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Abstract
Bayesian optimization is an efficient way to op-
timize expensive black-box functions such as de-
signing a new product with highest quality or
tuning hyperparameter of a machine learning al-
gorithm. However, it has a serious limitation
when the parameter space is high-dimensional
as Bayesian optimization crucially depends on
solving a global optimization of a surrogate util-
ity function in the same sized dimensions. The
surrogate utility function, known commonly as
acquisition function is a continuous function but
can be extremely sharp at high dimension - hav-
ing only a few peaks marooned in a large ter-
rain of almost flat surface. Global optimiza-
tion algorithms such as DIRECT are infeasible at
higher dimensions and gradient-dependent meth-
ods cannot move if initialized in the flat ter-
rain. We propose an algorithm that enables local
gradient-dependent algorithms to move through
the flat terrain by using a sequence of gross-to-
finer Gaussian process priors on the objective
function as we leverage two underlying facts -
a) there exists a large enough length-scales for
which the acquisition function can be made to
have a significant gradient at any location in the
parameter space, and b) the extrema of the con-
secutive acquisition functions are close although
they are different only due to a small difference in
the length-scales. Theoretical guarantees are pro-
vided and experiments clearly demonstrate the
utility of the proposed method on both bench-
mark test functions and real-world case studies.

1. Introduction
Bayesian optimization method has established itself as an
efficient way to optimize black-box functions (Jones et al.,
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1998) which are also expensive to evaluate. Examples in-
clude experimental design to optimize the quality of a phys-
ical product (Brochu et al., 2010) or hyperparameter tuning
of machine learning algorithms (Bardenet et al., 2013). In
both cases the response functions are unknown and each
evaluation of either making the product to test the quality
or training a model from large data can be time-consuming.
Likewise, it has found applications in a variety of domains
including computer vision (Denil et al., 2012) and sensor
set selection (Garnett et al., 2010).

Bayesian optimization is a sequential procedure where a
probabilistic form of the unknown function is maintained
using a Gaussian process (GP). A GP is specified by a mean
function and a covariance function. A popular choice of
covariance function is the squared exponential kernel (Ras-
mussen and Williams, 2005). A crucial parameter of the
kernel is the length-scale which dictates prior belief about
the smoothness of the objective function. The posterior of
a Gaussian process is analytically tractable and is used to
estimate both the mean and the variance of the estimation
at unobserved locations. Next, a cheap surrogate function
is built that seeks the location where lies the highest pos-
sibility of obtaining a higher response. The possibility is
expressed through a variety of acquisition functions which
trade-off exploitation of the predicted best mean and explo-
ration around high predicted variance. Typical acquisition
functions include Expected Improvement (EI) (Mockus,
1994) and GP-UCB (Srinivas et al., 2010).

Acquisition functions are continuous functions, yet they
may be extremely sharp functions at higher dimensions,
especially when the size of observed data is small. Gen-
erally, they have some peaks and a large area of mostly
flat surface. For this reason, the global optimization of
high-dimensional acquisition functions is hard and can be
prohibitively expensive. This makes it difficult to scale
Bayesian optimization to high dimensions. Generic global
optimization algorithms such as DIRECT (Jones et al.,
1993) or simplex-based methods such as Nelder-Mead
(Olsson and Nelson, 1975) or genetic algorithm based
methods (Runarsson and Yao, 2005; Beyer and Schwefel,
2002) perform reasonably when the dimension is low, but
at higher dimensions they can become extremely inefficient
and actually become infeasible within the practical limita-
tion of resource and time. Multi-start based method start
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from multiple initializations to achieve local maxima and
then choose the best one. However, the multi-start method
may not be able to find the non-flat portion of the acquisi-
tion function by random search. A related discussion for
high dimensional Bayesian optimization concerns with the
usefulness of Gaussian process for high dimensional mod-
eling. Fortunately, Srinivas et al. (2010) showed that Gaus-
sian process (GP) can handle “curse of dimensionality” to
a good extent.

Limited work has addressed the issue of high-
dimensionality in Bayesian optimization. Nearly all
the existing work assumes that the objective function
only depends on a limited number of “active” features
(Chen et al., 2012; Wang et al., 2013; Djolonga et al.,
2013). For example, Wang et al. (2013) projected the
high-dimensional space into a low-dimensional subspace
by random embedding and then optimized the acquisition
function in a low-dimensional subspace assuming that
many dimensions are correlated. This assumption seems
too restrictive in real applications (Kandasamy et al., 2015;
Li et al., 2017). The Add-GP-UCB model (Kandasamy
et al., 2015) allows the objective function to vary along the
entire feature domain. The objective function is assumed
to be the sum of a set of low-dimensional functions with
disjoint feature dimensions. Thus the optimization of
acquisition function is performed in the low-dimensional
space. Li et al. (2016a) further generalized the Add-
GP-UCB by eliminating an axis-aligned representation.
However, none of them are not applicable if the underlying
function does not have assumed structure, that is, if the
dimensions are not correlated or if the function is not
decomposable in some predefined forms. Thus efficient
Bayesian optimization for high dimensional functions is
still an open problem.

To address that we propose an efficient algorithm to op-
timize the acquisition function in high dimension without
requiring any assumption on the structure of the underlying
function. We recall a key characteristic of the acquisition
function that they are mostly flat functions with only a few
peaks. Gradients on the large mostly flat surfaces of the
high-dimensional acquisition functions would be close to
zero. Thus gradient-dependent methods would fail to work
since a random initialization would most likely fall in the
large flat region. However, we theoretically prove that for
a location where the gradient is currently insignificant it
is possible to find a large enough kernel length-scale which
when used to build a new GP can make the derivative of the
new acquisition function becomes significant. Different lo-
cations may need different length-scales above which the
derivative at that location becomes significant. We prove it
for both the Expected Improvement (EI) and Upper Confi-
dence Bound (UCB) acquisition functions. Next, we the-
oretically prove that the difference in the acquisition func-
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Figure 1. Simple regret as a function of iteration for an unnor-
malized GaussianPDF function with maximum of 1 in 10 dimen-
sion using three different length scales for SE kernel. Average
and standard errors for 20 trials with different initializations is
reported.

tions is smooth with respect to the change in length-scales,
which implies that the extremums of the consecutive ac-
quisition functions are close if the difference in the length-
scales is small. Based on these two observations we build a
novel optimization algorithm for acquisition functions. In
the first part of our algorithm we search for a large enough
length-scale for which a randomly selected location in the
domain starts to have significant gradients. Next, we grad-
ually reduce the length scale to move from a gross to a
finer function approximation, controlling this transition by
slowly reducing the length-scale of the Gaussian process
kernel. We solve a sequence of local optimization prob-
lems wherein we begin with a very gross approximation
of the function and then the extrema of this approximation
is used as the initial point for the optimization of the next
approximation which is a little bit finer. Following this se-
quence we reach to the extrema of the acquisition function
for the Gaussian process with the target length-scale. The
target length-scale is either pre-specified by the user or es-
timated for some covariance functions. It may seem to the
reader that the problem can be avoided if a large length
scale is chosen for the original GP model itself, however,
as it shows in Figure 1 the right length-scale actually lies
at a smaller value, especially for high dimensional func-
tions. Since in our algorithm we use Gaussian processes
with large to small length-scales akin to fitting an elastic
function, we denote our method as Elastic Gaussian Pro-
cess (EGP) method. We note that EGP is a meta-algorithm
that enables a gradient-dependent local optimization algo-
rithm to perform by removing the problem associated with
flat surface. Newton’s gradient based method is used as a
local optimization tool for our algorithm. It is to be noted
that our algorithm EGP can easily be converted to pursue a
global solution by employing multiple starts with different
random initializations.

We demonstrate our algorithm on two synthetic examples
and two real-world applications involving one of training
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cascaded classifier and the other involving optimization of
an alloy based on thermodynamic simulation. We compare
with the the state-of-the-art additive model (Kandasamy
et al., 2015), high dimensional optimization using random
embedding (Wang et al., 2013), a vanilla multi-start method
and 2x random search. All the methods are given equal
computational budget to have a fair comparison. In all ex-
periments our proposed method outperforms the baselines.
In summary, our main contributions are:

• Proposal of a new method to handle high dimensional
Bayesian optimization without any assumptions about
the underlying structure in the objective function;

• Derivation of theoretical guarantees that underpins our
proposed algorithm;

• Validation on both synthetic and real-world applica-
tions to demonstrate the usefulness of our method.

2. Background
2.1. Gaussian Process

We briefly review Gaussian process (Rasmussen and
Williams, 2005) here. Gaussian process (GP) is a distri-
bution over functions specified by its mean m(.) and co-
variance kernel function k(., .). Give a set of observations
x1:t, the probability of any finite set of f is Gaussian

f(x1:t) ∼ N (m(x1:t),K(x1:t,x1:t)) (2.1)

where f(x1:t) is a vector of response values of x1:t and
K(x1:t,x1:t) is a covariance matrix presented by

K(x1:t,x1:t) =

 k(x1,x1) · · · k(x1,xt)
...

. . .
...

k(xt,x1) · · · k(xt,xt)

 (2.2)

where k is a kernel function. If the observations are con-
taminated with noise, K should include the noise variance.
The choice of the kernel depends on prior beliefs about
smoothness properties of the objective function. A popular
kernel function is the squared exponential (SE) function,
which is defined as

k(xi,xj) = exp

(
− 1

2l2
||xi − xj ||2

)
where the kernel length-scale l reflects the smoothness of
the objective function.

The predictive distribution of GP is tractable analytically.
For a new point xt+1, the joint probability distribution of
the known values f1:t = f(x1:t) and the predicted function
value ft+1 is given by(

f1:t
ft+1

)
∼ N

([
m(x1:t)
m(xt+1)

]
,

[
K(x,x) k
kT k(xt+1,xt+1)

])

where k = [k(xt+1,x1) · · · k(xt+1,xt)]
T and K(x,x) =

K(x1:t,x1:t). We simplify the problem by using
m(x1:t) = 0. The predictive distribution of ft+1 can be
represented by

ft+1 | f1:t ∼ N (µt+1(xt+1 | x1:t, f1:t), σ
2
t+1(xt+1 | x1:t, f1:t))

(2.3)
with µt+1(.) = kTK−1f1:t and σ2

t+1(.) =
k(xt+1,xt+1)− kTK−1k.

2.2. Bayesian Optimization

A traditional optimization problem is to find the maximum
or minimum of a function f(x) over a compact domain X .
In real applications such as hyperparameter tuning for a
machine learning model or experiments involving making
of physical products, f(x) is unknown in advance and ex-
pensive to evaluate. Bayesian optimization (BO) is a pow-
erful tool to optimize such expensive black-box functions.
A common method to model the unknown function is using
a Gaussian process as a prior. The posterior is maintained
based on observations and allows prediction for expected
function values at unseen locations (Eq.2.3). A acquisition
function a(x | x1:t, f1:t) is constructed to guide the search
for the optimum. Some examples about acquisition func-
tions include Expected Improvement (EI) and UCB (Srini-
vas et al., 2010).

The EI-based acquisition function is to compute the ex-
pected improvement with respect to the current maximum
f(x+). The improvement function is written as

I(x) = max{0, ft+1(x)− f(x+)}

ft+1(x) is Gaussian distributed with the mean µ(x) and
variance σ2(x), as per the predictive distribution of GP
(2.3). Thus the expected improvement is the expectation
over these Gaussian variables. In closed form (Mockus
et al., 1978; Jones et al., 1998),

EI(x) =

{
(µ(x)− f(x+))Φ(Z) + σ(x)φ(Z) σ(x) > 0

0 σ(x) = 0

(2.4)
where Z = µ(x)−f(x+)

σ(x) . Φ(Z) and φ(Z) are the CDF and
PDF of standard normal distribution.

The UCB (Srinivas et al., 2010) acquisition function is de-
fined as

UCB(x) = µ(x) + νσ(x) (2.5)

where ν is a sequence of increasing positive numbers.

In each iteration of Bayesian optimization, the most
promising xt+1 is found by maximizing the acquisition
function and then yt+1 is evaluated. The new observation
is augmented to update the GP and in turn is used to con-
struct a new acquisition function. These steps are repeated
till a satisfactory outcome is reached or the iteration budget
is exhausted.
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2.2.1. OPTIMIZATION OF ACQUISITION FUNCTIONS

In Bayesian optimization, the objective function is expen-
sive to evaluate while the acquisition function is tractable
analytically. Our task is to maximize the acquisition func-
tion a(x | D1:t) over a compact region or with constraints.
Global optimization heuristics are often used to find the ex-
tremum of a function. The gradient-based and derivative-
free approaches are two main types. Gradients for the
EI acquisition function can be computed as in (Frean and
Boyle, 2008). DIRECT (Jones et al., 1993) is a popular
choice to globally optimize the acquisition function. It is
a deterministic and derivative-free algorithm which divides
the search space into smaller and smaller hyperrectangles
and leverages the Lipschitizian-continuity of the acquisi-
tion function. However. it takes time exponential to di-
mension and becomes practically infeasible beyond 10 di-
mensions. The multi-start gradient based approach is po-
tentially attractive in high dimension but it mostly fails in
high-dimensional scenario as a random initialization may
not be able to escape from the large flat region that ac-
quisition functions generally have. Our proposed method
utilizes properties of the acquisition function to derive a
meta-algorithm that enables the gradient-based optimizer
to move even when initialized in a seemingly flat region.

3. High-dimensional Bayesian Optimization
with Elastic Gaussian Process

We would like to employ Bayesian optimization to solve a
high-dimensional maximization problem maxx∈X f(x) in a
compact subset X ⊆ R. To model f(x), we use a Gaussian
process with zero mean as a prior and the SE kernel as the
covariance function with a target length-scale lτ . The tar-
get length-scale can be set by the user or can be separately
inferred by using the maximum likelihood-based estima-
tion method (Snoek et al., 2012). The SE kernel although
a simple kernel, is versatile and popular. Hence we choose
to use it in our framework. Acquisition functions, such as
EI (Mockus, 1994) and UCB (Srinivas et al., 2010), depend
on the predictive mean µ(x) and variance σ2(x) of GP

µ(x) = kTK−1y

σ2(x) = 1− kTK−1k

Hence, the acquisition function is also associated with the
GP kernel length-scale l and we denote it as a(x | D1:t, l).
The core task of Bayesian optimization is to find the most
promising point xt+1 for the next function evaluation by
globally maximizing acquisition function.

Figure 2 serves as an inspired example for our approach.
We plot the acquisition function for different length-scales.
As can be seen when the length-scale is low, some portions
of the parameter space are flat. This is especially remark-
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Figure 2. The illustration for the elastic Gaussian process (EGP)
at one dimension. The acquisition function presents different ter-
rains with varied kernel length-scales l. The optimal points at
l = 0.35 and l = 0.4 are close. The optimal point x∗l=0.35 can be
achieved if the initial point (xinit

l=0.35) is the point x∗l=0.4.

able in high-dimensional problems. For example, the ac-
quisition function with length-scale 0.1 is extremely flat.
However when the length-scale is above 0.2, the acquisi-
tion functions starts to have significant gradients. Addition-
ally, we also show that the optimal solutions for different
length-scales are close.

We construct our method based on the above observa-
tions. Specifically in Lemma 1 we theoretically guarantee
that it is possible to find a large enough length-scale for
which the derivative of the acquisition function becomes
non-insignificant at any location in the domain. Proof
for both the Expected Improvement (EI) and Upper Con-
fidence Bound (UCB) based acquisition functions are de-
rived. Relying on this guarantee, we search for a large
enough length-scale for which a randomly selected loca-
tion in the domain starts to have significant gradients. Next
in Lemma 2, we theoretically guarantee that the difference
in the acquisition function is smooth with respect to the
change in length-scale. This implies that the extrema of
the consecutive acquisition functions are close but different
only due to a small difference in the length-scales. The de-
tails of these lemmas are provided later. However, we can
now conceive that an algorithm to overcome flat region can
be constructed by first finding a large enough length-scale
to solve for the optima at that length-scale and then grad-
ually reduce the length-scale and solve a sequence of lo-
cal optimization problems wherein the optimum of a larger
length-scale is used as the initialization for the optimization
of the acquisition function based on the Gaussian process
with a smaller length-scale. This is continued till the opti-
mum at the target length-scale lτ is reached. We denote our
method as Elastic GP (EGP) method. The whole proposed
algorithms are presented in Alg.1 and Alg. 2.
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Algorithm 1 High Dimensional Bayesian Optimization
with Elastic Gaussian Process

1: for t = 1, 2 · · · do
2: Sample the next point xt+1←argmaxxt+1∈X

a(x |
D1:t, l) using Alg. 2

3: Evaluate the value yt+1

4: Augment the data D1:t+1 = {D1:t, {xt+1, yt+1}}
5: Update the kernel matrix K
6: end for

3.1. Theoretical Analysis

In the first step of our algorithm (seen in Step 1 of Alg.2) ,
we want to show that gradient of the acquisition functions
becomes significant beyond a certain l so that our algorithm
can find an optimal solution compared to any start point.

Lemma 1. ∃l :

∥∥∥∥∂a(x)∂x

∥∥∥∥
2

≥ ε for lτ ≤ l ≤ lmax.

Proof. The Lemma can be proved if we prove that∣∣∣∂a(x)∂xi

∣∣∣ ≥ ε, ∀i. We consider both forms: UCB and EI.

• For the UCB acquisition function (Eq. 2.5),

the partial derivative of UCB can be written as

∂a(x)

∂xi
=

∂µ(x)

∂xi
+ ν

∂σ(x)

∂xi

=
∂kT

∂xi
K−1y +

ν

σ(x)
(−∂k

T

∂xi
K−1k)

The ∂kT

∂xi
is dependent on the form of the covariance func-

tion: it is 1× t matrix whose (1, j)th element is ∂cov(x,xj)
∂xi

.
For the SE kernel

∂cov(x,xj)

∂xi
= exp

(
−||x− xj ||2

2l2

)(
− (xi − xji)

l2

)
= −dji

l2
cov(x,xj) (3.1)

where dji = xi − xji.

To simplify the proof, we assume that we have the worst
case that only one observation x0 exists and thus

∂a(x)

∂xi

=
y0∂cov(x,x0)

∂xi
− vcov(x,x0)√

1− cov2(x,x0)

∂cov(x,x0)

∂xi

= −d0i
l2
cov(x,x0)y0 +

vcov(x,x0)√
1− cov2(x,x0)

d0i
l2
cov(x,x0)

=
d0i
l2

(
vcov2(x,x0)√
1− cov2(x,x0)

− cov(x,x0)y0

)
(3.2)

Algorithm 2 Optimizing acquistion function using EGP

Input: a random start point xinit ∈ χ, the length-scale
interval4l, l = lτ .

1: Step 1:
2: while l ≤ lmax do
3: Sample x∗ ← argmaxx∗∈Xa(x | D1:t, l) starting

with xinit;
4: if ||xinit − x∗|| = 0 then
5: l = l +4l
6: else
7: xinit = x∗, break;
8: end if
9: end while

10: Step 2:
11: while l ≥ lτ do
12: l = l −4l
13: Sample x∗ ← argmaxx∗∈Xa(x | D1:t, l) starting

with xinit;
14: if ||xinit − x∗|| = 0 then
15: 4l=4l/2
16: else
17: xinit = x∗

18: end if
19: end while

Output: the optimal point xt+1 = x∗ to be used in Alg.1

The cov(x,x0) is a small value due to ||x − x0|| � 0 and
then the first term in the fourth line of the Eq.(3.2) can be
ignored compared to its second term. Therefore we have

∂a(x)

∂xi
= −d0i

l2
cov(x,x0)y0

= −d0iy0
l2

exp

(
−||x− x0||2

2l2

)
(3.3)

We rewrite it as∣∣∣∣∂a(x)

∂xi

∣∣∣∣ =
α1

l2
exp

(
−α2

l2

)
where α1 = |d0iy0| and α2 = ||x− x0||2/2.

To have
∣∣∣∂a(x)∂xi

∣∣∣ ≥ ε, the equation exp
(
−α2

l2

)
≥ εl2

α1
must

hold for a l between lτ ≤ l ≤ lmax. In fact, we can find
a l to hold the inequality since exp

(
−α2

l2

)
is a decreasing

function with the range (0, 1] whilst εl2

α1
is an increasing

function with the range (0,+∞) by considering lτ can ap-
proach to 0 and lmax can approach to infinity in theory.
Therefore Lemma 1 has been proved for the UCB acquisi-
tion function.
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• For the EI acquisition function (Eq. 2.4),

the partial derivative can be written as

∂a(x)

∂xi
= [ZΦ(Z) + φ(Z)]

∂σ(x)

∂xi
+ σ(x)Φ(Z)

∂Z

∂xi

where Z = µ(x)−f(x+)
σ(x) and

∂σ(x)

∂xi
= −

(
∂kT

∂xi
K−1k

)
/σ(x)

∂Z

∂xi
=

(
∂kT

∂xi
K−1y − Z ∂σ(x)

∂xi

)
/σ(x)

therefore,

∂a(x)

∂xi
= −φ(Z)

(
∂kT

∂xi
K−1k

)
/σ(x)+Φ(Z)

∂kT

∂xi
K−1y

(3.4)
We substitute Eq.(3.1) into Eq. (3.4) and make the similar
assumption within the proof at the UCB acquisition func-
tion. The Eq. (3.4) then becomes as

∂a(x)

∂xi

=
y0Φ(Z)∂cov(x,x0)

∂xi
− φ(Z)cov(x,x0)√

1− cov2(x,x0)

∂cov(x,x0)

∂xi

=
d0i
l2

(
φ(Z)cov2(x,x0)√

1− cov2(x,x0)
− cov(x,xj)y0Φ(Z)

)

Since φ(Z) lies 0-1, we can ignore the first term. The equa-
tion above is further written as

∂a(x)

∂xi
= −d0i

l2
exp

(
−||x− x0||2

2l2

)
y0Φ(

µ(x)− f(x+)

σ(x)
)

As l increasing, µ(x) becomes smaller and σ(x) becomes
larger and then Φ(·) → 1. The equation above becomes
similar with Eq.(3.3). Therefore Lemma 1 is proved for EI.

In the second step of our algorithm (seen in Step 2 of
Alg.2), our purpose is to find 4l which makes the start
point of the local optimizer move to a finer region. We
need to show that∣∣∣∣∣∂a(x)

∂xi

∣∣∣∣
l=l∗
− ∂a(x)

∂xi

∣∣∣∣
l=l∗+4l

∣∣∣∣∣ ≤ ε, for4l < δ

It is directly related to∂a(x|D1:t,l)
∂x being smooth. The fol-

lowing lemma guarantees that.

Lemma 2. g(x, l) is a smooth function with respect to l,
where g(x, l) = ∂a(x|D1:t,l)

∂x .

For the UCB, we compute the derivative of g(x, l) with
respect to l based on Eq.(3.3)

∂g(xi, l)

∂l
=

2d0iy0
l3

exp

(
−||x− x0||2

2l2

)
+
d0iy0
l2

exp

(
−||x− x0||2

2l2

)
||x− x0||2

l3

Apparently, ∂g(xi,l)
∂l is continuous in the domain of l.

Therefore, g(x, l) is a smooth function with respect to l.
The similar proof can be done for EI.

4. Experiments
We evaluate our method on three different benchmark test
functions and two real-world applications including train-
ing cascaded classifiers and for alloy composition opti-
mization. We use low memory BFGS implementation in
NLopt (Johnson, 2014) as the local optimization algorithm,
and a variant of DIRECT (GN DIRECT L) for global opti-
mization1. Our comparators are:

• Global optimization using DIRECT (Global)

• Multi-start local optimization (Multi-start)

• High-dimensional Bayesian optimization via additive
models (Kandasamy et al., 2015) (Add-d′, where d′ is
the dimensionality in each group)

• Bayesian optimization using random embedding
(Wang et al., 2013) (REMBO-d′, where d′ is the pro-
jected dimensionality)

• Best of 2 x Random search, which has shown com-
petitiveness over many algorithms(Li et al., 2016b).

Global optimization with DIRECT is used only at dimen-
sion d ≤ 10 as it consistently returns erroneous results at
higher dimension. For the additive model variables are
divided into a set of additive clusters by maximizing the
marginal likelihood (Kandasamy et al., 2015). In all exper-
iments, we use EI as the acquisition function and the SE
kernel as the covariance function. The search bounds are
rescaled to [0, 1]. We use the target length-scale lτ = 0.1,
lmax =

√
d and 4lmin = 10−5. In Figure 1 we plot the

simple regret vs iteration for three different choices of scale
l = 0.1, 0.3 and 0.5. Out of them l = 0.1 provides the
fastest convergence, justifying our choice for the length-
scale. In our experience any smaller length-scale slows
down the convergence and surprisingly, in most of the cases
lτ = 0.1 turns out to be a good choice. The number of ini-
tial observations are set at d + 1. All the algorithms are

1The code is available on request.
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(a) Hertmann6d(Topt = 6ms)
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(b) Hertmann6d(Topt = 60ms)
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(c) Gaussian10d(Topt = 10ms)
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Figure 3. Simple regret as a function of Bayesian optimization iteration. Optimization time Topt shown is for each iteration. Both mean
(line) and the standard errors are reported for 20 trials with random initializations.

0 50 100 150 200
Iteration

0

0.5

1

1.5

2

2.5

3

3.5

S
im

pl
e 

R
eg

re
t

#105 Rosenbrock(10d)

Global
Multistart
EGP
Best(2xRandom Search)

(a) Rosenbrock10d(Topt = 1sec)
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(b) Rosenbrock20d(Topt = 2sec)
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(c) Gaussian20d(Topt = 2sec)
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Figure 4. Simple regret as a function of Bayesian optimization iteration. Optimization time Topt has been set as 0.1× d sec. Both mean
(line) and the standard errors are reported for 20 trials with random initializations.

given the same fixed time duration per iteration (Topt). The
computer used is a Xeon Quad-core PC running at 2.6 GHz,
with 16 GB of RAM. Bayesian optimization has been im-
plemented in Matlab with mex interface to a C-based ac-
quisition function optimizer that uses NLOPT library. We
run each algorithm 20 trials with different initializations
and report the average results and standard errors .

4.1. Benchmark Test Functions

In this study we demonstrate the application of Bayesian
optimization on three different benchmark test functions

1. Hertmann6d in [0, 1] for all dimensions.

2. Unnormalized Gaussian PDF with a maximum of 1 in
[−1, 1]d for d=20 and [−0.5, 0.5]d for d=50.

3. Generalized Rosenbrock function (Picheny et al.,
2013) in [−5, 10]d.

We set the covariance matrix of the Gaussian PDF to be

a block diagonal matrix Σ =

 A · · · 0
...

. . .
...

0 · · · A

, where

A =
[

1 0.9
0.9 1

]
. In this case, variables are partially

correlated and, therefore, the function does not admit addi-
tive decomposition with high probability. The function is
further scaled such that the maximum value of the function

remains at 1 irrespective of the number of variables (di-
mensions). Since, for all these test functions neither the as-
sumptions of additive decomposition based method or the
assumptions of REMBO (many dimensions are correlated)
are true, they perform poorly on these. Hence, we do not
include them in our comparison for benchmark functions.

We first demonstrate the efficiency of our EGP based op-
timization given limited amount of time. In Figure 3
we show how the three algorithms perform when given
two different amounts of optimization time per iteration
(Topt = 0.001×d and Topt = 0.01×d) on both Hertmann6
and Gaussian PDF functions. The plot shows that when
Topt is small then Multi-start performs the worst, even per-
forming lower than the 2x Random search. However, both
EGP and the DIRECT perform much better and almost per-
form similarly. When Topt is increased then all the meth-
ods start to perform almost similarly with EGP providing
slightly better performance. This demonstrates two things:
a) EGP is more efficient in using time than the Multi-start,
and b) EGP being gradient-based is more numerically pre-
cise than the grid-based DIRECT algorithm. In Figure 4 we
demonstrate our method on both Rosenbrock and Gaussian
PDF functions at high dimensions. The optimization time
for all these high-dimensional optimization problem is set
as Topt = 0.1×d sec. EGP clearly beats all the comparators
for these benchmark test functions. Then UCB acquisition
function has the similar behaviour with EI for our model
although no result shown here.
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Figure 5. (a)-(c) Training AUC as a function of iteration for cascade classifier training. The number of stages in the classifier is equal to
the number of features in three datasets from left to right a) Ionosphere d = 33, b) German d = 24, c) IJCNN1 d = 22. Both mean
(line) and the standard errors (shaded region) are reported for 20 trials with random initializations. (d) Alloy utility value as a function
of the iteration for the optimization of AA-2050 alloy system.

4.2. Training cascade classifier

Here we evaluate our method by training a cascade clas-
sifier on three real datasets from UCI repository (Blake
and Merz, 1998): Ionosphere, German and IJCNN1. A
K-cascade classifier consists of K stages and each stage
has a weak classifier, a one-level decision stump. Instances
are re-weighted after each stage. Generally, independently
computing the thresholds are not an optimal strategy and
thus we seek to find an optimal set of thresholds by maxi-
mizing the training AUC. Features in all datesets are scaled
between [0, 1]. The number of stages is set same with the
number of features in the dataset. Therefore, simultane-
ously optimizing thresholds in multiple stages is a difficult
task and thus being used as a challenging test case for high-
dimensional Bayesian optimization. We create the additive
model with 10 dimensions per group and 10 dimensions
for random embedding in REMBO. The results are plot-
ted in Figure 5 (a)-(c). In all three cases EGP provides the
best performance. REMBO performs the worst of all. Sur-
prisingly, for IJCNN1 the Random Search turned out to be
competitive to EGP. However, in the other two datasets it
performs much worse than EGP.

4.3. Optimizing alloy for aeronautic applications

AA-2050 is a low density high corrosion resistant alloy and
is used for aerospace applications. The current alloy has
been designed decades ago and is considered by our met-
allurgist collaborator as a prime candidate for further im-
provement. ThermoCalc, a software based thermodynamic
simulator (Andersson et al., 2002), is used to compute the
utility of a composition by looking at the occurrences of
different phases at different temperatures. Some phases are
beneficial for mechanical properties whereas some are not.
Guided by our metallurgist partners a weighted combina-
tion of phase fractions is used as the utility function The
alloy consists of 9 elements (Al, Cu, Mg, Zn, Cr, Mn, Ti,
Zr, and Sc) and along with that we have 4 operational pa-

rameters that have to be optimized together. In all we have
a 13-dimensional optimization problem. The result is given
in Figure 5(d). Since, the simulations are expensive we run
only upto 30 iterations and compare with only the addi-
tive model and the REMBO. We ran only once after start-
ing from expert-specified starting points. Clearly, EGP is
quicker in reaching better value and always remained bet-
ter than both the baselines.

5. Conclusion
In this paper we propose a novel algorithm for Bayesian
optimization in high dimension. At high dimension the ac-
quisition function becomes very flat on a large region of
the space rendering gradient-dependent methods to fail at
high dimension. We prove a) gradient can be induced by
increasing the length-scales of the GP prior and b) acquisi-
tion functions which differ only due to small difference in
length-scales are close. Based on these we formulate our
algorithm that first finds a large enough length-scale to en-
able the gradient-dependent optimizer to perform, and then
the gradually reduces the length-scale while also sequen-
tially using the optimum of the larger length-scale as the
initialization for the smaller. In experiments the proposed
algorithm clearly performs better than the baselines on a
set of test functions and two real applications of training
cascade classifiers and alloy composition optimization.
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