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Principal component analysis (PCA) is a classical method for dimension-
ality reduction based on extracting the dominant eigenvectors of the sam-
ple covariance matrix. However, PCA is well known to behave poorly in
the “large p, small n” setting, in which the problem dimension p is com-
parable to or larger than the sample size n. This paper studies PCA in this
high-dimensional regime, but under the additional assumption that the max-
imal eigenvector is sparse, say, with at most k nonzero components. We
consider a spiked covariance model in which a base matrix is perturbed
by adding a k-sparse maximal eigenvector, and we analyze two computa-
tionally tractable methods for recovering the support set of this maximal
eigenvector, as follows: (a) a simple diagonal thresholding method, which
transitions from success to failure as a function of the rescaled sample size
θdia(n,p, k) = n/[k2 log(p − k)]; and (b) a more sophisticated semidefinite
programming (SDP) relaxation, which succeeds once the rescaled sample
size θsdp(n,p, k) = n/[k log(p − k)] is larger than a critical threshold. In
addition, we prove that no method, including the best method which has
exponential-time complexity, can succeed in recovering the support if the or-
der parameter θsdp(n,p, k) is below a threshold. Our results thus highlight
an interesting trade-off between computational and statistical efficiency in
high-dimensional inference.

1. Introduction. Principal component analysis (PCA) is a classical method
[1, 22] for reducing the dimension of data, say, from some high-dimensional sub-
set of R

p down to some subset of R
d , with d � p. Principal component analysis

operates by projecting the data onto the d directions of maximal variance, as cap-
tured by eigenvectors of the p × p population covariance matrix �. Of course, in
practice, one does not have access to the population covariance, but instead must
rely on a “noisy” version of the form

�̂ = � + �,(1)
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where � = �n denotes a random noise matrix, typically arising from having only
a finite number n of samples. A natural question in assessing the performance of
PCA is under what conditions the sample eigenvectors (i.e., based on �̂) are con-
sistent estimators of their population analogues. In the classical theory of PCA, the
model dimension p is viewed as fixed, and asymptotic statements are established
as the number of observations n tends to infinity. With this scaling, the influence of
the noise matrix � dies off, so that sample eigenvectors and eigenvalues are consis-
tent estimators of their population analogues [1]. However, such “fixed p, large n”
scaling may be inappropriate for many contemporary applications in science and
engineering (e.g., financial time series, astronomical imaging, sensor networks), in
which the model dimension p is comparable or even larger than the number of ob-
servations n. This type of high-dimensional scaling causes dramatic breakdowns in
standard PCA and related eigenvector methods, as shown by classical and ongoing
work in random matrix theory [13, 20, 21].

Without further restrictions, there is little hope of performing high-dimensional
inference with very limited data. However, many data sets exhibit additional struc-
ture, which can partially mitigate the curse of dimensionality. One natural struc-
tural assumption is that of sparsity, and various types of sparse models have been
studied in past statistical work. There is a substantial and on-going line of work
on subset selection and sparse regression models (e.g., [6, 11, 28, 35, 36]), focus-
ing in particular on the behavior of various �1-based relaxation methods. Other
work has tackled the problem of estimating sparse covariance matrices in the
high-dimensional setting, using thresholding methods [3, 12] as well as �1-regular-
ization methods [8, 39].

A related problem—and the primary focus of this paper—is recovering sparse
eigenvectors from high-dimensional data. While related to sparse covariance es-
timation, the sparse eigenvector problem presents a different set of challenges;
indeed, a covariance matrix may have a sparse eigenvector with neither it nor
its inverse being a sparse matrix. Various researchers have proposed methods
for extracting sparse eigenvectors, a problem often referred to as sparse princi-
pal component analysis (SPCA). Some of these methods are based on greedy or
nonconvex optimization procedures (e.g., [23, 29, 40]), whereas others are based
on various types of �1-regularization [9, 41]. Zou, Hastie and Tibshirani [41] de-
velop a method based on transforming the PCA problem to a regression problem
and then applying the Lasso (�1-regularization). Johnstone and Lu [21] proposed
a two-step method, using an initial pre-processing step to select relevant variables
followed by ordinary PCA in the reduced space. Under a particular �q -ball sparsity
model, they proved �2-consistency of their procedure as long as p/n converges to
a constant. In recent work, d’Asprémont et al. [9] have formulated a direct semi-
definite programming (SDP) relaxation of the sparse eigenvector problem, and
developed fast algorithms for solving it, but have not provided high-dimensional
consistency results. The elegant work of Paul and Johnstone [30, 32], brought to
our attention after initial submission, studies estimation of eigenvectors satisfying
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weak �q -ball sparsity assumptions for q ∈ (0,2). We discuss connections to this
work at more length below.

In this paper, we study the model selection problem for sparse eigenvectors.
More precisely, we consider a spiked covariance model [20], in which the maxi-
mal eigenvector z∗ of the population covariance �p ∈ R

p×p is k-sparse, meaning
that it has nonzero entries on a subset S(z∗) with cardinality k, and our goal is to
recover this support set exactly. In order to do so, we have access to a matrix �̂,
representing a noisy version of the population covariance, as in (1). Although our
theory is somewhat more generally applicable, the most natural instantiation of �̂

is as a sample covariance matrix based on n i.i.d. samples drawn from the pop-
ulation. We analyze this setup in the high-dimensional regime, in which all three
parameters—the number of observations n, the ambient dimension p and the spar-
sity index k—are allowed to tend to infinity simultaneously. Our primary interest
is in the following question: using a given inference procedure, under what condi-
tions on the scaling of triplet (n,p, k) is it possible, or conversely impossible, to
recover the support set of the maximal eigenvector z∗ with probability one?

We provide a detailed analysis of two procedures for recovering sparse eigen-
vectors, as follows: (a) a simple diagonal thresholding method, used as a pre-
processing step by Johnstone and Lu [21], and (b) a semidefinite programming
(SDP) relaxation for sparse PCA, recently developed by d’Aspremont et al. [9].
Under the k-sparsity assumption on the maximal eigenvector, we prove that the
success or failure probabilities of these two methods have qualitatively different
scaling in terms of the triplet (n,p, k). For the diagonal thresholding method, we
prove that its success or failure is governed by the rescaled sample size

θdia(n,p, k) := n

k2 log(p − k)
,(2)

meaning that it succeeds with probability one for scalings of the triplet (n,p, k)

such that θdia is above some critical value and, conversely, fails with probabil-
ity one when this ratio falls below some critical value. We then establish perfor-
mance guarantees for the SDP relaxation [9]. In particular, for the same class of
models, we show that it always has a unique rank-one solution that specifies the
correct signed support once θdia(n,p, k) is sufficiently large, moreover, that for
sufficiently large values of the rescaled sample size

θsdp(n,p, k) := n

k log(p − k)
,(3)

if there exists a rank-one solution, then it specifies the correct signed support.
The proof of this result is based on random matrix theory, concentration of
measure and Gaussian comparison inequalities. Our final contribution is to use
information-theoretic arguments to show that no method can succeed in recover-
ing the signed support for the spiked identity covariance model if the order pa-
rameter θsdp(n,p, k) lies below some critical value. One consequence is that the
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given scaling (3) for the SDP relaxation is sharp, meaning the SDP relaxation also
fails once θsdp drops below a critical threshold. Moreover, it shows that under the
rank-one condition, the SDP is in fact statistically optimal, that is, it requires only
the necessary number of samples (up to a constant factor) to succeed.

The results reported here are complementary to those of Paul and Johnstone
[30, 32], who propose and analyze the augmented SPCA algorithm for estimating
eigenvectors. In comparison to the models analyzed here, their analysis applies to
spiked models using the identity base covariance, but it allows for m > 1 eigen-
vectors in the spiking. In addition, they consider the class of weak �q -ball sparsity
models, as opposed to the hard �0-sparsity model considered here. Another differ-
ence is that their results provide guarantees in terms of the �2-norm between the
eigenvector and its estimate, whereas our results guarantee exact support recovery.
We note that an estimate can be close in �2-norm while having a very different sup-
port set. Consequently, the results given here, which provide conditions for exact
support recovery, provide complementary insight.

Our results highlight some interesting trade-offs between computational and
statistical costs in high-dimensional inference. On one hand, the statistical effi-
ciency of SDP relaxation is substantially greater than the diagonal thresholding
method, requiring O(1/k) fewer observations to succeed. However, the computa-
tional complexity of SDP is also larger by roughly a factor O(p3). An implemen-
tation due to d’Asprémont et al. [9] has complexity O(np + p4 logp) as opposed
to the O(np + p logp) complexity of the diagonal thresholding method. More-
over, our information-theoretic analysis shows that the best possible method—
namely, one based on an exhaustive search over all

(p
k

)
subsets, with exponential

complexity—does not have substantially greater statistical efficiency than the SDP
relaxation.

The remainder of this paper is organized as follows. In Section 2, we provide
precise statements of our main results, discuss some of their implications and pro-
vide simulation results to illustrate the sharpness of their predictions. Sections 3,
4 and 5 are devoted to proofs of these results, with some of the more technical
aspects deferred to appendices. We conclude in Section 6.

1.1. Notation. For the reader’s convenience, we state here some notation used
throughout the paper. For a vector x ∈ R

n, we use ‖x‖p = (
∑n

i=1 |xi |p)1/p to de-
note its �p-norm. For a matrix A ∈ R

m×n, we use |||A|||p,q to denote the matrix
operator norm induced by vector norms �p and �q ; more precisely, we have

|||A|||p,q := max‖x‖q=1
‖Ax‖p.(4)

A few cases of particular interest in this paper are (a) the spectral norm given by

|||A|||2,2 := max
i=1,...,m

{σi(A)},
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where {σi(A)} are the singular values of A, and the �∞-operator norm, given by

|||A|||∞,∞ := max
i=1,...,m

n∑
j=1

|Aij |.

Given two square matrices X,Y ∈ R
n×n, we define the matrix inner product

〈〈X,Y 〉〉 := tr(XYT ) = ∑
i,j XijYij . Note that this inner product induces the

Hilbert–Schmidt norm |||X|||HS = √〈〈X,X〉〉.
We use the following standard asymptotic notation: for functions f,g, the no-

tation f (n) = O(g(n)) means that there exists a fixed constant 0 < C < +∞ such
that f (n) ≤ Cg(n); the notation f (n) = �(g(n)) means that f (n) ≥ Cg(n), and
f (n) = �(g(n)) means that f (n) = O(g(n)) and f (n) = �(g(n)). Note in partic-
ular that when used without a subscript “p,” these symbols are to be interpreted in
a deterministic sense, that is, the constants involved are assumed to be nonrandom.

We use λ(A) to denote a generic eigenvalue of a square matrix A, as well as
λmin(·) and λmax(·) for the minimal and the maximal eigenvalues, respectively.
Any member of the set of eigenvectors of A associated with an eigenvalue is de-
noted as �v(A). Thus, �vmax(·), for example, represents the eigenvectors associated
with the maximal eigenvalue (occasionally referred to as “maximal eigenvectors”).
We always assume that eigenvectors are normalized to unit �2-norm and have
a nonnegative first component. The sign convention guarantees uniqueness of the
eigenvector associated with an eigenvalue with geometric multiplicity one.

Finally, some probabilistic notation: we say a sequence of events {Ej }j≥1 hap-
pens with asymptotic probability one (w.a.p. one) if limj→+∞ P[Ej ] = 1, whereas
it holds asymptotically almost surely (a.a.s.) as j → +∞ if P(lim infEj) = 1.

2. Main results and consequences. The primary focus of this paper is the
spiked covariance model, in which some base covariance matrix is perturbed by
the addition of a sparse eigenvector z∗ ∈ R

p . In particular, we study sequences of
covariance matrices of the form

�p = βz∗z∗T +
[
Ik 0
0 �p−k

]
= βz∗z∗T + �,(5)

where �p−k ∈ S
p−k
+ is a symmetric PSD matrix with λmax(�p−k) ≤ 1. Note that we

have assumed (without loss of generality, by re-ordering the indices as necessary)
that the nonzero entries of z∗ are indexed by {1, . . . , k}, so that (5) is the form of
the covariance after any re-ordering. We also assume that the nonzero part of z∗
has entries z∗

i ∈ 1√
k
{−1,+1}, so that ‖z∗‖2 = 1.

The spiked covariance model (5) was first proposed by Johnstone [20], who fo-
cused on the spiked identity covariance matrix [i.e., model (5) with �p−k = Ip−k].
Johnstone and Lu [21] established that the sample eigenvectors for the spiked
identity model, based on a set of n i.i.d. samples with distribution N(0,�p)
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from the spiked identity ensemble, are inconsistent as estimators of z∗
i whenever

p/n → c > 0. These asymptotic results were refined by later work [2, 31].
In this paper, we study a slightly more general family of spiked covariance mod-

els, in which the matrix �p−k is required to satisfy the following conditions:

A1.
∣∣∣∣∣∣√�p−k

∣∣∣∣∣∣∞,∞ = O(1) and(6a)

A2. λmax(�p−k) ≤ min
{

1, λmin(�p−k) + β

8

}
.(6b)

Here
√

�p−k denotes the symmetric square root. These conditions are trivially sat-
isfied by the identity matrix Ip−k , but also can hold for more general nondiagonal
matrices. Thus, under the model (5), the population covariance matrix � itself need
not be sparse, since (at least generically) it has k2 + (p − k)2 = �(p2) nonzero
entries. Assumption (A2) on the eigenspectrum of the matrix �p−k ensures that
as long as β > 0, then the vector z∗ is the unique maximal eigenvector of �, with
associated eigenvalue (1+β). Since the remaining eigenvalues are bounded above
by 1, the parameter β > 0 represents a signal-to-noise ratio, characterizing the sep-
aration between the maximal eigenvalue and the remainder of the eigenspectrum.
Assumption (A1) is related to the fact that recovering the correct signed support
means that the estimate ẑ must satisfy ‖̂z − z∗‖∞ ≤ 1/

√
k. As will be clarified

by our analysis (see Section 4.4), controlling this �∞-norm requires bounds on
terms of the form ‖√�p−ku‖∞, which requires control of the �∞-operator norm
|||√�p−k|||∞,∞.

In this paper, we study the model selection problem for eigenvectors: that is, we
assume that the maximal eigenvector z∗ is k-sparse, meaning that it has exactly k

nonzero entries, and our goal is to recover this support, along with the sign of z∗
on its support. We let S(z∗) = {i | z∗

i �= 0} denote the support set of the maximal
eigenvector; recall that S(z∗) = {1, . . . , k} by our assumed ordering of the indices.
Moreover, we define the function S± : Rp → {−1,0,+1}p by

[S±(u)]i :=
{

sign(ui), if ui �= 0,
0, otherwise,

(7)

so that S±(z∗) encodes the signed support of the maximal eigenvector.
Given some estimate Ŝ± of the true signed support S±(z∗), we assess it based

on the 0–1 loss I[Ŝ± �= S±(z∗)], so that the associated risk is simply the proba-
bility of incorrect decision P[Ŝ± �= S±(z∗)]. Our goal is to specify conditions on
the scaling of the triplet (n,p, k) such that this error probability vanishes, or con-
versely, fails to vanish asymptotically. We consider methods that operate based on
a set of n samples x1, . . . , xn, drawn i.i.d. with distribution N(0,�p). Under the
spiked covariance model (5), each sample can be written as

xi = √
βviz∗ + √

�gi,(8)
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where
√

� is the symmetric matrix square root. Here vi ∼ N(0,1) is standard
Gaussian, and gi ∼ N(0, Ip×p) is a standard Gaussian p-vector, independent of vi ,
so that

√
�gi ∼ N(0,�). The data {xi}ni=1 defines the sample covariance matrix

�̂ := 1

n

n∑
i=1

(xi)(xi)T ,(9)

which follows a p-variate Wishart distribution [1]. In this paper, we analyze the
high-dimensional scaling of two methods for recovering the signed support of the
maximal eigenvector. It will be assumed throughout that the size k of the support
of z∗ is available to the methods a priori, that is, we do not make any attempt at
estimating k.

2.1. Diagonal thresholding method. Under the spiked covariance model (5),
note that the diagonal elements of the population covariance satisfy ��� = 1 +
β/k for all � ∈ S, and ��� ≤ 1 for all � /∈ S. (This latter bound follows since for
all � /∈ S, we have ��� ≤ |||�p−k|||2,2 ≤ 1.) This observation motivates a natural
approach to recovering information about the support set S, previously used as
a pre-processing step by Johnstone and Lu [21].

Let D�, � = 1, . . . , p, be the diagonal elements of the sample covariance
matrix—namely,

D� = 1

n

n∑
i=1

(xi
�)

2 = [�̂]��.

Form the associated order statistics

D(1) ≤ D(2) ≤ · · · ≤ D(p−1) ≤ D(p),

and output the random subset Ŝ(D) of cardinality k specified by the indices of the
largest k elements {D(p−k+1), . . . ,D(p)}. The chief appeal of this method is its low
computational complexity. Apart from the order O(np) of computing the diagonal
elements of �̂, it requires only performing a sorting operation, with complexity
O(p logp).

Note that this method provides only an estimate of the support S(z∗), as opposed
to the signed support S±(z∗). One could imagine extending the method to extract
sign information as well, but our main interest in studying this method is to provide
a simple benchmark by which to calibrate our later results on the performance
of the more complex SDP relaxation. In particular, the following result provides
a precise characterization of the statistical behavior of the diagonal thresholding
method.

PROPOSITION 1 (Performance of diagonal thresholding). For k = O(p1−δ)

for any δ ∈ (0,1), the probability of successful recovery using diagonal threshold-
ing undergoes a phase transition as a function of the rescaled sample size

θdia(n,p, k) = n

k2 log(p − k)
.(10)
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More precisely, there exists a constant θu such that if n > θuk
2 log(p − k), then

P[Ŝ(D) = S(z∗)] ≥ 1 − exp
(−�

(
k2 log(p − k)

)) → 1,(11)

so that the method succeeds w.a.p. one and a constant θ� > 0 such that if n ≤
θ�k

2 log(p − k), then

P[Ŝ(D) = S(z∗)] ≤ exp
(−�

(
log(p − k)

)) → 0,(12)

so that the method fails w.a.p. one.

REMARKS. The proof of Proposition 1, provided in Section 3, is based on
large deviations bounds on χ2-variates. The achievability assertion (11) uses
known upper bounds on the tails of χ2-variates (e.g., [4, 21]). The converse re-
sult (12) requires an exponentially tight lower bound on the tails of χ2-variates,
which we derive in Appendix C.

To illustrate the prediction of Proposition 1, we provide some results on the
diagonal thresholding method. For all experiments reported here, we generated n

samples {x1, . . . , xn} in an i.i.d. manner from the spiked covariance ensemble (5),
with � = I and β = 3. Figure 1 illustrates the behavior predicted by Proposition 1.
Each panel plots the success probability P[Ŝ(D) = S(z∗)] versus the rescaled sam-
ple size θdia(n,p,n) = n/[k2 log(p−k)]. Each panel shows five model dimensions
(p ∈ {100,200,300,600,1200}), with panel (a) showing the logarithmic sparsity
index k = O(logp) and panel (b) showing the case k = O(

√
p). Each point on

FIG. 1. Plot of the success probability P[Ŝ(D) = S(z∗)] versus the rescaled sample size
θdia(n,p, k) = n/[k2 log(p − k)]. The five curves in each panel correspond to model dimensions
p ∈ {100,200,300,600,1200}, SNR parameter β = 3 and sparsity indices k = O(logp) in panel (a)
and k = O(

√
p) in panel (b). As predicted by Proposition 1, the success probability undergoes

a phase transition, with the curves for different model sizes and different sparsity indices all lying on
top of one another.
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each curve corresponds to the average of 100 independent trials. As predicted by
Proposition 1, the curves all coincide, even though they correspond to very differ-
ent regimes of (p, k).

2.2. Semidefinite-programming relaxation. We now describe the approach to
sparse PCA developed by d’Asprémont et al. [9]. Let S

p
+ = {Z ∈ R

p×p | Z =
ZT ,Z � 0} denote the cone of symmetric, positive semidefinite (PSD) matrices.
Given n i.i.d. observations from the model N(0,�p), let �̂ be the sample co-
variance matrix (9), and let ρn > 0 be a user-defined regularization parameter.
d’Asprémont et al. [9] propose estimating z∗ by solving the optimization problem

Ẑ := arg max
Z∈S

p
+

[
tr(�̂Z) − ρn

∑
i,j

|Zij |
]

s.t. tr(Z) = 1,(13)

and computing the maximal eigenvector ẑ = �vmax(Ẑ). The optimization prob-
lem (13) is a semidefinite program (SDP), a class of convex conic programs that
can be solved exactly in polynomial time. Indeed, d’Asprémont et al. [9] describe
an O(p4 logp) algorithm, with an implementation posted online, that we use for
all simulations reported in this paper.

To gain some intuition for the SDP relaxation (13), recall the following
Courant–Fischer variational representation [18] of the maximal eigenvalue and
eigenvector:

�vmax(�̂) = arg max
‖z‖2=1

zT �̂z.(14)

A lesser known but equivalent variational representation is in terms of the semi-
definite program (SDP)

Z∗ = arg max
Z∈S

p
+,tr(Z)=1

tr(�̂Z).(15)

For this problem, if the maximal eigenvalue is simple, the optimum is always
achieved at a rank-one matrix Z∗ = z∗(z∗)T , where z∗ = �vmax(�̂) is the maxi-
mal eigenvector; otherwise, there exist optimal solutions of higher rank, but the
optimum is always achieved by at least some rank-one matrix. If we were given a
priori information that the maximal eigenvector were sparse, then it might be nat-
ural to solve the same semidefinite program with the addition of an �0 constraint.
Given the intractability of such an �0-optimization problem, the SDP program (13)
is a natural relaxation.

In particular, the following result provides sufficient conditions for the SDP
relaxation (13) to succeed in recovering the correct signed support of the maximal
eigenvector.

THEOREM 2 (SDP performance guarantees). Impose conditions (6a) and (6b)
on the sequence of population covariance matrices {�p}, and suppose moreover
that ρn = β/(2k) and k = O(logp). Then:
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(a) Rank guarantee: there exists a constant θwr = θwr(�,β) such that for all se-
quences (n,p, k) satisfying θdia(n,p, k) > θwr, the semidefinite program (13)
has a rank-one solution with high probability.

(b) Critical scaling: there exists a constant θcrit = θcrit(�,β) such that if the se-
quence (n,p, k) satisfies

θsdp(n,p, k) := n

k log(p − k)
> θcrit(16)

and if there exists a rank-one solution, then it specifies the correct signed sup-
port with probability converging to one.

REMARKS. Part (a) of the theorem shows that rank-one solutions of the
SDP (13) are not uncommon; in particular, they are guaranteed to exist with high
probability at least under the weaker scaling of the diagonal thresholding method.
The main contribution of Theorem 2 is its part (b), which provides sufficient con-
ditions for signed support recovery using the SDP, when a rank-one solution exists.
The bulk of our technical effort is devoted to part (b); indeed, the proof of part (a)
is straightforward once all the pieces of the proof of part (b) have been introduced,
and so will be deferred to Appendix G. For technical reasons, our current proof(s)
require the condition k = O(logp); however, it should be possible to remove this
restriction, and indeed, the empirical results do not appear to require it.

Proposition 1 and Theorem 2 apply to the performance of specific (polynomial-
time) methods. It is natural then to ask whether there exists any algorithm, possibly
with super-polynomial complexity, that has greater statistical efficiency. The fol-
lowing result is information-theoretic in nature, and characterizes the fundamental
limitations of any algorithm regardless of its computational complexity.

THEOREM 3 (Information-theoretic limitations). Consider the problem of re-
covering the eigenvector support in the spiked covariance model (5) with � = Ip .
For any sequence (n,p, k) → +∞ such that

θsdp(n,p, k) := n

k log(p − k)
<

1 + β

β2 ,(17)

the probability of error of any method is at least 1/2.

REMARKS. Together with Theorem 2, this result establishes the sharpness of
the threshold (16) in characterizing the behavior of SDP relaxation, and moreover,
it guarantees optimality of the SDP scaling (16), up to constant factors, for the
spiked identity ensemble.

To illustrate the predictions of Theorem 2 and 3, we applied the SDP relax-
ation to the spiked identity covariance ensemble, again generating n i.i.d. sam-
ples. We solved the SDP relaxation using publically available code provided by
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FIG. 2. Performance of the SDP relaxation for the spiked identity ensemble, plotting the success
probability P[S± (̂z) = S±(z∗)] versus the rescaled sample size θsdp(n,p, k) = n/[k log(p − k)].
The three curves in each panel correspond to model dimensions p ∈ {100,200,300}, SNR parameter
β = 3 and sparsity indices k = O(logp) in panel (a) and k = 0.1p in panel (b). As predicted by
Theorem 2, the curves in panel (a) all lie on top of one another, and transition to success once the
order parameter θsdp is sufficiently large.

d’Asprémont et al. [9]. Figure 2 shows the corresponding plots for the SDP relax-
ation [9]. Here we plot the probability P[S±(̂z) = S±(z∗)] that the SDP relaxation
correctly recovers the signed support of the unknown eigenvector z∗, where the
signs are chosen uniformly in {−1,+1} at random. Following Theorem 2, the
horizontal axis plots the rescaled sample size θsdp(n,p, k) = n/[k log(p − k)].
Each panel shows plots for three different problem sizes, p ∈ {100,200,300},
with panel (a) corresponding to logarithmic sparsity [k = O(logp)], and panel (b)
to linear sparsity (k = 0.1p). Consistent with the prediction of Theorem 2, the
success probability rapidly approaches one once the rescaled sample size exceeds
some critical threshold. [Strictly speaking, Theorem 2 only covers the case of loga-
rithmic sparsity shown in panel (a), but the linear sparsity curves in panel (b) show
the same qualitative behavior.] Note that this empirical behavior is consistent with
our conclusion that the order parameter θsdp(n,p, k) = n/[k log(p − k)] is a sharp
description of the SDP threshold.

3. Proof of Proposition 1. We begin by proving the achievability result (11).
We provide a detailed proof for the case �p−k = Ip−k and discuss necessary mod-
ifications for the general case at the end. For � = 1, . . . , p, we have

D� = 1

n

n∑
i=1

(xi
�)

2 = 1

n

n∑
i=1

[√
βz∗

�v
i + gi

�

]2
.(18)
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Since (
√

βz∗
�v

i +gi
�) ∼ N(0, β(z∗

�)
2 +1) for each i, the rescaled variate n

β(z∗
�)

2+1
×

D� is central χ2
n with n degrees of freedom. Consequently, we have

E[D�] =
⎧⎨⎩1, for all � ∈ Sc,

1 + β

k
, for all � ∈ S,

where we have used the fact that (z∗
�)

2 = 1/k for � ∈ S, by assumption.
A sufficient condition for success of the diagonal thresholding decoder is

a threshold τk such that D� ≥ (1 + τk) for all � ∈ S, and D� < (1 + τk) for all
� ∈ Sc. Using the union bound and the tail bound (61) on central χ2, we have

P

[
max
�∈Sc

D� ≥ (1 + τk)
]
≤ (p − k)P

[
χ2

n

n
≥ 1 + τk

]
≤ (p − k) exp

(
−3n

16
τ 2
k

)
,

so that the probability of false inclusion vanishes as long as n > 16
3 (τk)

−2 ×
log(p − k).

On the other hand, using the union bound and the tail bound (60b), we have

P

[
min
�∈S

D� < (1 + τk)
]
≤ kP

[
χ2

n

n
− 1 <

1 + τk

1 + β/k
− 1

]

= kP

[
χ2

n

n
− 1 <

τk − β/k

1 + β/k

]

≤ kP

[
χ2

n

n
− 1 < τk − β

k

]
.

As long as τk < β/k, we may choose x = n
4 (

β
k

− τk)
2 in (60b), thereby obtaining

the upper bound

P

[
min
�∈S

D� < n(1 + τk)
]
≤ k exp

(
−n

4

(
β

k
− τk

)2)
,

so that the probability of false exclusion vanishes as long as n > 4
(β/k−τk)

2 logk.

Overall, choosing τk = β
2k

ensures that the probability of both types of error vanish
asymptotically as long as

n > max
{

64

3β2 k2 log(p − k),
16

β2 k2 logk

}
.

Since k = o(p), the log(p − k) term is the dominant requirement. The mod-
ifications required for the case of general �p−k are straightforward. Since
var(

√
�gi)� = (�p−k)�� ≤ 1 for all � ∈ Sc and samples i = 1, . . . , n, we need

to adjust the scaling of the χ2
n variates. For general �p−k , the variates {D�, � ∈ Sc}

need no longer be independent, but our proof used only union bound, and so is
valid regardless of the dependence structure.
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We now prove the converse claim (12) for the spiked identity ensemble. At a
high level, this portion of the proof consists of the following steps. For a positive
real t , define the events

A1(t) :=
{
max
�∈Sc

D� > 1 + t
}

and A2(t) :=
{
min
�∈S

D� < 1 + t
}
.

Noting that the event A1(t) ∩ A2(t) implies failure of the diagonal cutoff de-
coder, it suffices to show the existence of some t > 0 such that P[A1(t)] → 1
and P[A2(t)] → 1.

Analysis of event A1(t). Central to the analysis of event A1 is the following
large-deviations lower bound on χ2-variates.

LEMMA 4. For a central χ2
n variable with n degrees of freedom, there exists

a constant C > 0 such that

P

[
χ2

n

n
> 1 + t

]
≥ C√

n
exp(−nt2/2)

for all t ∈ (0,1).

See Appendix C for the proof.
We exploit this lemma as follows. First, define the integer-valued random vari-

able

Z(t) := ∑
�∈Sc

I[D� > 1 + t]

corresponding to the number of indices � ∈ Sc for which the diagonal entry D�

exceeds 1 + t , and note that P[A1(t)] = P[Z(t) > 0]. By a one-sided Chebyshev
inequality [15], we have

P[A1(t)] = P[Z(t) > 0] ≥ (E[Z(t)])2

(E[Z(t)])2 + var(Z(t))
.(19)

Note that Z(t) is a sum of (p − k) independent Bernoulli indicators, each with
the same parameter q(t) := P[D� > 1 + t]. Computing the mean E[Z(t)] = (p −
k)q(t) and variance var(Z(t)) = (p − k)q(t)(1 − q(t)), and then substituting into
the Chebyshev bound (19), we obtain

P[A1(t)] ≥ (p − k)2q2(t)

(p − k)2q2(t) + (p − k)q(t)(1 − q(t))
≥ (p − k)q(t)

(p − k)q(t) + 1

≥ 1 − 1

(p − k)q(t)
.

Consequently, the condition (p − k)q(t) → ∞ implies that P[A1(t)] → 1.
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Let us set t =
√

δ log(p−k)
n

. [Here δ ∈ (0,1) is the parameter from the assumption

k = O(p1−δ).] From Lemma 4, we have q(t) ≥ C√
n

exp(−nt2/2), so that

(p − k)q

(√
δ log(p − k)

n

)
≥ C(p − k)√

n
exp

(
−δ

2
log(p − k)

)

= C(p − k)1−δ/2
√

n
.

Since n ≤ Lk2 log(p − k) for some L < +∞ by assumption, we have

(p − k)q

(√
δ log(p − k)

n

)
≥ C√

L

(p − k)1−δ

k

(p − k)δ/2
√

log(p − k)
,

which diverges to infinity, since k = O(p1−δ).

Analysis of event A2. In order to analyze this event, we first need to condi-
tion on the random vector v := (v1, . . . , vn), so as to decouple the random vari-
ables {D�, � ∈ S}. After conditioning on v, each variate nD�, � ∈ S, is a noncentral
χ2

n,ν∗ , with n degrees of freedom and noncentrality parameter ν∗ = β
k
‖v‖2

2, so that
each D� has mean (ν∗ + n).

Since v is a standard Gaussian n-vector, we have ‖v‖2
2 ∼ χ2

n . Therefore, if we

define the event B(v) := {‖v‖2
2

n
> 3

2}, the large deviations bound (60a) implies that
P[B] ≤ exp(−n/16). Therefore, by conditioning on B and its complement, we
obtain

P[Ac
2] ≤ P

[
min
�∈S

D� > 1 + t
∣∣ B

c
]
+ P[B]

(20)
≤ (

P[χ2
n,ν∗ > n(1 + t) | B

c])k + exp(−n/16),

where we have used the conditional independence of {D�, � ∈ S}. Finally, since
‖v‖2

2
n

≤ 3
2 on the event B

c, we have ν∗ ≤ 3β
2k

n, and thus

P[χ2
n,ν∗ > n(1 + t) | B

c] ≤ P

[
χ2

n,ν∗ > {n + ν∗} + n

{
t − 3β

2k

} ∣∣ B
c

]
.

Since t = √
δ log(p − k)/n and n < Lk2 log(p − k), we have t ≥

√
δ
L

1
k

, so that

the quantity ε := min{1
2 , t − 3β

2k
} is positive for the pre-factor L > 0 chosen suffi-

ciently small. Thus, we have

P[χ2
n,ν∗ > n(1 + t) | B

c] ≤ P[χ2
n,ν∗ > {n + ν∗} + nε]

≤ exp
(
− nε2

16(1 + 2(3/2))

)
= exp

(
−nε2

64

)
,
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using the χ2 tail bound (63). Substituting this upper bound into (20), we obtain

P[Ac
2] ≤ exp

(
−knε2

64

)
+ exp(−n/16),

which certainly vanishes if ε = 1
2 . Otherwise, we have ε = t − 3β

2k
with t =√

δ log(p−k)
n

, and we need the quantity

√
kn

(
t − 3β

2k

)
=

√
δk log(p − k) − 3β

2

√
n

k
,

to diverge to +∞. This divergence is guaranteed by choosing n < Lk2 log(p − k)

for L sufficiently small.

4. Proof of Theorem 2(b). The proof of our main result is constructive in
nature, based on the notion of a primal–dual certificate, that is, a primal feasible
solution and a dual feasible solution that together satisfy the optimality conditions
associated with the SDP (13).

4.1. High-level proof outline. We first provide a high-level outline of the main
steps in our proof. Under the stated assumptions of Theorem 2, it suffices to
construct a rank-one optimal solution Ẑ = ẑ ẑT , constructed from a vector with
‖̂z‖2 = 1, as well as the following properties:

Correct sign: sign(̂zi) = sign(z∗
i ) for all i ∈ S and(21a)

Correct exclusion: ẑj = 0 for all j ∈ Sc.(21b)

Note that our objective function f (Z) = tr(�̂Z) − ρn

∑
i,j |Zij | is concave but

not differentiable. However, it still possesses a subdifferential (see the books [17,
33] for more details), so that it may be shown that the following conditions are
sufficient to verify the optimality of Ẑ = ẑ ẑT .

LEMMA 5. Suppose that, for each x ∈ R
p with ‖x‖2 = 1, there exists a sign

matrix Û = Û (x) such that:

(a) the matrix Û satisfies

Ûij =
{

sign(̂zi) sign(̂zj ), if ẑi ẑj �= 0,
∈ [−1,+1], otherwise;

(22)

(b) the vector ẑ satisfies of xT (�̂ − ρnÛ(x))x ≤ ẑT (�̂ − ρnÛ(x))̂z.

Then Ẑ = ẑ̂zT is an optimal rank-one solution.
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PROOF. The subdifferential ∂f (Ẑ) of our objective function at Z = Ẑ consists
of matrices of the form �̂ − ρnU , where U satisfies the condition (22). By the
concavity of f , for any such U and for all x ∈ R

p with ‖x‖2 = 1, we have

f (xxT ) ≤ f (Ẑ) + tr
(
(�̂ − ρnU)(xxT − Ẑ)

)
.

Therefore, it suffices to demonstrate, for each x ∈ R
p with ‖x‖2 = 1, a valid sign

matrix Û (x) such that tr((�̂ − ρnÛ(x))(xxT − Ẑ)) ≤ 0. Since we have

tr
((

�̂ − ρnÛ(x)
)
xxT ) ≤ tr

((
�̂ − ρnÛ(x)

)
Ẑ
)

by assumption (b), the stated conditions are sufficient. �

REMARKS. Note that if there is a Û independent of x such that ẑ satisfies
condition (b) of Lemma 5, that is, if ẑ is a maximal eigenvector of �̂ − ρnÛ , then
the above argument shows that ẑ ẑT is in fact “the” optimal solution (i.e., among
all matrices in the constraint space, not necessarily rank one).

The condition (22), when combined with the condition (21a), implies that we
must have

ÛSS = sign(z∗
S) sign(z∗

S)T .(23)

The remainder of the proof consists in choosing appropriately the remaining dual
blocks ÛSSc and ÛScSc , and verifying that the primal–dual optimality conditions
are satisfied. To describe the remaining steps, it is convenient to define the matrix

� := �̂ − ρnÛ − � = βz∗z∗T − ρnÛ + �,(24)

where � := �̂ − � is the effective noise in the sample covariance matrix. We
divide our proof into three main steps, based on the block structure

� =
[

�SS �SSc

�ScS �SS

]
=

[
βz∗

Sz∗
S
T − ρnÛSS + �SS −ρnÛSSc + �SSc

−ρnÛScS + �ScS −ρnÛScSc + �ScSc

]
.(25)

(A) In step A, we analyze the upper-left block �SS , using the fixed choice
ÛSS = sign(z∗

S) sign(z∗
S)T . We establish conditions on the regularization pa-

rameter ρn and the noise matrix �SS under which the maximal eigenvector of
�SS has the same sign pattern as z∗

S . This maximal eigenvector specifies the
k-dimensional subvector ẑS of our optimal primal solution.

(B) In step B, we analyze the off-diagonal block �ScS , in particular establishing
conditions on the noise matrix �ScS under which a valid sign matrix ÛScS

can be chosen such that the p-vector ẑ := (̂zS, �0Sc) is an eigenvector of the
full matrix �.

(C) In step C, we focus on the lower right block �ScSc , in particular analyzing
conditions on �ScSc such that a valid sign matrix ÛScSc can be chosen such
that ẑ defined in step B satisfies condition (b) of Lemma 5.
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Our primary interest in this paper is the effective noise matrix � = �̂ − � in-
duced by the usual i.i.d. sampling model. However, our results are actually some-
what more general, in that we can provide conditions on arbitrary noise matrices
(which need not be of the Wishart type) under which it is possible to construct
(̂z, Û ) as in steps A through C. Accordingly, in order to make the proof as clear
as possible, we divide our analysis into two parts: in Section 4.2, we specify suf-
ficient properties on arbitrary noise matrices �, and in Section 4.3, we analyze
the Wishart ensemble induced by the i.i.d. sampling model and establish sufficient
conditions on the sample size n. In Section 4.3, we focus exclusively on the spe-
cial case of the spiked identity covariance, whereas Section 4.4 describes how our
results extend to the more general spiked covariance ensembles covered by Theo-
rem 2.

4.2. Sufficient conditions for general noise matrices. We now state a series of
sufficient conditions, applicable to general noise matrices. So as to clarify the flow
of the main proof, we defer the proofs of these technical lemmas to Appendix D.

4.2.1. Sufficient conditions for step A. We begin with sufficient condition
for the block (S, S). In particular, with the choice (23) of ÛSS and noting that
sign(z∗

S) = √
kz∗

S by assumption, we have

�SS = (β − ρnk)z∗
Sz∗T

S + �SS := αz∗
Sz∗T

S + �SS,

where the quantity α := β − ρnk < β represents a “post-regularization” signal-to-
noise ratio. Throughout the remainder of the development, we enforce the con-
straint

ρn = β

2k
,(26)

so that α = β/2. The following lemma guarantees correct sign recovery [see (21a)],
assuming that �SS is “small” in a suitable sense.

LEMMA 6 (Correct sign recovery). Suppose that the upper-left noise matrix
�SS satisfies

|||�SS |||∞,∞ ≤ α

10
and |||�SS |||2,2 → 0(27)

with probability 1 as p → +∞. Then w.a.p. one, the following occurs:

(a) The maximal eigenvalue γ1 := λmax(�SS) converges to α, and its second
largest eigenvalue γ2 converges to zero.

(b) The upper-left block �SS has a unique maximal eigenvector ẑS with the correct
sign property [i.e., sign(̂zS) = sign(z∗

S)]. More specifically, we have

‖̂zS − z∗
S‖∞ ≤ 1

2
√

k
.(28)
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4.2.2. Sufficient conditions for step B. With the subvector ẑS specified, we can
now specify the (p − k) × k submatrix ÛScS so that the vector

ẑ := (̂zS, �0Sc) ∈ R
p(29)

is an eigenvector of the full matrix �. In particular, if we define the renormalized
quantity z̃S = ẑS/‖̂zS‖1, and choose

ÛScS = 1

ρn

(�ScSz̃S) sign(̂zS)T ,(30)

then some straightforward algebra shows that (�ScS − ρnÛScS )̂zS = 0, so that ẑ

is an eigenvector of the matrix � = βz∗(z∗)T − ρnÛ + �. It remains to verify
that the choice (30) is a valid sign matrix (meaning that its entries are bounded in
absolute value by one).

LEMMA 7. Suppose that w.a.p. one, the matrix � satisfies conditions (27),
and in addition, for sufficiently small δ > 0, we have

|||�ScS |||∞,2 ≤ δ√
k
.(31)

Then the specified ÛScS is a valid sign matrix w.a.p. one.

4.2.3. Sufficient conditions in step C. Up to this point, we have established
that ẑ := (̂zS, �0Sc) is an eigenvector of �̂ − ρnÛ . Thus far, we have specified the
sub-blocks ÛSS and ÛSSc of the sign matrix. To complete the proof, it suffices
to show that condition (b) in Lemma 5 can be satisfied—namely, that for each
x ∈ Sp−1, there exists an extension ÛScSc(x) to our sign matrix such that

ẑT (
�̂ − ρnÛ(x)

)̂
z ≥ xT (

�̂ − ρnÛ(x)
)
x.

Note that it is sufficient to establish the above inequality with �(x) in place of
�̂ − ρnÛ(x).1 Given any vector x ∈ Sp−1, recall the definition (24) of the matrix
� = �(x), and observe that (̂z)T �(x)̂z = γ1 for any choice of ÛScSc(x). Consider
the partition x = (u, v) ∈ Sp−1, with u ∈ R

k and v ∈ R
m, where m = p − k. We

have

xT �x = uT �SSu + 2vT �ScSu + vT �ScScv.(32)

Let us decompose u = μẑS + ẑ⊥
S , where |μ| ≤ 1 and ẑ⊥

S is an element of the or-
thogonal complement of the span of ẑS . With this decomposition, we have

uT �SSu = μ2ẑT
S �SSẑS + 2μẑT

S �SSẑ⊥
S + (̂z⊥

S )T �SSẑ⊥
S

= μ2γ1 + (̂z⊥
S )T �SSẑ⊥

S ,

1In particular, we have xT �x ≤ |||�|||2,2‖x‖2
2 = max{1, |||�p−k |||2,2}‖x‖2

2 = 1, while ẑT � ẑ =
‖̂zS‖2

2 = 1; that is, we have xT �x ≤ ẑT � ẑ.
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using the fact that ẑS is an eigenvector of �SS with eigenvalue γ1 by definition.
Note that ‖̂z⊥

S ‖2
2 ≤ 1−μ2, so that (̂z⊥

S )T �SSẑ⊥
S is bounded by (1−μ2)γ2, where γ2

is the second largest eigenvalue of �SS , which tends to zero according to Lemma 6.
We thus conclude that

uT �SSu ≤ μ2γ1 + (1 − μ2)γ2.(33)

The following lemma addresses the remaining two terms in the decomposi-
tion (32).

LEMMA 8. Let m = p − k and let S = {(ηi, �i)}i be a set of cardinality |S| =
O(m). Suppose that in addition to conditions (27) and (31), the noise matrix �

satisfies, w.p. 1,

max‖v‖2≤η,

‖v‖1≤�

√
vT (�ScSc + �m)v ≤ η + δ√

k
� + ε ∀(η, �) ∈ S,(34)

for sufficiently small δ, ε > 0 as m → +∞. Then w.p. 1, for all x ∈ Sp−1, there ex-
ists a valid sign matrix ÛScSc(x) such that the matrix �(x) := βz∗z∗T −ρnÛ(x)+
� satisfies

xT (�(x))x ≤ μ2α + (1 − μ2)
α

2
≤ α,(35)

where |μ| = |xT ẑ| ≤ 1.

4.3. Noise in a sample covariance. Having established general sufficient con-
ditions on the effective noise matrix, we now turn to the case of i.i.d. samples
x1, . . . , xn from the population covariance, and let the effective noise matrix cor-
respond to the difference between the sample and population covariances. Our
interest is in providing specific scalings of the triplet (n,p, k) that ensure that the
constructions in steps A through C can be carried out. So as to clarify the steps
involved, we begin with the proof for the spiked identity ensemble (� = I ). In
Section 4.4, we provide the extension to nonidentity spiked ensembles.

Recalling our sampling model xi = √
βviz∗ + gi , define the vector h =

1
n

∑n
i=1 vigi . The effective noise matrix � = �̂ − � can be decomposed as fol-

lows:

� = β

(
1

n

n∑
i=1

(vi)2 − 1

)
z∗z∗T

︸ ︷︷ ︸
P

(36)

+ √
β(z∗hT + hz∗T )︸ ︷︷ ︸

R

+
(
n−1

n∑
i=1

gigiT − Ip

)
︸ ︷︷ ︸

W

.
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We have named each of the three terms that appear in (36), so that we can deal
with each one separately in our analysis. The decomposition can be summarized
as

� = βP + √
βR + W.

The last term W is a centered Wishart random matrix, whereas the other two
are cross terms from the sampling model, involving both random vectors and
the unknown eigenvector z∗. Defining the standard Gaussian random matrix G =
(gi

j )
n,p
i,j=1,1 ∈ R

n×p , we can express W concisely as

W = 1

n
GT G − Ip.(37)

Our strategy is to examine each of the terms βP ,
√

βR and W separately. For
sub-block �SS , the corresponding sub-blocks of all the three terms are present,
while for sub-block �ScS , only

√
βRScS and WScS have contributions. Since the

conditions to be satisfied by these two sub-blocks are expressed in terms of their
(operator) norms, the triangle inequality immediately yields the results for the
whole sub-block, once we have established them separately for each of the con-
tributing terms. On the other hand, although the conditions on �ScSc (given in
Lemma 8) do not have this (sub)additive property, only the Wishart term con-
tributes to this sub-block, and it has a natural decomposition of the form required.

Regarding the Wishart term, the spectral norm (|||W |||2,2) of such a random ma-
trix is well characterized [10, 13]; for instance, see claim (38a) in Lemma 10 for
one precise statement. The following lemma, concerning the mixed (∞,2) norms
of submatrices of centered Wishart matrices, is perhaps of independent interest,
and plays a key role in our analysis.

LEMMA 9. Let W ∈ R
p×p be a centered Wishart matrix as defined in (37).

Let I,J ⊂ {1, . . . , p} be sets of indices, with cardinalities |I|, |J| → ∞ as
n,p → ∞, and let WI,J denote the corresponding submatrix. Then, as long as
max{|J|, log |I|}/n = o(1), we have

|||WI,J|||∞,2 = O

(√|J| + √
log |I|√

n

)
as n,p → +∞ with probability 1.

See Appendix E for the proof of this claim.

4.3.1. Verifying steps A and B. First, let us look at the Wishart random matrix.
The conditions on the upper-left sub-block WSS and lower-left sub-block WScS are
addressed in the following lemma.
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LEMMA 10. As (n,p, k) → +∞, we have w.a.p. one

|||WSS |||2,2 = O

(√
k

n

)
,(38a)

|||WSS |||∞,∞ = O

(√
k2

n

)
,(38b)

|||WScS |||∞,2 = O

(√
k + √

log(p − k)√
n

)
.(38c)

In particular, under the scaling n > Lk log(p − k) and k = O(logp), the condi-
tions of Lemmas 6 and 7 are satisfied for WSS and WScS for sufficiently large L.

PROOF. Assertion (38a) about the spectral norm of WSS follows directly from
known results on singular values of Gaussian random matrices (e.g., see [10, 13]).
To bound the mixed norm |||WScS |||∞,2, we apply Lemma 9 with the choices I = Sc

and J = S, noting that |I| = p − k and |J| = k. Finally, to obtain a bound on
|||WSS |||∞,∞, we first bound |||WSS |||∞,2. Again using Lemma 9, this time with the
choices I = J = S, we obtain

|||WSS |||∞,2 = O

(√
k + √

log k√
n

)
= O

(√
k

n

)
(39)

as n, k → ∞. Now, using the fact that for any x ∈ R
k , ‖x‖2 ≤ √

k‖x‖∞, we obtain

|||WSS |||∞,∞ = max‖x‖∞≤1
‖WSSx‖∞ ≤ max

‖x‖2≤
√

k

‖WSSx‖∞ = √
k|||WSS |||∞,2.

Combined with the inequality (39), we obtain the stated claim (38b). �

We now turn to the cross-term R, and establish the following result.

LEMMA 11. The matrix R = z∗hT + hz∗T , as defined in (36), satisfies the
conditions of Lemmas 6 and 7.

PROOF. First observe that h may be viewed as a vector consisting of the off-
diagonal elements of the first column of a (p + 1) × (p + 1) Wishart matrix,
say W ′. This representation follows since hj = 1

n

∑n
i=1 vigi

j , where the Gaussian

variable vi is independent of gi
j for all 1 ≤ j ≤ p. For ease of reference, let us in-

dex rows and columns of W ′ by 1′,1, . . . , p, let S′ = {1′}∪S, and let h = W ′
1′,S∪Sc .

(Recall that S ∪ Sc is simply {1, . . . , p}.)
Since the spectral norm of a matrix is an upper bound on the �2-norm of any

column, we have

‖hS‖2 ≤ |||W ′
S′S′ |||2,2 = O

(√
k + 1

p

)
,(40)
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where we used known bounds [10] on singular values of Gaussian random ma-
trices. Under the scaling n > Lk log(p − k), we thus have ‖hS‖2

P−→ 0. By
Lemma 15, we have P[|W ′

ij | > t] ≤ C exp(−cnt2) for t > 0 sufficiently small,
which implies (via union bound) that

‖h‖∞ = O

(√
log(p)

n

)
= O

(
1√
k

)
,(41)

under our assumed scaling. Note also that ‖h‖∞ = max{‖hS‖∞,‖hSc‖∞}, that
is, the ∞-norm of each of these subvectors are also O(k−1/2). Assume for the
following that L is chosen large enough so that ‖h‖∞ ≤ δ/

√
k.

Now, to complete the proof, let us first examine the spectral norm of RSS =
z∗
ShT

S +hSz∗T
S . The two (possibly) nonzero eigenvalues of this matrix are z∗T

S hS ±
‖z∗

S‖2‖hS‖2, whence we have

|||RSS |||2,2 ≤ |z∗T
S hS | + ‖z∗

S‖2‖hS‖2 ≤ 2‖hS‖2
P→ 0.

As for the (matrix) ∞-norm of RSS , let us exploit the “maximum row sum” in-
terpretation, that is, |||RSS |||∞,∞ = maxi∈S

∑
j∈S |Rij | (cf. Appendix A) to deduce

|||RSS |||∞,∞ ≤ |||z∗
ShT

S |||∞,∞ + |||hSz∗
S
T |||∞,∞

≤
(
max
i∈S

|z∗
i |
)
‖hT

S ‖1 +
(
max
i∈S

|hi |
)
‖z∗T

S ‖1

≤ 1√
k
|||W ′

S′S′ |||∞,∞ + ‖hS‖∞
√

k.

From the argument of Lemma 10, we have |||W ′
S′S′ |||∞,∞ = O(

√
k2

n
), so that

1√
k
|||W ′

S′S′ |||∞,∞ = O

(√
k

n

)
P−→ 0

and moreover, the norm |||RSS |||∞,∞ can be made smaller than 2δ, by choosing L

sufficiently large in the relation n > Lk log(p − k).
Finally, to establish the additional condition required by Lemma 7—namely

(31)—notice that

|||RScS |||∞,2 = max‖y‖2=1
‖RScSy‖∞

= max‖y‖2=1
‖hScz∗T

S y‖∞

=
(

max‖y‖2=1
|z∗T

S y|
)
‖hSc‖∞ ≤ δ√

k
,

where the last line uses max‖y‖2=1 |z∗T
S y| = ‖z∗

S‖2 = 1, thereby completing the
proof. �
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Finally, we examine the first term in (36), that is, P . As this term only con-
tributes to the upper-left block, we only need to establish that it satisfies Lemma 6.

LEMMA 12. The matrix PSS satisfies condition (27) of Lemma 6.

PROOF. Note that for any matrix norm, we have |||PSS ||| = |n−1 ∑n
i=1(v

i)2 −
1||||z∗

Sz∗T
S |||. Now, notice that |||z∗

Sz∗T
S |||2,2 = |z∗T

S z∗
S | = 1. Also, using the “max-

imum row sum” characterization of matrix ∞-norm, we have |||z∗
Sz∗T

S |||∞,∞ =∑k
j=1 |(± 1√

k
)(± 1√

k
)| = 1. Now by the strong law of large numbers, |n−1 ×∑n

i=1(v
i)2 − 1| a.s.→ 0 as n → ∞. It follows that with probability 1

|||PSS |||2,2 = |||PSS |||∞,∞ → 0,

which clearly implies condition (27). �

4.3.2. Verifying step C. For this step, we only need to consider the lower-
right block of W ; that is, we only need to verify condition (34) of Lemma 8 for
�ScSc = WScSc . Recall that W = n−1GT G − Ip where G is a n × p (canonical)
Gaussian matrix [see (37)]. With a slight abuse of notation, let GSc = (Gij ) for
1 ≤ i ≤ n and j ∈ Sc. Note that GSc ∈ R

n×m where m = p − k and

�ScSc + Im = WScSc + Im = n−1GT
ScGSc .

Now, we can simplify the quadratic form in (34) as√
vT (�ScSc + Im)v =

√
‖n−1/2GScv‖2

2 = ‖n−1/2GScv‖2

for which we have the following lemma.

LEMMA 13. For any M > 0 and ε > 0, there exists a constant B > 0 such
that for any set S = {(ηi, �i)}i with elements in (0,M) × R

+ and cardinality |S| =
O(m), we have

max‖v‖2≤η,

‖v‖1≤�

‖n−1/2GScv‖2 ≤ η + B

√
logm

n
� + ε ∀(η, �) ∈ S,(42)

as p → ∞, with probability 1. In particular, under the scaling n > Lk logm, con-
dition (34) of Lemma 8 is satisfied for L large enough.

PROOF. Without loss of generality, assume M = 1. We begin by controlling
the expectation of the left-hand side, using an argument based on the Gordon–
Slepian theorem [26], similar to that used for establishing bounds on spectral
norms of random Gaussian matrices (e.g., [10]). First, we require some nota-
tion: for a zero-mean random variable Z, define its standard deviation σ(Z) =
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(E|Z|2)1/2. For vectors x, y of the same dimension, define the Euclidean inner
product 〈x, y〉 = xT y. For matrices X,Y of the same dimension (although not
necessarily symmetric), recall the Hilbert–Schmidt norm

|||X|||HS := 〈〈X,X〉〉1/2 =
(∑

i,j

X2
ij

)1/2

.

Given some (possibly uncountable) index set {t ∈ T }, let (Xt)t∈T and (Yt )t∈T be a
pair of centered Gaussian processes. One version of the Gordon–Slepian theorem
(see [26]) asserts that if σ(Xs − Xt) ≤ σ(Ys − Yt ) for all s, t ∈ T , then we have

E

[
sup
t∈T

Xt

]
≤ E

[
sup
t∈T

Yt

]
.(43)

For simplicity in notation, define H̃ := GSc ∈ R
n×m, H := n−1/2Gc

S , and fix
some η, � > 0. We wish to bound

f (H̃ ;η, �) := max‖v‖2≤η,

‖v‖1≤�

‖H̃v‖2 = max‖v‖2≤η,

‖v‖1≤�,

‖u‖2=1

〈H̃v,u〉,

where v ∈ R
m, u ∈ R

n. Note that 〈H̃v, u〉 = uT H̃v = tr(H̃vuT ) = 〈〈H̃ , uvT 〉〉.
Consider H̃ to be a (canonical) Gaussian vector in R

mn, take

T := {t = (u, v) ∈ R
n × R

m | ‖v‖2 ≤ η,‖v‖1 ≤ �,‖u‖2 = 1}(44)

and define Xt = 〈〈H̃ , uvT 〉〉 for t ∈ T . Observe that (Xt)t∈T is a (centered) canon-
ical Gaussian process generated by H̃ , and f (H̃ ;η, �) = maxt∈T Xt . We com-
pare this to the maximum of another Gaussian process (Yt )t∈T , defined as Yt =
〈(g,h), (u, v)〉 where g ∈ R

n and h ∈ R
m are Gaussian vectors with E[ggT ] =

η2In and E[hhT ] = Im. Note that, for example,

σ(〈g,u〉) = (E〈g,u〉2)1/2 = (uT
E[ggT ]u)1/2 = η‖u‖2,

in which the left-hand size is the norm of a process (〈g,u〉)u expressed in terms of
the norm of a vector (i.e., its index).

Let t = (u, v) ∈ T and t ′ = (u′, v′) ∈ T . Assume, without loss of generality, that
‖v′‖2 ≤ ‖v‖2. Then, we have

σ 2(Xt − Xt ′) = |||uvT − u′v′T |||2HS

= |||uvT − u′vT + u′vT − u′v′T |||2HS

= ‖v‖2
2‖u − u′‖2

2 + ‖u′‖2
2‖v − v′‖2

2

+ 2(uT u′ − ‖u′‖2
2)(‖v‖2

2 − vT v′)

≤ η2‖u − u′‖2
2 + ‖v − v′‖2

2 = σ 2(Yt − Yt ′),
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where we have used Cauchy–Schwarz inequality to deduce |uT u′| ≤ 1 = ‖u′‖2
2

and |vT v′| ≤ ‖v‖2‖v′‖2 ≤ ‖v‖2
2. Thus, the Gordon–Slepian lemma is applicable,

and we obtain

Ef (H̃ ;η, �) ≤ E max
t∈T

Yt

= E max‖u‖2=1
〈g,u〉 + E max‖v‖2≤η,

‖v‖1≤�

〈h, v〉

≤ E‖g‖2 + (E‖h‖∞)�

<
√

nη + (√
3 logm

)
�,

where we have used (E‖g‖2)
2 < E(‖g‖2

2) = E tr(ggT ) = tr E(ggT ) = nη2; the
bound used for E‖h‖∞ follows from standard Gaussian tail bounds [26]. Noting

that H = n−1/2H̃ , we obtain Ef (H ;η, �) ≤ η +
√

3 logm
n

�.
The final step is to argue that f (H ;η, �) is sufficiently close to its mean. For

this, we will use concentration of Gaussian measure [25, 26] for Lipschitz func-
tions in R

mn. To see that A → f (A;η, �) is in fact 1-Lipschitz, note that it satisfies
the triangle inequality and it is bounded above by the spectral norm. Thus,

|f (H̃ ;η, �) − f (F̃ ;η, �)| ≤ f (H̃ − F̃ ;η, �) ≤ |||H̃ − F̃ |||2,2 ≤ |||H̃ − F̃ |||HS,

where we have used the assumption η ≤ 1. Noting that H = n−1/2H̃ and
f (H ;η, �) = n−1/2f (H̃ ;η, �), Gaussian concentration of measure for 1-Lipschitz
functions [25] implies that

P
[
f (H ;η, �) − E[f (H ;η, �)] > t

] ≤ exp(−nt2/2).

Finally, we use union bound to establish the result uniformly over S. By assump-
tion, there exists some K > 0 such that |S| ≤ Km. Thus,

P

[
max

(η,�)∈S

(
f (H ;η, �) − (

η +
√

(3 logm)/n · �)) > t
]
≤ K exp(−nt2/2 + logm).

Now, fix some ε > 0, take t =
√

6 logm
n

and apply the Borell–Cantelli lemma to
conclude that

max
(η,�)∈S

[
f (H ;η, �) −

(
η +

√
3 logm

n
· �

)]
≤

√
6 logm

n
≤ ε,

eventually (w.p. 1). �

4.4. Nonidentity noise covariance. In this section, we specify how the proof is
extended to (population) covariance matrices having a more general base covari-
ance term �p−k in (5). Let �

1/2
p−k denote the (symmetric) square root of �p−k . We

can write samples from this model as

x̃i = √
βviz∗ + g̃i , i = 1, . . . , n,(45)
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where

g̃i =
(

gi
S

�
1/2
p−kg

i
Sc

)
(46)

with gi ∼ N(0, Ip) and vi ∼ N(0,1) standard independent Gaussian random vari-
ables.

Denoting the resulting sample covariance as �̂, we can obtain an expression for
the noise matrix � = �̂ − �. The result will be similar to expansion (36) with h

and W appropriately modified; more specifically, we have

h̃S = hS, h̃Sc = �
1/2
p−khSc ,(47)

W̃SS = WSS, W̃ScS = �
1/2
p−kWScS, W̃ScSc = �

1/2
p−kWScSc�

1/2
p−k.(48)

Note that the P -term is unaffected.
Re-examining the proof presented for the case �p−k = Ip−k , we can identify

conditions imposed on h and W to guarantee optimality. By imposing sufficient
constraints on �p−k , we can make h̃ and W̃ satisfy the same conditions. The rest
of the proof will then be exactly the same as the case �p−k = Ip−k . As before, we
proceed by verifying steps A through C in sequence.

4.4.1. Verifying steps A and B. Examining the proof of Lemma 11, we ob-
serve that we need bounds on ‖h̃S‖2, ‖h̃S‖1 and ‖h̃‖∞ = max{‖h̃S‖∞,‖h̃Sc‖∞}.
Since h̃S = hS , we should only be concerned with ‖h̃Sc‖∞, for which we simply
have

‖h̃Sc‖∞ ≤ |||�1/2
p−k|||∞,∞‖hSc‖∞.

Thus, assumption (6a)—that is, |||�1/2|||∞,∞ = O(1)—guarantees that Lemma 11
also holds for (nonidentity) �.

Similarly, for Lemma 10 to hold, we need to investigate |||W̃ScS |||∞,2, since this
is the only norm (among those considered in the lemma) affected by a noniden-
tity �. Using sub-multiplicative property of operator norms [see relation (58) in
Appendix A], we have

|||W̃ScS |||∞,2 ≤ |||�1/2
p−k|||∞,∞|||WScS |||∞,2,

so that the same boundedness assumption (6a) is sufficient.

4.4.2. Verifying step C. For the lower-right block W̃ScSc , we first have to verify
Lemma 13. We also need to examine the proof of Lemma 8 where the result of
Lemma 13—namely relation (42)—was used. Let G̃ = (g̃i

j )
n,p
i,j=1,1 and let G̃Sc =

(G̃ij ) for 1 ≤ i ≤ n and j ∈ Sc. Note that G̃T
Sc ∈ R

(p−k)×n and we have

G̃T
Sc = (g̃1

Sc , . . . , g̃
n
Sc) = �

1/2
p−k(g

1
Sc , . . . , g

n
Sc) = �

1/2
p−kG

T
Sc .
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Using this notation, we can write W̃ScSc = n−1G̃Sc −�p−k = �
1/2
p−k(n

−1GT
ScGSc −

Ip−k)�
1/2
p−k , consistent with (48).

Now to establish a version of (42), we have to consider the maximum of

‖n−1/2G̃Scv‖2 = ‖n−1/2GSc�
1/2
p−kv‖2

over the set where ‖v‖2 ≤ η and ‖v‖1 ≤ �. Let ṽ = �
1/2
p−kv and note that for any

consistent pair of vector–matrix norms we have ‖ṽ‖ ≤ |||�1/2
p−k|||‖v‖. Thus, for ex-

ample, ‖v‖2 ≤ η implies ‖ṽ‖2 ≤ |||�1/2
p−k|||2,2η, and similarly for the �1-norm. Now,

if we assume that Lemma 13 holds for GSc , we obtain, for all (η, �) ∈ S, the in-
equality

max‖v‖2≤η,

‖v‖1≤�

‖n−1/2G̃Scv‖2 ≤ max
‖ṽ‖2≤|||�1/2

p−k |||2,2η,

‖ṽ‖1≤|||�1/2
p−k |||1,1�

‖n−1/2GSc ṽ‖2

(49)

≤ |||�1/2
p−k|||2,2η + B|||�1/2

p−k|||1,1

√
logm

n
� + ε.

Thus, one observes that the boundedness condition (6a) guarantees that

|||�1/2
p−k|||1,1 = |||�1/2

p−k|||∞,∞ ≤ A1,

thereby taking care of the second term in (49). More specifically, the constant A1
is simply absorbed into some B ′ = BA1. In addition, we also require a bound on
|||�1/2

p−k|||2,2, which follows from our assumption |||�p−k|||2,2 ≤ 1. However, the fact
that the factor multiplying η in (49) is no longer unity has to be addressed more
carefully.

Recall that inequality (42) was used in the proof of Lemma 8 to establish a
bound on

v∗T �ScScv∗ = v∗T WScScv∗ = v∗T (HT H − Ip−k)v
∗ = ‖Hv∗‖2

2 − ‖v∗‖2
2,

where H = n−1/2GSc . The bound obtained on this term is given by (76). We fo-
cus on the core idea, omitting some technical details such as the discretization
argument.2 Replacing WScSc with W̃ScSc , we need to establish a similar bound on

v∗T W̃ScScv∗ = v∗T (n−1G̃T
ScG̃Sc − �p−k)v

∗ = ‖n−1/2G̃Scv∗‖2
2 − ‖�1/2

p−kv
∗‖2

2.

Note that ‖v∗‖2 ≤ |||�−1/2
p−k |||2,2‖�1/2

p−kv
∗‖2 or, equivalently, |||�−1/2

p−k |||−1
2,2‖v∗‖2 ≤

‖�1/2
p−kv

∗‖2. Thus, using (49), one obtains

‖n−1/2G̃Scv∗‖2
2 − ‖�1/2

p−kv
∗‖2

2 ≤ (|||�1/2
p−k|||22,2 − |||�−1/2

p−k |||−2
2,2)‖v∗‖2

2

+ (terms of lower order in ‖v∗‖2).

2In particular, we will assume that v∗ saturates (49), so that ‖v∗‖2 = η. For a more careful argu-
ment see the proof of Lemma 8.
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Note that unlike the case �p−k = Ip−k , the term quadratic in ‖v∗‖2 does not van-
ish in general. Thus, we have to assume that its coefficient is eventually small
compared to β . More specifically, we assume

|||�1/2
p−k|||22,2 − |||�−1/2

p−k |||−2
2,2 ≤ α

4
= β

8
, eventually.(50)

The boundedness assumptions on |||�1/2
p−k|||1,1 and |||�1/2

p−k|||2,2 now allows for the
rest of the terms to be made less than α/4, using arguments similar to the proof of
Lemma 8, so that the overall objective is less than α/2, eventually. This concludes
the proof.

Noting that |||�1/2
p−k|||22,2 = λmax(�p−k) and |||�−1/2

p−k |||−2
2,2 = λmin(�p−k), we can

summarize the conditions sufficient for Lemma 8 to extend to general covariance
structure as follows:

|||�1/2
p−k|||1,1 = |||�1/2

p−k|||∞,∞ = O(1);(51a)

λmax(�p−k) ≤ 1;(51b)

λmax(�p−k) − λmin(�p−k) ≤ β

8
(51c)

as stated previously.

5. Proof of Theorem 3. Our proof is based on the standard approach of ap-
plying Fano’s inequality (e.g., [7, 16, 37, 38]). Let S denote the collection of all
possible support sets, that is, the collection of k-subsets of {1, . . . , p} with car-
dinality |S| = (p

k

)
; we view S as a random variable distributed uniformly over S.

Let PS denote the distribution of a sample X ∼ N(0,�p(S)) from a spiked co-
variance model, conditioned on the maximal eigenvector having support set S,
and let Xn = (x1, . . . , xn) be a set of n i.i.d. samples. In information-theoretic
terms, we view any method of support recovery as a decoder that operates on the
data Xn and outputs an estimate of the support Ŝ = φ(Xn)—in short, a (possi-
bly random) map φ : (Rp)n → S. Using the 0–1 loss to compare an estimate Ŝ

and the true support set S, the associated risk is simply the probability of error
P[error] = ∑

S∈S
1

(p
k)

PS[Ŝ �= S]. Due to symmetry of the ensemble, in fact we have

P[error] = PS[Ŝ �= S], where S is some fixed but arbitrary support set, a property
that we refer to as risk flatness.

In order to generate suitably tight lower bounds, we restrict attention to the
following sub-collection S̃ of support sets:

S̃ := {
S ∈ S | {1, . . . , k − 1} ⊂ S

}
,

consisting of those k-element subsets that contain {1, . . . , k − 1} and one element
from {k, . . . , p}. By risk flatness, the probability of error with S chosen uniformly
at random from the original ensemble S is the same as the probability of error
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with S chosen uniformly from S̃. Letting U denote a subset chosen uniformly at
random from S̃, using Fano’s inequality, we have the lower bound

P[error] ≥ 1 − I (U ;Xn) + log 2

log |̃S| ,

where I (U ;Xn) is the mutual information between the data Xn and the randomly
chosen support set U , and |̃S| = p − k + 1 is the cardinality of S̃.

It remains to obtain an upper bound on I (U ;Xn) = H(Xn) − H(Xn|U). By
chain rule for entropy, we have H(Xn) ≤ nH(x). Next, using the maximum en-
tropy property of the Gaussian distribution [7], we have

H(Xn) ≤ nH(x) ≤ n

{
p

2
[1 + log(2π)] + 1

2
log det E[xxT ]

}
,(52)

where E[xxT ] is the covariance matrix of x. On the other hand, given U = �U , the
vector Xn is a collection of n Gaussian p-vectors with covariance matrix �p(�U).
The determinant of this matrix is 1 + β , independent of �U , so that we have

H(Xn|U) = np

2
[1 + log(2π)] + n

2
log(1 + β).(53)

Combining (52) and (53), we obtain

I (U ;Xn) ≤ n

2
{log det E[xxT ] − log(1 + β)}.(54)

The following lemma, proved in Appendix F, specifies the form of the log deter-
minant of the covariance matrix �M := E[xxT ].

LEMMA 14. The log determinant has the exact expression

log det�M = log(1 + β) + log
(

1 − β

1 + β

p − k

k(p − k + 1)

)
(55)

+ (p − k) log
(

1 + β

k(p − k + 1)

)
.

Substituting (55) into (54) and using the inequality log(1 + α) ≤ α, we obtain

I (U ;Xn)

≤ n

2

{
log

(
1 − β

1 + β

p − k

k(p − k + 1)

)
+ (p − k) log

(
1 + β

k(p − k + 1)

)}

≤ n

2

{
− β

1 + β

p − k

k(p − k + 1)
+ β(p − k)

k(p − k + 1)

}

= n

2

{
β2

1 + β

p − k

k(p − k + 1)

}

≤ β2

2(1 + β)

n

k
.
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From the Fano bound (52), the error probability is greater than 1
2 if β2

1+β
n
k

<

log(p − k) < log |̃S|, which completes the proof.

6. Discussion. In this paper, we studied the problem of recovering the sup-
port of a sparse eigenvector in a spiked covariance model. Our analysis allowed for
high-dimensional scaling, where the problem size p and sparsity index k increase
as functions of the sample size n. We analyzed two computationally tractable meth-
ods for sparse eigenvector recovery—diagonal thresholding and a semidefinite
programming (SDP) relaxation [9]—and provided precise conditions on the scal-
ing of the triplet (n,p, k) under which they succeed (or fail) in correctly recovering
the support. The probability of success using diagonal thresholding undergoes a
phase transition in terms of the rescaled sample size θdia(n,p, k) = n/(k2 log(p −
k)), whereas the more complex SDP relaxation, when it has a rank-one solution,
succeeds once the rescaled sample size θsdp(n,p, k) = n/(k log(p − k)) is suffi-
ciently large. Thus, the SDP relaxation has greater statistical efficiency, by a factor
of k relative to the simple diagonal thresholding method, but also a substantially
larger computational complexity. Finally, using information-theoretic methods, we
showed that no method, regardless of its computational complexity, can recover the
support set with vanishing error probability if θsdp(n,p, k) is smaller than a crit-
ical constant. Our results thus provide some insight into the trade-offs between
statistical and computational efficiency in high-dimensional eigenanalysis.

There are various open questions associated with this work. Although we have
focused on a Gaussian sampling distribution, parts of our analysis provide suf-
ficient conditions for general noise matrices. While qualitatively similar results
should hold for sub-Gaussian distributions [5], it would be interesting to charac-
terize how these conditions change as the tail behavior of the noise is varied away
from sub-Gaussian. For instance, under bounded moment conditions, one would
expect to obtain rates polynomial (as opposed to logarithmic) in the dimension p.
It is also interesting to consider extensions of our support recovery analysis to re-
covery of higher rank “spiked” matrices, in the spirit of Paul and Johnstone’s [32]
work on �2-approximation, as opposed to the rank-one eigenvector outer product
considered here.

APPENDIX A: MATRIX NORMS

In this appendix, we review some of the properties of matrix norms, with an
emphasis on induced operator norms. Recall from (4) that for a matrix A ∈ R

m×n,
the operator norm induced by the vector norms �p and �q (on R

m and R
n, resp.) is

defined by

|||A|||p,q = max‖x‖q=1
‖Ax‖p(56)

for integers 1 ≤ p,q ≤ ∞. As particular examples, we have the �1-operator norm
given by |||A|||1,1 = max1≤j≤m

∑n
i=1 |Aij |, the �∞-operator norm by |||A|||∞,∞ =
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max1≤i≤n

∑m
j=1 |Aij | and the spectral or �2-operator norm by |||A|||2,2 =

max{σi(A)}, where σi(A) are the singular values of A.
As a consequence of the definition (56), for any vector x ∈ R

n, we have

‖Ax‖p ≤ |||A|||p,q‖x‖q,(57)

a property referred to as ||| · |||p,q being consistent with vector norms ‖·‖p and ‖·‖q

(on R
m and R

n, resp.). It also follows from the definition, using (57) twice, that
operator norms are consistent with themselves, in the following sense: if A ∈ R

m×n

and B ∈ R
n×k , then

|||AB|||p,q ≤ |||A|||p,r |||B|||r,q(58)

for all 1 ≤ p,q, r ≤ ∞.
We can also apply any vector norm to matrices, treating them as vectors, by con-

catenating their columns together. For example, we will use the following mixed-
norm inequality

‖AB‖∞ ≤ |||A|||∞,∞‖B‖∞,(59)

where ‖B‖∞ := maxi,j |Bij | is the elementwise �∞-norm, and A and B are as
defined above. For the proof, let b1, . . . , bk denote the columns of B . Then,

‖AB‖∞ = ‖[Ab1, . . . ,Abk]‖∞ = max
1≤i≤k

‖Abi‖∞

≤ |||A|||∞,∞ max
1≤i≤p

‖bi‖∞ = |||A|||∞,∞‖B‖∞.

For more details, see the standard books [18, 34].

APPENDIX B: LARGE DEVIATIONS FOR CHI-SQUARED VARIATES

The following large-deviations bounds for centralized χ2 are taken from Lau-
rent and Massart [24]. Given a centralized χ2-variate X with d degrees of freedom,
then for all x ≥ 0,

P
[
X − d ≥ 2

√
dx + 2x

] ≤ exp(−x) and(60a)

P
[
X − d ≤ −2

√
dx

] ≤ exp(−x).(60b)

We also use the following slightly different version of the bound (60a),

P[X − d ≥ dx] ≤ exp
(− 3

16dx2), 0 ≤ x < 1
2 ,(61)

due to Johnstone [19]. More generally, the analogous tail bounds for noncen-
tral χ2, taken from Birgé [4], can be established via the Chernoff bound. Let X be
a noncentral χ2 variable with d degrees of freedom and noncentrality parameter
ν ≥ 0. Then, for all x > 0,

P
[
X ≥ (d + ν) + 2

√
(d + 2ν)x + 2x

] ≤ exp(−x) and(62a)

P
[
X ≤ (d + ν) − 2

√
(d + 2ν)x

] ≤ exp(−x).(62b)
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We derive here a slightly weakened but useful form of the bound (62a), valid
when ν satisfies ν ≤ Cd for a positive constant C. Under this assumption, then
for any δ ∈ (0,1), we have

P
[
X ≥ (d + ν) + 4d

√
δ
] ≤ exp

(
− δ

1 + 2C
d

)
.(63)

To establish this bound, let x = d2δ
d+2ν

for some δ ∈ (0,1). From (62a), we have

p∗ := P

[
X ≥ (d + ν) + 2d

√
δ + 2

d2

d + 2ν
δ

]
≤ exp

(
− d2δ

d + 2ν

)
≤ exp

(
− δ

1 + 2C
d

)
.

Moreover, we have

p∗ ≥ P
[
X ≥ (d + ν) + 2d

√
δ + 2dδ

] ≥ P
[
X ≥ (d + ν) + 4d

√
δ
]
,

since
√

δ ≥ δ for δ ∈ (0,1).

APPENDIX C: PROOF OF LEMMA 4

Using the form of the χ2
n PDF, we have, for even n and any t > 0,

P

[
χ2

n

n
> 1 + t

]
= 1

2n/2�(n/2)

∫ ∞
(1+t)n

xn/2−1 exp(−x/2) dx

= 1

2n/2�(n/2)

{
(n/2 − 1)!

(1/2)(n/2−1)+1 exp
(
−n(1 + t)

2

) n/2−1∑
i=0

1

i!
(

n(1 + t)

2

)i
}

≥ exp(−nt/2)

[
exp(−n/2)(n/2)n/2−1

(n/2 − 1)!
]
(1 + t)n/2−1,

where the second line uses standard integral formula (cf. Section 3.35 in the refer-
ence book [14]). Using Stirling’s approximation for (n/2 − 1)!, the term within
square brackets is lower bounded by 2C/

√
n. Also, over t ∈ (0,1), we have

(1 + t)−1 > 1/2, so we conclude that

P

[
χ2

n

n
> 1 + t

]
≥ C√

n
exp

(
−n

2
[t − log(1 + t)]

)
.(64)

Defining the function f (t) = log(1 + t), we calculate f (0) = 0, f ′(0) = 1 and
f ′′(t) = −1/(1 + t)2. Note that f ′′(t) ≥ −1, for all t ∈ R. Consequently, via
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a second-order Taylor series expansion, we have f (t) − t ≥ −t2/2. Substituting
this bound into (64) yields

P

[
χ2

n

n
> 1 + t

]
≥ C√

n
exp

(
−nt2

2

)
as claimed.

APPENDIX D: PROOFS FOR SECTION 4.2

D.1. Proof of Lemma 6. The argument we present here has a deterministic
nature. In other words, we will show that if the conditions of the lemma hold
for a nonrandom sequence of matrices �SS , the conclusions will follow. Thus,
for example, all the references to limits may be regarded as deterministic. Then,
since the conditions of the lemma are assumed to hold for a random �SS a.a.s., it
immediately follows that the conclusions hold a.a.s. To simplify the argument let
us assume that α−1|||�SS |||∞,∞ ≤ ε for sufficiently small ε > 0; it turns out that
ε = 1

10 is enough.
We prove the lemma in steps. First, by Weyl’s theorem [18, 34], eigenval-

ues of the perturbed matrix αz∗
Sz∗T

S + �SS are contained in intervals of length
2|||�SS |||2,2 centered at eigenvalues of αz∗

Sz∗T
S . Since the matrix z∗

Sz∗T
S is rank one,

one eigenvalue of the perturbed matrix is in the interval [α ± |||�SS |||2,2], and the
remaining k − 1 eigenvalues are in the interval [0 ± |||�SS |||2,2]. Since by assump-
tion 2|||�SS |||2,2 ≤ α eventually, the two intervals are disjoint, and the first one
contains the maximal eigenvalue γ1 while the second contains the second largest
eigenvalue γ2. In other words, |γ1 − α| ≤ |||�SS |||2,2 and |γ2| ≤ |||�SS |||2,2. Since
|||�SS |||2,2 → 0 by assumption, we conclude that γ1 → α and γ2 → 0. For the rest
of the proof, take n large enough so

|γ1α
−1 − 1| ≤ ε,(65)

where ε > 0 is a small number to be determined.
Now, let ẑS ∈ R

k with ‖̂zS‖2 = 1 be the eigenvector associated with γ1, that is,

(αz∗
Sz∗T

S + �SS)̂zS = γ1ẑS .(66)

Taking inner products with ẑS , one obtains α(z∗T
S ẑS)2 + ẑT

S �SSẑS = γ1. Noting
that |̂zT

S �SSẑS | is upper-bounded by |||�SS |||2,2, we have by triangle inequality

|α − α(z∗T
S ẑS)2| = |α − γ1 + γ1 − α(z∗T

S ẑS)2|
≤ |α − γ1| + |γ1 − α(z∗T

S ẑS)2| ≤ 2|||�SS |||2,2,

which implies z∗T
S ẑS → 1 (taking into account our sign convention). Take n large

enough so that

|z∗T
S ẑS − 1| ≤ ε(67)
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and let u be the solution of

αz∗
S + �SSu = αu,(68)

which is an approximation of (66) satisfied by ẑS . Using triangle inequality, one
has ‖u‖∞ ≤ ‖z∗

S‖∞ + α−1|||�SS |||∞,∞‖u‖∞, which implies that

‖u‖∞ ≤ (1 − α−1|||�SS |||∞,∞)−1‖z∗
S‖∞ ≤ (1 − ε)−1‖z∗

S‖∞.(69)

We also have

‖u − z∗
S‖∞ ≤ α−1|||�SS |||∞,∞‖u‖∞ ≤ ε(1 − ε)−1‖z∗

S‖∞.(70)

Subtracting (68) from (66), we obtain αz∗
S(z∗T

S ẑS −1)+�SS(̂zS −u) = γ1ẑS −αu.
Adding and subtracting γ1u on the right-hand side and dividing by α, we have

z∗
S(z∗T

S ẑS − 1) + α−1�SS(̂zS − u) = γ1α
−1(̂zS − u) + (γ1α

−1 − 1)u,

which implies

‖̂zS − u‖∞ ≤ (|γ1α
−1| − α−1|||�SS |||∞,∞)−1

× {|z∗T
S ẑS − 1| · ‖z∗

S‖∞ + |γ1α
−1 − 1| · ‖u‖∞}

≤ (1 − 2ε)−1[ε + ε(1 − ε)−1] · ‖z∗
S‖∞,

where the last inequality follows from (65), (67) and (69). Combining with the
bound (70) on ‖u − z∗

S‖∞ yields

‖̂zS − z∗
S‖∞

‖z∗
S‖∞

≤ ε

1 − 2ε
+ ε

(1 − 2ε)(1 − ε)
+ ε

1 − ε

≤ 3ε

(1 − 2ε)2 .

Finally, we take ε = 1
10 to conclude ‖̂zS − z∗

S‖∞ ≤ 1
2‖z∗

S‖∞ = 1
2
√

k
a.a.s., as

claimed.

D.2. Proof of Lemma 7. Recall that by definition, z̃S = ẑS/‖̂zS‖1. Using the
identity sign(̂zS)T ẑS = ‖̂zS‖1 yields ÛScS ẑS = ρ−1

n �ScSẑS , which is the desired
equation. It only remains to prove that ÛScS is indeed a valid sign matrix.

First note that from (28) we have |̂zi | ∈ [ 1
2
√

k
, 3

2
√

k
] for i ∈ S, which implies that

‖̂zS‖1 ∈ [
√

k
2 , 3

√
k

2 ]. Thus, ‖̃zS‖2 = 1/(‖̂zS‖1) ≤ 2√
k

. Now we can write

max
i∈Sc,j∈S

|Ûij | ≤ ρ−1
n ‖�ScSz̃S‖∞

≤ ρ−1
n |||�ScS |||∞,2‖̃zS‖2

≤ 2k

β

δ√
k

2√
k

= 4

β
δ,
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so that taking δ ≤ β
4 completes the proof.

D.3. Proof of Lemma 8. Here we provide the proof for the case �p−k =
Ip−k ; necessary modifications for the general case are discussed in Section 4.4.
First, let us bound the cross-term in (32). Recall that z̃S = ẑS/‖̂zS‖1. Also, by our
choice (30) of ÛScS , we have

�ScS = �ScS − ρnÛScS = �ScS − �ScSz̃S sign(̂zS)T .

Now, using sub-multiplicative property of operator norms [see relation (58) in Ap-
pendix A], we can write

|||�ScS

∣∣||∞,2 = ∣∣∣∣∣∣�ScS

(
Ip−k − z̃S sign(̂zS)T

)∣∣∣∣∣∣∞,2

≤ |||�ScS |||∞,2 · ∣∣∣∣∣∣(Ip−k − z̃S sign(̂zS)T
)∣∣∣∣∣∣

2,2
(71)

≤ |||�ScS |||∞,2 · (1 + |̃zS2 sign(̂zS)T z̃S |)
≤ 3|||�ScS |||∞,2,

where we have also used the fact that |||abT |||2,2 = ‖a‖2‖b‖2, and ‖̃zS‖2 =
1/(‖̂zS‖1) ≤ 2√

k
, using the bound (28). Recall the decomposition x = (u, v), where

u = μẑS + ẑ⊥
S with μ2 + ‖̂z⊥

S ‖2
2 ≤ 1. Also, by our choice (30) of ÛScS , we have

�ScSu = �ScSẑ⊥
S . Thus,

max
u

|2vT �ScSu| ≤ max
‖ũ‖2≤

√
1−μ2,

ũ⊥zS

|2vT �ScSũ|

(72)
≤

√
1 − μ2 max

‖ũ‖2≤1
|2vT �ScSũ|.

Using Hölder’s inequality, we have

max
‖ũ‖2≤1

|2vT �ScSũ| ≤ 2‖v‖1 max
‖ũ‖2≤1

‖�ScSũ‖∞

≤ 2‖v‖1|||�ScS |||∞,2(73)

≤ 6‖v‖1
δ√
k
,

where we have used bound (71) and applied condition (31). We now turn to the last
term in the decomposition (32), namely vT �ScScv = vT �ScScv − ρnv

T ÛScScv.
In order to minimize this term, we use our freedom to choose ÛScSc(x) =
sign(v) sign(v)T , so that −ρnv

T ÛScScv simply becomes −ρn‖v‖2
1.

Define the objective function f ∗ := maxx xT �x. Also let H = n−1/2GSc ,
where GSc = (Gij ) for 1 ≤ i ≤ n and j ∈ Sc. Noting that �ScSc = HT H − Im



2912 A. A. AMINI AND M. J. WAINWRIGHT

(with m = p − k) and using the bounds (33), (72) and (73), we obtain the follow-
ing bound on the objective:

f ∗ ≤ max
u

uT �SSu + max
u,v

2vT �ScSu + max
v

vT �ScScv

≤ [μ2γ1 + (1 − μ2)γ2](74)

+ (1 − μ2)

[
max‖v‖2≤1

{
6‖v‖1

δ√
k

+ ‖Hv‖2
2 − ‖v‖2

2 − ρn‖v‖2
1

}]
︸ ︷︷ ︸

g∗

.

In obtaining the last inequality, we have used the change of variable v →
(

√
1 − μ2)v, with some abuse of notation, and exploited the inequality ‖v‖2 ≤√

1 − μ2. (Note that this bound follows from the identity ‖x‖2
2 = 1 = μ2 +

‖̂z⊥
S ‖2

2 + ‖v‖2
2.)

Let v∗ be the optimal solution to problem g∗ in (74); note that it is random
due to the presence of H . Also, set S = {(ηij , �ij )} where i and j range over
{1,2, . . . , �√m�} and

ηij = i√
m

, �ij = i√
m

j.

Note that S satisfies the condition of the lemma, namely |S| = �√m�2 = O(m).
Since ‖v∗‖2 ≤ 1, and ‖v∗‖2 ≤ ‖v∗‖1 ≤ √

m‖v∗‖2, there exists3 (η∗, �∗) ∈ S

such that

η∗ − 1√
m

< ‖v∗‖2 ≤ η∗,

�∗ − 3 < ‖v∗‖1 ≤ �∗.

Thus, using condition (34), we have

‖Hv∗‖2 ≤ max‖v‖2≤η∗,
‖v‖1≤�∗

‖Hv‖2 ≤ η∗ + δ√
k
�∗ + ε

≤ ‖v∗‖2 + 1√
m

+ δ√
k
(‖v∗‖1 + 3) + ε.

3Let i∗ = �√m‖v∗‖2� and η∗ = i∗√
m

. Using the fact that, for any x ∈ R, �x� − 1 < x ≤ �x�, we

have η∗ − 1/
√

m < ‖v∗‖2 ≤ η∗ or, equivalently, ‖v∗‖2 = η∗ + ξ where −1/
√

m < ξ ≤ 0. Now let

j∗ = �‖v∗‖1‖v∗‖2
�. One has (j∗ − 1)‖v∗‖2 < ‖v∗‖1 ≤ j∗‖v∗‖2 which, using the fact that ‖v∗‖2 ≤ 1,

implies j∗‖v∗‖2 − 1 < ‖v∗‖1 ≤ j∗‖v∗‖2. This in turn implies

j∗η∗ + j∗ξ − 1 < ‖v∗‖1 ≤ j∗η∗.

Take �∗ = j∗η∗ and note that j∗ξ − 1 > −3, since j∗ is at most �√m�.
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To simplify notation, let

A = A(ε, δ,m, k) := 1/
√

m + 3δ/
√

k + ε,(75)

so that the bound in the above display may be written as ‖v∗‖2 + δ‖v∗‖1/
√

k +A.
Now, we have

‖Hv∗‖2
2 − ‖v∗‖2

2 ≤ 2‖v∗‖2

(
δ
‖v∗‖1√

k
+ A

)
+

(
δ
‖v∗‖1√

k
+ A

)2

(76)

≤ 2
(
δ
‖v∗‖1√

k
+ A

)
+

(
δ
‖v∗‖1√

k
+ A

)2

.

Using this in (74) and recalling from (26) that ρn = β/(2k), we obtain the follow-
ing bound:

g∗ ≤ 6δ
‖v∗‖1√

k
+ 2

(
δ
‖v∗‖1√

k
+ A

)
+

(
δ
‖v∗‖1√

k
+ A

)2

− β

2

(‖v∗‖1√
k

)2

.

Note that this is quadratic in ‖v∗‖1/
√

k, that is,

g∗ ≤ a

(‖v∗‖1√
k

)2

+ b

(‖v∗‖1√
k

)
+ c,

where

a = δ2 − β

2
, b = 8δ + 2δA and c = 2A + A2.

By choosing δ sufficiently small, say δ2 ≤ β/4, we can make a negative. This
makes the quadratic form ax2 +bx +c achieve a maximum of c+b2/4(−a), at the
point x∗ = b/2(−a). Note that we have b/2(−a) → 0 and c → 0 as ε, δ → 0 and
m,k → ∞. Consequently, we can make this maximum (and hence g∗) arbitrarily
small eventually, say less than α/2, by choosing δ and ε sufficiently small.

Combining this bound on g∗ with our bound (74) on f ∗, and recalling that
γ1 → α and γ2 → 0 by Lemma 6, we conclude that

f ∗ ≤ μ2(α + o(1)
) + (1 − μ2)

[
α

2
+ o(1)

]
≤ α + o(1)

as claimed.

APPENDIX E: PROOF OF LEMMA 9

In this appendix, we prove Lemma 9, a general result on ||| · |||∞,2-norm of
Wishart matrices. Some of the intermediate results are of independent interest and
are stated as separate lemmas. Two sets of large deviation inequalities will be used,
one for chi-squared RVs χ2

n and one for “sums of Gaussian product” random vari-
ates. To define the latter precisely, let Z1 and Z2 be independent Gaussian RVs,
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and consider the sum
∑n

i=1 Xi where Xi
i.i.d.∼ Z1Z2, for 1 ≤ i ≤ n. The following

tail bounds are known [4, 21]:

P

(∣∣∣∣∣n−1
n∑

i=1

Xi

∣∣∣∣∣ > t

)
≤ C exp(−3nt2/2) as t → 0;(77)

P(|n−1χ2
n − 1| > t) ≤ 2 exp(−3nt2/16), 0 ≤ t < 1/2,(78)

where C is some positive constant.
Let W be a p × p centered Wishart matrix as defined in (37). Consider the

following linear combination of off-diagonal entries of the first row:

n∑
j=2

ajW1j = n−1
n∑

i=1

gi
1

p∑
j=2

gi
j aj .

Let ξ i := ‖a‖−1
2

∑p
j=2 gi

j aj , where a = (a2, . . . , ap) ∈ R
p−1. Note that {ξ i}ni=1 is

a collection of independent standard Gaussian RVs. Moreover, {ξ i}ni=1 is indepen-
dent of {gi

1}ni=1. Now we have

p∑
j=2

ajW1j = n−1‖a‖2

n∑
i=1

gi
1ξ

i,

which is a (scaled) sum of Gaussian products (as defined above). Using (77), we
obtain

P

(∣∣∣∣∣
p∑

j=2

ajW1j

∣∣∣∣∣ > t

)
≤ C exp(−3nt2/2‖a‖2

2).(79)

Combining the bounds in (79) and (78), we can bound a full linear combina-
tion of first-row entries. More specifically, let x = (x1, . . . , xp) ∈ R

p , with x1 �= 0
and

∑p
j=2 xj �= 0, and consider the linear combination

∑p
j=1 xjW1j . Noting that

W11 = n−1 ∑
i (g

i
1)

2 − 1 is a centered χ2
n , we obtain

P

[∣∣∣∣∣
p∑

j=1

xjW1j

∣∣∣∣∣ > t

]
≤ P

(
|x1W11| +

∣∣∣∣∣
p∑

j=2

xjW1j

∣∣∣∣∣ > t

)

≤ P[|x1W11| > t/2] + P

[∣∣∣∣∣
p∑

j=2

xjW1j

∣∣∣∣∣ > t/2

]

≤ 2 exp
(
− 3nt2

16 · 4x2
1

)
+ C exp

(
− 3nt2

2 · 4
∑p

j=2 x2
j

)

≤ 2 max{2,C} exp
(
− 3nt2

16 · 4
∑p

j=1 x2
j

)
.



ANALYSIS OF SEMIDEFINITE RELAXATIONS 2915

Note that the last inequality holds, in general, for x �= 0. Since there is nothing
special about the “first” row, we can conclude the following.

LEMMA 15. For t > 0 small enough, there are (numerical constants) c > 0
and C > 0 such that for all x ∈ R

p \ {0},

P

(∣∣∣∣∣
p∑

j=1

xjWij

∣∣∣∣∣ > t

)
≤ C exp(−cnt2/‖x‖2

2)(80)

for 1 ≤ i ≤ p.

Now, let I,J ⊂ {1, . . . , p} be index sets,4 both allowed to depend on p

(though we have omitted the dependence for brevity). Choose x such that xj = 0
for j /∈ J and ‖xJ‖2 = 1. Note that ‖WI,JxJ‖∞ = maxi∈I |∑j∈J Wijxj | =
maxi∈I |∑p

j=1 Wijxj |, suggesting the following lemma.

LEMMA 16. Consider some index set I such that |I| → ∞ and n−1 log |I| →
0 as n,p → ∞, and some xJ ∈ S|J|−1. Then, there exists an absolute constant
B > 0 such that

‖WI,JxJ‖∞ ≤ B

√
log |I|

n
(81)

as n,p → ∞, with probability 1.

PROOF. Applying the union bound in conjunction with the bound (80) yields

P

(
max
i∈I

∣∣∣∣∑
j∈J

Wijxj

∣∣∣∣ > t

)
≤ |I|C exp(−cnt2).(82)

Letting t = B
√

n−1 log |I|, the right-hand side simplifies to C exp(−(cB2 −
1) log |I|). Taking B >

√
2c−1 and applying Borel–Cantelli lemma completes the

proof. �

Note that as a corollary, setting xJ = (1,0, . . . ,0) yields bounds on the ∞-norm
of columns (or, equivalently, rows) of Wishart matrices.

Lemma 16 may be used to obtain the desired bound on |||WI,J|||∞,2. For sim-
plicity, let y ∈ R

|J| represent a generic |J|-vector. Recall that |||WI,J|||∞,2 =
maxy∈S|J|−1 ‖WI,Jy‖∞. We use a standard discretization argument, covering the
unit �2-ball of R

|J| using an ε-net, say N . It can be shown [27] that there exists

4We always assume that these index sets form an increasing sequence of sets. More precisely, with
I = Ip , we assume I1 ⊂ I2 ⊂ · · · . We also assume |Ip| → ∞ as p → ∞.
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such a net with cardinality |N | < (3/ε)|J|. For every y ∈ S|J|−1, let uy ∈ N be the
point such that ‖y − uy‖2 ≤ ε. Then

‖WI,Jy‖∞ ≤ |||WI,J|||∞,2‖y − uy‖2 + ‖WI,Juy‖∞
≤ |||WI,J|||∞,2ε + ‖WI,Juy‖∞.

Taking the maximum over y ∈ S|J|−1 and rearranging yields the inequality

|||WI,J|||∞,2 ≤ (1 − ε)−1 max
u∈N

‖WI,Ju‖∞.(83)

Using this bound (83), we can now provide the proof of Lemma 9 as follows.
Let N = {u1, . . . , u|N |} be a 1

2 -net of the ball S|J|−1, with cardinality |N | < 6|J|.
Then, from our bound (83), we have

P(|||WI,J|||∞,2 > t) ≤ P

(
2 max

u∈N
‖WI,Ju‖∞ > t

)
≤ |N | · P(‖WI,Ju1‖∞ > t/2)

≤ 6|J| · C|I| exp(−cnt2/4).

In the last line, we used (82). Taking t = D′′ √|J|+√
log |I|√

n
with D′′ large enough

and using Borel–Cantelli lemma completes the proof.

APPENDIX F: PROOF OF LEMMA 14

The mixture covariance can be expressed as

�M := E[xxT ] = E[E[xxT |U ]]
= ∑

S∈S̃

1

|̃S|E[xxT |U = S]

= ∑
S∈S̃

1

|̃S|
(
Ip + βz∗(S)z∗(S)T

)
= Ip + β

|̃S|
∑
S∈S̃

z∗(S)z∗(S)T =: Ip + β

k|̃S|Y,

where

Yij = ∑
S∈S̃

[√
kz∗(S)

]
i

[√
kz∗(S)T

]
j = ∑

S∈S̃

1{i ∈ S}1{j ∈ S}

= ∑
S∈S̃

1
{{i, j} ⊂ S

}
.



ANALYSIS OF SEMIDEFINITE RELAXATIONS 2917

Let R := {1, . . . , k − 1} and Rc := {k, . . . , p}. Note that we always have R ⊂ S for
S ∈ S̃. In general, we have

Yij =
⎧⎨⎩ |̃S|, if both i, j ∈ R,

1, if exactly one of i or j ∈ R,
0, if both i, j /∈ R.

Consequently, Y takes the form

Y =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|̃S| · · · |̃S| 1 1 · · · 1
...

. . .
...

...
...

. . .
...

|̃S| · · · |̃S| 1 1 · · · 1

1 · · · 1 1 0 · · · 0
1 · · · 1 0 1 · · · 0
...

. . .
...

...
...

. . .
...

1 · · · 1 0 0 · · · 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
or Y =

( |̃S|�1R
�1T
R

�1R
�1T
Rc

�1Rc�1T
R IRc×Rc

)
,

where �1R , for example, denotes the vector of all ones over the index set R. We
conjecture an eigenvector of the form

v =
( �1R

b�1Rc

)
and let us denote the associated eigenvalue as λ. Thus, we assume Yv = λv, or, in
more detail,

|̃S||R|�1R + b|Rc|�1R = λ�1R,

|R|�1Rc + b�1Rc = λb�1Rc,

where we have used, for example, �1T
R
�1R = |R|. Note that |Rc| = |̃S| = p − k + 1.

Rewriting in terms of |̃S|, we get

|̃S|(|R| + b) = λ,

|R| + b = λb

from which we conclude, assuming λ �= 0, that b = 1
|̃S| . This, in turn, implies λ =

|̃S||R| + 1.
Thus far, we have determined an eigenpair. We can now subtract λ(v/‖v‖2)(v/

‖v‖2)
T = (λ/‖v‖2

2)vvT and search for the rest of the eigenvalues in the remainder.
Note that

λ

‖v‖2
2

= λ

|R| + b2|Rc| = |̃S||R| + 1

|R| + |̃S|−1
= |̃S|.

Thus, we have

λ

‖v‖2
2

vvT =
⎛⎝ |̃S|�1R

�1T
R

�1R
�1T
Rc

�1T
Rc

�1R

1

|̃S|
�1Rc�1T

Rc

⎞⎠
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implying

Y − λ

‖v‖2
2

vvT =
(0 0

0 I − 1

|̃S|
�1Rc�1T

Rc

)
.

The nonzero block of the remainder has one eigenvalue equal to 1 − |Rc|
|̃S| = 0 and

the rest of |Rc| − 1 of its eigenvalues equal to 1. Thus, the remainder has |R| + 1
of its eigenvalues equal to zero and |Rc| − 1 of them equal to one.

Overall, we conclude that eigenvalues of Y are as follows:⎧⎨⎩ |̃S||R| + 1, 1 time,
1, |Rc| − 1 times,
0, |R| times

or ⎧⎨⎩
(p − k + 1)(k − 1) + 1, 1 time,
1, p − k times,
0, k − 1 times.

The eigenvalues of Y are mapped to those of �M by the affine map x → 1 + β

k|̃S|x,
so that �M has eigenvalues

1 + β(k − 1)

k
+ β

k(p − k + 1)
, 1 + β

k(p − k + 1)
, 1(84)

with multiplicities 1, p − k and k − 1, respectively. The log determinant stated in
the lemma then follows by straightforward calculation.

APPENDIX G: PROOF OF THEOREM 2(a)

Since in part (a) of the theorem we are using the weaker scaling n >

θwrk
2 log(p − k), we have more freedom in choosing the sign matrix Û . We

choose the upper-left block ÛSS as in part (b) so that Lemma 6 applies. Also
let ẑ := (̂zS, �0Sc) as in (29), where ẑS is the (unique) maximal eigenvector of the
k × k block �SS ; it has the correct sign by Lemma 6. We set the off-diagonal and
lower-right blocks of the sign matrix to

ÛScS = 1

ρn

�ScS, ÛScSc = 1

ρn

�ScSc ,(85)

so that �ScS = 0 and �ScSc = 0. With these blocks of � being zero, ẑ is the
maximal eigenvector of �, hence an optimal solution of (13), if and only if ẑS

is the maximal eigenvector of �SS ; the latter is true by definition. Note that this
argument is based on the remark following Lemma 5. It only remains to show that
the choices of (85) lead to valid sign matrices.
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Recalling that vector ∞-norm of a matrix A is ‖A‖∞ := maxi,j |Ai,j | (see Ap-
pendix A), we need to show ‖ÛScS‖∞ ≤ 1 and ‖ÛScSc‖∞ ≤ 1. Using the notation
of Section 4.4 and the mixed-norm inequality (59), we have

‖ÛScS‖∞ =
√

β

ρn

‖h̃Scz∗
S
T ‖∞ ≤

√
β

ρn

|||h̃Sc |||∞,∞‖z∗T
S ‖∞

=
√

β

ρn

‖h̃Sc‖∞‖z∗
S‖∞

≤
√

β

ρn

|||�1/2
p−k|||∞,∞‖hSc‖∞‖z∗

S‖∞

= 2k√
β

O(1)O

(√
log(p − k)

n

)
1√
k

= O(1)
1√
k

→ 0,

where the last line follows under the scaling assumed and assumption (6a) on
|||�1/2

p−k|||∞,∞. For the lower-right block, we use the mixed-norm inequality (59)
twice together with symmetry to obtain

‖ÛScSc‖∞ = 1

ρn

‖W̃ScSc‖∞ = 1

ρn

‖�1/2
p−kWScSc�

1/2
p−k‖∞

≤ 1

ρn

|||�1/2
p−k|||2∞,∞‖WScSc‖∞

= 2k

β
O(1)O

(√
log(p − k)

n

)
,

which can be made less than one by choosing θwr large enough. The bound on
‖WScSc‖∞ used in the last line can be obtained using arguments similar to those
of Lemma 9. The proof is complete.
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