff. 
 
To make sure there were no sample mix-ups we ran genotype concordance against genotyping              
chip data. For that, we used the chip data that was released with phase 3. We did not find chip                    
data for 15 samples in phase 3 so for those we ran Infinium CoreExome-24 v1.3 chip and                 
performed genotype concordance. All the samples had >97% genotype concordance.  
 
BCFTools was used to split multiallelic variants into multiple rows and normalize INDELs before              
performing cumulative variant counts. Per sample variant metrics were collected using GATK            
VariantEval. The reference genome sequence was divided into three categories: Easy, Medium,            
and Hard, as defined in the functional equivalence of genome sequencing analysis pipelines             
paper23. The Easy genomic regions consist of GIAB gold standard high confidence regions.             
These are regions with mostly unique sequences where variant calling can be performed             
confidently. The Hard regions consist of centromeres, microsatellite repeats, low complexity           
regions, and windows determined to have high copy number. Any sequence that did not fall into                
either Easy or Hard regions was classified as Medium. FDR was calculated by comparing              
variant calls on sample NA12878 from the 3,202 callset to the high confidence variant calls from                
the GIAB version 3.3.2 on the same sample. The VCF files were compared using hap.py               
(v0.3.12; github.com/Illumina/hap.py) using the rtg-tools (v3.8.2) 43 vcfeval comparison engine.         
For FDR calculation the variant comparison was restricted to the confident regions as defined              
by the GIAB.  
 
Comparison of the high coverage SNV/INDEL calls against the phase 3 dataset. To             
compare the high coverage against the phase 3 callset, we used the GRCh38 lifted over version                
of the phase 3 callset, as described in        
https://www.internationalgenome.org/announcements/updated-GRCh38-liftover/. Due to the    
high number of liftover failures on chromosomes X and Y we restricted the comparison to               
autosomes. Additionally, for FDR comparative analysis against the phase 3 callset, we excluded             
regions in GRCh38 that could not be lifted over from GRCh37 prior to computing FDR. This was                 
done by going over each interval in GRCh38 GIAB confident regions and trying liftover to               
GRCh37 using CrossMap 44. Any interval or part of the interval that either failed to liftover or                
lifted over to a different chromosome were part of the exclusion criteria. Overall only 0.1% of                
bases were excluded from the GIAB confident regions due to liftover issues. When we applied               
the exclusion list to the 2,504 high coverage callset, 7,486 variants were filtered out and 526                
were filtered out from the phase 3 callset. See Table S3 for the percentage of bases in GRCh38                  
that were part of the exclusion list broken down by chromosome. 
 
SV discovery using GATK-SV. GATK-SV involved an ensemble SV discovery and refinement            
pipeline for WGS data. The technical details of the method were previously described in Collins               
et al 19 for application to the genome aggregation database (gnomAD) for SV discovery, and              
further described in analyses from the HGSVC 18. In this study, the same methods were applied               
to all 3,202 samples for SV discovery. In brief, SVs discovered by Manta, Wham, MELT,               
cn.MOPS and GATK-gCNV from Ebert et al. were integrated, genotyped across all samples,             
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resolved for complex SVs, and annotated for variant class and functional impact. The FDR was               
previously assessed from analyses in quartet families, which yielded a 97% molecular validation             
rate for de novo SV predictions45, as well as a 94% validation rate compared to long-read                
sequencing 19.  
 
SV discovery using svtools. The svtools46 method was previously described in Abel et al 20 and               
applied for SV discovery across 17,795 genomes from the Centers for Common Disease             
Genomics (CCDG) program.20 The workflow combines per-sample variant discovery with          
lumpy47 and manta 48 with resolution-aware cross-sample merging. The set of merged variants is             
then genotyped with svtyper49, followed by copy-number annotation with cnvnator50 and           
reclassification of variants based on concordance of read-depth with breakpoint orientation. All            
parameter settings and versions are as implemented in the wdl-based work           
(https://github.com/hall-lab/sv-pipeline). 
 
Large insertion discovery using Absinthe. On a per-sample basis, insertions with a minimum             
length of 100bp were discovered through de novo assembly of unmapped and discordant read              
pairs using Absinthe (github.com/nygenome/absinthe), and then genotyped using Paragraph 51,         
respecting sex-specific ploidies. Insertion calls from all 3,202 samples that were positively            
genotyped with a PASS filter flag were then clustered by genomic location and aligned using               
MAFFT52. For each locus, the most consensual allele was selected. Variants from the resulting              
merged callset were then re-genotyped on all 3,202 individuals. To produce the final callset only               
variants with 1) genotyping PASS filter rate >= 80%; 2) Mendelian Error Rate <= 5% for                
complete trio calls; and 3) HWE Chi-square test p-value > 1e -6 in at least one of the 5                  
super-populations were kept. 
 
Integration of GATK-SV, svtools, and Absinthe callsets . We conducted a series of analyses             
to benchmark SVs from each of the three methods described above, including their false              
discovery rate (FDR) as indicated by inheritance rates and support from orthogonal            
technologies, as well as their breakpoint precision estimated by the deviation of their SV              
breakpoints from long read assemblies in three genomes from analyses in the HGSVC 17. We              
also compared the three callsets to decide on the optimal integration strategy to maximize              
sensitivity and minimize FDR in the final ensemble callset (Table S6). Details of the comparison               
and integration strategies are described separately for insertions and all other variant classes             
below.  
 
Integration of insertions from GATK-SV and Absinthe. We compared the de novo rate of              
variant calls from each pipeline for insertions, yielding results of 4.1% for GATK-SV, 25.8% for               
svtools, and 2.4% for Absinthe. Given these results we restricted integration of insertions to              
GATK-SV and Absinthe. Each insertion pair was considered concordant if the insertion points             
were within 100 bp. The FDR of each insertion callset was estimated from three measurements:               
1. de novo rate of SVs observed in the 602 trios; 2. proportion of SVs that were not validated by                    
VaPoR53, an algorithm that evaluates SV quality by directly comparing raw PacBio reads against              
the reference genome, and 3. proportion of SVs that were not overlapped by SVs from PacBio                
assemblies in the same genome (Figure S9D). Precision of an insertion call was estimated by               
the distance of the insertion point to the closest PacBio insertion and the difference between the                
length of inserted sequence versus the length of the closest PacBio insertion calculated as an               
odds ratio. Both insertion callsets display less than 5% FDR based on inheritance and PacBio               
support, and the callsets were thus merged for all subsequent analyses (Figure S9D). Notably,              
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as Absinthe showed higher precision than GATK-SV, as measured from both the coordinates of              
the insertion point and the length of inserted sequences (Figure S9H, I), we retained the               
Absinthe record for insertions that were shared by both methods. 
 
Integration of deletions, duplications, and inversions from GATK-SV and svtools. To           
consider a pair of SVs of the same variant class other than insertions as concordant, 50%                
reciprocal overlap was required for SVs larger than 5 kb and 10% reciprocal overlap was               
required for variants under 5 kb respectively. The FDR across variant calls was evaluated using               
the same measurements as described above. For deletions, duplications, and inversions, we            
observed low FDR (<5%) among variants that were shared by GATK-SV and svtools, but              
significantly higher FDR in the subset that were uniquely discovered by either algorithm (Supp              
Figure S9E-G). To restrict the final callset to high-quality variants, a machine learning model              
(lightGBM54) was trained on each SV class. Three samples that were previously analyzed in the               
HGSVC studies (HG00514, HG00733, NA19240)17,18 were selected to train the model. The truth             
data was defined by SVs that were uni-parentally inherited, shared by GATK-SV and svtools,              
supported by VaPoR, and overlapped by PacBio callsets. The false training subset was             
selected as SVs that appeared as de novo in offspring genomes, specifically discovered by              
either GATK-SV or svtools, not supported by VaPoR, and not overlapped by PacBio callsets.              
Multiple features were included in the model, including the sequencing depth of each SV, the               
depth of the 1kb region around each SV, the count of aberrant pair ends (PE) within 150 bp of                   
each SV, the count of split reads (SR) within 100 bp of each breakpoints, the size, allele fraction                  
and genomic location (split into short repeats, segmental duplications, all remaining repeat            
masked regions, and the remaining unique sequences) of each SV, and the fraction of offspring               
harbor a de novo variant among trios in which the SV is observed. Each SV per genome was                  
assigned a ‘boost score’ by the lightGBM model, and SVs with >0.448 boost score were labeled                
as ‘PASS’ in the model (Figure S9M, N). This threshold was specifically selected to retain an                
estimated FDR < 5%. Callset specific SVs that failed the lightGBM model in less than 48% of all                  
examined samples were included in the final integrated callst (Figure S9N). 
 
To design strategies to merge SVs shared by GATK-SV and svtools, the precision of SV calls                
was evaluated by examining the distance between breakpoint coordinates of SVs to matched             
calls in the PacBio callset. Comparable breakpoint precision was observed for GATK-SV and             
svtools (Figure S9J-L). Thus, for SVs in each sample, the variant with the greatest number of                
split reads for each breakpoint was selected, or if equivalent then the variant with the higher                
boost score was retained, then for each locus the SV observed in the greatest number of                
samples was retained as final.  
 
Inclusion of mCNV, CPX and CTX variants from GATK-SV. Other minority SVs types,             
including mCNVs, CPX and CTX, were specifically detected by GATK-SV, so we performed             
in-depth manual inspection to ensure their quality before including them in the final integration              
callset. The depth profile across all 3,202 samples around each mCNV was plotted for manual               
review, and mCNVs that did not show clear stratification among samples were labeled as              
‘Manual_LQ’ in the filter column even if they showed clear deviation from the normal copy               
number of 2 (Figure S10). For CTX, the aberrantly aligned read-pairs across each breakpoint              
was manually examined, and variants that lacked sufficient support were labeled as            
‘Manual_LQ’ in the final callset. 
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Haplotype phasing. For haplotype phasing we used statistical phasing with pedigree-based           
correction, as implemented in the SHAPEIT2-duohmm software 28,29. Phasing with         
SHAPEIT2-duohmm was performed per chromosome using the default settings, except for the            
window size "-W" which was increased from 2Mb (default) to 5Mb to account for increased               
amounts of shared IBD due to pedigrees being present in the dataset (as recommended in the                
SHAPEIT2 manual). SHAPEIT2 does not handle multiallelic variant phasing. To phase both            
biallelic and multiallelic variants, we first split the multiallelic sites into separate rows, while              
left-aligning and normalizing INDELs, using the bcftools norm tool 37. We then shifted the              
position of multiallelic variants (2nd, 3rd, etc ALT alleles) by 1 or more bp (depending on how                 
many ALT alleles there are at a given position) to ensure a unique start position for all variants,                  
which is required for SHAPEIT2. The positions were shifted back to the original ones after               
phasing. SHAPEIT2 duohmm supports phasing of autosomal variants only. Therefore, to phase            
variants on chromosome X we used statistical phasing as implemented in the Eagle2 software 30.              
Phasing with Eagle2 was performed using default parameters. No shifting of positions for             
multiallelic sites was needed as Eagle2 supports phasing of variants with the same start site.               
Phasing accuracy evaluation was performed using the WhatsHap compare tool 55. As a measure             
of phasing accuracy we used switch error rate (SER), which is defined as: 
 
SER = number of  switch errors

number of  assessed HET  pairs  
 
In all of the evaluations, SER was computed for sample NA12878 relative to the Platinum 
Genome NA12878 gold standard truth set 16. 
 

Imputation performance evaluation. We performed imputation on 279 samples from 130           
diverse populations using WGS data from the Simons Genome Diversity Project (SGDP) 32. To              
create a pseudo-GWAS dataset, we extracted the genotypes at all sites included on an Illumina               
Infinium Omni2.5-8 v1.4 array. We performed quality control (QC) of the dataset using standard              
pre-imputation filters, removing sites which did not meet at least one of the following criteria:               
genotype call rate of >= 95%, MAF > 1%, and HWE p-value >= 1e -4. We used plink software 56                   
for all QC steps, and analysis was restricted to the autosomes. We imputed the data passing                
quality control with the phase 3 and the high coverage panels, separately. For the phase 3                
reference panel, we used the low coverage 1000 Genomes phased SNV set called directly              
against GRCh38 by EBI. SHAPEIT2 28 was used to perform a strand check of the dataset and                
remove any problematic sites as determined by aligning with the respective panel. We             
pre-phased the data using SHAPEIT2 and an input reference panel. We imputed the             
pre-phased data using the IMPUTE2 33 software with default parameters. Following imputation,           
we concatenated the imputed intervals to create an autosome-wide imputed dataset with each             
of the panels. We evaluated imputation using 22 samples from each of the five              
super-populations (EUR, AFR, SAS, EAS, and AMR) and compared the held out imputed             
genotypes with the WGS genotypes stratified by MAF. For this evaluation, we converted the              
posterior genotype probabilities produced by IMPUTE2 to dosages using QCTOOL version           
2.0.2 (www.well.ox.ac.uk/~gav/qctool_v2/), and the WGS genotypes to dosages using         
BCFtools37. For the data imputed with the high coverage panel, we computed the squared              
correlation (R 2) between the imputed dosages and those from the WGS data for all non-missing               
sites. To compare imputation accuracy between the phase 3 and the high coverage panels, we               
restricted the evaluations to only sites shared between the two panels.  
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DATA ACCESS 
To download the bam files, SNV/INDEL VCF, SV VCF, as well as the filtered haplotype-resolved               
SNV/INDEL callset, please visit: 
https://www.internationalgenome.org/data-portal/data-collection/30x-grch38 .  
Sequence data was deposited in ENA under projects PRJEB31736 and PRJEB36890. 
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FIGURES 

 

Figure 1. SNV/INDEL discovery across the 3,202 1kGP samples in high coverage WGS             
data. A) Sample counts per super-population stratified by sex. Shaded areas represent counts             
coming from the newly added 698 related samples. B) SNV/INDEL counts, stratified by AF bins               
(unrelated samples only). Counts of variants with AC=1 or AC=2 (singletons and doubletons)             
are reported as a separate bin and were excluded from the ≤1% AF bin. C) Number of small                  
variant loci per genome, stratified by population. From top to bottom: total count of variant loci,                
counts of single nucleotide variants (SNV), count of small deletions, count of small insertions.              
Complex variants and MNPs were not included in the breakdown. In all panels, counts are               
restricted to variants that passed VQSR. Color labels along the x axis correspond to the               
following super-populations: blue: EUR, green: EAS, purple: SAS, red: AMR, yellow: AFR. 
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Figure 2. Overview of the 1000 Genomes SV callset. A) The count, (B) size distribution, and                
(C) allele frequency distribution of each SV for each SV class is shown. The per sample counts                 
of SVs by variant class (D) and ancestral population (E) is also provided, as well as (F)                 
inheritance rates of all SVs.  
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Figure 3. Comparison of autosomal SNV and INDEL calls between the high coverage and              
the phase 3 1kGP callsets. For consistency, the high coverage dataset was restricted to the               
2,504 samples that are shared between the two callsets. Number of SNVs (A) and INDELs (B)                
across the 2,504 samples in phase 3 (aqua) and high coverage (purple) datasets, stratified by               
AF bins. Counts of variants with AC=1 (singletons) are reported as a separate bin and were                
excluded from the ≤1% AF bin. Multiallelic loci were split into separate lines and INDEL               
representation was normalized prior to counting, i.e. the reported counts are at the alternate              
allele (as opposed to locus) level. (C) Percent of phase 3 variants recalled in the high coverage                 
dataset stratified by variant type (blue: all, orange: SNVs, green: INDELs) and regions of the               
genome (easy: regions where we can confidently call variants, medium: regions that did not fall               
in either easy or hard category, hard: centromeres, repetitive and low complexity regions). (D)              
Correlation of non-reference allele frequency of shared variants in the high coverage vs. phase              
3 callsets, stratified by easy, medium, hard regions of the genome, as defined in C. Plotted on                 
y-axis is the spearman correlation coefficient (rho). (E) Total number of SNV and INDEL loci per                
genome in the phase 3 (aqua) and the high coverage (purple) dataset, stratified by 1kGP               
super-populations. (F) Comparison of FDR between the high coverage (purple) and phase 3             
(aqua) callsets across AF bins, stratified by variant type (star: SNV, plus sign: INDEL). 
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Figure 4. Comparison of high-coverage ensemble SV callset to low-coverage phase 3 SV             
callset. (A) Count of SV sites in the current ensemble SV callset and low-coverage phase 3 SV                 
callset, and their overlap. Numbers next to each bar represent the counts of SV sites in each                 
dataset. (B) The distribution of SVs counts per sample in both callsets, and their average               
overlap displayed in the venn diagram. (C) Count of genes altered by SVs in both datasets.                
pLoF: probable loss of function, CG: complete copy gain, IED: intragenic exon duplication. (D)              
Count of genes altered by pLoF SVs across ancestral populations. 
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Figure 5. SNV/INDEL phasing and imputation performance evaluation. A) Counts of           
SNVs/INDELs meeting specified filtering criteria. Multiallelic variants were split into separate           
rows prior to counting. HWE: HWE exact test p-value > 1e-10 in at least one of the 5                  
super-populations (EUR, AFR, EAS, SAS, AMR); ME: mendelian error among complete trios            
(i.e. trios where all family members have a called GT at a given site); MAC: minor allele count.                  
The set of SNV/INDELs meeting all 5 QC criteria (first bar from the left) was selected for                 
haplotype phasing. See Figure S5 for a similar plot stratified by variant type. B) Haplotype               
phasing accuracy evaluation of the high coverage (purple) vs. the phase 3 (aqua) 1kGP              
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SNV/INDEL panel. Switch error rate (SER) was computed across all pairs of consecutive             
heterozygous SNV/INDELs in specified MAF bins for sample NA12878, using the Platinum            
Genome NA12878 callset as gold standard truth set (autosomes only). Three phasing            
conditions applied to the high coverage dataset (purple): (1) solid line with circles: 3,202-sample              
panel phased using statistical phasing with pedigree-based correction; (2) dashed line with            
triangles: 3,202-sample panel phased using statistical phasing without pedigree-based         
correction; (3) dashed line with diamonds: 2,504-sample panel phased using statistical phasing            
(unrelated samples only). The 2 panels represented with dashed lines were created for             
evaluation purposes only. Aqua solid line with squares: 2,504-sample phase 3 SNV/INDEL            
panel phased using statistical phasing with family-based scaffold. C) Imputation accuracy of            
SNV (solid lines with circles) and INDEL (dashed lines with triangles) genotypes as a function of                
non-reference allele frequency in a given 1kGP super-population (blue: EUR, green: EAS,            
purple: SAS, red: AMR, yellow: AFR), achieved using the complete high coverage panel.             
Imputation accuracy is measured by the aggregate squared correlation (R 2) between imputed            
dosages and WGS dosages of the Simons Genome Diversity Project samples (average across             
22 samples per super-population). Comparison of the imputation performance between the high            
coverage (solid lines with circles) and phase 3 (dashed lines with triangles) panels for SNVs (D)                
and INDELs (E), stratified by super-population (the same colors as in C). Comparison in (D) and                
(E) was restricted to sites that are shared between the phase 3 and the high coverage panels                 
(unlike panel C which shows performance across all sites for the high coverage panel). 
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SUPPLEMENTARY INFORMATION 

Supplementary Figures. 

 

Figure S1. Distribution of per sample heterozygous to homozygous ratio (Het/Hom) 
based on SNVs and INDELs across the 3,202 samples.  

 

 

Figure S2. Counts of novel variants across all populations. Novel variants are defined as 
variants that are not reported in dbSNP build 151. 
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Figure S3. Sensitivity vs. precision of SNV/INDEL calls in the high coverage 3,202-sample 
callset, based on comparison against the GIAB NA12878 truth set. 

 

 

Figure S4. Length distribution of INDEL calls in the 2,504-sample high coverage and 
phase 3 callsets. 
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Figure S5. Counts of SNV/INDELs meeting specified filtering criteria stratified by variant 
type. Same as Figure 5A, but stratified by variant type.  
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Figure S6. Phasing accuracy of the high coverage panel stratified by chromosome. 
Analogous to Figure 5B (solid purple line), but stratified by chromosome. 

 

 

Figure S7. Phasing accuracy of the high coverage panel stratified by variant type.             
Chromosome X is shown separately as it was phased using a different strategy as compared to                
autosomes (statistical phasing vs. statistical phasing with pedigree-based correction,         
respectively). 
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Figure S8. Per sample alignment metrics across the 3,202 1kGP samples. A) Mean 
coverage distribution. B) % bases with quality >= 30. C) % duplication. D) Insert size 
distribution. 
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Figure S9. Benchmark of GATK-SV, svtools, and Absinthe. (A) Overlap of insertion sites             
between GAKT-SV and Absinthe callsets. (B) Overlap of SV other than insertions between the              
GATK-SV and svtools callset. (C) Overlap of each SV type between GATK-SV, svtools and              
Absinthe. (D) Overlap of insertions in each genome between GATK-SV and Absinthe. (E-G)             
Overlap of deletions (E), duplications (F), inversion and complex SVs (G) in each genome              
between GATK-SV and svtools. The integers in (D-G) represent count of SVs per sample,              
followed by proportion of SVs validated by VaPoR / proportion of SVs assessable by VaPoR in                
the second row, proportion of SVs supported by PacBio SVs in Ebert et al. 2020 / proportion of                  
SVs supported by PacBio SVs in Chaisson et al. 2019 in the third row, and transmission rate                 
/rate of bi-parentally inherited SVs in the fourth row. (H-I) Precision of the insertion breakpoint               
(H) and length (I) assessed against PacBio assemblies. (J-K) Precision of the SV breakpoints in               
GATK-SV (J) and svtools (K) callsets assessed against PacBio assemblies. (L) Breakpoint            
distance of SVs shared by GATK-SV and svtools. (M-N) de novo rate of SVs in GATK-SV (M)                 
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and svtools (N) callset when filtered at different boost score cutoffs. (O) False positives and               
false negatives in the GATK-SV and svtools callsets when filtered at different boost score              
cutoffs.  

 

 

 

Figure S10. Read depth distribution of large deletions (red), duplications (blue) and            
multiallelic CNVs (green) across the 3,202 samples. 
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Figure S11. Count of genes interrupted by copy gain (GC) and interagenic exon             
duplications (IED) SVs in the current ensemble callset and 1kGP Phase 3 SV callset.  
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Figure S12. Ploidy of each chromosome across the 3,202 samples.  (A). Ploidy of 
allosomes. (B). Copy number of each chromosome. Each dot represents a copy number of the 
1Mbp bin in a sample. Blue dots are samples with copy gain and red dots represent copy loss. 
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Supplementary tables. 

Table S1. Sample counts broken down by ancestry, sex, cohort, and presence within             
pedigrees.  

Population 
Super- 

population 

Sex  

(1=male, 

2=female) 

Count in 

3202-sample 

cohort 

Count in 

2504-sample 

cohort 

Count of 

samples that 

are in trios No. of trios 

ACB AFR 

1 57 47 30 

20 2 59 49 30 

ASW AFR 

1 33 26 20 

13 2 41 35 19 

ESN AFR 

1 84 53 71 

43 2 65 46 58 

GWD AFR 

1 93 55 91 

58 2 85 58 83 

LWK AFR 

1 44 44 0 

0 2 55 55 0 

MSL AFR 

1 50 42 16 

11 2 49 43 17 

YRI AFR 

1 97 52 92 

56 2 81 56 76 

CLM AMR 

1 58 43 48 

35 2 74 51 57 

MXL AMR 

1 43 32 40 

32 2 54 32 50 

PEL AMR 

1 54 41 47 

35 2 68 44 58 

PUR AMR 

1 70 54 51 

35 2 69 50 54 

CDX EAS 

1 44 44 0 

0 2 49 49 0 

CHB EAS 

1 46 46 0 

0 2 57 57 0 
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13 samples are part of 2 trios (hence only 1,793 unique samples contribute to the 602 trios; not 1,806),                   
either because they are part of a multi-generational family, i.e . are a child in one trio and a parent in                    
another trio (HG00702, NA19685, NA19675), and/or because they are a part of a quad (5 quads were                 
included in total) that was broken down into 2 trios when pedigree-based correction was applied following                
haplotype phasing (HG00656, HG00657, HG03642, HG03679, HG03943, HG03944, NA19660,         
NA19661, NA19678, NA19679). 

CHS EAS 

1 86 52 80 

51 2 77 53 70 

JPT EAS 

1 56 56 0 

0 2 48 48 0 

KHV EAS 

1 60 46 34 

21 2 62 53 29 

CEU EUR 

1 87 49 84 

57 2 92 50 87 

FIN EUR 

1 38 38 0 

0 2 61 61 0 

GBR EUR 

1 46 46 0 

0 2 45 45 0 

IBS EUR 

1 81 54 77 

50 2 76 53 73 

TSI EUR 

1 53 53 0 

0 2 54 54 0 

BEB SAS 

1 60 42 41 

30 2 71 44 49 

GIH SAS 

1 56 56 0 

0 2 47 47 0 

ITU SAS 

1 61 59 4 

3 2 46 43 5 

PJL SAS 

1 77 48 65 

42 2 69 48 61 

STU SAS 

1 65 55 16 

10 2 49 47 10 

Total: 3202 2504 1793 602 
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Table S2. Mean SNV density per 1kb of sequence in 3,202-sample high coverage callset. 

 
Phased: SNV density in the phased high quality subset of SNV/INDEL calls; Genotyped: SNV 
density in the complete variant callset (based on VQSR PASS variants only). 

 SNV Density per 1kb region 

Chromosome Phased Genotyped 

chr1 21.88 36.46 

chr2 23.89 40.16 

chr3 23.89 40.11 

chr4 24.39 41.3 

chr5 23.76 39.91 

chr6 23.99 39.88 

chr7 24.61 41.1 

chr8 25.5 42.84 

chr9 21.76 36.66 

chr10 24.77 41.15 

chr11 24.11 40.61 

chr12 23.65 39.82 

chr13 24.22 41.04 

chr14 23.93 40.06 

chr15 23.52 39.21 

chr16 24.78 41.43 

chr17 23.39 39.02 

chr18 23.25 39.6 

chr19 26.62 43.21 

chr20 24.23 40.34 

chr21 22.84 37.77 

chr22 25.03 41.41 

chrX 17.04 30.16 
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Table S3. Percentage of bases in GRCh38 that could not be lifted over from GRCh37 
within the GIAB confident regions. 

 

 

Chromosome Total Bases Excluded Bases % excluded 

chr1 204,611,061 184,510 0.09 

chr2 205,802,574 61,406 0.03 

chr3 185,150,433 379,472 0.205 

chr4 145,819,089 9,406 0.006 

chr5 149,960,070 29,458 0.02 

chr6 158,880,737 850,506 0.535 

chr7 134,795,953 189,398 0.141 

chr8 124,861,370 10,020 0.008 

chr9 102,169,018 161,781 0.158 

chr10 118,682,140 732,144 0.617 

chr11 120,709,213 66,604 0.055 

chr12 115,312,577 82,281 0.071 

chr13 88,943,259 26,685 0.03 

chr14 83,001,506 10,628 0.013 

chr15 70,606,427 872 0.001 

chr16 40,540,261 11,918 0.029 

chr17 65,696,526 363,845 0.554 

chr18 57,136,354 19,660 0.034 

chr19 45,282,466 32,111 0.071 

chr20 55,289,390 164,975 0.298 

chr21 30,212,100 2,906 0.01 

chr22 26,322,210 907 0.003 

chrX 109,267,367 72,685 0.067 
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Table S4. Summary of the high coverage panel phasing accuracy evaluation stratified by             
chromosome.  

 

The high coverage panel was phased using statistical phasing with pedigree-based correction            
(using SHAPEIT2-duohmm), except for chromosome X, which was phased using statistical           
phasing as implemented in the Eagle2 software (see Methods for more details). Switch error              
rate (SER) was computed relative to the Platinum Genome, NA12878, gold standard truth set. 

Chromosome 

No. of assessed 

HET pairs 
No. of switch 

errors SER 

chr1 175,781 142 8.08E-04 

chr2 191,683 138 7.20E-04 

chr3 163,952 82 5.00E-04 

chr4 168,622 60 3.56E-04 

chr5 152,531 72 4.72E-04 

chr6 163,088 60 3.68E-04 

chr7 135,374 82 6.06E-04 

chr8 126,465 76 6.01E-04 

chr9 102,953 275 2.67E-03 

chr10 123,322 64 5.19E-04 

chr11 115,324 58 5.03E-04 

chr12 109,988 62 5.64E-04 

chr13 86,161 35 4.06E-04 

chr14 75,916 97 1.28E-03 

chr15 65,423 56 8.56E-04 

chr16 73,588 72 9.78E-04 

chr17 60,883 90 1.48E-03 

chr18 68,376 36 5.27E-04 

chr19 56,773 62 1.09E-03 

chr20 54,650 42 7.69E-04 

chr21 33,560 41 1.22E-03 

chr22 34,542 52 1.51E-03 

chrX 73,794 362 4.91E-03 
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Table S5. Count of SV sites across 3,202 samples and SVs per sample . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   # SV Sites across 3,202 samples   #SVs / sample 

SV TYPE   GATK-SV SVTools Absinthe   GATK-SV SVTools Absinthe 

INS   48,333 75,283 7183   3,019 1,761 2,270 

DEL   89,445 65,184 -   3,783 3,417 - 

DUP   26,353 10,594 -   990 459 - 

INV   381 1,447 -   12 127 - 

BND   82,218 26,152 -   - 2,188 - 

CPX   3,624 - -   216 - - 

CTX   16 - -   1 - - 

MCNV   674 - -   385 - - 

ALL   251,044 178,660 7,183   8,406 7,952 2,270 
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Table S6. Quality of SVs evaluated by PacBio support and inheritance . 

 
 

 

  All SVs Callset specific Shared with other 
callset 

 
 

Proportion of 
VaPoR 

Supported 
SVs 

SV 
TYPE 

gatksv Absinthe/ 
SVTools 

gatksv Absinthe/ 
SVTools 

gatksv Absinthe/ 
SVTools 

INS 92.90% 97.60% 89.80% 96.30% 98.40% 99.00% 

DEL 88.00% 92.80% 71.40% 76.20% 92.60% 95.30% 

DUP 89.60% 88.10% 87.20% 62.70% 94.90% 95.40% 

INV 97.10% 47.60% 75.00% 44.80% 100% 55.70% 

 
Overlap with 

PacBio 
Callsets 

INS 93.20% 97.70% 90.00% 96.60% 99.20% 99.00% 

DEL 90.50% 94.10% 72.10% 79.40% 96.90% 97.10% 

DUP 3.30% 4.50% 3.90% 8.10% 1.70% 2.50% 

INV 20.30% 18.10% 18.50% 13.70% 30.40% 32.50% 

 
 

de novo Rate 

INS 2.90% 1.90% 4.00% 1.70% 0.90% 2.10% 

DEL 4.70% 1.30% 10.60% 5.30% 2.60% 0.50% 

DUP 11.90% 0.50% 13.80% 1.30% 6.90% 0.00% 

INV 2.80% 11.30% 2.90% 13.70% 2.00% 3.60% 
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