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Abstract

Key challenges of Bayesian optimization in high dimensions are both learning the

response surface and optimizing an acquisition function. The acquisition function

selects a new point to evaluate the black-box function. Both challenges can be

addressed by making simplifying assumptions, such as additivity or intrinsic lower

dimensionality of the expensive objective. In this article, we exploit the effective lower

dimensionality with axis-aligned projections and optimize on a partitioning of the input

space. Axis-aligned projections introduce a multiplicity of outputs for a single input

that we refer to as inconsistency. We model inconsistencies with a Gaussian process

(GP) derived from quantile regression. We show that the quantile GP and the parti-

tioning of the input space increases data-efficiency. In particular, by modeling only a

quantile function, we overcome issues of GP hyper-parameter learning in the presence

of inconsistencies.

Keywords High dimensional Bayesian optimization · Gaussian processes · Quantile

regression

1 Introduction

Studies in robotics, machine learning, software development, recommendation sys-

tems and medicine are governed by design and parameter choices. For instance,

changing gait properties of legged robots leads to different robustness and walk-

ing speed performances [5]. Adjusting controller configurations in drones results in
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reduced feedback-error of closed loop systems [2]. Clever tuning of hyper-parameters

settings in multi-layer convolutional neural networks speeds up learning and lowers

generalization error [19]. Since the process of evaluating the performance of each

parameter configuration can be time consuming, automatically finding configura-

tions that yield optimal performance is notoriously hard and demands data-efficient

approaches.1 In an ideal setting, we are interested in a globally optimal solution.

A promising algorithm for data-efficient optimization is Bayesian optimization

(BayesOpt) [7,12,14,16] where a surrogate function is built for predicting the perfor-

mance of a set of parameters. The exploration/exploitation trade-off to obtain a globally

optimal solution is taken care of by an acquisition function. This approach has proven

successful in various fields such as movie recommendation systems [21], parameter

estimation of biological models [23] and automatic algorithm configuration [10].

The key to the success of BayesOpt relies on two steps: (i) using previous exper-

iments to train statistical surrogate models and then (ii) using this model within an

acquisition function to find input locations that yield the best added value for the opti-

mization. These steps, however, come at a computational cost that remains often small

in low dimensions. However, in high dimensions, we typically need a significantly

larger number of experiments to find a good statistical model of the true objective

function. Optimizing the acquisition function requires many evaluations of the surro-

gate model and constitutes a computational bottleneck in BayesOpt.

To reduce the negative effects of the high dimensionality on BayesOpt, Wang

et al. [24] assume that the objective lives only on a linear subspace of the input domain

that is d-dimensional with d ≪ D, where D is the original dimensionality. Strong

theoretical results show that performing BayesOpt under these assumptions is equiv-

alent to learning and optimizing the true objective on a random embedding. However,

robust implementation requires further deftness to account for box-constraints and

non-injectivity of the mapping from the embedding to the original domain. Kandasamy

et al. [13] decompose the objective f as a sum of z-independent lower-dimensional

function components f1, . . . , fz defined on orthogonal domains �(1), . . . ,�(z) of

dimensionality at most d. Each subproblem is optimized independently using the

Upper Confidence Bound (UCB) acquisition function [20]. This approach scales the

optimization of the acquisition linearly in the number of components by including

specific structural assumptions about f . Ulmasov et al. [23] propose a different

decomposition of the input by randomly selecting subsets of the input parameters

and assigning a different model for each subset. Each model is then trained with a

separate dataset to address the problem of inconsistencies introduced by axis-aligned

projections.

Optimization in these lower-dimensional spaces suffers from observation ambigu-

ity, e.g., (θ∗
1 , f (θ∗

1 , θ2)), (θ
∗
1 , f (θ∗

1 , θ̃2)) are two observations collected for a single

lower-dimensional input θ∗
1 . We refer to this as inconsistency or ambiguity and show

their effect in Fig. 1. To amend this issue Ulmasov et al. [23] adopts multiple separate

subsets of experiments resulting in a data-costly strategy.

In this article, we propose a scalable method based on projections that overcomes

issues inherent in axis-aligned projections. We formulate an optimization approach

1 We are interested in finding a good solution in as few experiments as possible.
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(a) (b)

Fig. 1 a Vanilla GP hyper-parameter learning can result in unrealistic estimates and largely useless gener-

alization capabilities. This is a clear sign of underfitting where the data with inconsistency is modeled as

noise. The resulting acquisition function from this model will favor pure exploitation leading to pre-mature

convergence of the algorithm. b The Quantile GP overcomes the issue of inconsistencies by explicitly

modeling only a quantile function

based on independent sub-problems for each subset of d ≪ D parameters. We address

the issue of inconsistencies with a sensible choice of the model by using a quantile

GP (QGP). The key idea behind the QGP is that we only model a lower τ -quantile

of function values, which also allows us to retain a simpler explanation of the data.

The QGP maintains well-calibrated confidence bounds in posterior predictions in the

presence of noisy multiplicity of outputs see Fig. 1.

2 Problem setting

We consider the problem of finding a minimizer

θ∗ = argmin
θ∈�

f (θ) (1)

of an unknown function f : Θ ⊂ R
D → R defined on a D-dimensional parameter

space Θ that we will assume to be a bounded hypercube Θ = [0, 1]D . We further

assume that observations y of f are corrupted by i.i.d. Gaussian noise, i.e., yi =
f (θ i ) + ε, where ε ∼ N (0, σ 2

n ) with unknown variance σ 2
n . Gradient information of

the black-box function f with respect to the inputs θ ∈ Θ are not available, and we

cannot make any convexity assumptions.

2.1 Gaussian processes

In this article, we consider a Gaussian process (GP) as the probabilistic surrogate for the

black-box objective function we seek to optimize. GPs allow for deriving a posterior

of f in a fully Bayesian framework and expressing the uncertainty in its estimation

through well calibrated error bars. GPs are commonly used in machine learning to

express prior assumptions in nonlinear regression problems and have proven successful
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in Bayesian optimization [18], learning control [6], probabilistic numerics [9], and time

series-predictions [8]. When a function f : � → R is distributed as a GP we write

f ∼ GP(m(·), k(·, ·)). A GP is fully determined by a mean function m : � → R and

a covariance function or kernel k : �×� → R, which encodes high-level properties

and characteristics of the function as mean and covariance structure between function

values. Common choices of covariance functions for BayesOpt include the squared

exponential and Matern52 kernels [7,17] given by

kexp(r) = exp
(

− r2

2l2

)

, km5/2(r) =
(

1 + r
√

5
l

+ 5r2

3l2

)

exp
(

− r
√

5
l

)

(2)

respectively, where l > 0 is a lengthscale parameter. These are stationary kernels, i.e.,

they only depend on the distance r = ‖θ − θ ′‖ between two inputs θ and θ ′. With a

Gaussian likelihood we obtain a closed-form posterior distribution p( f (θ⋆)|DN ) =
N (μ(θ⋆), σ

2(θ⋆)), where

μ(θ⋆) = m⋆ + kT
⋆

(

K + σ 2
n I

)−1
(y − m) , (3)

σ 2(θ⋆) = k⋆⋆ − kT
⋆

(

K + σ 2
n I

)−1
k⋆ , (4)

where k⋆⋆ = k(θ⋆, θ⋆), k⋆ = [k(θ i , θ⋆)]
N
i=1, K =

[

k(θ i , θ j )
]

i, j
, m⋆ = m(θ⋆) is

the mean function evaluated at the test input, m = [m(θ1), . . . , m(θ N )]T contains

the mean function values at the training inputs and y = [y1, . . . , yN ]T contains all

observations.

2.2 Bayesian optimization

Bayesian optimization is performed in two steps: (i) we train a statistical model

p( f |Dt ), usually a GP, of the latent function f based on observations collected

up to iteration t ; (ii) we select inputs θ∗
t+1 by maximizing an acquisition function,

α : Θ → R that trades off exploration and exploitation, such that

θ∗
t+1 = argmax

θ∈Θ

α(θ | p( f |Dt )) . (5)

The acquisition function formalizes the notion of how useful each input parameter

θ is for optimization of f . Given a probabilistic model for f , the acquisition func-

tion automatically trades off low expected function values (exploitation) with regions

where the latent f has high estimated uncertainty (exploration). Different acquisi-

tion functions have been defined that characterize different exploration-exploitation

trade-offs for global optimization. Examples are

Probability of improvement (PI): Φ(Z) (6)

Expected improvement (EI): σ(θ)ZΦ(Z) + σ(θ)φ(Z) (7)

Upper confidence bound (UCB): − μ(θ) + βtσ(θ) (8)
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where f (θ−) = min f (θ1:t ) is the current minimum observed in the exploration

history, and Z = ( f (θ−) − μ(θ))/σ (θ). Moreover, Φ and φ are the standard cumu-

lative and normal density, respectively. βt in UCB accounts for the trade off between

exploration and exploitation.

We refer to [18] for a more detailed overview on acquisition functions. Increasing

the dimensionality D of the input space � raises a series of challenges. The number

of evaluations required to cover the search space increases exponentially in D. This

makes GP learning a computationally demanding task. GPs, as common choices for

probabilistic modeling of the response surface, scale cubically in the number of data

points for training and quadratically for predicting [17]. Computational demands of

acquisition function optimizers also become significant. Heuristic strategies based

on multi-start methods [4], and dividing rectangle searches (DiRect) [11] require an

exponential number of evaluations of the response surface with respect to D.

3 High-dimensional Bayesian optimization with projections

We propose a novel Bayesian optimization algorithm based on axis-aligned projec-

tions that uses quantile regression models for learning a low-dimensional projection

of the response surface. Under the assumption that the black-box function is effec-

tively lower-dimensional, projections onto d-dimensional features tackle the curse of

dimensionality for both the learning of the response surface and the maximization of

the acquisition function.

We select z possible projections that partition the D-dimensional input space, such

that ∪i�
(i) = �, and ∩i�

(i) = ∅. This convention allows us to partition the dimen-

sions into a maximum of z projections, or components. We then define the projection

as a set of d coordinates, proj(i) = {pi,1, . . . , pi,d}, to select from the original input

space for i = 1, . . . , z. Given an input θ = [θ1, . . . , θD] ∈ R
D , we identify its i-th

projection as θ (i) = [θpi,1
, . . . , θpi,d

] ∈ R
d , that is from the high-dimensional vector

of parameters we select the components with indices pi,1, .., pi,d . The projected vector

is defined in the low-dimensional space �d and we say that this d-dimensional space

is defined by the projection proj(i). When performing optimization from projected

data we consider the data set {�(i),Y} with lower-dimensional inputs θ (i).

Projections along the axes cause inconsistencies, i.e., multiple values y1, . . . , ym

for the same input location. For instance, if we observe y1, y2 from a function with two-

dimensional inputs, i.e., f̂ (θ1, θ2), f̂ (θ1, θ̃2), and we plot them w.r.t. the first coordinate

we obtain multiple output values in correspondence to θ1, i.e., (θ1 , f̂ (θ1, θ2)) and

(θ1 , f̂ (θ1, θ̃2)). The effect of these inconsistencies/ambiguities is illustrated in Fig. 1.

A standard GP would model this multiplicity of outputs as additive Gaussian noise.

This modeling may result in a mis-interpretation of data as unstructured noise. Figure 1

shows an example of this shortcoming.

For our purpose of obtaining reliable posterior predictions after training, we are

interested in removing such inconsistencies, e.g., by automatically selecting only the

best (lowest) observations for each parameter sub-configuration. Selecting extreme

(small) observations is intuitive in our minimization context, and we validate this

choice with empirical results. Quantile regression provides a method for function
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Algorithm 1: Main steps of a Bayesian optimization algorithm with projections. The inner loop iterates

over the z components and trains a different QGP model for each projection. The training of each QGP

model in line 5 is performed by maximizing the marginal likelihood in equation (10) and selects the kernel

lengthscale parameters. The update in line (8) in the outer loop concatenates all the selected updates θ
(i)
t+1.

Algorithm 1 Quantile-GP BayesOpt

1: D0 = {�0,Y0}
2: set: d ≪ D

3: for t = 0, 1, 2, . . . do

4: for i = 0, . . . , z − 1 do

5: Train i-th Quantile-GP model fi |�(i)
0:t , Y1:t

6: Select i-th update θ
(i)
t+1 = argmax

θ (i)

α(θ (i)| fi )

7: end for

8: Update input with all components θ t+1 = ∪i θ
(i)
t+1

9: Observe objective value yt+1 = f (θ t+1) + ε

10: Augment Data set Dt+1 = Dt ∪ {θ t+1, yt+1}
11: end for

estimation that effectively embodies this notion of automatic selection. We detail the

steps of our method with quantile GP models for each projection in Algorithm 1.

4 Quantile GP regression

We are interested in modeling a proportion of the data with a GP. This proportion is

referred to as quantile, τ , and defines the probability P(y ≤ μτ ) = τ of observations

y to be below the functional estimate μτ [22]. The basic intuition behind quantile

regression is that minimizing the l1-loss function,
∑N

i=1 |yi − μτ (θ i )| yields a func-

tional estimator of the median, which corresponds to quantile τ = 0.5. For an arbitrary

τ , direct estimation of the quantile functions is obtained by minimizing a tilted loss

function (pinball loss)

lτ (ξ) =
{

τξ if ξ ≥ 0

(τ − 1)ξ if ξ < 0,
(9)

where ξ = yi − μτ (θ i ). The regression problem that optimizes the cumulative loss
∑N

i=1 lτ (yi − μτ (θ i )) consistently produces τ -th quantile function estimates [22].

In our predictions, we model the uncertainty of our estimate μτ as a posterior prob-

ability over function values derived in a Bayesian framework. The quantile-GP model

(QGP) [3] allows for such a formulation and computation of posterior predictions

through approximate inference via Expectation Propagation (EP) [15]. We introduce

a standard GP prior over quantile functions, i.e., μτ ∼ GP(m, k), and reformulate

the tilted loss (9) in terms of a renormalized reward R(yi , μτ ) = Zi exp (lτ (μτ , yi )),

where Zi is a normalizing constant, and R(yi , μτ ) evaluates the Asymmetric Laplace

Distribution (ALD). The basic intuition behind this definition is also displayed in

Fig. 2 for a quantile τ = 0.1. The reward represents the likelihood p(yi |μτ , θ i , θG P )
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Fig. 2 Two different approaches to quantile regression. Red dots show inconsistencies, i.e. different obser-

vations y1, . . . , ym for the same input θ . Left (direct estimation): the blue line shows the tilted loss for

τ = 0.1, ys above the functional estimates generate a loss 10-times smaller than those that appear at the

same distance below μτ . Right (Bayesian formulation): the blue line represents how likely data points are

given the quantile model μτ (colour figure online)

of each input θ i and model hyper-parameters θG P , which includes the lengthscales

of the kernel. We perform training of QGP hyper-parameters via a type-II maximum

likelihood approach [17], that is we select the lengthscale parameters of the kernel by

maximizing the marginal likelihood at each BayesOpt iteration, i.e.

argmax
θG P

∫

p(y|μτ ,�N , θG P )p(μτ |θG P )dμτ . (10)

The integral (10) is intractable and we approximate it via EP. Expectation Prop-

agation [15] is an approximate inference method that expresses the likelihood,

p(y|μτ ,�N , θG P ), with a product of unnormalized Gaussian distributions in the

latent variable, μτ , called local likelihood approximations π̃i = Z̃iN (μτ ; μ̃i , σ̃
2
i ).

In our setting, the rewards are independent for each yi so that the model likelihood

p(y|μτ ,�N , θG P ) factorizes as
∏N

i=1 R(μτ , yi ). The EP approximates each of these

N -likelihood factors with a local Gaussian approximation, we therefore apply an

approximation with N local likelihoods. Each local approximation is characterized by

the site parameters: μ̃i , σ̃
2
i , for i = 1, . . . , N , where the effect of the normailzation

constants, Z̃i , on the marginal likelihood can be expressed as a function of the site

parameters [17]. These are are the targets of the EP algorithm and are updated in an

iterative process until convergence. The convergence guarantee for the EP procedure

has not been proven but rather conjectured [17] for log-concave likelihoods such as

ALD and has been reported that EP works relatively well for GP models. After con-

vergence, each local approximation π̃i will contribute to the posterior as the original

likelihood in p(y|μτ ,�N , θG P ), still retaining nice properties of analytical integra-

tion against Gaussian distributions. Algorithm 2 shows the main steps involved in the

approximate inference procedure.2 For a further explanation of the EP steps the reader

could refer to [15,17].

2 The original implementation of the algorithm uses the natural parameters, τ̃i = σ̃−2
i

and ν̃i = σ̃−2
i

μ̃i

and these are initialized to zero.
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Algorithm 2: In each update of site i , the EP procedure substitutes the intractable likelihood with the cavity

distribution π−i . Line 5 computes the posterior, q−i , analytically. EP then applies the contribution of the

i-th original likelihood to q−i and projects the i-th hybrid distribution, hi , to an un-normalized Gaussian,

q̂i , via moment matching (by minimizing KL(hi ‖q̂i )). The local approximation is then obtained removing

the cavity term.

Algorithm 2 Expectation Propagation

1: Initialize: σ̃−2
i

μ̃i = 0, σ̃−2
i

= 0 for i = 1, . . . , N

2: for t=0,1,2,…until convergence do

3: for i=1,…,N do

4: Define i-th cavity distribution: π−i =
∏N

k\i π̃k

5: Compute posterior analytically using cavity: q−i ∝
∫

π−i p(μτ )dμτ

6: Gaussian projection: q̂i = proj
[

hi = q−i p(yi |μτ , θ i , θG P )
]

7: Remove cavity: q̂i \ π−i

8: Update: μ̃i , σ̃
2
i

9: end for

10: end for

The approximate Gaussian posterior predictive distribution resembles the posterior

mean and variance equations in (3) and (4) and is

μ(θ⋆) = kT
⋆ (K + �̃)−1μ̃ (11)

σ 2(θ⋆) = k⋆⋆ − kT
⋆ (K + �̃)−1k⋆ (12)

where μ̃ =
[

μ̃i

]

i
and �̃ = diag(σ̃ 2

1 , . . . , σ̃ 2
N ) are obtained from parameters of local

Gaussian approximations.

5 Experiments

In this section, we assess the quantile GP model for Bayesian optimization on axis-

aligned projections. In our analysis, we dedicate a set of experiments to validate our

choice of the quantile τ with empirical evidence. In high-dimensional settings, we test

our approach on the commonly assumed additivity property by imposing and violat-

ing this assumption. In addition, we include an empirical analysis of performances

when the axis-aligned assumption is violated, that is under an arbitrary rotation of the

original domain.

Performing BayesOpt on subsets of dimensions, we define fixed groups and

update each partition component in parallel during one optimization step. We avoid

over-fitting to a single acquisition function comparing performances across a set of

acquisitions: expected improvement (EI), [16], upper confidence bound (UCB) [20],

and probability of improvement (PI) [14]. For the Gaussian process model in each

baseline, we select the Matern52 kernel.

5.1 Sensitivity analysis

The use of a QGP introduces τ as an additional hyper-parameter. This value models the

proportion of observations that are modeled by the QGP and, consequently, the shape
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(a) (b) (c)

Fig. 3 We show results on a set of quantile choices, τ = [0.01, 0.1, 0.2, 0.3, 0.4, 0.5], and compare

performances across different acquisition functions: a EI, b UCB, c PI. Performances for small values,

τ = [0.1, 0.2, 0.3], lead to similar convergence results both in terms of data efficiency and in final optimal

guess. Error bars show the standard error over a set of 20 independent restarts

of the response surface from posterior predictions. Here, we evaluate the sensitivity

of BayesOpt to different choices of the quantile parameter τ . We restrict our selection

of quantiles to a maximum of τ = 0.5 since we require our model to be sensible with

respect to low observations. Intuitively, in a minimization setting, proportions of the

data below the median represent good indicators of the location of a minimum and we

therefore expect performances to deteriorate for τ > 0.5.3

We use the Hartmann benchmark function, which has total of six effective dimen-

sions, and lift it into a high-dimensional input space of dimensionality D = 60.

Relevant dimensions are distributed uniformly at random over the 60 dimensions, and

care is taken to ensure that all relevant dimensions are not contained in the same group.

Figure 3 shows the progression of the best (lowest) observations collected dur-

ing the independent optimization runs. Error bars represent twice the standard error

over runs from different initializations. We evaluate performances in terms of best

observed value at termination of the algorithm and data efficiency of each baseline

which denotes the steepness of the descent in the succession towards the optimum. The

collected results show good performances for moderate values of the quantile such as

0.1, 0.2, 0.3 while extreme values such as 0.5 and 0.01 retain a much slower descent.

We observe that the extremely small quantile tends to overfit to lowest observations

and reduces generalization capabilities. This renders exploration of the BayesOpt algo-

rithm expensive in the number of function evaluations and increases the number of

local optima of the optimization landscape. Large quantiles also correspond to poor

performances. Selecting τ = 0.5, the QGP models the median which is sensible with

respect to mid-range outputs. The lowest observations are treated as outliers and the

resulting response surface landscape fails to capture downhill slopes relevant for global

minimization. In our set of experiments, modeling the 0.1 proportion of observations

proves effective, and we identify the choice of τ = 0.1 as our best configuration for

the remaining experiments on synthetic data. In the subsequent we also introduce a

3 A symmetric argument applies for maximization problems.
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Gamma hyper-prior for the lengthscales Ga(shape = 1, scale = 1) in each baseline

to enforce exploration during optimization.

5.2 Additive high-dimensional objectives

In our second experiment, we assess the scalability of BayesOpt with Quantile GPs

(QGP) by comparing to a set of baselines for high-dimensional optimization. We

include random embeddings (REMBO) [24], random search (RS) [1], additive models

(Add-GP) [13] and Lipschitz continuous optimization with GP (GP-Lip).

The algorithm REMBO: Random EMbeddings Bayesian Optimization [24] per-

forms standard Bayesian optimization in a low-dimensional box constraint (embed-

ding), i.e. z ∈ [zmin, zmax]d and then projects the selected location to the original input

space via a linear mapping θ = Az. The matrix A has entries sampled from standard

Gaussian, i.e. [A]i, j ∼ N (0, 1) and the values zmin, zmax are provided such that the

optimum is contained in the embedded space with arbitrarily high probability.

Random Search [1] simply selects a set of T locations {θ}0:T −1 uniformly at random

in the high-dimensional input space and evaluates the objective functions on these

locations without any adaptive search strategy.

Add-GP [13] learns a d-dimensional Gaussian process for each addend of the sum

f1, . . . , fz . Each component then independently optimizes an acquisition function and

updates the corresponding set of d-coordinates.

The last baseline GP-Lip manually applies axis-aligned projections in a partition

of the input space and resolves the inconsistencies by selecting lowest observations

in pairs of points that violate Lipschitz continuity assumption. It then learns plain GP

response surface (instead of QGP) in each axis-aligned projection. This baseline com-

pares with the automatic selection applied implicitly by the QGP in the presence of

inconsistencies. The Lipschitz constant is the maximum element of a set of 5 ·106 gra-

dients evaluated on a random selection of input locations for each benchmark function.

We choose the Michalewicz function as a benchmark, which has effective dimension-

ality de f = 10 and satisfies the additivity assumption. It is a sum of one-dimensional

components fi , each of which is defined as fi (θi ) = − sin(θi ) sin2m

(

iθ2
i

π

)

with

parameter m = 0.5 for i = 1, . . . , 10. To assess scalability to high dimensions, we

test the optimization in a D = 100-dimensional input space and optimize components

of dimensionality d = 10, where the relevant dimensions are distributed uniformly ran-

domly (with replacement) across the 10 components of the partition by enforcing that

all the relevant dimensions are not contained in a single component. In this experiment

we emphasize that Add-GP conforms to the properties of the objective function and is

therefore a reference baseline for good performances. Figure 4 shows the progression

of all optimization algorithms. Overall, we see that optimization with axis-aligned

projections with the QGP model is an effective and competitive method for Bayesian

optimization when f is decomposable as sum of low-dimensional components. We

also note that both QGP and Lip-GP show consistent gap in data efficiency and opti-

mization, which motivates the QGP as a model in the presence of inconsistencies for

effective optimization along projections.
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(a) (b) (c)

Fig. 4 Results with Michalewicz benchmark function showing convergence results under additivity assump-

tion with error bars showing twice standard error. The figures show comparison across different acquisition

functions: a EI, b UCB, c PI. Convergence results of QGP recover best results after Add-GP which complies

with Michalewicz additive properties

5.3 Non-additive high-dimensional objective

This experiment analyzes the performance of the QGP BayesOpt in a high-

dimensional search space, when we no longer make any assumptions on addi-

tive decomposability of the objective. More specifically, we define the objective,

f (θ) = 10 sin θ1

∏10
i=1 sin(θi ), with effective dimensionality of 10. We optimize 10-

dimensional components in a fixed partition of a 100-dimensional input space avoiding

condensing all relevant dimensions in a single group.

Figure 5 shows that QGP model attains the best observation at termination with

respect to other baselines in both EI and UCB acquisition functions. For PI the QGP

model shows a slower progression than Add-GP and GP-Lip during the early stages of

optimization. Other baselines, such as REMBO, flatten out quite early. We explain poor

performances of the REMBO baseline by noting that it performs exploration only on

a d-dimensional space. Using a linear mapping it can only span at most d directions

in the D-dimensional space, and this heavily restricts exploration. We observe that

even relaxing assumptions on additivity, the additive model still maintains similar

performances both in terms of progress and value at termination for most acquisition

functions considered remaining however suboptimal on exploration with expected

improvement and upper confidence bound. Overall the QGP results are competitive

for different properties of the black-box function and prove robust with respect to model

hyper-parameter τ . These results highlight the QGP as a good model for optimization

with projected data.

5.4 Rotated high-dimensional objective

Our last experiment analyses the performances of the QGP-BayesOpt approach under

arbitrary rotation of the high-dimensional domain. In particular, we consider the rotated

additive Michalewicz benchmark function, g(θ) = f (Uθ), where U ∈ R
D×D is an
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(a) (b) (c)

Fig. 5 We compare results on a 10-dimensional, non-additive, objective with all acquisition functions: a

EI, b UCB, c PI. We assess performances with functions that are effectively lower-dimensional and non

additive and assess performances of the QGP model

(a) (b) (c)

Fig. 6 Results with Michalewicz benchmark function showing convergence results under arbitrary rotation

of the high-dimensional space. We report a comparison across different acquisition functions: a EI, b UCB,

c PI. Convergence results of QGP recover best steepest descent and better optimum at termination on all

acquisitions

arbitrary orthogonal matrix, obtained by applying orthonormalization of a random

matrix B, where [B]i, j ∼ N (0, 1), and f is defined as in Sect. 5.2. We maintain the

same model selection procedure for the GP models in each baseline i.e. with Gamma

hyper-prior Ga(shape=1, scale=1) on the kernel lengthscales and the marginal like-

lihood defined as in Eq. (10). Figure 6 shows the results obtained with each baseline.

Performances of both axis-aligned projections-based baselines, namely QGP model

and Add-GP, clearly deteriorate w.r.t. the original experiment in Sect. 5.2. The random

projection-based baseline REMBO, instead, shows steeper descent and better optimum

at termination of optimization. Moreover, lengthscale kernel-parameters for the QGP

model become shorter. In fact, by averaging over the 20 random initializations and the

250 iterations, we observe that at least4 95% of lengthscales have decreased from the

4 This is the minimum percentage with respect to the different acquisition functions: we observe 97% with

UCB, 96% with EI and 95% with PI acquisition.
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axis-aligned experiment. The variance (over random initializations and iterations) of

the lengthscale parameters also becomes smaller. In particular, the average variance

(averaging over all lengthscales) for the rotated objective experiment decreases by a

factor5 of 0.014. This is a sign of a more highly nonlinear response surface, char-

acterized by many local minima and therefore harder to optimize. The QGP model,

however, still retains best performances also w.r.t. random projection-based methods

on all acquisitions.

6 Conclusion

We proposed a framework for scaling Bayesian optimization to high dimensions by

using axis-aligned projections. We considered a quantile regression approach that

allows for generalizations from projected data and we empirically showed low sen-

sitivity of QGP-BayesOpt w.r.t. to the choice of the quantile parameter τ . Based on

experimental results, we argue that modeling extreme functions from projected data

maintains good indicators of the optimum location.

One observation is that QGP BayesOpt features sensible modeling of the response

surface from unstructured data and has an effective update strategy on all. We acknowl-

edge that careful modeling and corresponding complexity of the learning is also an

important trade-off to consider. The QGP approximates the GP posterior with EP,

which becomes computationally involved for a large number of data points.

To address this downside, future work will tackle computational efficiency with

sparse GP methods and extend applicability to a large number of data points in short

time. Future work will also investigate whether to concentrate BayesOpt updates on

projections that matter and neglect those that leave f unchanged. Analysis of the GP

hyper-parameters could allow for introducing an on-line selection strategy based on

the optimization history.
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16. Močkus, J.: On Bayesian Methods for Seeking the Extremum. In: Proc. IFIP Technical Conference

(1975)

17. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. Springer, Berlin (2006)

18. Shahriari, B., Swersky, K., Wang, Z., Adams, R.P., de Freitas, N.: Taking the human out of the loop: a

review of bayesian optimization. In: Proc. IEEE (2016)

19. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian Optimization of Machine Learning Algo-

rithms (2012)

20. Srinivas, N., Krause, A., Kakade, S.M., Seeger, M.W.: Gaussian process bandits without regret: an

experimental design approach. In: Proceedings ICML (2010)

21. Sui, Y., Gotovos, A., Burdick, J., Krause, A.: Safe exploration for optimization with Gaussian processes.

In: Proc. ICML (2015)

22. Takeuchi, I., Le Quoc, V., Sears, T.D., Smola, A.J.: Nonparametric quantile estimation. JMLR (2006)

23. Ulmasov, D., Baroukh, C.B., Deisenroth, M.P., Misener, R.: Bayesian optimization with dimension

scheduling: application to biological systems. In: Proc. ESCAPE (2016)

24. Wang, Z., Zoghi, M., Hutter, F., Matheson, D., de Freitas, N.: Bayesian optimization in high dimensions

via random embeddings. In: Proc. IJCAI (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps

and institutional affiliations.

123

http://arxiv.org/abs/1807.02811

	High-dimensional Bayesian optimization with projections using quantile Gaussian processes
	Abstract
	1 Introduction
	2 Problem setting
	2.1 Gaussian processes
	2.2 Bayesian optimization

	3 High-dimensional Bayesian optimization with projections
	4 Quantile GP regression
	5 Experiments
	5.1 Sensitivity analysis
	5.2 Additive high-dimensional objectives
	5.3 Non-additive high-dimensional objective
	5.4 Rotated high-dimensional objective

	6 Conclusion
	References


