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Abstract

This paper proposes a filtering method for high-
density impulse noise removal based on the fuzzy
mathematical morphology using t-norms. The
method is a two phased method. In the first phase,
an impulse noise detector based on the fuzzy top-
hat transforms is used to identify pixels which are
likely to be contaminated by noise. In the sec-
ond phase, the image is restored using a special-
ized regularization method using fuzzy open-close
or fuzzy close-open sequences applied only to those
selected contaminated pixels and applying then a
block smart erase algorithm. Experimental results
show that the proposed algorithm presents a better
performance in terms of edge preservation and noise
suppression than other nonlinear filtering methods,
including the presented in [1], in which this method
is based on.

Keywords: Mathematical morphology, t-norm,
residual implication, high probability impulse noise,
noise reduction, nonlinear filter, open-close filter.

1. Introduction

Digital images are systematically affected by noise
during their acquisition, transmission or recording.
This is a major problem for many image processing
techniques since they cannot work well in a noisy
environment. Consequently, a preprocessing step to
deal with this fact is mandatory. Thus, in artificial
vision, many techniques of interpretation, measure-
ment, segmentation or detection of structures re-
quire the removal, reduction and smoothing of noise
in order to improve their performance. However,
the noise removal techniques must be applied look-
ing for a compromise between the effective suppres-
sion of the noise while preserving the fine texture
and edges.

There exist different noise types which can affect
an image. The most well-known and studied noise
types are the additive noise, the multiplicative noise
and the impulse noise. The additive noise is based
on adding to each pixel value a random value from a
certain distribution, usually a Gaussian distribution
leading to the Gaussian noise. On the other hand,
the images corrupted with multiplicative noise are
characterized by the fact that the noise depends on
the intensity of the pixel. For instance, speckle noise
is an example of multiplicative noise. Finally, the

impulse noise is based on the replace of a percentage
of the pixels by a fixed value (usually the minimum
or the maximum possible value) or a random value
(usually from a uniform distribution). The removal
of this last noise type is going to be the main target
of our contribution.

Impulse noise removal has been a recurring topic
in these last years. Several methods have been pro-
posed to remove this noise type. In [2] a decision-
based, signal adaptive median filtering algorithm for
removal of impulse noise is proposed. In [3], a vari-
ation of the Windyga’s peak-and-valley filter ([4])
based on a recursive minimum-maximum method,
which replaces the noisy pixel with a value based
on neighbourhood information is presented. In the
paper [5], a new decision-based algorithm is pro-
posed for restoration of images that are highly cor-
rupted by impulse noise. The algorithm removes
only corrupted pixels taking into account the me-
dian value of the values of its neighbouring pixel
values. Then, in [6] a new impulse noise detector
is presented. This detector is based on the differ-
ences between the current pixel and its neighbours
aligned with four main directions. Next, the detec-
tor is combined with the weighted median filter to
get a new directional weighted median filter. Fi-
nally, an impulse noise detector using mathemati-
cal residues is proposed in [1]. This method tries to
identify pixels that are contaminated by the salt or
pepper noise. The image is then restored using a
sequence of open-close algorithms that it is applied
only to the noisy pixels.

Beyond all the previous methods, some recent
methods based on fuzzy logic have been proposed.
For example, in [7] a new framework for reducing
impulse noise from digital color images is presented,
in which a fuzzy detection phase is followed by an
iterative fuzzy filtering technique. In [8] a novel im-
pulsive noise elimination filter combining a double
noise detector with an adaptive neural fuzzy infer-
ence system is proposed. In addition, we can find
methods to remove random impulse noise in color
video sequences in the literature. For example, in
[9] where different successive filtering steps are ap-
plied.

On the other hand, fuzzy mathematical mor-
phology, which is the generalization of binary mor-
phology [10] using techniques of fuzzy sets (see
[11, 12, 13, 14]), has shown a great potential in im-
age processing. In particular, fuzzy mathematical
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morphology plays an important role in many appli-
cations like among others segmentation and edge de-
tection (see [15, 16, 17]) and filtering (see [18, 19]).
Thus, in this paper we want to propose a novel filter-
ing method for impulse noise removal by extending
the method presented in [1] to fuzzy mathematical
morphology. In this extension, the fuzzy mathemat-
ical operators and their fuzzy mathematical residues
will be used in order to allow a better treatment
and a representation with greater flexibility of the
uncertainty and ambiguity present in any level of
an image. In addition, this new method will show
a better behaviour of the performance of the algo-
rithm with respect to an increase of the amount of
noise compared with the algorithm presented in [1].
The results are objectively compared using the well-
known Peak to Signal-Noise Ratio (PSNR) measure.
Our method outperforms the non-fuzzy one for low
amounts of noise while its performance is similar
for images corrupted with high amounts of noise.
Other non-linear filtering algorithms are also com-
pared such as the standard median filter, an adap-
tive median filter and the Decision-Based algorithm
proposed in [5].

The communication is organized as follows. In
the next section, the impulse noise model and the
definitions and properties of the fuzzy morpholog-
ical operators are recalled. In Section 3 the pro-
posed novel algorithm based on fuzzy mathematical
morphology is explained. Then, in Section 4, the
objective performance comparison based on PSNR
among our method and some noise filtering algo-
rithms is performed. Finally, in the last section,
some conclusions and future work are pointed out.

2. Basic definitions

2.1. Impulse noise models

Images are often corrupted by impulse noise due to
errors by noisy sensors or transmissions channels.
Impulse noise refers to a wide variety of processes
that result in the same basic image degradation:
only a few pixels are corrupted, but they are very
noisy. The effect is similar to sprinkling white and
black dots (salt and pepper) on the image. One ex-
ample is the “salt and pepper” noise which arises
when transmitting images over noisy digital chan-
nels.

To be more precise, let xi,j be the gray level image
of the original image x at the pixel location (i, j).
Denote by y a noisy image, then the observed gray
level at the pixel location (i, j) is given by

yi,j =

{

xi,j with probability 1 − p,
νi,j with probability p.

(1)

where (i, j) ∈ {1, . . . , M} × {1, . . . , N}, and νi,j is
an identically distributed, independent random pro-
cess with and arbitrary underlying probability den-
sity function [20], that is the intensity value of the

noisy pixel. There are two types of impulse noise,
one is the “salt and pepper” noise and the other
is random-valued impulse noise. In early impulse
noise models, noisy pixels are often replaced by al-
ternative values smin and smax, where [smin, smax]
is the image dynamic range, so that, the observed
gray level is given by

yi,j =











smin with probability p

smax with probability q

xi,j with probability 1 − (p + q),

where r = p + q defines the noise level. The model
(1) is a more general model in which the noisy pixel
is taken as an arbitrary value in the dynamic range.

2.2. Fuzzy logic morphological operators

Fuzzy morphological operators are defined using
fuzzy operators such as fuzzy conjunctions, like t-
norms, and fuzzy implications. More details on
these logical connectives can be found in [21] and
[22], respectively.

Definition 1 A t-norm is a commutative, associa-
tive, non-decreasing function T : [0, 1]2 → [0, 1] with
neutral element 1, i.e., T (1, x) = x for all x ∈ [0, 1].

Next we recall the definition of fuzzy implications.

Definition 2 A binary operator I : [0, 1]2 → [0, 1]
is a fuzzy implication if it is non-increasing in the
first variable, non-decreasing in the second one and
it satisfies I(0, 0) = I(1, 1) = 1 and I(1, 0) = 0.

A well-known way to obtain fuzzy implications
is the residuation method. Given a t-norm T the
binary operator

IT (x, y) = sup{z ∈ [0, 1] | T (x, z) ≤ y}

is a fuzzy implication called the residual implication
or R-implication of T .

Using the previous operators, we can define the
basic fuzzy morphological operators such as dilation
and erosion. We will use the following notation: T

denotes a t-norm, I a fuzzy implication, A a grey-
level image, and B a grey-level structuring element.

Definition 3 ([12]) The fuzzy dilation DT (A, B)
and the fuzzy erosion EI(A, B) of A by B are the
grey-level images defined by

DT (A, B)(y) = sup
x

T (B(x − y), A(x))

EI(A, B)(y) = inf
x

I(B(x − y), A(x)).

From the fuzzy erosion and the fuzzy dilation, the
fuzzy opening and the fuzzy closing of a grey-level
image A by a structuring element B can be defined
as follows.
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Definition 4 ([12]) The fuzzy closing CT,I(A, B)
and the fuzzy opening OT,I(A, B) of A by B are the
grey-level images defined by

CT,I(A, B)(y) = EI(DT (A, B), −B)(y),
OT,I(A, B)(y) = DT (EI(A, B) − B)(y).

A more detailed account on these operators,
its properties and applications can be found in
[12, 14, 17, 23]. In particular, when I is the residual
implication of T , most of the usual properties of a
mathematical morphology hold.

3. The proposed algorithm

The proposed algorithm is based on an extension
to fuzzy mathematical morphology of the algorithm
presented in [1] which is a classical mathematical
morphology based method. The method is divided
in two main steps. The first one is a preliminary
identification of corrupted pixels in an effort to
avoid the processing of pixels which are not cor-
rupted by impulse noise. In the second one the fil-
tering method is applied only to those pixels iden-
tified as noise in the first step.

3.1. Fuzzy morphological residue detector

The fuzzy mathematical morphological residues of
Top-Hat and Dual Top-Hat operators are used to
detect noisy pixels. Since the fuzzy opening removes
salt impulse noise and the fuzzy closing removes
pepper impulse noise, through the Top-Hat opera-
tors the salt and pepper pixels noises can be notably
determined. In general, these transformations find
structures which have been removed by the opening
and closing filters and the residua between the orig-
inal image and the filtered image increases notably
the contrast of the erased regions (see [10]). So, the
Top-Hat transformations are defined as follows

ρT,IT
(A, B) = A \ OT,IT

(A, B) (Top-Hat)
ρd

T,IT
(A, B) = CT,IT

(A, B) \ A (Dual Top-Hat).

At this point, noise pixels are detected by compar-
ing these two images with a threshold T :

rT,IT
(A, B) =























1 if ρT,IT
(A, B) ≥ T

and ρd
T,IT

(A, B) = 0,

−1 if ρT,IT
(A, B) = 0

and ρd
T,IT

(A, B) ≥ T,

0 otherwise.

Now, if rT,IT
(A, B)(i, j) = 1, then A(i, j) is con-

sidered as salt noise or if rT,IT
(A, B)(i, j) = −1,

as pepper noise. When one of these two types of
noisy pixels is detected, the corresponding general-
ized fuzzy open-close sequence of the next step is
applied. If rT,IT

(A, B)(i, j) = 0, the pixel is uncor-
rupted and it remains without change.

3.2. Fuzzy Open-Close Sequence Algorithm

In this step, two filters using adequate fuzzy open-
close sequences are applied to the corrupted pixels.
The first one, which is called fuzzy open-close filter
(FOCF) is defined as follows:

FOCFT,IT
(A, (B1, B2)) = CT,IT

(OT,IT
(A, B1), B2)

where B1 and B2 are two structuring elements. This
filter is applied to remove the salt noise pixels. In
particular, the size of B1 must be small enough to
preserve the details of the image and the size of
B2 must be larger than of B1 in order to eliminate
powerfully the pepper noise pixels which have been
not removed by the fuzzy opening.

In the same way, the fuzzy close-open sequence
filter (FCOF) is defined as follows:

FCOFT,IT
(A, (B1, B2)) = OT,IT

(CT,IT
(A, B1), B2)

where B1 and B2 are again two structuring ele-
ments. Analogously to the previous filter, this filter
is applied to remove the pepper noise pixels.

However, the noises whose size is larger than the
size of B1 will not be removed and in fact, they
are propagated in the image. This fact leads to the
generation of some undesired white (or black) blocks
in the filtered image. To avoid this behaviour, the
so-called Block Smart Erase (BSE) algorithm is ap-
plied. It is based on the median of the surrounding
pixels. The details are the following:

1. Consider an N×N (it is recommended N = 5, 7
or 9) window centred at the test pixel.

2. If A(i, j) ∈ {0, 255} then we have an absolute
extreme value and step 3 must be applied. Oth-
erwise, the pixel is not altered.

3. If an extreme value is detected, assign the me-
dian value of the window as its gray-level value.

Finally, the FMMOCS filter can be defined
as the arithmetic mean of the two previous
fuzzy open-close and close-open sequence fil-
ters after applying the BSE algorithm, that is,
FMMOCST,IT

(A, (B1, B2)) =

=
BSE(FOCFT,IT

(A, (B1, B2)))
2

+
BSE(FCOFT,IT

(A, (B1, B2)))
2

.

4. Simulation results

In this section the performance of the proposed
method will be evaluated and compared with other
well-known methods for filtering noisy images which
are corrupted by impulse noise. Comparisons
are made with other nonlinear filtering techniques,
specifically, a standard 3 × 3 and 5 × 5 median fil-
ter (SMF), an adaptive median filter (AMF) with
a maximun allowed size of the adaptive filter win-
dow (Smax) of 9 and 17, the Decision-Based algo-
rithm (DBA) a nonlinear filter designed by Srini-
vasan and Ebenezer (DBA) in [5] and finally, the
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Noise PSNR
DBA SMF3 SMF5 AMF9 AMF17 FMMOCS OCS FMMOCSflat OCSflat

10 30,2896 32,2722 29,2999 37,1820 37,1820 33,5973 29,7633 32,2427 31,6873
20 29,7204 28,4986 28,2710 34,7001 34,7001 31,5054 31,0747 31,5612 31,1085
30 29,0282 23,4083 26,0472 32,8516 32,8216 30,5352 31,1533 31,1954 29,6786
40 28,0453 18,5460 25,5084 30,7554 30,7554 29,9621 30,4075 30,3865 28,3672
50 26,8784 14,8950 22,4622 29,2463 29,2463 29,2843 29,3507 29,3425 27,3714
60 25,1899 12,1165 18,4381 27,3981 27,4294 28,2932 28,4292 28,4284 26,5269
70 23,7784 9,74390 13,8772 24,9704 25,7660 27,1356 27,4667 27,4667 25,7700
80 21,5853 7,84570 10,1319 18,7670 23,7004 25,1708 26,0970 26,0963 24,8901

Table 1: PSNR for various filters for Lenna image at different noise densities.

open-close sequence (OCS) algorithm done in [1]
and based on classical grey-level mathematical mor-
phology. The performance of the algorithm is tested
with different gray scale images such us “lenna.tif”
an image with homogeneous regions and representa-
tive for low detail images, “cameraman.tif” and “la-
cornou.tif” for medium detail images, and the image
“walkbridge.tif” and “baboon.tif” with high activ-
ity. Their dynamic range is [0, 255]. In the simula-
tions, images are corrupted by impulse noise (“salt
and pepper” noise), where 255 represents “salt” and
0 represents the “pepper” noise with equal proba-
bility. Also a wide range of noise levels varied from
10% to 80% with increments of 10% will be tested.
We have not increased the percentage of impulse
noise for above the 80% because the methods re-
move effectively the noise but the edges are not
preserved, except the SMF which performs badly
in both aspects.

In this stage of our study the restoration perfor-
mance is quantitatively measured by peak signal-
to-noise ratio (PSNR) defined by

P SNR = 10 log
10

(

R2

MSE

)

where R is the maximum fluctuation in the input
image and MSE is the mean-squared error com-
puted using the following expression:

MSE =

∑

m,n

(I1(m, n) − I2(m, n))2

M × N

where I1 is the original image, I2 the restored image,
and M ×N is the size of the images. More measures
can be used, as can be seen in our previous works
on denoising using fuzzy mathematical morphology
[24, 25, 26, 27]. In [28] the authors used the PSNR
and the correlation, Srinivasan and Ebenezer in [5]
measure the performance of the algorithm using the
PSNR and the “image enhancement factor” (IEF),
and in [29, 30] together with the PSNR the per-
formance of the proposed algorithms is measured
using the “mean absolute error” (MAE). The struc-
tural similarity index measure (SSIM) is used also
in [31].

Recall that the proposed algorithm (FMMOCS)
depends on the threshold T and the size of the struc-
turing element sequence. The parameter T is easy
to set if we consider Figure 1 where we represent
PSNR versus T for the five images used in the ex-
periments. It is observed that there is a minimal
variation of PSNR in a wide range of T , so we set T

in 90, but it could have been taken even 0 as in [1],
and the results would have changed minimally. Fol-
lowing our previous works on noise reduction and
[1] we have fixed two types of structuring elements
sequence: a flat sequence of squares of sizes 5, 3
and 7, respectively, and a binary sequence of dia-
monds with the same sizes. These structuring ele-
ments with sizes 5, 3 and 7 correspond to the struc-
turing elements B, B1 and B2, respectively, of the
algorithm explained in Section 3. When the flat
squares are used, we will denote the algorithm by
“FMMOCSflat” and simply by “FMMOCS” when
binary diamonds are considered. The same nota-
tion is used for the OCS algorithm proposed in [1].

Figure 1: PSNR values for different values of T for
a 70% of noise density.

To quantitatively measure the performance of our
filtering algorithm versus other methods, the re-
sults, measured with PSNR (dB), from 10% to 80%
impulsive noise, are shown in Figure 2 (and table
1 for the Lenna image). It is seen that the per-
formance of the proposed algorithm is better than
or comparable to the other filters when the noise
ratio is higher than 45% while it is only overcome
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Figure 2: PSNR values for different filters operating on the images at various noise level. Left: “Lenna”
image. Right: “walkbridge” image. Top: plots for all filters. Down: plot for open-close sequence based filters
and the two types of structuring elements.

by SMF17 for lower amounts of noise. Also FM-
MOCS filter performs robustly over all the noise
range and represents a slowly decreasing curve at
the beginning of the range and when the noise ra-
tio significantly increases. Other filters fall down
abruptly generating worse results when the noise
ratio is high. The performance of the DBA filter is
similar to the proposed algorithm, but in our case
the PSNR values are better. In the case of 90% all
filters have a behaviour which a detail-preserving
regularization is not obtained and the edges are not
preserved. These conclusions can be extended to
the other images since similar curves were obtained
with these other ones. Also, in Figure 2 the plots of
PSNR curves versus noise level for the “walkbridge”
image can be observed. There, the odd behaviour
of the OCS algorithm can be observed. Note that it
obtains a worse result for the image corrupted with
10% of noise than for the one corrupted with 20%.
On the other hand, the FMMOCS is more robust
in this sense since the curve is strictly decreasing
as well as the rest of the algorithms. From Fig-
ure 3 to Figure 8 we present restoration results for
several different noise levels and images. Note that
in Figure 6 we display some of the restored images
whose PSNR values were collected in Figure 2. As
we can see from Figures 3, 7 and 8, the FMMOCS
algorithm gives the best performance in terms of
noise suppression and detail and edge preservation,
at least for the noise levels shown. It is because the
algorithm, from noise levels up to approximately
80%, seems to locate the noise accurately. So, the
proposed filter can remove most of the noise effec-
tively while well preserving the edge image details
of the image.

(a) Original image (b) Corrupted image

(c) SMF5 (d) AMF17

(e) DBA (f) FMMOCS

Figure 3: Simulation results of different filters for
the Lenna image corrupted with 70% noise. See
Table 1 for the PSNR values.
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(a) Original image (b) Corrupted image

(c) SMF5 (d) AMF17

(e) DBA (f) FMMOCS

Figure 4: Simulation results of different filters for
the Lenna image corrupted with 80% noise. See
Table 1 for the PSNR values.

(a) Original image (b) Corrupted image

(c) FMMOCS
(PSNR=22.0782 dB)

(d) FMMOCSflat
(PSNR=22.2992 dB)

Figure 5: Restoration results for FMMOCS filter
for the “baboon” image with 80% noise using the
two sequences of structuring elements.

(a) Corrupted image
60%

(b) FMMOCS
(PSNR=26.8085 dB)

(c) Corrupted image
70%

(d) FMMOCS
(PSNR=25.8371 dB)

(e) Corrupted image
70%

(f) FMMOCS
(PSNR=23.2301 dB)

(g) Corrupted image
80%

(h) FMMOCS
(PSNR=21.9147)

Figure 6: Restoration results for FMMOCS using
binary elements for the “walkbridge” and “lacornou
images” corrupted with several amounts of noise.

5. Conclusions and future work

In this paper, we have presented a novel filtering
method for impulse noise corrupted images based on
the fuzzy mathematical morphology using t-norms.
The algorithm extends the method presented in [1]
to the fuzzy framework using the fuzzy mathemat-
ical operators and residues. The obtained results
show that the new algorithm outperforms the non-
fuzzy one and other well-established nonlinear fil-
tering methods from both the visual point of view
and the PSNR values. As future work, we want
to deal with random values impulse noise since we
hope that the fuzzy approach can be very compet-
itive for its removal. In addition, the performance
of the fuzzy mathematical morphologies based on
uninorms could be worthy to study.
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(a) Original
detail

(b) Corrupted
image

(c)
FMMOCSflat

(d) FMMOCS (e) OCSflat (f) OCS

(g) DBA (h) AMF17

Figure 7: Detail of the “cameraman” image cor-
rupted with 70% noise and its restoration results
for several nonlinear filters.
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