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Expression microarrays hybridized with RNA can simultaneously provide both phenotypic (gene expression) and
genotypic (marker) data. We developed two types of genetic markers from Affymetrix GeneChip expression data to
generate detailed haplotypes for 148 recombinant inbred lines (RILs) derived from Arabidopsis thaliana accessions
Bayreuth and Shahdara. Gene expression markers (GEMs) are based on differences in transcript levels that exhibit
bimodal distributions in segregating progeny, while single feature polymorphism (SFP) markers rely on differences in
hybridization to individual oligonucleotide probes. Unlike SFPs, GEMs can be derived from any type of DNA-based
expression microarray. Our method identifies SFPs independent of a gene’s expression level. Alleles for each GEM
and SFP marker were ascertained with GeneChip data from parental accessions as well as RILs; a novel algorithm for
allele determination using RIL distributions capitalized on the high level of genetic replication per locus. GEMs and
SFP markers provided robust markers in 187 and 968 genes, respectively, which allowed estimation of gene order
consistent with that predicted from the Col-0 genomic sequence. Using microarrays on a population to
simultaneously measure gene expression variation and obtain genotypic data for a linkage map will facilitate
expression QTL analyses without the need for separate genotyping. We have demonstrated that gene expression
measurements from microarrays can be leveraged to identify polymorphisms across the genome and can be
efficiently developed into genetic markers that are verifiable in a large segregating RIL population. Both marker
types also offer opportunities for massively parallel mapping in unsequenced and less studied species.

[Supplemental material is available online at www.genome.org. The microarray data from this study have been submitted
to ArrayExpress under accession nos. E-TABM-60, E-TABM-61, and E-TABM-62. Algorithms and scripts are available at
http://elp.ucdavis.edu/data/analysis/elp_map/ and at http://elp.ucdavis.edu/data/analysis/sfp_map/SFPscan.html.]

Comprehensive gene expression microarrays have enabled tran-
scriptome profiling in a wide variety of organisms. When the
expression levels of individual genes are considered as quantita-
tive traits, their variation can be described as expression level
polymorphisms (ELPs) and their determinants can be mapped
with molecular markers as expression QTLs (eQTLs) (Jansen and
Nap 2001; Doerge 2002; Schadt et al. 2003). Since the availability
of genetic markers is a crucial limitation to estimating a genetic
map for any population, developing methods for efficiently ob-
taining novel marker information enhances our ability to con-
duct comprehensive QTL and eQTL studies.

Several different types of molecular markers have been de-
veloped over the past three decades (Kumar 1999; Gupta and
Rustgi 2004), motivated by requirements for increased through-
put, decreased cost per data point, and greater map resolution.
Recently, oligonucleotide-based gene expression microarrays
have been used to identify DNA sequence polymorphisms using
genomic DNA as the target (Hazen and Kay 2003). Winzeler et al.
(1998) pioneered the hybridization of labeled genomic DNA to
oligonucleotide microarrays to identify sequence polymor-
phisms in haploid yeast. Borevitz et al. (2003) showed that this

approach can be applied to organisms with more complex ge-
nomes, such as Arabidopsis thaliana, to analyze sequence poly-
morphisms termed single feature polymorphisms (SFPs). To re-
duce target complexity, Cui et al. (2005) and Rostoks et al. (2005)
hybridized barley expression microarrays with cRNA, allowing
for detection of thousands of potential SFPs. Ronald et al. (2005)
extended the concept of genotyping with expression microarrays
by hybridizing with cRNA instead of genomic DNA, allowing for
simultaneous genotyping and gene expression analyses in yeast.
These microarray studies rely on the use of short oligonucleotide
probes, which can have reduced binding to DNA or cRNA targets
if a sequence polymorphism is present (Winzeler et al. 1998).
Since SFP detection is not feasible using longer (50- to 70-mer)
probes or spotted cDNA microarrays, which are less sensitive to
small regions of sequence mismatch, it is limited to species for
which short oligonucleotide microarrays are available.

Gene expression markers (GEMs) can be obtained from ex-
pression microarrays based on long oligonucleotide probes, spot-
ted cDNAs, or short oligonucleotides, because they are based on
gene expression differences, not on individual probe hybridiza-
tion. GEMs, characterized by large differences in transcript levels
between the parents of a segregating population, provide expres-
sion data that are distinctly bimodal in distribution when sur-
veyed in a recombinant inbred line (RIL) population.

We demonstrate that data derived from gene expression mi-
croarrays can also be used at little or no extra expense to develop
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large numbers of robust molecular markers. We used two differ-
ent approaches (GEMs and SFPs) and two methods to define
markers and their alleles. The first method was based on parental
polymorphisms detected with replicated microarray data. The
second method capitalized on the high level of replication avail-
able for each locus in the RIL population to identify robust poly-
morphisms in the progeny microarray data. We validated these
novel markers by using a large segregating A. thaliana RIL popu-
lation. Sequencing studies have demonstrated the existence of
hundreds of SNPs between accessions Bayreuth (Bay-0) and Shah-
dara (Sha), but these polymorphisms had not been developed
into tractable genetic markers (Nordborg et al. 2005). To add
markers to the existing genotypic data for the Bay-0 � Sha RIL
population (Loudet et al. 2002), we used gene expression micro-
array data that had been generated as part of a larger experiment
to measure transcriptional variation in these RILs to assess geno-
types and produce detailed haplotypes. The SFP markers and
GEMs we identified were used to construct a detailed genetic
linkage map that was consistent with the gene order predicted by
the genomic sequence of the Col-0 accession (The Arabidopsis
Genome Initiative 2000) with minimal missing data.

Results

Gene expression markers

We conducted two factorial experiments (i.e., biological replica-
tion of different treatments and time points) using Bay-0 and Sha
plants in order to assess differences in gene expression between
these two genotypes (unpublished data). Labeled RNA from the
control plants was hybridized to Affymetrix ATH1 GeneChip mi-
croarrays, resulting in 16 Bay-0 and 16 Sha parental GeneChips.
To identify potential GEMs, we compared gene expression values
averaged over the 16 GeneChips per accession and identified
1431 genes that exhibited an empirically chosen twofold or
greater expression difference between the two genotypes. Subse-
quently, to identify genes with non-overlapping expression value
distributions, a “gap” value was determined for each gene: The
minimum expression value of the higher expressing allele was
divided by the maximum expression value of the lower express-
ing allele. A gap of �1.0 indicates non-overlapping distributions;
the larger the gap, the greater the distance between the distribu-
tions. Of the 1431 genes, 324 had a gap �1.0 and were used as
our candidate GEMs.

Genotypes were assigned to 148 Bay-0 � Sha F9 RILs for
each of the 324 candidate GEMs by comparing RIL gene expres-
sion values from replicated GeneChips with the parental expres-
sion level distributions. For each GEM, RILs with expression val-
ues that fell within the range of the 16 Bay-0 parental values were
assigned a Bay-0 genotype; Sha parental values were likewise used
to assign Sha genotypes to the RILs. RILs with gene expression
levels that fell between the two parental distributions could not
initially be assigned a genotype. To minimize the number of
ambiguous “missing data” genotype scores, we incrementally ad-
justed the parental distributions used for allele assignments by
utilizing a slicing procedure (see Methods). Because bimodal dis-
tributions can sometimes be caused by complex genetic inherit-
ance, we filtered the GEMs to remove those markers that showed
severe segregation distortion (allele segregation ratios > 1:3) or
had >10% missing data scores, as these would suggest nonquali-
tative inheritance of the GEM polymorphism. A total of 188
markers (corresponding to 187 genes) remained after filtering.

These 188 GEMs, plus 38 previously genotyped microsatel-
lite markers (Loudet et al. 2002), provided data for the estima-
tion of a genetic map that spanned 393 cM, with a maximum gap
size of 14.8 cM (Supplemental Fig. 1). While the average resolution
afforded by the original 38 microsatellite markers was one marker
every 10.8 cM, the GEMs increased resolution to one marker every
1.7 cM. The map order of almost all GEMs (182 of 188 markers) was
consistent with the genomic sequence of Col-0 (Supplemental
Fig. 1), implying that GEMs are robust genetic markers. This also
indicated that there are no large chromosomal rearrangements be-
tween Col-0 and the Bay-0 and Sha accessions.

Six GEMs did not map to the expected chromosomal loca-
tions (Supplemental Fig. 1a). For example, At2g26630 and
At2g38520 exhibit anomalous red segments off the diagonal;
their expected physical location is in linkage group 2, but they
are genetically linked to linkage group 5. Markers At1g29410 and
At4g01350 are represented by probe sets that recognize alternate
gene family members whose chromosomal locations are consis-
tent with their genetic linkages (Supplemental Fig. 1). Markers
At2g26630, At2g38520, and At5g34920 correspond to genes with
transposon-related functions. Only marker At3g60980 showed a
linkage that cannot be readily explained and may reflect a small
translocation relative to Col-0 in either the Bay-0 or Sha acces-
sion. At3g60980 also contains a SFP which shows genetic linkage
consistent with the GEM marker position for the same gene (see
SFP section below).

Graphical genotypes (haplotypes) were generated for each
of the 148 RILs by using the GEMs and microsatellite markers
(Supplemental Fig. 2). The 188 GEMs define haplotypes that are
consistent with, and more detailed than, the haplotypes gener-
ated by the 38 microsatellite markers alone (http://www.inra.fr/
qtlat). Whereas 836 crossovers are apparent when the 38 micro-
satellite markers are used to genotype these 148 RILs, the haplo-
types defined by the 188 GEMs identify 1264 recombination
breakpoints.

SFP markers

To obtain additional markers and more detailed haplotypes, in-
stead of using each gene’s expression level derived from the en-
tire probe set on the ATH1 GeneChip, we identified SFPs by using
the hybridization values for single oligonucleotide probes (Win-
zeler et al. 1998; Borevitz et al. 2003). We developed a “SFPdev”
summary measure in order to focus on probe values independent
of a gene’s expression level. We searched for probes that had a
difference in the SFPdev value between Bay-0 and Sha in two
ways. The first approach identified SFPs by using parental data
from the factorial experiments; the second relied on replicated
GeneChip data from the RILs.

SFP detection with parental data

By using the hybridization values for all ∼251,000 Perfect Match
(PM) probes for each of the 32 parental GeneChips, we calculated
SFPdev, which maximizes the difference between two genotypes
to detect instances where one genotype has reduced hybridiza-
tion to an individual probe within a probe set (see Methods). The
use of the SFPdev summary measure allows SFPs to be detected in
genes expressed at similar levels in two genotypes (Supplemental
Fig. 3a) and in genes exhibiting ELPs (Supplemental Fig. 3b). The
SFPs are therefore independent of a gene’s expression level. A SFP
was declared if Bay-0 and Sha had non-overlapping ranges of
SFPdev values separated by an empirically chosen gap >2.0 (see
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Methods, Supplemental Fig. 4). By using this stringent criterion,
2245 SFPs between Bay-0 and Sha were detected (Table 1).

The SFPdev distributions were used to assign genotypes to
the 148 RILs, using the same RIL GeneChips described previously
and a “parental min-max” algorithm (see Methods). After geno-
typing the RILs, SFP markers were discarded if there was >10%
missing data or if a deviation of allele frequency >1:4 was ob-
served. After this filtering process, 1157 SFP markers remained,
with an average frequency of 1.23 SFP markers per probe set
(Table 1). One SFP marker per probe set with the least missing
data was selected, resulting in 943 SFP markers with an average of
4.7% missing data. An analysis of the 148 RIL genotypes clus-
tered these 943 SFP markers plus the 38 microsatellite markers
into 479 bins, with an average of 2.05 SFP markers per bin (Table 1).

To investigate how the parental min-max algorithm im-
pacted missing genotype scores, we randomly selected 10 SFP
markers with ∼24% missing scores and compared the distribution
of their SFPdev values from the 296 RIL GeneChips (two replica-
tions of 148 RILs) with the SFPdev values from the 32 parental
GeneChips. The range of SFPdev values from Bay-0 and Sha did
not always accurately encompass the range of SFPdev values in
the RIL population, thus leading to unassigned genotypes (e.g.,
Fig. 1). We also observed distributions
that were non-overlapping in the paren-
tal data but overlapped in the RILs,
which likewise resulted in frequent miss-
ing genotype scores (data not shown),
indicating that the range of SFPdev val-
ues derived from 16 parental GeneChips
per genotype was suboptimal for assign-
ing genotypes to the RILs.

SFP detection with RIL data

To reduce the frequency of missing
genotype data, we capitalized on the
high level of replication available for
each allele in the RIL population. Our
“RIL distribution” algorithm (see Meth-
ods) searched for bimodal distributions
of SFPdev values in the 296 RIL Gene-
Chips and then assigned alleles based on
these distributions in the progeny. For
the SFP marker illustrated in Figure 1,
the RIL distribution algorithm resulted
in 0% missing scores, compared with the

24.3% missing scores obtained using the parental min-max algo-
rithm. The RIL distribution algorithm identified 1259 SFPs be-
tween Bay-0 and Sha (Table 1). Because of limited segregation
distortion and minimal missing scores, the post-genotyping fil-
tering process eliminated only two of these 1259 SFP markers.
The 1257 markers represented 968 probe sets (1.30 SFP markers
per probe set) (Table 1). One SFP marker was selected per probe
set, resulting in a data set with only 0.43% genotype scores miss-
ing. Cluster analysis grouped the 968 SFP markers plus the 38
microsatellite markers into 563 bins, with an average of 1.79
markers per bin. If a bin with multiple markers did not contain
any markers with 0% missing data, two SFP markers were selected
to represent that bin in order to avoid loss of information due to
missing genotype scores, resulting in a set of 599 SFP markers.

A heat map was generated by using pair-wise recombination
values for the 599 SFP markers plus the 38 microsatellite markers
(Fig. 2, Supplemental Fig. 5a). The genetic map spanned 409 cM
with an average resolution of one marker every 0.64 cM (187 kb)
and a maximum gap size of 7.2 cM. Each linkage group was also
analyzed separately with JoinMap (Supplemental Fig. 5); the av-
erage estimated intervals between markers for each linkage group
are as follows: AT1, 0.62 cM; AT2, 0.73 cM; AT3, 0.56 cM; AT4,
0.67 cM; and AT5, 0.66 cM, providing a near-saturated genetic
map for this size of population.

The linkage of 595 of the 599 SFP markers was consistent
with the positions expected from the genomic sequence of Col-0.
In agreement with the GEM results, there are no major rearrange-
ments of the genes containing these SFP markers between Col-0
and Bay-0 and Sha. However, when the order of the SFP markers
was determined with JoinMap, small local deviations from the
Col-0 gene order were observed (Supplemental Fig. 5), which
could be due to small inversions or translocations relative to
Col-0, multipoint recombination estimates, or sampling error.
The segregation data for four out of 599 SFP markers were incon-
sistent with the Col-0 sequence (indicated by red segments off
the diagonal in Fig. 2, Supplemental Fig. 5a). The genes corre-
sponding to these four markers (At1g10380, At3g60980,
At5g49250, and At5g55530) do not belong to multi-gene fami-
lies, are not associated with transposable elements, and have no

Figure 1. Comparison of SFPdev distributions between RIL and parental GeneChips. The distribution
of SFPdev values (x-axis) in the RIL population (gray bars) are compared to distributions in the parental
Bay-0 and Sha GeneChips from the factorial experiments (black and white bars, respectively) for SFP
marker At1g74090-8 with 24.3% missing data (when scored with the parental min-max algorithm).

Table 1. Comparison of two SFP marker detection methods for
numbers of markers obtained

Parental min-max RIL distribution

Markers (pre-genotypinga) 2245 1259
Markers (post-genotypingb) 1157 1257
Genes with markersc 943 968
Markers per gene 1.23 1.30
Missing data scoresd 4.70% 0.43%
Binse 479 563

aNumber of markers that showed a SFPdev gap value >2.0.
bNumber of markers that remained after filtering by two post-genotyping
criteria.
cNumber of genes that contained a SFP marker.
dFor the set of 943 and 968 selected markers for the parental min-max
and RIL distribution methods, respectively.
eClustering was performed with MadMapper software (see Methods).
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known function. Their map locations in this population may be
indicative of small translocations relative to the Col-0 sequence.
At3g60980 is also represented by a GEM, which likewise shows
linkage to the same inconsistent position evidenced by the SFP
marker (see Supplemental Fig. 1).

Using of the 599 SFP and 38 microsatellite markers, graphi-
cal genotypes were generated for each of the 148 RILs and the
parental controls (Fig. 3; for individual linkage groups, see
Supplemental Fig. 6). These 637 markers identified a total of 1533
recombination breakpoints, in comparison with the 1264 break-
points detected with the 188 GEMs plus 38 microsatellite mark-
ers. Only 33% of the genes identified as GEMs overlapped with
the set of genes for which we identified SFP markers. This small
degree of overlap was not surprising as calculations of gene ex-
pression levels average the hybridization intensities for all probes
of a probe set and specifically eliminate the outlier probe values
(http://www.affymetrix.com). Individual SFPs have only a small
effect on quantifying gene expression levels (Kliebenstein et al.
2006), and >95% of Arabidopsis genes with a SFP contain fewer
than three SFPs per probe set (Borevitz et al. 2003). Both the
GEMs and SFP markers were randomly distributed throughout
the genome with no evidence of clustering. Consequently, the
SFPs provide independent markers from the genes exhibiting
transcript level differences (ELPs).

GEM detection with RIL data

We tested the utility of the RIL distributions of gene expression
levels to identify potential GEMs. When the same RIL distribu-

tion algorithm was applied to the scaled gene expression data for
all genes from the 296 RIL GeneChips, only 42 or 70 GEMs were
identified with a gap value of 2.0 or 1.5, respectively. Filtering
markers after genotyping did not eliminate any markers; 93% of
the markers were previously identified with the parental distri-
bution method. Therefore, identifying GEMs based on the RIL
rather than parental distributions resulted in fewer markers;
however, there were few missing scores with GEMs identified
from RIL distributions (0.5% missing scores for the 42 GEMs with
gap >2.0 and 0.6% missing scores for the 70 GEMs with gap >1.5)
(Supplemental Fig. 7).

Discussion

We demonstrated that hybridization of gene expression micro-
arrays with RNA allows the simultaneous phenotyping and geno-
typing of a segregating RIL population without requiring an in-
dependent analysis of the genomic DNA for each line. This dual
use of the data saves both time and expense and allows con-
firmation of the source for each analyzed RNA. The ATH1
GeneChip, containing multiple 25-mer probes per gene, allowed
the determination of marker genotypes at the level of gene ex-
pression with GEMs, as well as at the level of hybridization to
individual probes with SFP markers. These dominant markers
facilitated efficient high-density haplotyping of homozygous
inbred RILs and identification of the majority of recombination
breakpoints in this sample of 148 lines. These new markers
enabled the construction of a high-density genetic map of the
Bay-0 � Sha RIL population.

Both types of dominant markers are applicable to species
other than Arabidopsis, including those for which genomics re-
sources may be limited. However, their accessibility depends on
the microarray technology available. Since GEMs can be devel-
oped by using either short or long oligonucleotide microarrays,
they provide an alternative for identifying microarray-based
markers, which previously required short oligonucleotide probes
(Winzeler et al. 1998; Borevitz et al. 2003; Cui et al. 2005; Ronald
et al. 2005; Rostoks et al. 2005).

Gene Expression Markers

The first method used to identify GEMs utilized parental micro-
array expression values to identify differentially expressed genes
with distinctly bimodal expression distributions. The fact that
<1% of the genes represented on the microarray were found to be
suitable candidates for GEMs may be explained by the following
considerations: This percentage may be an accurate reflection of
the amount of large-effect single locus expression polymor-
phisms in A. thaliana; a fraction of differentially expressed genes
(potential GEMs) may not be expressed in 6-wk-old foliar tissue;
and our selection and filtering strategies likely discarded differ-
entially expressed genes whose expression levels were controlled
by more than one genetic locus.

In contrast to SFPs, the use of RIL distributions for GEM
marker identification was not an improvement over the parental
min-max method (Table 1). This is likely due to transgressive
segregation, epistasis, and genotype � environment interactions
that influence gene expression patterns in segregating popula-
tions (Mackay 2001; Brem and Kruglyak, 2005). Another poten-
tial complication of GEMs is that bimodal distributions can be
influenced by complex inheritance. However, our filtering pro-
cess eliminated these GEMs by removing any gene showing seg-
regation distortion that would result from multigenic inheri-

Figure 2. Heat map showing a matrix of pair-wise recombination val-
ues for SFPs and microsatellite markers assayed on 148 RILs. Pair-wise
comparisons between markers were used to assign recombination scores,
which are plotted as a heat map matrix of all markers (top to bottom)
against all markers (left to right). Lowest recombination scores, suggest-
ing marker linkage, are indicated by red boxes, while blue boxes indicate
high recombination scores, suggesting no linkage. The 599 SFP and 38
microsatellite markers are ordered by their physical location in the Col-0
genomic sequence; heavy lines demarcate the five linkage groups.
(Supplemental Fig. 5a shows a high resolution version of this figure,
including marker details.)
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tance. Because GEMs rely on transcriptional differences that can
be influenced by various factors, GEMs should be integrated with
a framework set of DNA-based markers, such as microsatellite
markers (http://www.inra.fr/qtlat), which are not influenced by
the conditions under which the experiment is conducted.

The genetic map order of the vast majority of GEMs was
consistent with the expected physical order of the genes repre-
sented on the microarray (see Supplemental Fig. 1). Therefore, for
this subset of genes showing distinct bimodal parental distribu-
tions, most of the eQTLs are cis to the gene being analyzed and
thus represent an extreme class of ELPs (Supplemental Fig. 1). If
this is a common phenomenon, a GEM-derived genetic map pro-
vides the opportunity to approximate the physical order of such
genes in less intensively studied species.

A disadvantage of markers that rely on quantifying tran-
script levels is that gene expression can be influenced by the
environment. A GEM that is robust under one set of experimen-
tal conditions (e.g., tissue, developmental stage) may not per-
form similarly under a different set of conditions. This is not a
major issue for genotypically stable populations such as ad-
vanced generation RILs, where genotypes of the homozygous
lines need to be determined only once, and the haplotypes and a
linkage map can be subsequently used to explore additional traits
of interest. For less genetically stable experimental population
structures, if expression microarrays have already been used to
obtain expression profile data, GEM-derived genotypes can be
leveraged from the existing data. Any candidate markers can be
tested for phenotypic instability so that the most stable markers
can be selected.

SFP markers

Using two data sets and two different methods, we developed a
new strategy to identify SFP markers that differs from previously
published approaches and is independent of ELPs. Employing a
conventional marker development approach, we initially identi-
fied a large number of SFP markers by comparing the SFPdev ratio
between two parental genotypes (16 replicates each). Since the
high cost of microarrays for a large number of parental replica-
tions may diminish the widespread utility of this approach, we
analyzed the effect of the number of replicated parental micro-
arrays (3, 6, 9, 12, and 16) on the number and quality of SFP
markers identified. The number of potential SFP markers in-
creased when fewer parental GeneChips were used, but these
markers showed an increase in “missing” scores upon genotyping
the RILs (data not shown). After filtering, the final number of SFP
markers was similar, regardless of how many parental microar-
rays had been originally used to detect the SFPs. Essentially, fewer
parental replications gave rise to a similar number of SFP markers,
but with more missing genotype assignments.

Figure 3. Haplotypes of 148 RILs plus parental genotypes. Each col-
umn represents a RIL (first 148 columns) or parental genotype (last four
columns). Rows correspond to SFP and microsatellite markers, arranged
(top to bottom) in physical order based on the Col-0 genomic sequence.
The five Arabidopsis linkage groups are laid end-to-end and are separated
by horizontal gray lines. Red boxes indicate Sha genotypes, blue boxes
indicate Bay-0 genotypes, and gray boxes indicate markers scored as
missing data. The final column depicts the physical distances between the
markers. Below the haplotypes, the proportions of Sha (red bars) and
Bay-0 (blue bars) alleles in each RIL are depicted. (A high resolution
version of this figure, with marker names included, is available in Supple-
mental Fig. 6a).
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Because the boundaries of the allele-specific SFPdev ratio
distributions could not be fully delineated by using parental mi-
croarray data, we developed a second approach to identify SFP
markers. This approach queried the progeny data for polymor-
phisms, taking advantage of the higher level of replication avail-
able per locus in a RIL population: Microarray data from two
biological replicates for each of 148 RILs provided ∼148 replica-
tions of each allele at every locus, based on an expected 1:1 seg-
regation ratio. The 599 SFP markers resulting from analyzing the
RIL distributions provided high-density haplotypes with a very
low percentage of missing marker data, thus giving a superior
high resolution map (Fig. 3). While the three marker techniques
(GEMs, SFP parental min-max, and SFP RIL distribution) provide
comparable genetic haplotypes (see Supplemental Fig. 8), SFP
markers offer more complete genome coverage than do GEMs,
and SFPs developed by using the RIL distribution method offer
greater marker precision because of fewer missing genotype scores.

Marker number and population size

We employed conservative marker identification algorithms and
filtering steps to emphasize marker quality (i.e., low percentage
of missing genotype scores) over quantity. Our SFP identification
method may be too conservative in situations where thousands
of markers are desirable, for example, when mapping as many
genes as possible. Our method gave a sufficient number of mark-
ers and detailed haplotypes for this mapping population of 148
lines. Additional putative markers could have been identified by
employing less stringent criteria. However, because of near satu-
ration of the detection of recombination break-points, unless the
population size is expanded to provide additional recombination
events, increasing the number of markers is uninformative.

High-density dominant markers and residual heterozygosity

Since both GEMs and SFP markers are dominant markers, they
cannot be used reliably to identify heterozygous loci. Our highly
homozygous F9 RILs are expected to contain <1% residual het-
erozygosity (3.05% heterozygosity was present in the F6 genera-
tion) (Loudet et al. 2002). These rare heterozygous regions might
be evident in individual RILs either as contiguous regions of
missing data for markers that were robust in other RILs, or as
regions with multiple markers showing high frequencies of ap-
parent double crossovers. Since either parent can provide the
dominant allele, the haplotype in a heterozygous region could
alternate between the two parental allele genotypes, resulting in
a haplotype with numerous apparent crossovers. In the 148 Bay-
0 � Sha F9 RILs, there are only a few regions with anomalous levels
of missing data and double crossovers. Examples of each type of
anomalous region suggesting residual heterozygosity
can be seen in linkage group 1 of lines 85 (near marker nga128) and
88 (between markers nga128 and F5I14) in Supplemental Figure 6b.

Future directions

We are using the high-density haplotypes and the genetic map to
dissect the genetic determinants of ELPs via expression QTL map-
ping. The large number of markers available to us will allow se-
lection of the most informative (i.e., evenly spaced and unique)
markers. Since markers are no longer a limiting factor, research-
ers can now devote their resources to performing studies with
adequate numbers of recombinant individuals, in order to in-

crease the statistical power for the accurate detection of eQTLs
(de Koning and Haley, 2005).

Methods

Plant material and experimental conditions
Seeds for A. thaliana accessions Bayreuth (Bay-0), Shahdara (Sha),
and a Bay-0 � Sha F8 RIL population were obtained from TAIR
(http://www.arabidopsis.org; this population was originally de-
veloped by Loudet et al. (2002) (http://www.inra.fr/qtlat). The
RIL F8 plants and parental accessions were grown in a single
growth chamber to produce sufficient F9 seed for replicated ex-
periments.

Preliminary replicated factorial experiments were conducted
with Bay-0 and Sha plants grown on three separate dates in a
growth chamber under short day conditions (8 h light at 100–
120 µEi, 20°C day/ 20°C night) to maintain plants in the vegeta-
tive phase. As part of a larger experiment investigating differen-
tial gene expression, at 6 wk these plants were sprayed to run-off
with 0.02% Silwet L77, a surfactant (Lehle Seeds; http://
www.arabidopsis.com) as a control treatment. All rosette leaves
of three plants per genotype-time point combination were bulk
harvested 4, 28, or 52 h post-treatment and quick-frozen in liquid
nitrogen. The same tissue and developmental stage was used for
all of the experiments described here.

Subsequently, the Bay-0 � Sha RIL experiment was con-
ducted. Five plants for each replicate of 148 RILs, plus parental
controls, were grown in growth chambers under short day con-
ditions (8 h light at 100–120 µEi, 20°C day/ 20°C night) for 6 wk.
At 6 wk, the plants were sprayed to run-off with 0.02% Silwet L77
and harvested 28 h later. All rosette leaves of three plants per
genotype were bulk harvested and quick-frozen in liquid nitro-
gen. Because of limitations in growth chamber space, the two
biological replications of 148 RILs plus controls were grown se-
quentially, one complete replication at a time.

RNA isolation and microarray hybridization
RNA was extracted, labeled, and hybridized to Affymetrix ATH1
GeneChips representing 22,810 genes, as previously described
(Kliebenstein et al. 2006). GeneChips were scanned on an Af-
fymetrix GeneArray Scanner using GCOS software (Affymetrix).
Two microarray data sets from independent experiments were
generated: Bay-0 and Sha parental data from factorial (treat-
ment � time � genotype) experiments, and a RIL data set con-
sisting of two biological replicates of 148 RILs plus Bay-0 and Sha
parental controls.

Microarray quality control
The scanned image of each GeneChip was visually inspected for
artifacts and standard quality control parameters were checked in
accordance with the manufacturer’s recommendations (Gene-
Chip Expression Analysis Data Analysis Fundamentals; http://
www.affymetrix.com). In addition, the RIL assignment for each
GeneChip data set was confirmed by examining the expression
levels of 192 genes with allele-specific expression levels and clus-
tering the microarrays based on genotype (Python MadMapper
RECBIT V248, http://cgpdb.ucdavis.edu/XLinkage/MadMapper)
to ensure that biological replicates clustered together as true rep-
licates. The haplotypes determined with the GEMs and SFP mark-
ers were consistent with those determined previously by micro-
satellite analysis of genomic DNA for each of these 148 RILs
(http://www.inra.fr/qtlat), thus confirming that the data for each
GeneChip was derived from the designated RIL.
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Microarray data analysis for genotyping with GEMs

Selecting candidate GEMs from the factorial experiment GeneChips
To allow comparisons of gene expression values across Gene-
Chips, global scaling was used to adjust the trimmed mean signal
of each GeneChip probe array to a target signal value of 600
(GeneChip Operating Software User’s Guide, version 1.3, http://
www.affymetrix.com/support/technical/index.affx). Scaled gene
expression values were obtained for all 22,810 ATH1 probe sets
for the 16 Bay-0 and 16 Sha GeneChips from the factorial experi-
ments. For each gene, 16 expression values were averaged for
each parental genotype, and the mean Bay-0 gene expression
values were compared to the mean Sha expression values to iden-
tify differentially expressed genes. The average gene expression
comparison identified 1431 genes with a twofold or higher dif-
ferential expression ratio between the two genotypes. This two-
fold ratio was empirically chosen through an iterative process to
balance the number of potential markers identified with the ro-
bustness of the final markers after genotyping and filtering.

In addition to examining differences in gene expression lev-
els, we also considered the distributions of parental gene expres-
sion values. For each gene, the minimum and maximum gene
expression values within the 16 GeneChips from a given parental
genotype were used to define the end-points of the parental
expression distribution for that gene (Bay-0min/Bay-0max and
Shamin/Shamax) and to compare the expression value distribu-
tions from the two genotypes. We estimated the distance be-
tween the parental gene expression value distributions by calcu-
lating the “gap” for each differentially expressed gene, by divid-
ing the minimum value from the higher expressing parent by the
maximum value for the lower expressing parent. For example, in
genes where the average Sha expression values were greater than
the average Bay-0 expression values, gap = Shamin/Bay-0max. If
the parental expression value distributions did not overlap, the
gap calculation yielded a value >1. Inclusion of the gap criterion
enforces selection of genes whose expression levels exhibit bimo-
dal distributions in the parents, since our goal was to use these
genes as markers. Of the 1431 differentially expressed genes, 324
had a gap value �1.0; these 324 were potential GEMs.

Defining allele scoring rules for genotyping the RILs
Scaled gene expression values were obtained for the 324 genes
from two GeneChips for each of 148 RILs (representing two in-
dependent Silwet-treated biological replications of each RIL) and
four Silwet-treated replications of each parent, grown concur-
rently with the RILs as controls. Genotypes for each of the 324
potential GEMs were scored as Bay-0 or Sha in the RILs using the
RIL microarray data and the boundaries defined by the endpoints
of the parental gene expression value distributions from the fac-
torial experiment. Inclusion of Bay-0 and Sha controls grown
concurrently with the RILs provided an internal control for the
genotyping methodology.

If RIL gene expression values fell between the factorial ex-
periment parental distributions, this created ambiguous geno-
types in the RILs, resulting in missing scores. To minimize the
number of missing genotype scores in the RILs that resulted from
using only 16 replicates of each parental genotype, we developed
a slicing approach, in which each parental distribution was sliced
into 1000 segments (see Supplemental Fig. 9). If the Bay-0 and
Sha gene expression value distributions showed a gap >1.1, one
segment was added sequentially to the appropriate end of each
parental distribution until the adjusted gap was equal to 1.1. For
example, for genes where Sha is the higher expressing parent,
slices were iteratively added to the lower end of the Sha distribu-

tion to decrease the Shamin value, resulting in an adjusted Shamin

value, Shamin-adj. Slices were likewise added to the higher end of
the Bay-0 distribution. If the Bay-0 and Sha parental distributions
were close together, with a gap <1.1, slices were subtracted itera-
tively from each parental distribution until the gap was equal to
1.1. Again, this resulted in adjusted distribution endpoints. By
dividing each parental distribution into 1000 segments, the slic-
ing approach conservatively and incrementally refined the pa-
rental distribution boundaries to better fit the boundaries of the
RIL data and minimize missing marker data (allele assignments)
in the RILs. The slicing approach is in effect a model optimiza-
tion algorithm that attempts to maximize the use of the full data
set for allele assignments.

GEM allele scoring
The adjusted parental gene expression value boundaries were
used to develop genotype scoring rules for each of the 324 po-
tential GEMs. For genes where Bay-0 is the higher expressing
parent, RILs were assigned a Bay-0 genotype if the gene expres-
sion value was greater than Bay-0min-adj and a Sha genotype if the
gene expression value was less than Shamax-adj. RILs exhibiting a
gene expression value between Shamax-adj and Bay-0min-adj were
scored as missing for that GEM. In the case of GEMs where Sha is
the higher expressing parent, the opposite genotype assignments
were made. The biological replicates were scored independently,
resulting in two genotype scores per RIL for each of the 324
potential GEMs.

A custom Python script was written to use the slicing ap-
proach to adjust the parental distributions and then to assign
genotype scores based on RIL GeneChip expression data (http://
elp.ucdavis.edu/data/analysis/elp_map/). A “master locus” file
was generated with raw expression marker genotypes, in which
Bay-0 (B) or Sha (A) genotypes were assigned only if both repli-
cate RIL GeneChips gave identical genotypes for a GEM; other-
wise the marker was scored as a missing genotype for that RIL.

The master locus file was processed by the Python MadMap-
per RECBIT program version V248 (http://cgpdb.ucdavis.edu/
XLinkage/MadMapper/) to filter the data set. GEMs with >10%
missing data were excluded, as were markers displaying pro-
nounced distortion (1:3 or greater) from the expected 1:1 allele
distribution in the RILs.

Microarray data analysis for SFP marker genotyping
For the detection of SFPs as genetic markers, we analyzed the
hybridization data from each of the 11 Perfect Match (PM) oli-
gonucleotide probes per gene from each ATH1 GeneChip. The
raw .CEL files generated by GCOS software (http://www.
affymetrix.com) were subjected to a background correction by
using the Robust Multichip Average (RMA) method (Irizarry et al.
2003) of the affy package (Gautier et al. 2004) with Bioconductor
software (Gentleman et al. 2004; http://www.bioconductor.org/).
To identify SFPs, we developed a summary measure to describe
each probe in relation to the other 10 probes within the probe
set. This summary measure, termed SFPdev, is calculated by using
the formula: SFPdev = |hybridization signal probe #1 � average
hybridization signal other 10 probes|/hybridization signal probe
#1. The numerator measures the difference between an indi-
vidual probe and the average across the other probes for that
probe set; SFPs will have a larger difference from the probe aver-
age. This summary measure minimizes variation due to differen-
tial gene expression that impacts the probe set as a whole. The
use of the probe of interest as the divisor enhances the spread of
values such that extremes will be biased toward true SFPs. A Perl
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script was used to calculate the SFPdev ratio for all PM probes in
each probe set for every probe set on the GeneChip.

Two different methods and algorithms were developed to
use SFPdev values to detect and use SFPs as genetic markers. The
first algorithm identified SFPs by using the 32 parental Gene-
Chips from the factorial experiments and then assigned marker
genotypes to the 148 RILs based on the parental SFPdev distri-
butions. The second algorithm identified SFPs by using the RIL
GeneChips and used the RIL SFPdev distributions, in conjunc-
tion with the parental SFPdev distributions, to assign marker
genotypes.

Parental min-max
The first algorithm, “parental min-max,” calculated a gap value
in a manner similar to that described in the GEM section, to
define parental SFPdev distributions (see Supplemental Fig. 4).
The minimum SFPdev value from the 16 factorial experiment
GeneChips of one parent was divided by the maximum SFPdev
value of the 16 GeneChips from the other parent and vice versa.
A SFP was declared if a gap value >2.0 was found. A gap value of
2.0 was empirically chosen to provide the best balance between
marker number and marker robustness in the final set of filtered
SFP markers. The min and max SFPdev values generated by the
parental min-max algorithm were used to assign genotypes for
each SFP marker, using the two GeneChips per RIL (correspond-
ing to two biological replicates) for all 148 RILs.

RIL distribution
The second algorithm, “RIL distribution” (SFPscanV10.pl, avail-
able at http://elp.ucdavis.edu/data/analysis/sfp_map/SFPscan.
html), first searched for a bimodal distribution in the SFPdev
values with a gap >2.0 for all ∼251,000 PM probes on the Gene-
Chip using replicate microarrays from all 148 RILs. Next, the
algorithm checked if the parental SFPdev values from the four
control GeneChips fell in separate ranges of the RIL distributions.
If these rules were satisfied, the extremes of the RIL SFPdev values
were then used to define boundaries for genotype scoring. These
boundaries were used as described above to assign an allele geno-
type for each putative SFP marker for each GeneChip for all RILs,
providing two genotype scores per SFP marker per RIL.

SFPdev values falling between the min and max values (pa-
rental min-max algorithm) or falling between the bimodal dis-
tributions (RIL distribution algorithm) were scored as missing
genotype data. In both algorithms, a genotype was only assigned
to a RIL if the SFP marker had identical genotypes in both bio-
logical replicates for that RIL. SFP markers were discarded after
genotyping if >10% of the RILs were scored as missing, or if the
marker exhibited an extremely distorted allele frequency (�1:4).

Map construction
The genotype scores of the 148 RILs for the two sets of markers
(GEMs and SFPs) were used to calculate pair-wise recombination
values between markers using the MadMapper RECBIT Python
program V248. CheckMatrix (py_matrix_2D_V248_RECBIT.py)
Python script (version 248) was then used to create a graphical
genotyping map and a heat map of linkage values. Markers were
clustered using MadMapper software V248. All Python scripts
and software listed above are available at http://cgpdb.ucdavis.
edu/XLinkage/MadMapper/. Physical positions of the markers
were obtained from Arabidopsis annotation version 4, TIGR re-
lease May 2003 (ftp://ftp.tigr.org/pub/data/a_thaliana/ath1/
PREVIOUS_RELEASE_VERSIONS/release4.tar.gz). GenBank files
were processed by GenBank parser (http://cgpdb.ucdavis.edu/
GenBankParser/). Physical positions of the 38 reference micro-
satellite markers previously mapped in this RIL population (Lou-

det et al. 2002) were obtained through a BLAST (Altschul et al.
1997) analysis of the PCR primer sequences (Loudet et al. 2002)
for each microsatellite marker. Genetic positions of the GEMs
and SFP markers, and the reference microsatellite markers, were
calculated with JoinMap 3.0 (Plant Research International, Wa-
geningen, the Netherlands) using the default options.
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