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One of the greatest challenges in developing new space technology is in navigating the
transition from ground based laboratory demonstration at Technology Readiness Level 6
(TRL-6) to conducting a prototype demonstration in space (TRL-7). This challenge is com-
pounded by the relatively low availability of new spacecraft missions when compared with
aeronautical craft to bridge this gap, leading to the general adoption of a low-risk stance by
mission management to accept new, unproven technologies into the system. Also in con-
sideration of risk, the limited selection and availability of proven space-grade components
imparts a severe limitation on achieving high performance systems by current terrestrial
technology standards. Finally from a space communications point of view the long duration
characteristic of most missions imparts a major constraint on the entire space and ground
network architecture, since any new technologies introduced into the system would have to
be compliant with the duration of the currently deployed operational technologies, and in
some cases may be limited by surrounding legacy capabilities. Beyond ensuring that the
new technology is verified to function correctly and validated to meet the needs of the end
users the formidable challenge then grows to additionally include: carefully timing the ma-
turity path of the new technology to coincide with a feasible and accepting future mission
so it flies before its relevancy has passed, utilizing a limited catalog of available components
to their maximum potential to create meaningful and unprecedented new capabilities, de-
signing and ensuring interoperability with aging space and ground infrastructures while
simultaneously providing a growth path to the future.

The International Space Station (ISS) is approaching 20 years of age. To keep the ISS
relevant, technology upgrades are continuously taking place. Regarding communications,
the state-of-the-art communication system upgrades underway include high-rate laser ter-
minals. These must interface with the existing, aging data infrastructure. The High Data
Rate Architecture (HiDRA) project is designed to provide networked store, carry, and
forward capability to optimize data flow through both the existing radio frequency (RF)
and new laser communications terminal. The networking capability is realized through
the Delay Tolerant Networking (DTN) protocol, and is used for scheduling data movement
as well as optimizing the performance of existing RF channels. HiDRA is realized as a
distributed FPGA memory and interface controller that is itself controlled by a local com-
puter running DTN software. Thus HiDRA is applicable to other arenas seeking to employ
next-generation communications technologies, e.g. deep space. In this paper, we describe
HiDRA and its far-reaching research implications.
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I. Introduction

“Indeed, we have the know-how, but we do not have the know-why,

nor the know-what-for.” -Erich Fromm

The High Data-Rate Architecture (HiDRA) project was established at NASA Glenn in order to address
rate asymmetries in space data and communications systems. Historically, communications has placed a
considerable constraint on data return, and now as the physical layers improve the rest of the system must
be matched to take full advantage of such gains. HiDRA is an architectural study designed to create an
evolvable platform that meets near-term requirements, e.g. those of the Integrated Radio and Optical Com-
munications (iIROC) project, with a concurrent goal of enabling 100+Gbps communications. The HiDRA
study is based on software and hardware driven by Delay Tolerant Networking (DTN) in order to opti-
mize data flow and return while respecting CCSDS standards. Moreover, DTN enables the agglutination of
HiDRA-equipped nodes into an otherwise heterogeneous managed and secure network.

The bandwidth of scientific space instruments has easily outpaced space communications systems. There
have been notable improvements in the physical layer; see, e.g., the Lunar Laser Communications Demo
(LLCD) [7]. While LLCD was successful in its mission to demonstrate laser communications from the moon
to Earth, it also demonstrated how internal rate mismatches degrade performance. LLCD could transmit
data at 622Mbps, but its connection to its host, the Lunar Atmosphere and Dust Environment Explorer
(LADEE), was constrained to 40Mbps. When LADEE needed to dump its gigabyte of memory, it would
have taken every RF pass for three days. This was not acceptable, as LADEE was designed to spiral into
the moon - time was of the essence. As LLCD had proven itself prior to this need, they used it, and it
took roughly 4 minutes. At full-rate, LLCD could have sent on the order of 19 gigabytes, but instead most
of its data return was pseudorandom binary sequence (PRBS) data. This is to be expected of a demo, yet
is indicative of a common problem. There are gaps in research and development of various layers in the
communications stack, and systems of systems might be of varying vintages, capabilities, and constraints.

Bridging the gap between a ground-based technology research and development effort and a space-based
technology demonstration is a formidable challenge. This challenge is compounded by the relatively low
availability of new spacecraft missions when compared with aeronautical craft to bridge this gap, leading
to the general adoption of a low-risk stance by mission management to accept new, unproven technologies
into the system. Also in consideration of risk, the limited selection and availability of proven space-grade
components imparts a severe limitation on achieving high performance systems by current terrestrial tech-
nology standards. Finally from a space communications point of view the long duration characteristic of
most missions imparts a major constraint on the entire space and ground network architecture, since any
new technologies introduced into the system would have to be compliant with the duration of the currently
deployed operational technologies, and in some cases may be limited by surrounding legacy capabilities. Be-
yond ensuring that the new technology is verified to function correctly and validated to meet the needs of the
end users the formidable challenge then grows to additionally include: carefully timing the maturity path of
the new technology to coincide with a feasible and accepting future mission so it flies before its relevancy has
passed, utilizing a limited catalog of available components to their maximum potential to create meaningful
and unprecedented new capabilities, designing, and ensuring interoperability with aging space and ground
infrastructures while simultaneously providing a growth path to the future.

There is no better case study of this than with the International Space Station (ISS) — one of the crowning
accomplishments of humankind, an engineering marvel, but at around 20 years old it also may be described
as aging infrastructure. The last several decades have seen a focus on physical (PHY) layer technology devel-
opments in aperture and amplifier technologies to support such systems as higher frequency radio frequency
(RF) and even laser communications terminals. These state of the art communication system upgrades
underway will help to realize higher data rates, but must interface with the existing data infrastructure.
As new communication terminals are presented to the ISS, a considerable rate mismatch will be introduced
between the existing and emerging capabilities. The HIDRA project is designed to provide networked store,
carry, and forward capability to optimize data flow through the system. The networking capability is realized
through the DTN protocol, and is used for scheduling data movement as well as optimizing the performance
of existing RF communications channels. Moreover, HIDRA is designed to be as transparent as possible
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while simultaneously supporting Multiple-In Multiple-Out (MIMO) operations between optimizing the per-
formance within the purview of the spacecraft data bus and the multiple communication channels over the
free-space network. HiDRA is realized as a distributed FPGA memory and interface controller that is itself
controlled by a local computer running DTN software. One may visualize HIDRA as a water tower of data
that is controlled by networking software. One may also consider HIDRA to be, at least locally, a hub in a
hub-and-spoke style network. Thus HiDRA is applicable to other arenas seeking to employ next generation
communications technologies, e.g. deep space.

II. Defining the Problem

The introduction of emerging physical-layer technologies into the space communication networks is cre-
ating a heterogeneous system between new and old, high rate and low rate, optical and RF. Early research
has examined network management of dissimilar RF and optical link architectures in the near-Earth en-
vironment [5,11], and have taken advantage of the short time-of-flight characteristics to create workable
network solutions. Unfortunately many of the techniques and parameter tunings are not extensible to the
deep space domain due to the inherent dynamic differences between the environments and the lack for real
time feedback to control from. A multi-hop multi-path hybrid RF and optical test bed has been constructed
to emulate future networks and to support protocol and hardware refinement utilizing the ION implementa-
tion of DTN [6]. Initial results characterized several challenges and evaluated the effectiveness of DTN as a
solution to mitigate them, revealing the need for significant amounts of local high speed memory to accom-
modate large and numerous bundles sent across high data rate physical layers. Further challenges associated
with the Bundle Protocol Specification include the lack of reliability checks within the DTN bundle (the
fundamental unit of data in a DTN), varying support for fragmentation, lack of definition for convergence
layers, a flat address space creating difficulty in scaling and routing, and no standardized discovery mecha-
nism [2].

Adoption of DTN into future high speed space networks, and especially those realized by laser commu-
nications, hinges on the ability to successfully transmit data in at least the Gb/s order of magnitude range.
A successful test was performed at JPL with the ION implementation running over a Free-Space Optical
(FSO) network [12]. Forcing the central processing unit (CPU) to move data from non-volatile storage to
RAM to the communications system interface at these rates would cause undue burden and bottlenecking. A
potential solution being researched is the partial implementation of ION, JPL’s implementation of DTN, in
FPGAs to affect a form of direct memory access (DMA). Offloading the non-computational overhead func-
tionality over to hardware implementation will streamline the data flow and separate it from the overhead
sequential processing. This will decrease ION’s footprint without adding excessive complexity to the rest
of the system. In order to maintain flexibility and the ability to update the protocol, most of ION would
remain in software form on the CPU. Early experiments of this paradigm have examined the implications
of custody transfer on the distribution of transfers and the inclusion of Contact Graph Routing (CGR) to
allow establishment of one link to preclude all others — at least when they share a common outduct [9].

HiDRA is envisioned as a sort of glorified hard drive controller. We have storage that is controlled by
a computer. It will mostly collect data through the computer that directly controls it, and will send that
data out a specified port in a specified manner. The novelty comes in defining the demarcation between
hardware, software, and DTN. Certain parts of DTN clearly belong in software, e.g. routing. Data flow is
best realized in hardware, and if possible, beyond the bus arbitration of the main computer. We realize this
by connecting FPGAs to computers via PCI Express. These FPGAs then have dedicated storage (volatile or
non-volatile) and may be connected to a variety of radios or networks. It is less clear how HIDRA would best
interact with the software, and in particular, the networking component. If we add the overhead of making
our memory into a hard drive with the capability to select the paths that the data takes, particularly using a
standard file system, we will add complexity in the drivers and in the hardware, but will likely have less work
when integrating DTN. If we use HIDRA as a simple memory controller, where we consider the storage is
treated as RAM, then the hardware and drivers are simple, but the DTN integration is less straightforward.
ION features its own memory allocation algorithms for working within its heap. It is possible to extend
these to HIDRA. Moreover, ION is a non-monolithic DTN implementation where the various components
interprocess communication is achieved via reading and writing common memory. It is then possible to write
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a program that communicates with ION and replaces its bundle storage capability with a HiDRA-specific
algorithm. Revisiting the file system notion, we could also use a more complicated controller to simplify
bundle storage and processing. The key will be to research these trades to find out how retransmission is
best achieved.

Retransmission happens at multiple layers. We might retransmit an entire bundle if need be, or if we use
a lower-layer protocol that features reliability, such as the Licklider Transmission Protocol (LTP), we may
need to store all or parts of a bundle until we have either received an acknowledgment or have given up. We
have discussed HiDRA as hardware, but originally as an architecture. Reliability means different things in
different arenas. If we have our water tower of data in Low-Earth Orbit (LEO), essentially real time feedback
is possible and encouraged; we can use ACK and NACK based protocols depending on forward link consid-
erations. The link can reactively fragment to current conditions. However, HIDRA is also considered for
deep space. iIROC is a Mars-to-Earth laser communications project that utilizes a co-located, co-boresighted
telescope and antenna (teletenna) to provide both RF and optical transmission. The is automatically a
multi-path network, and as the optical and RF ground stations are multiple and not spatially co-located,
the network is also multi-hop. Moreover, iROC is designed to relay data, thus adding to the network com-
plexity. This complexity is both in terms of the network topology, as iROC is not a leaf node, but also in
terms of data handling requirements. Indeed, as new projects come and go, with updates in technology, the
utility of iROC will depend on its buffer size and policies, among other challenges. From Mars we cannot
employ a network model that relies on real time feedback. Fragmentation and link adjustments must be
made proactively, and the time required to get acknowledgments (which may happen at the bundle layer)
will increase. This plays a heavy hand in driving the buffer sizing requirement.

Further, we consider a wide range of data rates. The target goal is to make and demonstrate an instance
of HIDRA that can transmit data at 100Gbps or beyond. This must use cutting-edge hardware that is
not necessarily qualified for space operations. For iROC, we must transmit data up to the low Gbps range
using radiation hardened hardware. We then turn to the TCP Offload Engine (TOE) for an example. The
TOE handles TCP/IP overhead (up to and including handshaking). In [3], we see that the 1GHz/Gbps
rule of TCP/IP breaks down only with modern, terrestrial CPU speeds, and this relies on how data is
aggregated. Given limitations of deep space processing, offloading the largely non-computational burden
of bundle overhead bears merit, and even in LEO as we strive for 100Gbps and beyond, we will rely on
hardware acceleration. This not only makes DTN and networking in space viable, but it also provides fer-
tile ground for DTN optimization research once DTN is more operational and usage data have been collected.

Thus the hardware particulars of HIDRA instantiations will be partially application dependent, however
these variations will not influence how DTN, the computer, and the FPGA communicate, nor the boundary
between them. Therefore we strive to find and develop the common ground. The essence of HIDRA is, then,
to develop a networked buffering solution that is general enough to fit a host of situations without being so
general as to be unrealizable.

III. Building Towards Specific Use-Cases

We will consider the deep-space scenario with a look towards a near-earth demonstration.

III.A. iROC

We began developing HiDRA considering the deep space use-case. iROC will most likely use previous-
generation Virtex 5 FPGAs as radiation hardened versions exist. iROC is illustrated in Figure 1. While there
are many technologies being developed to make iROC possible, we will focus on the networking implications.
In particular, communications from Mars to iROC might occur over the teletenna or over other RF receivers.
If the teletenna is used, this precludes iROC from communicating to Earth. Depending on where Mars, the
Earth, the Sun, and iROC are, said communication might be impossible regardless of spacecraft attitude.
Given power constraints, either RF or optical will be used, but not simultaneously. RF would broadcast at a
slower rate whereas optical would unicast at a quicker rate. Finally, depending on where the optical ground
stations are ultimately built, terrestrial infrastructure must be built. Network management, and in particular
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policies, will be required to ensure that iROC can not only service multiple missions but also remain relevant
as missions might be added or removed. Finally, if security in the form of encryption becomes desired in
deep space applications, it is worth exploring any unused portion of the FPGA to offload computationally
expensive encryption from the CPU.

We have three subsystems. One
is a single board computer, called
the X-ES box, which houses an Al-
phaData Virtex 6 FPGA card. As
the first mode of connectivity is
Ethernet, the second is the “Eth-
ernet Receiver,” which is simply
a PC with a NIC. We will also
use the QSFP port on the X-ES
box, and hence will develop a third
subsystem which is the “SFP Re-
ceiver.” This box will be a PC
with an VC709 FPGA card. There
will be two modes of connectiv-
ity developed: first, the X-ES Sys-
tem (Figure 2) connected to the
Ethernet Receiver (Figure 3) fol-
) ) ) lowed by the second mode where the

Figure 1: iROC Conceptual Illustration X-ES System is connected to the

SFP Receiver (Figure 3). This two

mode/two-step approach offers an incremental increase in complexity going from a starting base utilizing

simplified Ethernet interface to final mode utilizing SFP interface. Also, the two mode approach allows

the SFP interface to be purchased/developed/debugged in parallel with the first mode (X-ES System —
Ethernet Receiver).

- - The X-ES box will be solely a transmitter, as
&8 PO &8 £ i \\ in Figure 2. The data to be sent will be buffered
@ PC K—ey FPGA (—y RAM | in the FPGA card’s dedicated RAM. The first

/ \ J // step is to have the X-ES box transmit via Eth-

B ernet, or colloquially, have Figure 2 talk to Fig-

&«0 ure 3. The follow-on step is to then add QSFP

connectivity; that is, have Figure 2 talk to Fig-

ure 4. The RAM in the diagram is the FPGA’s

dedicated, on-board memory, which shall be used

in both cases. The FPGA shall communicate to

Figure 2: X-ES System the PC via PCle, and the drivers will be interrupt
driven.

The Ethernet receiver is just a PC with a NIC, as shown in

Ethernet // N Figure 3. The PC will listen for UDP packets, and software

O SERPC | will process them as they are received. This will get us started,
\\ / help us debug and develop the drivers for the X-ES box, and can

o later be used as we stress the multiple out in the MIMO de-

Figure 3: Ethernet Receiver sign.

The SFP receiver will be a PC with an VC709 development board, as illustrated in Figure 4. The RAM
in the diagram is the VC709’s on-board memory. There will be a buffer in the memory that the recipient
FPGA writes incoming data to. Our testbed uses the AlphaData FPGA in the X-ES box as the transmitter
(i.e., the iROC satellite). Using its QFSP cage, we connect it to the VC709 FPGA development board in
the SFP receiver. The purpose is to have a straightforward means by which we can integrate the hardware
with the optics lab of iROC and other projects.

5 of 10

American Institute of Aeronautics and Astronautics



As shown, all three of these systems exist. We store, carry,
and forward data upon separate commands, thus demonstrat-
ing DTN-like functionality. The Ethernet system functions at

1Gbps, and the SFP system transmits at 1.4Gbps.

ware, drivers have been written so that the storage appears as
a blank slate of memory. Therefore, while we are encroach-
ing on the boundary between hardware and DTN, we can only
now beginning to probe it in earnest now that the testbed is
operational. We include three notional (and simple!) process
diagrams: the Ethernet receiver process (Figure 5), the SFP
receiver process (Figure 6), and the X-ES transmitter process
(Figure 7). When reading these diagrams, we consider time to

SFP PCI
O———{ FPGA —3 PC

|

RAM

Figure 4: SFP Receiver

be increasing as we move down the page. The active members of the diagrams are represented by vertical
lines with their labels both at the top and at the bottom. Interaction between them is represented by arrows.
The placement of the arrows is not meant to suggest that there is no parallelism. The simplest process to
start with is the Ethernet receive process, which is suggested in Figure 5. The left-hand vertical line, labeled
“X-ES,” then, refers to the entire X-ES system, FPGA and all (See Figure 2). On the right, the PC refers
solely to the otherwise disjoint PC that is the Ethernet receiver (See Figure 3).

The SFP receiver process is the next step
up in complexity, and is shown in Figure
6. Here the X-ES box is considered a self-
contained unit, which means the X-ES PC, X-
ES FPGA, and X-ES FPGA memory. The
FPGA, RAM, and PC specified in Figure 6
refer to SFP receiver, and thus the FPGA
and RAM are the VC709 board. Many
details are obviously omitted, such as how
the data gets from the RAM to the FPGA.
Again, the arrows are not meant to im-

ply that there is no parallelization. The
X-ES transmit process is suggested in Fig-
ure 7. Here we consider this diagram to

be of the internals of the X-ES box as a
whole, so the FPGA refers to the Alpha-
Data card, and the RAM is the AlphaData
card’s on-board memory. The Ethernet and
QSFP refers to the physical out-duct. It
has been suggested that there are blocking
and non-blocking calls for DMA transfer, and
as such, we can decide if we mneed inter-
rupts to know when sending data from the X-
ES PC to the X-ES FPGA’s DDR for stor-
age. The SFP system communicates using the
Aurora protocol, and as suggested by the di-
agrams, all current communication is unidirec-
tional.

We have been able to stream video and reliably
transmit data (up to 2GB, the amount of on-board

X-ES PC

Data over UDP |

Hark!
Data over UDP

Store &
Process

( Rinse, Repeat

—/

X-ES RE

Figure 5: Ethernet Receive Process

storage of the X-ES box) using the Ethernet model. This is fully configurable in software, i.e., we set the IP
address, the data rate, and so forth using a driver call which sets registers within the FPGA, implying that
no further hardware configuration is required. This immediately allows for flexibility in the testbed.

After base DTN integration has been established, communications will be made bidirectional to support
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iROC as a relay satellite. It should be noted that orbital analyses have been conducted and as such contact
schedules can be realistically created. In particular, there is no current competition for time on a deep-space
optical receiver, granting flexibility in scheduling. Therefore connectivity models are available, and indeed
have been used for previous DTN testing. Traffic models are also considered.

See Figure 2 See Figure 4
A

Transmit data

Store data

Interupt (EIncoming)

Data still incoming

Y.

Still buffering

>
>

Sending data

Y.

Storing new data

Jo Y o ___

Getting data (for int)

Giving data to PC

Y

E Request data

Finished sending

Get data to send to PC

A

Finish sending to PC

Y

Interrupt (Finished)

. /2 . .

|

Figure 6: SFP Receive Process
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Has data to send

Initialize transfer

Send data

Given offset, length

Interrupt (finished storing)

Store data in RAM

Wait for contact

CCan send over EtherneD

Prepare Ethernet transfer

New data for SFP

Given offset, length

Initialize transfer

Get data

Send data

Send data

Frame and send data

Send data

Given offset, length

Store data

Frame anc:l send data
d

Probably still sending

Get SFP data

Frame and send new data

Finish sending over Ethernet

Interrupt

Ethernet finished

Finish sending olver QSFP

Interrupt

m m I

SFP finished

Figure 7: X-ES Transmit Process
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III.B. 1ISS

The ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) project will
measure plant transpiration from the ISS from 2017-2019 [10]. ECOSTRESS will collect data at an average
of 2.6Mbps, and can operate continuously, yielding an average of 28 gigabytes of a data per day. At peak
performance, it can yield up to 47 gigabytes.

To accommodate this system,
we will need between 3 and
4.325Mbps continuously from the
return channel. However, the re-
turn link from the ISS is a 100Mbps
system over Ku-band. As this ser-
vices the entire space station, this
places such stress on the system
that the minimum science require-
ment is one hour per day of data
collection, i.e., 4.2% of the possible
Figure 8: ECOSTRESS planned coverage. Note instrument is capable data. This is visualized in Figure
of additional coverage and can be commanded to acquire data over 8. The upcoming Laser Commu-

additional regions given sufficient downlink. (Taken directly from [8]) nications Relay Demo (LCRD) is a
NASA project that will put a laser

relay terminal in geosynchronous orbit. LCRD will support uncoded data from 72Mbps to 2.88Gbps [4].
Presuming that we use a code rate of 1/2, we could transmit all 47GB of data in 261.1 seconds, or under 4.5
minutes. Given future optical upgrades to ISS, per pass a 5 minute span from ISS to LCRD is definitely
achievable, and up to 25 minutes is possible. As there are roughly 16 passes per day, by using HiDRA
to buffer data from ECOSTRESS we can easily meet current needs while providing plenty of headroom to
support future science developments.

In addition to our iROC use-case development, we are concurrently developing an as of 2016 cutting-edge
platform using Xilinx Virtex Ultrascale FPGAs. We are using the Bittware XUSP3R development board
which feature a Xilinx Virtex UltraScale 190, 256GB of DDR4 RAM, a PCle interface, and four QSFP28
cages. This development board supports up to 400Gbps communications [1]. The ECOSTRESS project will
communicate using the DTN protocol on a laptop on-board the ISS. We will provide an interface between
the laptop and the upcoming optical upgrades; the interface to the laptop will be PCle (via PCle breakout
boxes that connect to laptops via ExpressCard 54, which supports speeds up to 5000 Mbps). The interface
to the laser terminal will be Aurora over a physical connection to be specified at a later date.

By forging a path from the science payloads to upcoming optical terminals, which will necessarily en-
counter disruption and hand overs, we can greatly loosen the global constraints that communications have
historically placed on data return. Locally, we introduce a missing component needed to realize space
networking.

IV. Conclusion and Future Research

HiDRA as a network-managed buffer has clear utility for tying systems together, and while even a rudi-
mentary instance would prove useful, it gives rise to many research projects.

As mentioned, there are several means by which DTN might utilize HIDRA, and there is a balance to
be struck between software and hardware. As we move from hundreds of Mbps to low-Gbps rates, any
functional style will likely suffice. The ultimate goal of 100Gbps and beyond, however, might require further
modification. Consider the probably use-case of such a link. Most probably, it would be a highly bursty link
with contact times ranging from seconds to minutes. If routing computations and other signaling create a
latency of n seconds, then n Gbps of data were not transmitted. Thus there is an effort to mitigate this.
So far, we synchronize an internal clock in the FPGA with the host computer and plan to use DTN to
preemptively command the FPGA, say 30 seconds ahead of a known contact. Other optimizations might
suffice, but will depend on how deterministic this latency is.
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In addition to non-HiDRA specific DTN research, buffering requirements must be researched. This in-
cludes extrapolating for future missions. Particularly, if precedent is set for 1.44Gbps communications from
ISS, we can expect a rapid increase in future project requirements. This also forces issues regarding network
management and policies.

Further consideration of ISS future-proofing, to the extent possible, involves creating a custom board
adding a variety of connectors. But another avenue would be considering multiple optical links on different
physical ends of the ISS; the infrastructure would be the bottleneck, implying that multiple HIDRAs would be
needed for concurrent operation. Load Optimizing load balancing introduces a door for cognitive networking,.

Despite starting relatively recently, the HIDRA team has made progress towards the boundaries between
software, hardware, and DTN. Store, carry, and forward has been demonstrated, configurability via drivers
has been demonstrated, and video streaming has been demonstrated. Research into queuing and data
management as well as DTN are the next hurdles.
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