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We introduce a new Monte Carlo method suitable for simulations of chain molecules over a
wide range of densities. Results for the equation of state of chains composed of 4, 8, and 16
freely joined hard spheres are compared with the predictions of several theories. The density
profile of the fluid in the vicinity of the wall, and the scaling of the pressure with chain length

are also discussed.

I. INTRODUCTION

The statics and dynamics of fluids composed of chain
molecules are topics of continuing interest, for basic theo-
retical as well as technological reasons.'~* Despite this inter-
est, it is only recently that progress has been made toward
developing accurate equations of state for simple model
fluids (e.g., hard-sphere chains) in continuous space,*” and
there is also a paucity of simulation data for such models. In
view of the central role that the theory of the hard-sphere
system has played in understanding monatomic fluids,® it is
natural to expect that a clear understanding of the hard-
sphere chain fluid will spur progress in the study of more
realistic models of polymeric fluids. In this paper we present
a new method for determining the equation of state from
simulations of model chain-molecule fluids, and compare
our results with the predictions of several theories.

In a recent paper (Ref. 6, referred to as I in the follow-
ing), we pointed out the discrepancy between the Flory lat-
tice equation of state® and the behavior of chains in contin-
uous space. We proposed that instead of directly applying
the formula derived for the lattice model, the mean-field ap-
proach should be generalized by adopting, in a continuous-
space context, the probabilistic assumptions invoked in
Flory’s theory. The resulting predictions for the equation of
state compared quite favorably with the results of our Monte
Carlo simulations of hard-sphere and hard-disk chains.
However, the simulation method (test-chain insertion) em-
ployed in I did not permit investigation of the very interest-
ing high-density regime, and was not well suited to the study
of longer chains. In this paper we introduce a new simulation
method, applicable over the full range of fluid densities, in
which the pressure is found from the density of chain seg-
ments in contact with the wall. (The relation between pres-
sure and hard-wall contact density has been known for a
long time'® in the case of monatomic fluids, but has not, to
our knowledge, been employed previously for determining
the equation of state.) We describe the method in Sec. II. In
Sec. ITI we present our results for fluids composed of chains
of 4, 8, and 16 freely jointed hard spheres, and compare them
with the predictions of several theories.
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{l. MONTE CARLO METHOD

In our previous simulations of chain molecules (1) the
pressure was derived from the probability of nonoverlapping
insertion of a ““test chain” into an existing configuration. As
the volume fraction 7 = pmo*/6 (o is the hard-sphere diam-
eter) is increased, the insertion probability decays rapidly,
and cannot be accurately estimated in simulations. In studies
of chains composed of four tangent hard spheres, the test-
chain insertion method was found to be almost useless be-
yond % = 0.24. (For comparison, note that the hard sphere
system freezes at 7 = 0.497.) In simulations of monatomic
fluids, the pressure may be computed from the radial distri-
bution function g (7). However, this method is not useful for
molecular fluids with rigidly fixed bond lengths, since the
pressure formula involves intermolecular correlation func-
tions which depend on relative orientation as well as dis-
tance.!! Calculation of the pressure via this method would
require numerical estimation of three-body distributions.
The method described below is much more direct, and pro-
vides information about the structure of the fluid in the vi-
cinity of a wall. (Simulation in the constant-pressure ensem-
ble'*" is an alternative method for determining the equation
of state without computing correlation functions. It has yet
to be applied to chain-molecule fluids. )

Consider a monatomic fluid in the presence of a hard
wall, i.e., the potential

+ o0, x<0

2.1
0, x>0 (2.1)

Vix) = {

and let p(x) denote the particle density at a distance x from
the wall. As was noted by Percus,'® the particles are effec-
tively decoupled at the wall, and revert to ideal-gas behavior:

p(0) =p/kyT=a* (2.2)
regardless of the intermolecular potential. Our Monte Carlo
method is based on a straightfoward extension of this obser-
vation to a fluid composed of chain molecules.

In our studies the simulation cell has hard walls at x = 0
and x = H. In the other directions we impose periodic
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boundary conditions with length L. The configurational par-
tition function for asystem of N, n-mers in such a cell is

Z(N,L,H) = (Np!)“fdx{” dx},;",’ e PV

X[I 0> 6(H — x{), (2.3)
i
where x{7 is the position of the jth segment on the ith chain,
and @(x) is the heaviside step function. U({x;}) is the po-
tential energy (including interactions between images in dif-
ferent periodic cells in the y and z directions). U also in-
cludes the intersegment potentials which define the chain
structure. For an isotropic fluid the pressure may be ex-
pressed in the form

1 4
™ =——IlogZ(N,L, H
) ( )

=(L2Z)™! fdxf” e dxf e Y

X[[6G:P)0(H —x) 3 8(xP — H)
i 7

=p(0), (2.4)

where

p(x) =1\:’,,(L22)_l i fdx;l) dx},;,',’
1=1

|| 8(x?)8(H — xP) dx{Pe PV (2.5)
i x;') =X

is the segment density at a distance x from the wall and 6(x)
is the Dirac delta function. The relation between pressure
and hard-wall contact density, Eq.(2.4), holds for general
interactions within and among molecules, since the potential
energy U is not affected by the H derivative. An alternative
route to Eq.(2.4) parallels Henderson and van Swol’s deri-
vation'* of Eq.(2.2), in which the condition of local hydro-
static equilibrium in an external potential is integrated from
the wall into the bulk fluid [see Egs. (2)-(6) of Ref. 14]. It
is trivial to extend this argument to a molecular fluid, if the
chain molecule structure is incorporated into the interseg-
ment potential U.

It is important to note that while the fluid is anisotropic
in the vicinity of the wall, p(0) represents the bulk pressure
(i.e., the volume derivative of the free energy), which is a
scalar quantity if the fluid is isotropic in bulk. In simulations
employing the hard-wall contact density for determination
of the pressure, it is important to check that the bulk fluid is
isotropic. If the simulation cell is too small, orientation ef-
fects imposed by the walls may propagate into the central
region, particularly at densities close to the freezing transi-
tion. As will be shown below, the present study is free of
significant anisotropy or finite-size induced errors.

In this work we consider monodisperse systems of flexi-
ble chains, composed of tangent hard spheres. The separa-
tion between centers of successive segments is fixed at unit
distance (one sphere diameter). Since the only interaction
between segments is hard-sphere volume exclusion, the
Boltzmann factor e ~#Y, for a given arrangement is either

zero or unity. The temperature dependence is then trivial,
and the model is said to be “athermal.”

It has been noted'>"” that the equilibrium properties of
this model depend on whether one imposes the fixed bond-
length constraint before or after performing the momentum
integrations in the partition function. Applying the con-
straints prior to momentum integration corresponds to the
usual canonical ensemble. This ensemble is the natural ap-
proach for describing the athermal model fluid under molec-
ular dynamics simulations, since it provides a proper ac-
count of the constraints affecting the momenta. (Note that
upon integration of the momenta, this ensemble yields a non-
uniform configuration space density.) The ensemble perti-
nent to our simulations (and to the theories against which
we compare our results!), is #no¢ the canonical ensemble, but
rather an ensemble in which the configuration space proba-
bility density is proportional to e ~#Y. In the present instance
of athermal chains, the configuration space density is uni-
form on the subspace of allowed (i.e., U =0) configura-
tions. In this ensemble, which evidently corresponds to the
usual Monte C8rlo sampling procedure, momenta are not
considered. In effect, the momenta have been integrated
over, prior to imposition of the fixed bondlength constraint.
The connection between canonical and ‘“Monte Carlo” en-
sembles can be made through the so-called “metric determi-
nant.”"’

Our configuration-space sampling procedure is as fol-
lows: Trial configurations are generated by (1) subjecting a
randomly chosen chain “/”’ to a random uniform displace-
ment: X9’ -x¥ 4 a (j=1,..,n), and (2) subjecting the
bond vectors e’ =xY+ D —x¥ (j= 1,..,n — 1) along the
chain to independent random displacements, subject to the
constraint |e?’| = 1. (This is accomplished by adding a ran-
dom vector b; to e’ and normalizing the resultant to unit
length.) In a straightforward application of the Metropolis
algorithm,'® trial configurations are accepted if and only if
they are free of overlap, both internally and with the walls.
The average magnitudes of the random vectors a and b; are
adjusted to achieve an acceptance rate of about 30%. To
estimate p(x), we divide the cell into slabs of thickness A and
compute the average segment density in each slab. This fur-
nishes estimates for p(x) at x = A/2, 3A/2, etc., from which
the contact density is extrapolated.

Initial configurations are prepared by inserting, without
overlap, randomly generated chains into the simulation cell.
In this manner one may attain volume fractions 7 0.28. To
reach higher densities, it is necessary to compress the system.
This is accomplished by moving the walls inward, so that
they are always in contact with the extreme segments, i.e.,
H=max;x” — min;;x?, and dH /dt<0. In some in-
stances compression was hastened by imposing anisotropic
displacement probabilities, driving the chains toward the
midplane of the cell. (The length L of the cell in the y and z
directions was fixed at 10 in simulations of 4- and 8-mers,
and at 12 in simulations of 16-mers.)

Initial configurations generated by chain insertion typi-
cally required a relaxation period of about 10° trials for the
density profile to attain a steady value. Relaxation periods of
from 2 X 10° to 6 X 10° trials were necessary for initial condi-
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tions prepared by compression. The final configuration of a
run was often used to generate the initial configuration for a
run at another density, attained by compression or expan-
sion. In such instances relaxation periods of at least 10° trials
were again required. Criteria used to determine whether the
system had relaxed were: (1) agreement between p(x) val-
ues near the upper and lower walls, (2) overall symmetry of
the density profile about x = H /2; and (3) steady values of
the pressure in successive runs at the same density (i.e., with
the final configuration of one run serving as the initial con-
figuration for the next). The last mentioned is the most strin-
gent condition, with (1) and (2) serving to rule out patently
nonequilibrium configurations.

Our estimates of the density profile are based upon a
series of at least ten runs, each consisting of at least 10° trial
moves. At higher densities, and for longer chains, longer
simulations were needed, extending to a maximum of 10’
(total) trial moves, in large-cell simulations at the highest
densities. The simulations with H< 16 were performed on a
microVAX-2; the CPU time per step was approximately
1.5X 107 n*N,, s. The large-cell simulations (H>20) were
performed on mainframes, with a CPU time of approximate-
ly 5107 n’N,, s per step.

In interpreting the simulation results it is essential that
the nonuniform distribution of segments be accounted for.
Since the simulations are intended to model a macroscopic
fluid which is uniform away from the wall, the physically
relevant density is the bulk value p, (or the corresponding
bulk volume fraction, 77, =4p,70>), in the central region
of the cell, rather than the average density. (Of course, if the
density profile shows significant variations in the central
portion of the cell, one cannot expect the simulation to re-
flect bulk fluid behavior.) The bulk density was computed
by averaging the density over the central region, i.e., the
region over which the density profile does not exhibit sys-
tematic variation. This region typically comprised the inner
60% of the cell, but in the high density studies with H<10,
the bulk density was estimated from a more restricted re-
gion.

Ill. SIMULATION RESULTS

We have performed Monte Carlo simulations of fluids
composed of chains of 4, 8, and 16 tangent hard spheres,
using the method described in the preceding section. We
begin our presentation of results with a discussion of the
segment-density profile. The density profile p(x) of a hard-
sphere (monatomic) fluid, in the presence of a hard wall, has
been found, in theoretical studies,'®'®?! and in simula-
tions,'*?? to exhibit an oscillatory structure, qualitatively
similar to that of the radial distribution function, g(r). At
high densities there is a sharp peak at x = 0, and a series of
progressively smaller and more diffuse peaks at x = g, 20,
etc. The structure of the hard sphere fluid at a hard wall may
be understood as resulting from an effective “field of mean
force” (entropic in origin ), which packs particles against the
wall. At high densities the structure of the hard-sphere chain
fluid is similar to that of the monatomic fluid, and we again
expect p(x) to be sharply peaked at the wall. But in the
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chain-molecule fluid there is a compensating tendency to-
ward depletion of the region near the wall, due to the reduc-
tion in configurational entropy of chains located there. The
latter effect assumes greater importance at low densities, and
for longer chains.

The density profiles observed in our simulations reflect
the competing tendencies noted above. A sharp maximum at
contact, and a pronounced oscillatory structure are evident
at moderate and high densities, as in Figs. 1-3 (for n =4)
and Fig. 4 (n = 8). [These are plots of n(x), the segment-
density normalized to its bulk value.] At the highest densi-
ties there is a suggestion of a cusp-like singularity at x = o.
The cusp in n(x) is a consequence of the fixed nearest-neigh-
bor distance between chain segments in our model. (The
radial distribution function of the rigid dimer fluid is known
to exhibit such cusps.?***) The tendency toward depletion of
the region near the wall is dominant for longer chains and at
low densities. Thus in Fig. 1 (open circles: n =4, 73,

= 0.107), and in Fig. 4 (open circles: n = 16, 77, = 0.148),
n(x) is depressed at the wall.

As noted above, the pressure is found by extrapolating
n(x) toits contact value. The typical behavior of the density
profile near the wall is shown in Fig. 5, which illustrates the
case n = 4, 77, = 0.417. In the vicinity of the wall, p(x) val-
ues fall close to a straight line. The uncertainty in the esti-
mate for the contact value is based on the statistical uncer-
tainty in the data points near the wall, and on the spread of
the points about the extrapolated straight line.

The simulation results for the compressibility factor
p.'m* (p, is the bulk n-mer density ) are presented in Tables
I-11I1, for n = 4, 8, and 16, respectively. These data, and sev-
eral theoretical predictions for the compressibility factor,
are plotted vs volume fraction in Figs. 6-8. In Fig. 6 (for
n = 4) the results of our earlier simulations (I), which used
the test chain insertion method, are also plotted. The agree-
ment between the two methods rules out significant errors
due to the influence of the walls, at least for 7 <0.25. At

nx) N
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FIG. 1. Normalized segment-density profile n(x) vs distance from wall,
from simulations of the hard-chain fluid with » = 4. Open circles: bulk vol-
ume fraction 5, = 0.107; crosses: 7, = 0.34; filled circles: 7, = 0.4.
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FIG. 2. Normalized segment-density profile for n = 4, , = 0.417.

higher densities, chain insertion data is of course unavail-
able. To test the accuracy of our results at such densities, we
conducted simulations on a much larger system (N, = 425,
as compared with N, = 190-222 in the previous high-den-
sity simulations). The results of the large-cell simulations,
plotted as open circles in Fig. 6, are in excellent agreement
with the small-cell results, Comparison between the small-
and large-cell results reveals no significant finite-size effect
in the compressibility, to within statistical uncertainty
(about 2%). A pair of large-cell (H =20 and 30, 7,
= 0.1303 and 0.0659, respectively) simulations of 8-mers
also yielded pressures which agree with the small-cell re-
sults.?

To rule out anisotropy, we collected orientation statis-
tics in the large-cell studies. We determined the average
bond orientation tensor

n(x) T T T T T T T T y
5h i
al _ 4

. M, = 0437

af -
2 -
[ \/’\/\,M/\

0 i | i 1 i 1 1 L L
0 1 2 4o 3 4 5

FIG. 3. Normalized segment-density profile for n = 4, 5, = 0.437.
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FIG. 4. Normalized segment density profile for n = 8, 7, = 0.332 (filled
circles), and n = 16, 77, = 0.148 (open circles).

A@ n—1
B=[(n—1N,] —'(Z S [e? e —%-1]>,(3.1)

i=1j=1

where I is the umit tensor and ( ) denotes an ensemble aver-
age, in an isotropic fluid B; = 0. If there is a net alignment of
chains with the wall, B, <0; B,, takes its minimum value,
— 1/3, when all chains lie in the y—z plane.

To study the effect of proximity to the wall on orienta-
tion, the cell was divided into bins (with the ith bin extend-
ing from x =i — 1 to x = i), into which bonded segment
pairs were assigned according to their center of mass. In bins
1 and H, which are adjacent to the walls, B,, is negative, as
expected. However, averages of B;; over the H-2 interior bins
show that the fluid is isotropic in bulk. For example, in the
H =22 studies we found B,, = — 0.05 + 0.01 in the end
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FIG. 5. Detail of the segment-density profile, p(x), near the wall for n = 4,
7, = 0.417.
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TABLE 1. Simulation results: n =4, L = 10.

R. Dickman and C. K. Hall: Simulations of chain molecules

Np H 1’!\!‘ Mo ™ pn- lﬂ"

50 10.0 0.1047 0.1072 4 0.0004 0.115 4+ 0.003 2.25 4 0.06
100 10.0 0.2094 0.205 + 0.0004 0.463 + 0.005 4.73 1 0.05
130 10.5 0.2593 0.252 +0.001 0.77 +0.02 6.40 4-0.17
130 10.0 0.2722 0.262 + 0.001 094 +0.02 7.46 1+ 0.16
134 9.7 0.2893 0.278 + 0.001 1.065 £ 0.015 8.02 4 0.11
140 9.7 0.3023 0.289 +0.001 1.20 1+0.01 8.70 4 0.07
160 10.35 0.3238 0.310 +0.001 145 +0.02 9.80 1+ 0.14
160 9.85 0.3402 0.323 +0.001 1.685 4 0.02 10.93 £ 0.13
160 9.35 0.3584 0.340 + 0.002 1.99 +0.015 122 +0.1
160 8.85 0.3786 0.359 +0.001 2.31 £0.015 135 £0.1
190 9.976 0.3989 0.376 + 0.002 2.90 10.03 16.1 +0.17
190 9.353 0.4255 0.399 4+ 0.002 3.56 1 0.05 18.7 +£0.3
190 8.824 0.4510 0417 4 0.002 4.33 40.08 21.7 £04
222 10.0 0.4650 0.437 + 0.002 5.23 1+0.06 25.1 +£03
425 25.0 0.3560 0.349 1 0.001 220 +0.04 12.7 £03
425 220 0.4046 0.394 + 0.001 3.35 4005 17.8 +03
425 21.0 0.4239 0.410 4 0.0015 4.11 £0.07 21.0 +05
425 20.0 0.4551 0.4302 4 0.0007 497 4003 242 402

bins, and 0.005 4 0.01 in the interior. The corresponding
values for H =20 are — 0.059 + 0.01 and 0.006 4 0.004.
We conclude that our simulations of 4-mers (and of 8-mers,
at low density ), are free of significant orientational or finite-
size induced errors. It is reasonable to expect the same to
hold for the n = 16 results, which are restricted to consider-
ably lower densities. A definitive answer must await results
of large-cell simulations of 16-mers (in progress).

In Figs. 6-8 we have plotted the predictions of several
theories for the hard-sphere chain system: the iterative con-
volution (IC) theory of Croxton,*® Wertheim’s theory?® of
equilibrium polymerization (W), and the generalized Flory
(GF) and Flory-Huggins (GFH) theories derived in L
Each of these theories reduces to an accurate equation of
state when n =1 (i.e., hard spheres). In this limit, IC be-
comes the Percus-Yevick approximation,?’ while the other
theories reduce to the Carnahan-Starling equation of state.?®
Wertheim’s theory describes a polydisperse system with
average chain length n; the other theories apply to monodis-
perse systems. (In Fig. 6 we have also plotted the Flory laz-
tice formula,’ which gives a gross underestimate of the pres-
sure.) The comparison between theory and simulation may
be summarized as follows: The IC pressure is reasonably
accurate at high densities, but is much too low at low densi-
ties. The GFH prediction is quite accurate at low densities,
but underestimates the pressure at high densities. GF theo-
ry, while accurate at high density, overestimates the pressure

TABLE II. Simulation results: » = 8, L = 10.

at low densities. (This tendency is shared by the original
Flory and Flory—Huggins theories, as applied to athermal
lattice chains.?®) Finally, Wertheim’s theory yields an accu-
rate pressure over the full range of densities examined in the
n =4 and 8 studies. For these chain lengths, Wertheim’s
theory is clearly the best of the four equations of state consid-
ered, notwithstanding its modest overestimate of the pres-
sure at low and moderate densities. For n = 16, the presently
available data seem to favor the W and GFH predictions
nearly equally. Simulations of n = 16 (and longer) chains at
higher densities should be of great value in elucidating the
relative merits of the existing theories, and in guiding the
development of more accurate predictions for the equation
of state.

It is intuitively appealing to suppose that as n becomes
large, the compressibility factor per segment approaches a
limit which is independent of n. The W, GF, and GFH theor-
ies explicitly predict that the quantity

Zr=n"Yp, 'm*(nn) —1] (3.2)

becomes independent of 7 as #n — o0 . To test this prediction,
we plot our data for Z ¥, together with the limiting GF and
W predictions, as a function of volume fraction in Fig. 9. An
approximate scaling of the data is evident in this plot. Fig-
ures 6-9 incorporate the correction of a minor numerical
error” in the original GF and GFH computations presented
in I

NP H ﬂnvg 77b 77" pn_ lﬂ"

14 10.0 0.0586 0.0659 + 0.0004 0.030 + 0.001 1.90 4- 0.06
30 10.0 0.1257 0.1306 + 0.0009 0.119 £+ 0.003 3.79 1 0.08
42 10.0 0.1759 0.1765 + 0.0002 0.246 4 0.003 5.84 +0.07
89 16.2 0.2301 0.227 +0.001 049 +0.01 9.05 +0.23
89 13.638 0.2734 0.267 + 0.001 0.793 + 0.007 12.43 +0.17
89 11.689 0.3189 0.308 + 0.002 1.29 +0.015 175 +0.3
89 10.755 0.3466 0.332 +0.0014 1.74 +0.02 219 +04
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NP H ﬂ-vg Ny ™ p; lﬂ'.
20 16.0 0.0727 0.0802 + 0.0005 0.036 + 0.002 3.76 + 0.21
34 13.72 0.1442 0.148 4 0.0013 0.129 + 0.003 7.32+0.23
44 12.38 0.2067 0.2045 + 0.0014 0.391 + 0.003 13.2 +04
44 10.863 0.2356 0.231 +0.002 0.439 + 0.01 159 +0.3
52 12.085 0.2503 0.247 +0.003 0.472 + 0.005 182 +0.3
52 10.79 0.271 0.2717 4+ 0.0007 0.783 + 0.007 24.1 403
T T T T T T Y T T
Ayt
1rr* | (L N
pnTr"
30| 20}
i / FIG. 8. Compressibility factor as
G/',:/ /’) in Fig, 5, for n = 16.
Iy
20F L / 7 4
10 / /
/
/A
5 ///
L ’//4-’ 4
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S
D B 0 . 1 A L Il
0] 1 54 2 3
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FIG. 6. Compressibility factor, p, '#*, vs bulk volume fraction 7, for
chains of n = 4 hard spheres. Solid line: chain-insertion Monte Carlo (I);
filled circles: present simulations, H<10.5; open circles: present simula-
tions, H>20. The broken lines represent various theoretical predictions as

described in the text.

20

10

T

FIG. 7. Compressibility
factor as in Fig. 5, for
n=_8.

FIG. 9. Test of scaling behavior of Z %, Eq. (3.3). Open circles: n = 4; filled
circles: 7 = 8; squares: n = 16. The solid and broken lines represent, respec-
tively, the limiting (n— o ) GF and W predictions for Z*.
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In light of the results described above, it appears that
accurate equations of state for fluids composed of short,
flexible hard-sphere chains are now available. Their deriva-
tions make use, in one form or another, of accurate predic-
tions for the (monomer) hard-sphere fluid, and eschew the
lattice-statistics approach traditionally employed in theories
of polymer solutions. It should now be feasible to derive ac-
curate theories for the thermodynamics of chain-molecule
fluids with more realistic interactions. We expect the Monte
Carlo method introduced herein to prove useful in further
investigations of molecular fluids.
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