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Gudmundur Jorgensen6, Björn R. Ludviksson6, Sinikka Koskinen7, Katri Haimila7, Leonid Padyukov8,

Peter K. Gregersen4, Lennart Hammarström2.*, Timothy W. Behrens1.*

1 Genentech, South San Francisco, California, United States of America, 2 Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institutet at

Karolinska University Hospital, Huddinge, Stockholm, Sweden, 3 Department of Immunology, Hospital Universitario La Paz, Madrid, Spain, 4 The Feinstein Institute for

Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York, United States of America, 5 Department of Clinical Immunology, Hospital Clı́nico

San Carlos, Madrid, Spain, 6 Landspitali–University Hospital and the Department of Medicine, University of Iceland, Reykjavik, Iceland, 7 Finnish Red Cross Blood Service,

Clinical Laboratory, Helsinki, Finland, 8 Rheumatology Unit, Department of Medicine, Karolinska Institutet, Stockholm, Sweden

Abstract

Selective IgA deficiency (IgAD; serum IgA,0.07 g/l) is the most common form of human primary immune deficiency,
affecting approximately 1:600 individuals in populations of Northern European ancestry. The polygenic nature of IgAD is
underscored by the recent identification of several new risk genes in a genome-wide association study. Among the
characterized susceptibility loci, the association with specific HLA haplotypes represents the major genetic risk factor for
IgAD. Despite the robust association, the nature and location of the causal variants in the HLA region remains unknown. To
better characterize the association signal in this region, we performed a high-density SNP mapping of the HLA locus and
imputed the genotypes of common HLA-B, -DRB1, and -DQB1 alleles in a combined sample of 772 IgAD patients and 1,976
matched controls from 3 independent European populations. We confirmed the complex nature of the association with the
HLA locus, which is the result of multiple effects spanning the entire HLA region. The primary association signal mapped to
the HLA-DQB1*02 allele in the HLA Class II region (combined P = 7.69610257; OR = 2.80) resulting from the combined
independent effects of the HLA-B*0801-DRB1*0301-DQB1*02 and -DRB1*0701-DQB1*02 haplotypes, while additional
secondary signals were associated with the DRB1*0102 (combined P = 5.86610217; OR = 4.28) and the DRB1*1501
(combined P = 2.24610235; OR = 0.13) alleles. Despite the strong population-specific frequencies of HLA alleles, we found a
remarkable conservation of these effects regardless of the ethnic background, which supports the use of large multi-ethnic
populations to characterize shared genetic association signals in the HLA region. We also provide evidence for the location
of association signals within the specific extended haplotypes, which will guide future sequencing studies aimed at
characterizing the precise functional variants contributing to disease pathogenesis.
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Introduction

The major histocompatibility complex (MHC) locus has been

one of the most intensively studied regions in the vertebrate

genome since it was first discovered in the mouse in 1936 [1]. In

humans, gene products from the MHC were initially identified as

surface markers on leucocytes, which led to its alternative

designation as the human leukocyte antigen (HLA) complex. This

genomic region spans approximately 3.6 megabase pairs (Mb) of

genomic sequence and encodes over 200 genes, many of which

with a defined immune function [2]. More recently, the definition

of an extended MHC region (xMHC) has been proposed, which

encompasses approximately 7.6 Mb and 421 annotated gene loci

[3]. The HLA locus contains the canonical HLA Class I and Class

II gene clusters. Class I HLA molecules are expressed on the

surface of most human cells, while constitutive expression of Class

II molecules is restricted to antigen presenting cells, including

dendritic cells, macrophages and B cells. These molecules function
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to present peptide antigens to T cells to initiate adaptive immune

responses.

The relevance of this locus to the pathogenesis of common

human diseases is clearly evidenced by the reported association of

polymorphisms in the HLA region with over one hundred

diseases, particularly autoimmune and inflammatory conditions

[4]. Similarly, the genetic association with HLA markers has been

well documented in selective IgA deficiency (IgAD; serum IgA

concentration ,0.07 g/l), the most common form of human

primary immunodeficiency [5,6]. However, despite the robust

association with a large number of immune-mediated conditions,

the conservation of some ancestral haplotypes [7,8], which can

encompass large genomic segments containing many genes, has

greatly impaired our ability to unambiguously identify the gene(s)

contributing to disease susceptibility.

The HLA was first described as a risk locus for IgAD through

the association with HLA Class I and Class II markers [9–11] and

ascribed to specific conserved haplotypes. Most notably, the

extended HLA-A*01-B*08-DRB1*0301-DQB1*02 (DR3) haplo-

type has been identified as the single strongest genetic risk factor

for IgAD in Northern European populations [12]. A striking 13%

of DR3 homozygotes have been estimated to be IgA deficient [13],

although this figure might be inflated due to publication bias [14].

An even larger proportion (67%) appears to suffer from at least

one form of Ig deficiency, including selective IgG3, IgG4, IgD and

IgA deficiency [15]. Conversely, the HLA-DRB1*1501-DQB1*06

(DR2) haplotype, has been shown to confer strong protection

against IgAD, with homozygous individuals showing a virtual

complete protection from the disease [12]. Positive associations

have also been described with 2 other extended haplotypes,

namely the HLA-B*14-DRB1*0102-DQB1*05 (DR1) and the

HLA-B*44-DRB1*0701-DQB1*02 (DR7) haplotypes [12]. Inter-

estingly, the risk conferred by DR7 and particularly DR1

haplotypes has been shown to be greater than that conferred by

DR3 haplotypes in populations of Southern European ancestry

[16–18]. Despite the strong association at the HLA locus, there

has been no consensus as to the precise location of the causal

variants within these haplotypes, with some groups suggesting its

placement to the telomeric end of the HLA Class III region [19–

21] and others in the HLA Class II region [22,23].

To refine the complex association signals in the extended MHC,

we genotyped a panel of 1,686 SNPs and imputed with high

confidence the genotype of 9,905 SNPs spanning the entire HLA

locus. We used the genotype information to reconstruct the

individual long-range haplotypes and impute common HLA

alleles. Here, we report single and multi-marker association

analyses of both HLA and non-HLA variants with IgAD in a

combined sample of 772 IgAD cases and 1976 matched controls

from 3 independent European populations. These data provide

the most complete fine-mapping effort of the HLA locus in IgAD

to date.

Results

Association of HLA and non-HLA common variants using
a high-density SNP–based mapping approach

We recently performed a genome-wide association study of

IgAD and reported the disease-association of 2 novel non-HLA

loci: IFIH1 and CLEC16A [24]. We also confirmed the HLA locus

as the strongest genetic risk factor for IgAD [24]. To better

characterize the association at the HLA locus, we used the

genotyping data from 1,686 SNPs located within a 10 Mb region

of chromosome 6 (25–35 Mb) containing the extended HLA

region, and employed a long-range haplotype phasing approach to

infer, with high confidence, individual HLA haplotypes. To

further refine the fine mapping of this region, we also imputed the

genotypes of an additional 9,905 SNPs using the HapMap2

reference set.

Allele-based association tests were then performed on the 1,686

genotyped and 9,905 imputed SNPs and on the imputed HLA

alleles that survived stringent quality control steps in 430 IgAD

cases and 1090 controls from Sweden and Iceland and in two

independent replication cohorts from Spain (256 cases and 322

controls) and Finland (86 cases and 564 controls). To avoid

spurious associations due to specific population differences that

are associated with the HLA locus, we used all available genome-

wide genotyping data to describe the population substructure

using a principal component method [25,26]. Exclusion of the

genetic outliers in each population ensured the genetic homoge-

neity of our sample, as evidenced by the modest distributional

inflation (lGC) observed in each case-control series (Sweden/

Iceland: lGC = 1.05; Spain: lGC = 1.05; Finland: lGC = 1.04).

Allele-based association tests were performed in each population

independently, and combined P values were calculated using a

meta-analysis. In addition, we also phased the genotypes from a

set of 49 selected SNPs spanning the classical MHC region to

reconstruct the extended haplotypes in each individual. SNP

selection was optimized to combine a set of 11 SNPs that best

captured the information of the known HLA alleles that were

typed directly in our sample, together with a second set of 38

common SNPs, which had low pairwise LD and were distributed

uniformly across the classical HLA region. Importantly, this

strategy ensured that we recapitulated the full diversity of the

haplotype structure of the HLA locus, and allowed us to map the

individual recombination events within the extended haplotypes

(see Methods). We tested the association of the more common

extended haplotypes and used the haplotype background

information to map the recombination events more accurately

and the location of the putative causal variants within each

specific disease-associated haplotype.

Author Summary

The human leukocyte antigen (HLA) locus is robustly
associated with many immune-mediated conditions. How-
ever, identification of the genetic variants contributing to
the disease pathophysiology has been greatly hampered
by the extensive chromosomal conservation within this
genomic region. To better understand the association of
the HLA locus in selective IgA deficiency (IgAD), we used
an extensive genotyping database from a recent genome-
wide association study (GWAS) to generate a high-density
SNP map of this region in a combined sample of .2,700
individuals from 3 independent European populations. In
addition, we took advantage of recent methodological
advances to impute the more common HLA-B, -DRB1, and -
DQB1 alleles in all subjects. We confirmed the strong
disease-association of the HLA locus and identified several
different signals located in specific conserved HLA
haplotypes contributing independent risk or protection
for IgAD. Further analysis of the chromosomal sequences
associated with the associated HLA alleles allowed us to
refine the mapping of the susceptibility variants. These
findings represent the most comprehensive high-density
SNP mapping of the HLA locus in IgAD to date and provide
important new information as to the location of the
genetic variants contributing to this common immune
deficiency.

Fine-Mapping of the HLA Locus in IgA Deficiency
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Additive effect of two independent risk factors in the
HLA-B*0801-DRB1*0301 and HLA-DRB1*0701-DQB1*02
haplotypes is responsible for the primary association
signal in the HLA Class II region

The primary association peak in the HLA locus mapped to the

Class II region (Figure 1). Consistent with a recent report, that

included approximately 270 overlapping IgAD patients and 670

controls from the Swedish cohort used in this study [27], the

strongest association was observed with the imputed HLA-

DQB1*02 allele (combined P = 7.69610257; OR = 2.80, 95% CI

2.46–3.20; Figure 1). The association with the DQB1*02 allele

was approximately 6 orders of magnitude more significant than

the most associated imputed SNP, which mapped to the HLA-

DRB1 gene (rs3891175; combined P = 4.31610251; OR = 2.82,

95% CI 2.44-2.27) and over 1010-fold more significant than the

most associated genotyped marker (rs204999; combined P =

2.02610246; OR = 2.47, 95% CI 2.18–2.81; Figure 1).

HLA-DQB1*02 is a common allele in populations of European

ancestry, and is linked to both the HLA-DRB1*0301 and -

DRB1*0701 alleles that have been previously described as strong

IgAD risk factors. In this study, we confirmed the disease risk

conferred by the DRB1*0301 (combined P = 1.56610234;

OR = 2.49, 95% CI 2.14–2.90; Table 1) and DRB1*0701 alleles

(combined P = 8.68610217; OR = 2.03, 95% CI 1.70–2.41;

Table 1). One important distinction between these 2 haplotypes

is that the DRB1*0301 allele is typically linked with the

DQB1*0201 allele, while the DRB1*0701 allele is linked to the

DQB1*0202 variant [28]. These two DQB1*02 alleles differ only

by one amino acid in the third exon, and are therefore difficult to

differentiate by traditional typing methods using 2-digit resolution.

Despite the sequence similarity, the HLA Class II sequences

surrounding these 2 alleles are distinct and contain different HLA-

DQA1 alleles. To discriminate between the two HLA-DQB1*02

alleles, we genotyped the HLA-DQB1 gene in 15 Finnish IgAD

patients carrying the DQB1*02 allele (5 DRB1*0301/X, 5

DRB1*0701/X and 5 DRB1*0301/DRB1*0701 heterozygous

individuals) using 4-digit resolution. We confirmed that all

DRB1*0301 alleles were always associated with the DQB1*0201

allele, while 9/10 (90%) of the DRB1*0701 alleles were associated

with the DQB1*0202 subtype (data not shown).

Analysis of the haplotype structure showed that, as noted

previously [29], DRB1*0301 haplotypes showed very low levels of

historical recombination and were generally found as extended

conserved haplotypes (Figure 2). In our sample, of the 907

haplotypes carrying the DRB1*0301 allele, 634 (69.9%) encom-

Figure 1. Primary association signal of the HLA locus with IgAD. Allele-based association tests were performed for all 1,686 genotyped SNPs
and imputed HLA alleles (represented by yellow diamonds) and for the 9,905 SNPs imputed with high confidence using the HapMap2 reference set
(represented by light blue circles). All association results are represented as the 2log10 of the combined P values (left y-axis). The most associated SNP
and HLA allele are indicated by yellow squares. Recombination rates from the HapMap CEU are depicted in dark blue (right y-axis). Genomic positions
on the x-axis are based on the NCBI Build 36 (hg 18) assembly. CI, confidence interval; Mb, megabase pairs.
doi:10.1371/journal.pgen.1002476.g001

Fine-Mapping of the HLA Locus in IgA Deficiency
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passed the extended HLA-B*0801-DRB1*0301-DQB1*02 haplo-

type, and 273 (30.1%) were recombinant (non-B*0801) haplotypes.

Importantly, recombinant DRB1*0301 haplotypes that lacked

B*0801 showed no evidence of association with IgAD (combined

P = 0.42; OR = 1.10, 95% CI 0.84–1.44; Table 1). In contrast, the

extended HLA-B*0801-DRB1*0301-DQB1*02 haplotype was

found to be the most disease-associated HLA haplotype (combined

P = 3.37610243; OR = 3.33, 95% CI 2.79–3.97; Table 1).

The distribution of DRB1*03 haplotypes varied across the

populations studied, with a higher percentage of extended HLA-

B*0801-DRB1*0301-DQB1*02 haplotypes in Northern Europe-

ans, as compared with the Spanish population (Table S1), likely

reflecting the increased frequency of HLA-B*18-DRB1*0301-

DQB1*02 haplotypes in Southern Europeans. Nevertheless, in all

3 cohorts, we observed a consistent and significant increase in the

frequency of extended B*0801-DRB1*0301-DQB1*02 compared

Figure 2. Representation of the haplotypes carrying the HLA-DRB1 alleles most associated with IgAD. Reconstructed extended
haplotypes using the final set of 49 SNPs spanning the classical HLA region were aligned to the respective extended haplotype. Shown here are the
reconstructed haplotypes carrying the HLA-DRB1*03 (a), -DRB1*07 (b), -DRB1*0102 (c) and -DRB1*15 (d) alleles. Recombinant haplotypes represent all
haplotypes containing the same HLA-DRB1 allele in association with a different HLA-B allele, as compared to the respective extended haplotype.
Vertical bars delimit the HLA Class III region. N, Number of haplotypes. Haplotype frequencies in the Swedish/Icelandic, Spanish and Icelandic cohorts
are detailed in Table 1.
doi:10.1371/journal.pgen.1002476.g002
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to recombinant (non-B*0801) DRB1*0301 haplotypes in IgAD

cases (combined P = 6.361029; OR = 2.65, 95% CI 1.90–3.71;

Table S1). Similarly, recombinant (non-DRB1*0301) B*0801

haplotypes were also not associated with IgAD (combined

P = 0.228; OR = 0.92, 95% CI 0.64–1.33; data not shown). Given

the strong effect size of the risk allele present on the extended

HLA-B*0801-DRB1*0301-DQB1*02 haplotype, we have 100%

and 96% power to detect the association with the observed

recombinant (non-B*0801) DRB1*0301 and (non-DRB1*0301)

B*0801 haplotypes, respectively, at a significance level (a) of

561025, and even 100% and 50% power at a much more

stringent genome-wide significant threshold of 561028 (Table S2).

We next performed a conditional logistic regression analysis,

using the genotype of the extended HLA-B*0801-DRB1*0301-

DQB1*02 as a covariate. The imputed HLA-DRB1*0701 allele

was found to be the most significantly associated marker

(combined Pcond = 1.77610222; Figure 3).

In contrast to DRB1*0301-containing haplotypes, haplotypes

linked to the DRB1*0701 allele have a high rate of historical

recombination (Figure 2). Although, DRB1*0701 is found

frequently within the HLA-B*13-DRB1*0701-DQB1*02, B*44-

DRB1*0701-DQB1*02 and B*57-DRB1*0701-DQB1*0303 ex-

tended haplotypes, the DRB1*0701 allele can also be found on

other haplotypes, in association with different HLA Class I and

Class II alleles (Figure 2). However, all DRB1*07 haplotypes

carrying the DQB1*02 allele were found to be similarly associated

with increased risk to IgAD (combined P = 6.35610217; OR = 2.23,

95% CI 1.83–2.72; Table 1). Conversely, we found no strong

evidence for the association of recombinant (non-DQB1*02)

DRB1*07 haplotypes with IgAD (combined P = 0.027; OR = 1.34,

95% CI 0.96–1.86; Table 1). Further supporting this observation, we

have over 80% power to detect the association of recombinant (non-

DQB1*02) DRB1*07 haplotypes at a= 561028 (Table S2). These

data point to an important role of the DQB1*0202 allele, or a region

in tight linkage with DQB1*0202, in the association of the

DRB1*0701-DQB1*02 haplotypes with IgAD. In summary, the

data suggest that DRB1*0301 and DRB*0701 haplotypes indepen-

dently contribute to risk of IgAD, and the signal at DQB1*02 is

essentially the sum of these independent effects.

The HLA-B*1402-DRB1*0102-DQB1*05 haplotype is an
independent risk factor for IgAD

After further conditioning on both the HLA-B*0801-DRB1*03-

DQB1*02 and –DRB1*0701-DQB1*02 haplotypes, the most

significant residual HLA association signal corresponded to the

HLA-DRB1*0102 allele (Pcond = 2.95610219; Figure 3). Associa-

tion of the DRB1*01 allele with IgAD has been well documented,

Figure 3. Secondary association signals in the HLA locus. Combined P values are shown for all SNPs and imputed HLA alleles, following
conditioning on the HLA-B*0801-DRB1*0301-DQB1*02 (red diamonds), the HLA-B*0801-DRB1*0301-DQB1*02+HLA-DRB1*0701-DQB1*02 (yellow
triangles) and the HLA-B*0801-DRB1*0301-DQB1*02+HLA-DRB1*0701-DQB1*02+HLA-DRB1*0102 (green circles) haplotypes. All association results are
represented as the 2log10 of the combined P values (left y-axis). The most associated SNP and HLA allele in each step of the stepwise conditional
logistic regression analysis are indicated by squares. Recombination rates from the HapMap CEU are depicted in blue (right y-axis). Genomic positions
on the x-axis are based on the NCBI Build 36 (hg 18) assembly. Mb, megabase pairs.
doi:10.1371/journal.pgen.1002476.g003
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and contains both the more common DRB1*0101 and the less

common DRB1*0102 subtypes. Importantly, we found that the

association with IgAD was exclusively contributed by haplotypes

containing the DRB1*0102 allele, which showed association with

risk in all 3 independent European populations (combined

P = 5.86610217; OR = 4.28, 95% CI 2.92–6.26; Table 1). Con-

versely, we found essentially no evidence for the association of the

HLA-DRB1*0101-DQB1*05 haplotype with IgAD (combined

P = 0.038; OR = 1.17, 95% CI 0.98–1.39; Table 1).

Haplotype analysis showed that the DRB1*0102 is usually

present on the extended B*1402-DRB1*0102-DQB1*0501 hap-

lotype, which is a rare haplotype in Northern Europeans (0.2%

allele frequency), but more common in the Spanish population

(3% allele frequency; Table 1). Nevertheless, the DRB1*0102

allele was a strong risk factor in all 3 cohorts, and contributed the

strongest individual effect of all the variants in the HLA region,

with a combined OR = 4.59 (95% CI 2.89–7.30, Table 1). The

recombination rate was modest across the extended B*1402-

DRB1*0102-DQB1*05 haplotype. Of the 140 DRB1*0102-

containing haplotypes, 47 (33.6%) were recombinant (non-

B*1402; Figure 2). Despite the low number of recombinant

haplotypes, the trend towards increased risk was maintained, even

in the absence of the B*1402 allele (combined P = 3.6261023;

OR = 3.22 95% CI 1.70–6.13; Table 1). In addition, in a single-

locus association test, the HLA-DRB1*0102 allele was found to be

more significantly associated with IgAD than the HLA-B*14 allele

alone (combined P = 1.07610212; OR = 2.68; 95% CI 1.99–3.61;

data not shown), suggesting that the causal allele on the extended

B*1402-DRB1*0102-DQB1*05 is likely to be closer to the HLA-

DRB1 than to the HLA-B region.

The HLA DRB1*1501-DQB1*06 haplotype confers
protection from IgAD

To characterize additional independent loci, we next condi-

tioned on the HLA-B*0801-DRB1*03-DQB1*02, -DRB1*0701-

DQB1*02 and -DRB1*0102 alleles. The top residual association

signal corresponded to the protective HLA-DRB1*15 allele

(Pcond = 3.26610218; Figure 3). The protective effect of the

HLA-DRB1*15 allele was evident in all 3 cohorts (combined

P = 2.24610235; OR = 0.13; 95% CI 0.09–0.19; Table 1), and was

observed for both DRB1*15 subtypes: the common DRB1*1501

allele, which was found to travel mostly on the extended B*0702-

DRB1*1501-DQB1*06 haplotype, and the rare DRB1*1502

allele.

DRB1*1501 haplotypes showed a relatively high rate of

historical recombination, and 51.2% excluded B*0702 (Figure 2).

However, the recombinant DRB1*15 haplotypes were equally

associated with protection from IgAD (combined P = 3.70610218;

OR = 0.14, 95% CI 0.09–0.24; Table 1), suggesting that the causal

variant associated with the DRB1*1501 signal is located within the

linkage disequilibrium (LD) block containing HLA-DRB1 and

HLA-DQB1 in the Class II region.

Additional secondary association signals in the HLA
region

We next performed further conditional logistic regression analysis,

conditioning on all four association signals noted above: B*0801-

DRB1*03-DQB1*02, -DRB1*0701-DQB1*02, DRB1*0102 and

DRB1*1501. The association signal was significantly reduced, with

only a few additional SNPs reaching the genome-wide association

significance threshold (P,561028; Figure S1). These SNPs mapped

specifically to two discrete genomic regions: (i) the BTNL2-HLA-DRA

locus on the telomeric end of the HLA class II region (rs743862;

Pcond = 8.07610214; Figure S1); and (ii) the HLA-DQB1 region

(rs9275141; Pcond = 1.48610211; Figure S1), supporting the contri-

bution of these two additional regions to risk for IgAD.

Discussion

Markers in the HLA region represent the strongest genetic risk

factor associated with IgAD. Nevertheless, the extensive conser-

vation of the disease-associated haplotypes has hindered our ability

to confidently map the causal variants. In this study, we performed

the largest fine-mapping effort to date of the HLA locus in IgAD,

using a high-density SNP panel to characterize the complex

association at this locus, and to map the location of the

independent susceptibility loci.

The primary association signal in the HLA region was found to

be the HLA-DQB1*02 allele, including both the DQB1*0201 and

the DQB1*0202 alleles, which are linked with the HLA-DRB1*03

and -DRB1*07 haplotypes respectively. Using a haplotype-based

analysis, we found that the primary association signal was caused

by the additive effect of two independent susceptibility alleles

located on the extended HLA-B*08-DRB1*0301-DQB1*02 and

DRB1*0701-DQB1*02 haplotypes. Importantly, by using a long-

range haplotype phasing approach in a large sample size, we were

able to demonstrate that recombinant (non-B*0801) DRB1*0301

haplotypes carrying the DQB1*0201 allele showed no evidence of

association with disease. Despite the low historical recombination

rate on DRB1*0301 haplotypes, this approach allowed us to

compare a sufficiently large number of recombinant haplotypes to

increase our confidence in these observations. Interestingly, the

frequency of extended DRB1*0301 haplotypes was consistently

increased in IgAD patients from all 3 independent populations,

suggesting that, despite obvious population specific differences in

the distribution of these haplotypes, the underlying association

signal is identical in the different populations. Similarly, recombi-

nant (non-DRB1*0301) B*0801 haplotypes, showed no evidence of

association with IgAD, suggesting that the causal allele in the

extended HLA-B*08-DRB1*0301-DQB1*02 is likely to be located

in the telomeric end of the Class II region or in the Class III region.

To characterize further independent susceptibility loci, we next

performed a stepwise conditional logistic regression analysis.

Following conditioning on the primary HLA-B*08-DRB1*0301-

DQB1*02 association signal, the most significantly associated

HLA allele was found to be the DRB1*0701 allele, further

supporting the presence of an independent risk allele on DRB1*07

haplotypes. Despite the high recombination rate, we found that

DRB1*07 haplotypes carrying different Class I allele were all

similarly associated with IgAD. This was in contrast to non-

DQB1*0202 recombinant haplotypes, which showed no evidence

for association. The approach used in this study to compare the

association of the recombinant haplotypes in a large cohort to the

respective extended risk haplotypes was validated by power

calculations (summarized in Table S2) showing that the lack of

association of the recombinant (non-B*0801) DRB1*0301, (non-

DRB1*0301) B*0801 and (non-DQB1*02) DRB1*07 haplotypes

are not likely to be negative results due to a lack of power in the

study. Taken together, these data point to a causal role of the

DQB1*0202 allele or another variant in tight LD with it in the

HLA-DQA1–DQB1 locus in the Class II region.

We therefore propose a model whereby the strong association

observed with DQB1*02 allele results from the additive effect of

two independent risk loci: the DQB1*0202 allele, or another

marker in high LD and close proximity, traveling on HLA-

DRB1*0701-DQB1*0202 haplotypes and an independent allele,

most likely located within the border of the HLA Class III and

Fine-Mapping of the HLA Locus in IgA Deficiency
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Class II region, traveling specifically on the extended HLA-

B*0801-DRB1*0301-DQB1*02 haplotype.

Conditioning on the HLA-B*0801-DRB1*0301-DQB1*02 and

-DRB1*0701-DQB1*02 association signals, we characterized two

additional secondary association signals in the HLA region. The

HLA-DRB1*0102 allele was found to be a robust independent risk

allele, while DRB1*1501 was strongly protective. The most

significant secondary association signal was the DRB1*0102 allele

traveling on the extended HLA-B*1402-DRB1*0102-DQB1*05

haplotype. The prevalence of the B*1402-DRB1*0102 haplotype

showed marked population differences, and was more frequent in

populations of Southern European ancestry, as evidenced by the

4.5% allele frequency in the Spanish controls, compared to only

0.3% and 0.4% in the Swedish and Finnish controls respectively.

To have a better estimate of the DRB1*0102 allele frequency in

Northern Europeans, we performed an extensive survey of the

Swedish volunteer bone marrow donor registry (the Tobias

registry). We identified 296 copies of the B*1402-DRB1*0102

haplotype in 23,610 healthy individuals that were surveyed,

corresponding to a 0.6% allele frequency in the Swedish

population. Despite the specific population differences, the

DRB1*0102 association was consistent in all 3 independent

cohorts and showed the highest OR of any HLA allele.

Interestingly, the prevalence of IgAD in the Iranian population

has been shown to be similar to that observed in European

populations [30]. However, in Iranians the strongest HLA

association with IgAD is linked to the B*14 and DRB1*01 alleles

[31]. Taken together, these data clearly support the presence of a

strong risk variant on the conserved HLA-B*1402-DRB1*0102-

DQB1*05 haplotype. In fact, the effect size observed with this

allele is consistent with the presence of a rare variant with strong

penetrance on the HLA-B*1402-DRB1*0102-DQB1*05 back-

ground. Importantly, the lack of association with the more

common DRB1*0101 subtype, which shares the association with

the DQB1*05 allele, and the strong association with recombinant

DRB1*0102 haplotypes, supports the location of the causal variant

telomeric to the Class II region, most likely within the HLA Class

III region. It is interesting to note that the 2 missense mutations

that we have recently characterized in MSH5, L85F and P786S,

located in the HLA Class III region, travel specifically on this

extended haplotype [32]. It should be noted, however, that this

hypothesis was not supported by a recent study by Pozo et al,

suggesting that recombinant (non-DRB1*0102) haplotypes carry-

ing the L85F variant did not show evidence of association with

IgAD [33]. Nevertheless, the conservation and low frequency of

recombinant HLA-B*1402-DRB1*0102-DQB1*05 haplotypes in

European populations, warrant further analyses and a larger

sample size to confirm whether these missense mutations are the

causal variants for IgAD in this haplotype.

Another independent association signal identified was the

protective effect conferred by the DRB1*1501 allele. The association

of DRB1*1501 with disease protection has been well documented,

and further supports the important role of variants in the HLA Class

II region to the complex association signal observed on the HLA

locus. In fact, although the recombination rate in the DRB1*1501

haplotypes was elevated, all haplotypes sharing the HLA Class II

fragment containing the DRB1*1501 allele conferred similar

protection from IgAD. These data support the location of a

protective allele mapping specifically to the LD block containing the

HLA-DRB1 and HLA-DQB1 genes, and are consistent with the

previous hypothesis that the protective effect is due to the presence of

a negatively charged aspartic acid in position 57 of the HLA-DQb
chain in DRB1*1501 haplotypes. In contrast, in risk haplotypes, the

aspartic acid residue is replaced by a neutral alanine [12].

Of interest, the association with the HLA locus in IgAD shares

some striking similarities with the association in type 1 diabetes

(T1D), where the DRB1*0301 allele is a strong risk factor and the

DRB1*1501 allele confers protection against the disease [34,35].

Similarly we have recently characterized the association between

IgAD and two novel non-HLA loci, IFIH1 and CLEC16A [24],

which are also known to be associated with T1D [36], suggesting a

shared genetic predisposition to both diseases. Despite these

similarities, there are some notable disease-specific differences in

the association with the HLA between the two conditions: i) the

DRB1*04 allele, one of the strongest risk factor in T1D, is not

associated with IgAD; ii) unlike T1D, the DRB1*0301 association

with IgAD is restricted to the extended B*0801-DRB1*0301-

DQB1*02 haplotype; iii) the DRB1*0701 allele, which is

associated with increased risk of IgAD is protective in T1D, while

the DRB1*0102 allele shows no evidence for association with T1D

[34,35]. These data suggest that the association with the HLA

locus is the result of multiple independent effects, some of which

are shared between different diseases. The characterization of the

association signal in the HLA region in different diseases may,

therefore, contribute important insights into the location of shared

genetic effects, and may help in the identification of the causal

variants in this genomic region.

In addition to the association of the extended HLA haplotypes,

we found further evidence for association of a few additional

independent markers in the HLA locus. Most notable were the

associations with SNPs in the BTNL2-HLA-DRA locus on the

telomeric end of the Class II region and in the HLA-DQB1 region.

Taken together, these data confirm that IgAD susceptibility is the

result of multilocus effects that span the entire HLA region.

In summary, we have mapped the primary susceptibility locus

to the HLA Class II region and found evidence for the association

of additional independent loci in Class III and Class I regions.

Importantly, the fine-mapping strategy provided a better resolu-

tion of the individual haplotype background and their specific

contribution to disease susceptibility. A summary of the putative

causal alleles and their respective location on the specific

haplotype background is depicted in Figure 4. These data are

consistent with a previous report from de la Concha et al. that used

a similar haplotype-based analysis to determine the location of the

IgAD causal variants in the HLA locus in the Spanish population

[37]. Here, we build on these results and extend the findings to

other European populations using a high-density SNP mapping

approach to reconstruct the individual HLA haplotypes with high

confidence. Taken together, these studies indicate that although

the HLA locus shows strong population differences, the haplotype-

specific genetic association signals are similar in the different

cohorts, suggesting that conserved causal variants, present in

ancestral haplotypes confer similar genetic predisposition to

disease independently of the ethnic background. This information

will also help generate better models to test the putative interaction

of specific HLA variants with the non-HLA risk loci identified

through the genome-wide association effort. In addition, the

characterization of the role of each specific haplotype to disease

susceptibility may provide important information about the precise

location of the functional variant(s) within the haplotype. These

data can provide a rationale to prioritize the specific conserved

haplotype segments that should be targeted for future sequencing

efforts. With the advent of more cost-effective sequencing

technologies, the complete re-sequencing of large haplotype

segments in a large targeted sample will become feasible, and

may be the only definitive approach to identify the functional

HLA variants present on these extremely conserved extended

haplotypes.
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Methods

Subjects
A total of 861 IgAD patients were enrolled from 4 different

centers across Europe: 418 were recruited at the Karolinska

Institutet, Karolinska University Hospital Huddinge; 34 were

recruited at the Landspitali – University Hospital, Reykjavik; 280

were recruited at the Hospital Universitario La Paz in Madrid;

and 129 were recruited from the Finnish Red Cross Blood Service

in Helsinki. The diagnosis of IgAD was obtained according to

accepted guidelines, with serum IgA levels below the detection

threshold (IgA,0.07 g/l), as measured by nephelometry in

multiple independent blood samples [5,38]. 2,184 geographically

matched control samples were obtained from 3 independent

sources: 1,115 control samples from the Epidemiological Investi-

gation of Rheumatoid Arthritis (EIRA) Swedish inception cohort;

373 samples collected at Hospital Clı́nico San Carlos in Madrid;

and 693 samples from the Nordic Centre of Excellence in Disease

Genetics consortium (NCoEDG; Finnish controls). All DNA

samples were collected after approval from the relevant research

ethics and committees.

Genotyping and control quality
IgAD patients and the Spanish controls were genotyped at the

Feinstein Institute, New York, and the Swedish controls were

genotyped at The Genome Institute of Singapore. All genotyping

was performed using the Illumina BeadChip technology, on either

the HumanHap 300 or Human 610-quad chips. Genotyping data

for the Finnish controls was obtained from the NCoEDG, and was

generated using the Illumina CNV370 platform.

To assure high quality data on the final analysis, we used

stringent quality control measures, as described previously [24].

The final number of individuals passing all the quality control

steps in the 3 independent case-controls series were as follows:

Sweden/Iceland: 430 cases and 1,090 controls; Spain: 256 cases

and 322 controls; and Finland: 86 cases and 564 controls. We

observed minimal inflation of the median x2 statistic in the 3

populations (Sweden/Iceland: lGC = 1.05; Spain: lGC = 1.05;

Finland: lGC = 1.04), thus ruling out potential population

stratification issues on the different case-control series. Fine-

mapping of the HLA region was performed by extracting the

1,686 SNPs spanning 10 Mb of chromosome 6 (25–35 Mb) that

passed all quality control steps.

SNP imputation
SNP imputation of the HapMap2 (release# 24) reference

dataset was performed using IMPUTE [39], with default settings.

Imputation was performed using only the SNPs that passed quality

control and were genotyped in all 3 case-control series. To ensure

that only SNPs imputed with high confidence were included in the

final analysis, we only tested the association of SNPs reaching an

imputation score (proper_info statistic) .0.8 in each case-control

series.

Figure 4. Summary of most significant independent association signals in the HLA locus. For each conserved haplotype background the
critical region where the putative causal variant is more likely to be located is highlighted. Genomic positions on the x-axis are based on the NCBI
Build 36 (hg 18) assembly. Mb, megabase pairs.
doi:10.1371/journal.pgen.1002476.g004
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HLA typing
The IgAD patients from Sweden, Iceland and Finland were

genotyped at the HLA-B, -DRB1 and -DQB1 loci using PCR-SSP

[40] employing the HLA-B low resolution and the HLA-DQ, -DR

SSP Combi Tray kits from Olerup SSP AB, Saltsjöbaden, Sweden.

In the Spanish samples, HLA-B was typed using the Low

Resolution SSP Typing kit by Biosynthesis (Lewisville, TX). HLA-

DRB1 typing (and subtyping) and -DQB1 typing were conducted

by PCR amplification and hybridization with allele-specific

oligonucleotides [41].

Imputation of genotypes at the common HLA-B, -DRB1,
and -DQB1 genes

The SNP data was used to impute the common HLA-B, -DRB1

and -DQB1 alleles in all the samples studied. The use of SNP data

has been previously shown to be useful in inferring HLA alleles by

taking advantage of the strong LD structure in the region. de

Bakker et al showed that using genotype information from just 1 to

3 neighboring SNPs (tagging SNPs), they were able to accurately

infer the genotypes of the most common HLA alleles [42].

Nevertheless, the accuracy of this tagging SNP approach is

affected by the variability of most classical HLA alleles, and does

not provide complete information about the haplotype back-

ground surrounding the HLA alleles and about the occurrence of

internal recombination events within the haplotypes. More

recently, a different approach has been proposed, using multi-

maker SNP data across the entire HLA region to infer the

haplotype context surrounding the alleles, and to provide a more

accurate estimation of the specific HLA alleles [43].

The SNP selection strategy employed in this study for haplotype

phasing included the initial selection of 11 HLA-tagging SNPs that

were found to be the most informative for the imputation of the

more common HLA-B, -DRB1 and -DQB1 alleles, using the tagger

algorithm implemented in PLINK [44]. Then, we supplemented

the set of tagging SNPs with a second set of 38 SNPs distributed

uniformly across the classical HLA region. Importantly, to capture

the full diversity of the haplotype structure and to map the

individual recombination events, SNP selection was restricted to

common and independent (low pairwise r2) SNPs. Given the lack

of accuracy of the tagging approach to infer most HLA-B alleles,

we included a higher density of SNPs for the HLA Class I region.

The genotype information from the final set of 49 SNPs (listed in

Table S3) was used to reconstruct the individual long-range

haplotypes, using PHASE v2.1 [45], with the standard pre-defined

parameters. Missing genotypes from the final set of 49 SNPs were

also imputed during the phasing step.

The imputation of the common HLA alleles was then

performed by aligning the phased haplotypes and by defining,

visually, the longest segment of consecutive SNPs surrounding the

tagging SNP that uniquely identifies each common HLA allele.

This strategy was possible because we had access to a large

number of samples that were HLA typed at the HLA-B, HLA-

DRB1 and HLA-DQB1 genes. In fact, 2 or 4-digit HLA-B typing

data was available for 410 IgAD patients, while HLA-DRB1 and –

DQB1 data was available from 534 and 638 IgAD patients

respectively (Table S4).

To test the performance of the method, the sensitivity,

specificity and positive predictive value (PPV) were calculated on

both the training set and on an additional validation set of 79

IgAD patients that were used to determine the allele-specific

haplotype segments. Estimation of the sensitivity, specificity and

PPV of the imputed alleles in the validation set was very high

(Table S5). The only notable exceptions were the B*0702 allele,

which was found to be rare in the validation cohort, and the

DQB1*03 allele (Table S5). Given the computing-intensive nature

of the haplotype phasing, the number of SNPs used for this step

was limited, and, most likely, insufficient to fully characterize rare

HLA alleles. However, it was sufficient to accurately depict the

haplotype background of the common HLA alleles that have

previously been associated with risk or protection for IgAD.

Statistical analyses
Allele-based association tests. Allele-based association tests

were performed on all SNPs and imputed HLA alleles. Association of

all variants to disease was calculated using a 1-degree of freedom x2

test, comparing the minor allele frequency in cases and controls in

each population. Haplotype association tests were performed using

a similar strategy, by comparing the frequency of the selected

haplotype against all other haplotypes combined in cases and controls

from each cohort. For imputed SNPs, allele-based association tests

were performed using SNPTEST (https://mathgen.stats.ox.ac.uk/

genetics_software/snptest/snptest.html). The association statistics

were corrected taking into account the accuracy of the imputation

method for each SNP. All allele-based association tests were per-

formed assuming an additive risk model.

Combined P values, were calculated performing a meta-analysis

of the 3 independent case-control series, using a weighted z-score

method implemented in the METAL software package (http://

www.sph.umich.edu/csg/abecasis/metal/). In each cohort, P

values were converted to z-scores taking into account the direction

of the effect relative to an arbitrary allele. A weighted sum of z-

scores was calculated by dividing the individual z-scores by the

square root of the sample size of each cohort and then dividing the

sum by the square root of the total sample size. The reported

combined P values were obtained by converting the meta-analysis

z-scores into two-tailed P values.

To calculate combined odds ratios, we used the Cochran-

Mantel-Haenszel method implemented in PLINK [44]. All odds

ratios were calculated relative to the minor allele on the Swedish/

Icelandic population. The genomic inflation factor was estimated

in each cohort from the median x2 statistic after excluding all

SNPs from the HLA region.

Conditional regression analyses. To characterize all

independent association signals from the known HLA alleles, a

stepwise forward conditional logistic regression analysis was

performed on the 3 independent cohorts, controlling for the

genotypes of the most associated HLA alleles or haplotypes. The

analysis represents a regression of disease status on each genotyped

test SNP and imputed HLA allele, including the genotype at the

most associated HLA allele (coded as 0,1 and 2 according to the

number of minor alleles) as covariates. In each step the genotype of

the top residual associated HLA allele was added as an additional

covariate to the model and the association was calculated in all

remaining test SNPs and imputed HLA alleles. The process was

then repeated iteratively, until no additional HLA allele reached

genome-wide association. All conditional analyses were performed

using PLINK [44]. Conditional analyses were performed in each

case-control series independently, and combined conditional P

values were calculated using a meta-analysis, as described above.

Power calculations. The power to detect the association of the

observed recombinant haplotypes with IgAD was calculated using the

CaTS power calculator for association studies (http://www.sph.

umich.edu/csg/abecasis/CaTS/), assuming a multiplicative disease

model, a disease incidence of 1:500 and a single-stage study design.

To determine the effect size of the extended risk haplotypes, we first

computed the genotype relative risk (GRR) corresponding to the

observed frequencies of the risk allele in IgAD patients and controls.

The same GRR was then applied to the respective recombinant
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haplotypes to calculate the power to detect disease association in our

combined sample of 772 IgAD patients and 1,976 controls at the

significance level (a) of 0.05, 0.01, 561025 and 561028.

Supporting Information

Figure S1 Residual association signal in the HLA locus following

conditioning on all major association signals. Combined P values

are shown for all SNPs and imputed HLA alleles, following

conditional logistic regression analysis, using the genotypes at the

HLA-B*0801-DRB1*0301-DQB1*02, -DRB1*0701-DQB1*02, -

DRB1*0102 and -DRB1*15 alleles as covariates. Association results

are represented as the 2log10 of the combined P values (left y-axis),

and the most associated SNP (rs743862) and imputed HLA allele

(B*1501) are marked by squares. Recombination rates from the

HapMap CEU are depicted in blue (right y-axis). Genomic

positions on the x-axis are based on the NCBI Build 36 (hg 18)

assembly. The horizontal red line represents the genome-wide

significance threshold of P = 561028. Mb, megabase pairs.

(TIF)

Table S1 Distribution of HLA-DRB1*0301 haplotypes in the 3

cases-control series. Shown are summary statistics for the

distribution of extended and recombinant (non-B*0801) HLA-

DRB1*0301 haplotypes in the 3 case-control series. P values were

calculated using a two-tailed Fisher’s exact probability test

comparing the frequency of recombinant DRB1*0301 haplotypes

in cases and controls. Odds ratios were calculated relative to the

frequency of extended HLA-B*0801-DRB1*0301-DQB1*02 hap-

lotypes. Combined P value and odds ratio were calculated using a

Cochran-Mantel-Haenszel test. a Extended DR3 represent all

extended HLA-B*0801-DRB1*0301-DQB1*02 haplotypes; b Re-

combinant DR3 represent all recombinant (non-B*0801)

DRB1*0301 haplotypes. N, number of haplotypes; OR, odds

ratio.

(XLS)

Table S2 Power to detect the association of recombinant

haplotypes with IgAD. Power to detect the association of the

observed recombinant haplotypes with IgAD in our combined

cohort of 772 patients and 1,976 controls. Power calculations were

performed assuming a multiplicative model and a disease

incidence of 1:500. The relative risk of each recombinant

haplotype was estimated to be identical to the relative risk

observed for the respective extended risk haplotype. GRR,

genotype relative risk.

(XLS)

Table S3 Final set of SNPs used for the reconstruction of the

extended haplotypes. List of SNPs in the HLA locus selected to

reconstruct the extended haplotypes. Chromosomal positions are

based on the NCBI Build 36 (hg 18) assembly.

(XLS)

Table S4 HLA typing information in IgAD patients. Shown is

the number of IgAD patients from each case-control series where

2-digit or 4-digit HLA typing information for the HLA-B, -DRB1

and -DQB1 alleles was available. N, Number of patients included

in the study after applying all quality control filters.

(XLS)

Table S5 Performance of the HLA imputation method on the

training and validation sets. Performance of the imputation

method for estimating the HLA-B, -DRB1 and -DQB1 alleles in

this study. Accuracy of the method was estimated by calculating

the sensitivity, specificity and positive predictive value (PPV) in the

training set (consisting of 410, 534 and 638 individuals with known

HLA-B, -DRB1 and -DQB1 typing information, respectively) and

an independent validation set (consisting of 79 individuals).

(XLS)
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