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Abstract

High-dimensional changepoint analysis is a growing area of research and has applications in a wide range of fields. The aim

is to accurately and efficiently detect changepoints in time series data when both the number of time points and dimensions

grow large. Existing methods typically aggregate or project the data to a smaller number of dimensions, usually one. We

present a high-dimensional changepoint detection method that takes inspiration from geometry to map a high-dimensional

time series to two dimensions. We show theoretically and through simulation that if the input series is Gaussian, then the

mappings preserve the Gaussianity of the data. Applying univariate changepoint detection methods to both mapped series

allows the detection of changepoints that correspond to changes in the mean and variance of the original time series. We

demonstrate that this approach outperforms the current state-of-the-art multivariate changepoint methods in terms of accuracy

of detected changepoints and computational efficiency. We conclude with applications from genetics and finance.

Keywords Changepoint · Time series · High-dimensional · PELT

1 Introduction

Time series data often have abrupt structural changes occur-

ring at certain time points, known as changepoints. To

appropriately analyze, model or forecast time series data that

contain changes, we need to be able to accurately detect

where changepoints occur. High-dimensional changepoint

analysis aims to accurately and efficiently detect the location

of changepoints as both the number of dimensions and time
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points increase. High-dimensional changepoint analysis is

an ever-growing research area and has multiple applications

including finance and economics (Modisett and Maboudou-

Tchao 2010); longitudinal studies (Terrera et al. 2011); and

genetics (Bleakley and Vert 2011).

Changepoint analysis in the univariate setting is a well-

studied area of research with early work by Page (1954) and

overviews can be found in Eckley et al. (2011) and Brod-

sky and Darkhovsky (2013). The multivariate extension has

received less attention, see Truong et al. (2020) for a recent

review. One major challenge with high-dimensional change-

point analysis is the computational burden of an increasing

number of dimensions. To partially reduce this computa-

tional burden, a common assumption is that changepoints are

assumed to occur in all series simultaneously (Maboudou-

Tchao and Hawkins 2013), a sparse set of series (Wang and

Samworth 2018); or a dense set of series (Zhang et al. 2010).

Within these settings, a common approach is to first project

the time series to a single dimension and then use a uni-

variate changepoint method on the projected time series.

For example, Zhang et al. (2010), Horváth and Hušková

(2012) and Enikeeva and Harchaoui (2019) consider an l2-

aggregation of the CUSUM statistic, while Jirak (2015)

considers an l∞-aggregation that works well for sparse

changepoints. A recent advancement was the Inspect method
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proposed by Wang and Samworth (2018) who aim to find an

optimal projection direction of the CUSUM statistic to max-

imize a change in mean.

Current projection methods are generally limited to

detecting changes in a single parameter, usually the mean.

Therefore, these methods cannot be used in many practical

scenarios where multiple features of the time series change.

An alternative, nonparametric approach was taken in Mat-

teson and James (2014) where U -Statistics were used to

segment the time series. As this is a nonparametric method,

it can detect different types of changes in distribution but

becomes computationally infeasible as the number of time

points increases. The methods above almost exclusively use

a Binary Segmentation approach (Scott and Knott 1974;

Vostrikova 1981), or derivations thereof (Fryzlewicz 2014),

to detect multiple changepoints. This can lead to poor detec-

tion rates as conditional identification of changes can lead

to missing or poor placement of changepoints due to factors

such as masking. This occurs when a large change is masked

by two smaller changes on either side acting in opposite direc-

tions; this idea is explained further in Fryzlewicz (2014).

A key novelty in this paper is to map a given high-

dimensional time series onto two dimensions instead of one.

Inspired by a geometric representation of data, we map each

high-dimensional time vector to its distance and angle from

a fixed pre-defined reference vector based upon the stan-

dard scalar product. These mappings show shift and shape

changes in the original data corresponding to mean and vari-

ance changes. Given the geometric inspiration, we denote the

method GeomCP throughout.

In Sect. 2, we set up the high-dimensional changepoint

problem before defining the geometric mappings used in

GeomCP. Also, we discuss an alternative approach to Binary

Segmentation that can be applied to the univariate mapped

series. An extensive simulation study is performed in Sect.

3, which compares GeomCP to competing available multi-

variate changepoint methods, Inspect (Wang and Samworth

2018) and E-Divisive (Matteson and James 2014). Section

4 presents two applications from genetics and finance. Sec-

tion 5 gives concluding remarks.

2 Methodology

In this section, we set up the high-dimensional change-

point problem for our scenario. We define our new method,

GeomCP, and discuss how changes in high-dimensional time

series manifest themselves in the mapped time series. We

then suggest an appropriate univariate changepoint detection

method for detecting changes in the mapped time series—

although practically others could be used.

Before proceeding, we define some notation used through-

out the paper. We define the 1p vector as a p-dimensional

vector where each entry is 1 and the number of dimensions,

p, is inferred from context. For a vector, y = (y1, . . . , yp)
T ,

we define the lq -norm as ‖ y‖q :=
(

∑p

j=1 |y j |q
)

1
q

for

q ∈ [1,∞). We define 〈·, ·〉 as the standard scalar product

such that for vectors x and y we have 〈x, y〉 =
∑p

j=1 x j y j .

Finally, the terms variables, series and dimensions shall be

used interchangeably to indicate the multivariate nature of

the problem.

2.1 Problem setup

We study the time series model where Y1, . . . , Yn are

independent, p-dimensional time vectors that follow a mul-

tivariate Normal distribution where

Yi ∼ Np(µi , σ
2
i I p), 1 ≤ i ≤ n .

We assume there are an unknown number of changepoints,

m, which occur at locations τ1:m = (τ1, . . . , τm). These

changepoints split the data into m + 1 segments, indexed

k, that contain piecewise constant mean and variance vec-

tors, µk and σ
2
k . Note we assume a diagonal covariance

matrix, so the covariance matrix can be described by the

variance vector and the identity matrix. We define τ0 = 0

and τm+1 = n and assume the changepoints are ordered so,

τ0 = 0 < τ1 < . . . < τm < τm+1 = n.

The following section introduces the geometric intuition

and mappings used within GeomCP. These mappings reduce

the dimension of the problem to make the problem compu-

tationally feasible as n and p grow large.

2.2 Geometric mapping

When analyzing multivariate time series from a geometric

viewpoint, we seek to exploit relevant geometric structures

defined in the multi-dimensional space. Here, we aim to

detect changepoints in the mean and variance vectors of

multivariate Normal random variables; therefore, we wish

to utilize geometric properties that capture these changes.

A change in the mean vector of our data generating process

will cause a location shift of the data points in the multi-

dimensional space. Consider a distance between each data

point and some fixed reference point, if the data points are

shifted in the multi-dimensional space, then their distance

to the reference point would be expected to change. Hence,

we can detect when the mean vector of the data generating

process changes by observing a change in the distances. For

a change in distance not to occur after an underlying mean

change, the new mean vector must remain exactly on the

same (p − 1)-sphere (centered in the reference point) that

the old mean vector lay on. Given that the computation of

the mean vector is a linear operator on the multivariate time
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series, the requirement to lie on the same sphere (a quadric in

R
p) is highly non-generic from a geometric prospective. As a

result, these scenarios are rare especially in high dimensions.

A change in the covariance of our data generating process

will cause a change in the shape of the data points. More

specifically in our setup, a change in the variance would cause

the shape of the data points to expand or contract. Consider

the angle between each data vector and a reference vector; as

the shape of the data points expands (contracts), the angles

will become more (less) varied. Hence, we can detect changes

in the variance of the data generating process by detecting

changes in the angles.

By using distances and angles, we can map a p-dimensional

time series to two dimensions. To calculate these mappings,

we need a pre-specified reference vector to calculate a dis-

tance and angle from. Naturally, one may think to use the

mean of the data points. However, this requires a rolling win-

dow to estimate the mean of data points prior to the point

being mapped. Not only does this introduce tuning parame-

ters, such as the size of the rolling window, but will result in

spikes in the distance and angle measures at changepoints.

To detect changepoints, we would need a threshold for these

spikes and calculating such a threshold is a non-trivial task;

hence, we seek an alternative.

We propose setting the reference vector to be a fixed vec-

tor, y0. We then translate all the points based upon this fixed

reference vector,

y′
i, j = yi, j − (min

i
yi, j − y0, j ),

i ∈ [1, . . . , n] , j ∈ [1, . . . , p] . (2.1)

This results in a data-driven reference vector. We choose to

set y0 = 1 as this bounds the angle measure between 0 and

π/4, meaning we do not get vectors close to the origin facing

in opposite directions causing non-standard behavior within a

segment. Moreover, having a nonzero element in every entry

of y0 ensures changes in the individual series will manifest

in the angle measure. Note due to the translation in (2.1), the

choice of y0 does not affect the distance measure. Throughout

we assume the reference vector is set as y0 = 1.

For data points in the same segment, we would expect

their distances and angles to the reference vector to have the

same distribution. When a mean (variance) change occurs

in the data, this leads to a shift (spread) in the data; hence,

the distances (angles) will change. Therefore, by detecting

changes in the distances and angles, using an appropriate

univariate changepoint method, we recover changepoints in

the p-dimensional series.

We define our distance and angle measures based upon

the standard scalar product. To obtain our distance measure,

di , we perform a mapping, δ : R
p → R

1
>0,

di = δ( yi ) =
√

〈

( y′

i − 1), ( y′

i − 1)
〉

, (2.2)

which is equivalent to
∥

∥ y′

i
− 1p

∥

∥

2
.

To obtain our angle measure, ai , we perform a mapping

α : R
p → [0, π

4
],

ai = α( yi ) = cos−1

⎛

⎝

〈 yi
′,1〉

√

〈 yi
′, y′

i
〉
√

〈1,1〉

⎞

⎠ , (2.3)

which is the principal angle between y′

i
and 1.

By using the standard scalar product, we are incorporating

information from each series in the distance and angle mea-

sures. As such, we would expect GeomCP to perform well

in scenarios where a dense set of the series change at each

changepoint. This idea will be explored further and verified

in Sect. 3.

2.3 Analyzingmapped time series

Understanding the distributional form of the distance and

angle mappings will aid in the choice of univariate change-

point methods. Under our problem setup, Theorem 1 shows

that the distance measure, asymptotically in p, follows a Nor-

mal distribution.

Theorem 1 Suppose we have independent random variables,

Yi ∼ N (µi , σ
2
i ). Let X =

√

∑p
i=1 Y 2

i , then as p → ∞,

X −
√

∑p

i=1(µ
2
i + σ 2

i )
√

2
∑p

i=1(µi σi )
2+

∑p
i=1 σ 4

i +2ρ
√

2
∑p

i=1

∑p
j=1 µ2

i σ 2
i σ 4

j

2
∑p

i=1(µ
2
i +σ 2

i )

D−→ N (0, 1) ,

where ρ is an unknown correlation parameter (see proof).

Proof See the Supplementary Material. ⊓⊔

Theorem 1 shows that, asymptotically in p, the distance

between each time vector and a pre-specified fixed vector fol-

lows a Normal distribution. Hence, for piecewise constant

time vectors, the resulting distance measure will follow a

piecewise constant Normal distribution. It is common in the

literature to assume that angles also follow a Normal distribu-

tion, as in Fearnhead et al. (2018). We found by simulation,

for large enough p, the angle measure defined in (2.3) is

well approximated by a Normal distribution with piecewise

constant mean and variance.

While any theoretically valid univariate method could be

used to detect changepoints in the mapped series, we use the

PELT algorithm of Killick et al. (2012) as this is an exact
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and computationally efficient search. For n → ∞, PELT is

consistent in detecting the number and location of changes

in mean and variance (Tickle et al. 2019; Fisch et al. 2018);

hence, using Theorem 1, we gain consistency of our distance

measure as p → ∞ also. When the Normal approximation

of the distance and angle measures holds, we use the Normal

likelihood as our test statistic within PELT and allow for

changes in mean and variance. If p is small, we may not want

to make the Normal assumption. In this case, we recommend

using a nonparametric test statistic, such as the empirical

distribution from Zou et al. (2014) (where consistency has

also been shown) as embedded within PELT in Haynes et al.

(2017b).

2.4 GeomCP algorithm

Algorithm 1 details the pseudo-code for GeomCP. As

changepoints can manifest in both the distance and angle

measure, we post-process the two sets of changepoints to

obtain the final set of changes. We introduce a threshold, ξ ,

and say that a changepoint in the distance measure, τ̂ (d), and a

changepoint in the angle measure, τ̂ (a), are deemed the same

if
∣

∣τ̂ (d) − τ̂ (a)
∣

∣ ≤ ξ . If we determine two changepoints to be

the same, we set the changepoint location to be the one given

by the angle measure as Sect. 3.2 demonstrates, this results in

more accurate changepoint locations. The choice of ξ should

be set based upon the minimum distance expected between

changepoints. Alternatively, ξ could be set to zero and then an

alternative post-processing step would be required to deter-

mine whether similar changepoint estimates correspond to

the same change.

Algorithm 1 GeomCP

Input: Y ∈ R
n×p, threshold = ξ, Univariate Cpt Method.

Step 1: Centralize data by y′
i, j = yi, j −

(

min
i

yi, j − 1

)

.

Step 2: Perform distance mapping: yi
δ−→ di , ∀i .

Step 3: Perform Univariate Cpt Method on d to recover cpts, τ̂
(d)

.

Step 4: Perform angle mapping: yi
α−→ ai , ∀i .

Step 5: Perform Univariate Cpt Method on a to recover cpts, τ̂
(a)

.

Step 6: ∀k, if min

∣

∣

∣
τ̂

(a) − τ̂
(d)
k

∣

∣

∣ < ξ then remove τ̂
(d)
k from τ̂

(d)
.

Return: τ̂ = sort(τ̂
(a)

, τ̂
(d)

)

One of the major downfalls of many multivariate change-

point methods is they are computationally infeasible for large

n and p. Within GeomCP, the computational cost to calcu-

late both the distance and angle measures in (2.2) and (2.3)

is O(np). If we implement the PELT algorithm for our

univariate changepoint detection, this has expected computa-

tional costO(n)under certain conditions. The main condition

requires the number of changepoints to increase linearly with

the number of time points, and further details are given in

Killick et al. (2012). If these conditions are not satisfied,

PELT has an at worst computational cost of O(n2). Hence,

the expected computational cost of GeomCP is O(np+n) =
O(np) (under the conditions in Killick et al. (2012)) and has

at worst computational cost O
(

np + n2)
)

= O (n(p + n)).

2.5 Non-Normal and dependent data

The current problem setup assumes multivariate Normal

distributed data with a diagonal covariance matrix. These

assumptions are made to facilitate our theoretical analysis

and result in the Normality of the mapped series. If these

assumptions are broken, the geometric intuition described in

Sect. 2.2 still holds, but we can say less about the theoretical

properties of the mapped series.

Firstly, if we allow for an arbitrary covariance matrix,

this describes the shape and spread of the data points. Sup-

pose our data undergoes a change from Xpre ∼ N (0,Σ) to

Xpost ∼ (0, σΣ) this will cause the data points to spread

out in the directions of the principal components. Hence,

we would still expect the angles between the time vectors

and the reference vector to change, revealing the change in

covariance. We investigate this further in Sect. 3.5. In fact, a

Normal distributed data set with a known covariance matrix

could be transformed into a Normal distributed data set with

a diagonal covariance matrix (satisfying our initial problem

setup) by an orthogonal transformation that aligns the axes

with the principal components. Such a transformation would

preserve the distances and angles by definition but requires

knowledge of the true covariance structure.

Alternatively, we could consider other inner products in

our distance and angle mappings defined in (2.2) and (2.3);

here the geometric motivation of the method would remain

valid. In this case, for an underlying mean change to occur

without the distance measure changing, the new mean vector

must remain exactly on the more general (p − 1)-quadric

in R
p. This is still a highly non-generic requirement from

a geometric prospective. In particular, we could use scalar

products directly derived from the covariance matrix, such

as the Mahalanobis Distance (Mahalanobis 1936). In such

cases, the direct relation between angles and the correla-

tion coefficients is well known (Wickens 1995). However,

such inner products require an estimate of the covariance in

each segment, which is non-trivial and therefore left as future

work.

If we allow the data to be distributed from a non-Normal

distribution, then we would expect changes to the first and

second moment of these distributions to still manifest in the

distance and angle mappings. However, being able to under-

stand the distribution of the mapped series would be more

challenging. In practice, the empirical cost function could be

used within PELT (Haynes et al. 2017b), yet this would lead
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to less power in the detection of changes in the univariate

series.

Finally, if we allowed temporal dependence between the

time points, this would lead to temporal dependence in the

mapped series and an appropriate, cost function for PELT

could be used. Understanding how the temporal dependence

in the multivariate series manifests in the mapped series is

non-trivial and is left as further work.

In the next section, we provide an extensive simulation

study exploring the effectiveness of GeomCP at detecting

multivariate changes in mean and variance and demonstrate

an improved detection rate on current state-of-the-art mul-

tivariate changepoint methods. Furthermore, we illustrate

the improved computational speed of GeomCP over current

methods, especially as n and p grow large.

3 Simulation study

In this section, we provide a comparison of GeomCP; the

Inspect method of Wang and Samworth (2018); and the E-

Divisive method of Matteson and James (2014) using the

statistical software R (R Core Team 2019). First, we inves-

tigate how changes in mean and variance of time series

manifest themselves in the distance and angle measures

within GeomCP. We then compare GeomCP to Inspect and

E-Divisive in a wide range of scenarios including dense

changepoints, where the change occurs in all or a large

number of dimensions, and sparse changepoints, where the

change occurs in a small number of dimensions. Changes in

both mean, variance and a combination of the two will be

considered.

Inspect is only designed for detecting changes in mean,

therefore, it will only be included in such scenarios. In addi-

tion, Inspect is designed for detecting sparse changepoints,

however, Inspect ‘can be applied in non-sparse settings as

well’ (Wang and Samworth 2018) so we also include it in the

dense change in mean scenarios. Like GeomCP, E-Divisive

is designed for dense changepoints, but we will also include

it in the sparse changepoint scenarios to assess performance.

For GeomCP, we perform the mappings in (2.2) and (2.3)

before applying the PELT algorithm using the changepoint

package (Killick and Eckley 2014). Unless otherwise stated,

we use the default settings; namely, the MBIC penalty (Zhang

and Siegmund 2007), Normal distribution and allow for

changes in mean and variance. We implement the Inspect

method using the InspectChangepoint package (Wang and

Samworth 2016). The thresholds used to identify significant

changepoints are calculated before timing the simulations

using the data-driven approach suggested in Wang and Sam-

worth (2018). For the remaining user-defined parameters, we

use the default settings with Q = 0. Setting Q = 0 imple-

ments a Binary Segmentation approach (Scott and Knott

1974; Vostrikova 1981) for identifying multiple change-

points. When using Q = 1000, as suggested in Wang and

Samworth (2018), a Wild Binary Segmentation (Fryzlewicz

2014) approach is implemented to detect multiple changes.

However, this becomes computational infeasible even at

moderate levels of n and p while only resulting in minor

improvements in detection rate at the expense of higher false

discovery rates. For p > 1000, the data-driven calculation

of the thresholds was computationally infeasible; hence, the

theoretical threshold derived in Wang and Samworth (2018)

was originally implemented. However, this led to an exces-

sive number of false positives and, as such, is not included.

For the implementation of the E-Divisive method, we use the

ecp package (James and Matteson 2014) with α = 1; min-

imum segment size of 30; a significance level of 0.05; and

R = 499 as suggested by Matteson and James (2014).

Unless indicated otherwise, we simulate data from a Normal

distribution with changes in mean and variance given in each

scenario. Additionally, the number of changepoints is set as

m =
⌈

n
200

⌉

and we distribute the changepoints uniformly

at random throughout the time series with the condition that

they are at least 30 time points apart. Where computationally

feasible, we perform 500 repetitions of each scenario and

display the true detection rate (TDR) and false detection rate

(FDR) along with their confidence intervals given by two

standard errors. For scenarios with n ≥ 1000, E-Divisive

was only run on 30 replications due to the high computational

cost. Changepoint estimates are deemed correct if they are the

closest to, and within 10 time points of, the true changepoint

and contribute to the TDR. Changepoint estimates more than

10 time points from the true changepoints or where another

estimated changepoint is closer to the true changepoint are

deemed false and contribute to the FDR. We seek a TDR as

close to 1 as possible and an FDR as close to 0 as possible.

As GeomCP estimates changepoints in both the distance and

angle measures, we apply the reconciling method from Sect.

2.4 with the threshold, ξ = 10. Then we apply the same

TDR/FDR method to the reconciled changes.

3.1 Size of changepoints

As we are interested in multivariate changepoints, we need

to decide upon the size of a change in each series. If we fixed

a specific change size in each series, then as p increases, the

change becomes easier to identify due to multivariate power.

If we fixed a total change size across all series, then as p

increases, the change becomes considerably harder to detect.

Hence, we set our simulated change sizes so that GeomCP has

an approximately constant performance across p, in terms of

TDR and FDR.

To achieve a constant performance in the change in mean

scenario, we require the difference in the expected distance

measure pre- and post-change to be constant across p. If we
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assume unit variance and a set mean across all series before

the change, µ̃pre and after the change, µ̃post, using Theorem 1

the expected difference in the distance measure before and

after a changepoint is,

E(dpost − dpre) = √
p

(

√

µ̃2
post + 1 −

√

µ̃2
pre + 1

)

.

If we set the total mean change size in our simulated data as,

p
∑

j=1

µ j,post − µ j,pre = √
pΘ , (3.1)

for some constant Θ and, again, assume the mean of each

series is the same, we gain,

Θ = √
p

(

µ̃post − µ̃pre

)

≈ √
p

(

√

µ̃2
post + 1 −

√

µ̃2
pre + 1

)

= E(dpost − dpre) .

Hence, for a constant Θ , using a total mean change size

scaling as in (3.1) will result in the expected difference of

the distance pre- and post-change, and therefore the perfor-

mance of GeomCP, being approximately constant across p.

As we re-scale our data before applying our two mappings,

the pre- and post-change means will be large enough that this

approximation is reasonable.

Similarly, to gain an approximately constant performance

of GeomCP across p for a change in variance, we set the total

variance change size in our simulated data as

p
∏

j=1

σ j,post

σ j,pre
= Φ

√
p , (3.2)

for some constant Φ. When comparing methods, we shall

use (3.1) and (3.2) to define the total change size for each

scenario, with the change size being the same in all series

that undergo a change.

3.2 GeomCP investigation

First, we investigate how changes in mean, variance and

a combination of the two manifest themselves in the dis-

tance and angle measure within GeomCP. We set n = 1000

and p = 200 and simulate data with changepoints τ =
(250, 500, 750). At τ1 we have a mean change of +0.1 in

all series; at τ2 we have a variance change of ×1.2 in all

series; and at τ3 we have a mean change of −0.1 and a vari-

ance changes of ×1.2−1 in all series. Figure 1 shows 4 of the

200 series and shows the changepoints are undetectable by

eye in the individual series. Applying the mappings within

Fig. 1 4 series from the simulated data set with the distance (d) and

angle (a) mappings showing 3 changepoints that are not obvious in the

individual series

Fig. 2 Locations of detected changepoints in 1000 repetitions of simu-

lated data set with changepoints at 250, 500 and 750, in mean, variance

and, mean and variance, respectively

GeomCP results in the mapped series seen in Fig. 1 where the

changes are clearly identifiable in at least one of the distance

or angle measure.

Figure 2a, b shows the position of identified changepoints

in the distance and angle measure in 1000 replications of the

current scenario using PELT. The relatively small change in

mean at time point 250 is only reliably picked up by the dis-

tance measure. The change in variance is picked up by the

angle measure in almost all cases and is also seen in the dis-

tance measure, however, with less accuracy and less often.

The change in mean and variance at time point 750 is reliably

detected in both the distance and angle measures. These find-

ings were similar for varying mean and variance changes. As

such, this justifies setting the location of changepoints that

occur in both series to be given by the angle changepoint

location as stated in Sect. 2.4.

3.3 Dense changepoints

Now we compare GeomCP’s performance with E-Divisive

and Inspect. We investigate dense variance changes here, with

mean, and mean and variance changes given in the Supple-

mentary Material.

We simulate data with variance changes that occur in all

series for a wide range of n and p and show a subset of the

results here. We keep the mean vector constant, and we split

the total change size defined in (3.2) evenly across all series.

We display results with Φ = 3 as this is shown to give a high
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Fig. 3 TDR and FDR for GeomCP and E-Divisive for simulated data

sets containing variance changes that occur in all series for multiple n

and p

TDR while maintaining a low FDR in Eckley et al. (2011)

for p = 1. Similar findings occur with varying values of

Φ; see the Supplementary Material. We apply the GeomCP

and E-Divisive methods to these simulated data sets, and the

TDR and FDR are shown in Fig. 3.

Figure 3a shows the TDR across different numbers of

dimensions and time points. It is clear that GeomCP out-

performs E-Divisive in terms of TDR and the gap between

the methods widens as the number of dimensions increases.

Figure 3b shows that the improved TDR of GeomCP does

not come at the expense of a higher FDR, which has similar

rates across n and p.

In the mean, and mean and variance change scenar-

ios, GeomCP similarly outperforms both E-Divisive and

Inspect in terms of TDR while maintaining a low-level FDR

across n and p. Results can be found in the Supplementary

Material.

3.4 Sparsity investigation

Thus far we assumed that all series undergo a change at each

changepoint. We now explore the effect of the sparsity of

the changepoint. We define κ ∈ (0, 1] to be the probability

that a series undergoes a change. We explore sparse mean

changes here, with sparse variance changes included in the

Supplementary Material.

For the sparse changepoint scenarios, we set n = 500,

p = 200 and vary κ; we note that there were similar findings

for different n and p. We keep the variance vector constant

and the change size in each series that undergoes a change,

is the total change size defined in (3.1), split between the

expected number of series to undergo a change. This means

the expected total change size is the same as when all series

undergo a change. We display results with Θ = 1.2 and

similar findings occur with varying values of Θ; see the

Supplementary Material. We apply the GeomCP, Inspect and

E-Divisive methods to these scenarios, and the TDR and FDR

are shown in Fig. 4.

Figure 4a shows that GeomCP maintains a constant TDR

across κ as expected. This reflects the setup of the sce-

nario where the expected total change size is constant across

κ . For dense changepoints, GeomCP compares well as we

might expect. Interestingly, E-Divisive also assumes dense

changepoints but performs poorly in this scenario. Inspect is

designed for sparse changes and as expected, for very sparse

changes the method performs the best. For sparse change-

points, the improved performance of Inspect and E-Divisive

may be due to the size of change in each affected series

increasing as κ decreases.

3.5 Between-series dependence

Now we will relax the assumption of a diagonal covari-

ance matrix and investigate how this affects the performance

of GeomCP. We will investigate how two different covari-

ance matrix structures compare to the independent, diagonal

covariance case. Here we will investigate variance changes

in these covariance structures with mean changes explored

in the Supplementary Material.

For these scenarios, we set n = 200, p = 100 and have

one changepoint at τ = 100. The pre-changepoint data will

be distributed from a N (0,Σ), while the post-changepoint

data distributed from a N (0, σΣ). We will vary the change

size, σ , while each entry of σ will be identical for each change

size. We will compare three structures for Σ :

1. Independent case: Σ = I .

2. Block-diagonal case: Here Σ will be a block-diagonal

matrix with block size of 2. The off-diagonal entries

will be randomly sampled from a U (−0.6,−0.3) ∪
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Fig. 4 TDR and FDR for GeomCP, Inspect and E-Divisive for simu-

lated data sets with sparse mean changes for n = 500 and p = 200

U (0.3, 0.6) distribution with the diagonal entries equal

to 1.

3. Random case: Here we let Σ = P D P ′ where P is an

orthogonalized matrix of standard Normal random vari-

ables and D is a diagonal matrix with entries decreasing

from 30 to 1.

As we no longer have independence between series, we can-

not assume Normality of the distance and angle measures

within GeomCP. Hence, we use the empirical cost function

(Haynes et al. 2017b) within PELT to detect changes in the

distance and angle measures. We similarly use the empirical

cost function in the independent case for comparability.

Figure 5a shows the TDR of GeomCP and E-Divisive for

varying change sizes, σ , and the different covariance struc-

tures. GeomCP clearly has a greater TDR than E-Divisive

for smaller change sizes. However, Fig. 5b shows this comes

at the expense of a higher FDR. This is to be expected when

Fig. 5 TDR and FDR for GeomCP and E-Divisive for simulated data

with a change in covariance for n = 200 and p = 100

using the empirical cost function within PELT as this gen-

erally produces a higher FDR. By altering the penalty used

within PELT, this FDR could be reduced at the cost of some

power in detecting changes. Yet for σ ≥ 1.3 GeomCP has

a competitive FDR with E-Divisive while having a superior

TDR. Interestingly, the covariance structure has very little

impact on the performance of GeomCP; this follows our intu-

ition from Sect. 2.5.

3.6 Computational speed

A major issue with high-dimensional changepoint detection

is: as n and p grow large, many multivariate changepoint

methods become computationally infeasible. Here, we com-

pare the computational speeds of GeomCP, Inspect and

E-Divisive for a range of n, p and m. We will compare the

speeds in three scenarios:
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1. n increasing while p = 200 and m =
⌈

n
200

⌉

.

2. n increasing while p = 200 and m = 2.

3. p increasing while n = 500 and m =
⌈

n
200

⌉

= 3.

The second scenario breaks PELT’s assumption of a lin-

early increasing number of changepoints as the number of

time points increases. This means the speed of detecting

changepoints using GeomCP will no longer be linear in time.

We performed simulations using the three scenarios defined

above and only included mean changes, so we can compare

with Inspect. We set the mean change size to be θ j = 0.8 in

all series so that the changes are obvious. For scenario 1 and

2, E-Divisive was computationally infeasible for n ≥ 1000.

For scenario 3, Inspect’s speed is only shown for p < 1000

due to the excessive computational time of generating a data-

driven threshold. Note that the data-driven thresholds needed

for Inspect were calculated outside of the recorded times. In

practice, if a threshold was required, then Inspect would take

considerably longer to run especially as p increases. Within

GeomCP, we run the algorithm in serial, performing the map-

ping and changepoint identification for the distance and then

for the angle. These could be processed in parallel, leading

to a further reduction in computational time.

Figure 6 shows the computational speed of each method in

the three scenarios. We can see from Fig. 6a that, in scenario

1, GeomCP is the fastest of the three methods for all n. As

n increases the difference between the speeds of GeomCP

and Inspect increases (note the log scale on both axes). We

can also see, E-Divisive is substantially slower than GeomCP

and Inspect for all n and its run time increases rapidly as n

gets large. Scenario 1 supports our claim that GeomCP has

linear run time in n when the required assumptions of PELT

are met.

In scenario 2, shown in Fig. 6b, we break the assumption

within PELT that the number of changepoints is increasing

linearly in time. This results in a comparatively slower per-

formance of GeomCP, although it remains computationally

faster than Inspect for all n shown. Similarly to scenario 1,

E-Divisive has a much longer run time than both GeomCP

and Inspect.

Finally, for scenario 3 Fig. 6c shows that, for small p,

Inspect is the fastest of the methods but as p increases above

50, GeomCP is computationally faster. While Inspect is faster

for p < 50, recall that this does not include the time for the

calculation of the threshold. Interestingly, the run time of E-

Divisive appears unaffected by p until p ≥ 1000. This is

likely due to its computational cost being mainly affected by

the number of changepoints and time points, which remain

constant. Scenario 3 also supports our claim that GeomCP

has linear run time as p increases, note the log scale that

distorts the linearity of the plot.

Fig. 6 Average run time for each method when: a n is increasing,

p = 200 and m is increasing; b n is increasing, p = 200 and m = 1; c

n = 500, p is increasing and m = 3 by default
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Fig. 7 Log-intensity-ratio

measurements of microarray

data from 6 out of 43 individuals

and distance (d) and angle (a)

mappings with vertical lines

showing the identified

changepoints

Fig. 8 Log-returns of 10 out of

447 companies within the

S&P500 and the distance (d)

and angle (a) mappings with

vertical lines showing the

identified changepoints

4 Applications

4.1 Comparative genomic hybridization

We study the comparative genomic hybridization microar-

ray data set from Bleakley and Vert (2011). Comparative

genomic hybridization allows the detection of copy number

abnormalities in chromosomes by comparing the fluores-

cent intensity levels of DNA fragments between a test and

reference sample. The data set contains log-intensity-ratio

measurements from 43 individuals with bladder tumors

with measurements taken at 2215 different positions on the

genome. This data set is available in the ecp R package (James

and Matteson 2014).

Copy number abnormalities come in regions on the

genome and can either be specific to the individual or can

be shared across several individuals. It is the latter that are of

more interest as these are more likely to be disease-related.

E-Divisive and Inspect have both been used to segment this

data set with their results shown in Matteson and James

(2014) and Wang and Samworth (2018), respectively. Under

the default settings, these two methods fitted a large number

of changepoints, 93 and 254, respectively, which may not be

representative of changes occurring across multiple individ-

uals. Wang and Samworth (2018) suggest selecting the 30

most significant changepoints to counter this; however, the

justification for choosing 30 is unknown.

To perform our analysis, we first scale each series, simi-

larly to Inspect, using the median absolute deviation to allow

a better comparison. We then use the two mappings within

GeomCP and apply the PELT algorithm, using the R package

changepoint.np (Haynes and Killick 2016), to the resulting

mapped series. The mappings do not appear Normal for this

application; hence, we use the empirical cost function and set

the number of quantiles as 4 log(n), as suggested in Haynes

et al. (2017b). We use the CROPS algorithm of Haynes et al.

(2017a) to identify an appropriate penalty value with diag-

nostic plots shown in the Supplementary Material. This leads

to 37 changepoints being identified, and these are shown

in Fig. 7 with the signal for 8 individuals from the study

and the distance and angle mappings. Approximately 67.5%

of the changepoints identified by GeomCP corresponded to

those identified by E-Divisive (within 3 time points), with the

majority of the rest corresponding to where E-Divisive fitted

two changepoints. Also, the changepoints identified seem

to be common across multiple individuals, while changes

specific to a series are not detected. It is promising that

our proposed segmentation identifies similar changepoints

as other methods, while only identifying those that seem

common across multiple individuals. Other GeomCP seg-

mentations, using different potential penalty values identified
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in CROPS, resulted in more or less of the individual features

from specific series being detected.

4.2 S&P500 Stock prices

We now investigate the daily log-returns of the closing stock

prices for 447 companies included in the S&P500 from Jan-

uary 2015 through to December 2016. This data set was

created by Nugent (2018) and was loaded using the R pack-

age SP500R (Foret 2019). The aim is to identify changes in

log-returns that affect a large number of companies rather

than changes that are specific to individual companies. First

we scale each series using the median absolute deviation.

Next we apply the mappings within GeomCP, before using

the PELT algorithm from the changepoint package (Killick

et al. 2016) to both mapped series using the Normal cost func-

tion. We used the CROPS algorithm of Haynes et al. (2017a)

to identify an appropriate penalty value for both series with

diagnostic plots shown in the Supplementary Material.

Using GeomCP, we identified 10 changepoints. These

are shown in Fig. 8 along with the log-returns of the first

10 companies from the S&P500 list and the mapped dis-

tance and angle measures. These changepoints correspond

to key events that we would expect to impact the stocks

of a large number of companies. For example, the change-

points in August 2015 correspond to large falls in the Chinese

stock markets with the Dow Jones industrial average falling

by 1300 points over 3 days. The changepoints in February

and late June 2016 likely correspond to the announcement

and subsequent result of the British referendum to leave

the European Union. Applying the E-Divisive method (with

the minimum segment length set to 2 and the rest of the

user-defined parameters set as in Sect. 3) resulted in only 2

changepoints, both occurring in August 2015 similar to those

detected in GeomCP.

5 Conclusion

We have presented a new high-dimensional changepoint

detection method that can detect mean and variance changes

in multivariate time series. This is achieved by implement-

ing a univariate changepoint detection method on two related

geometric mappings of the time series. We have shown

that looking at the high-dimensional changepoint problem

from a geometric viewpoint allows us to utilize relevant

geometric structures to detect changepoints. We have dis-

played an improved performance in detecting and identifying

the location of multiple changepoints over current state-of-

the-art methods. Furthermore, we have shown an improved

computational speed over competing methods when using

the univariate changepoint method PELT. Finally, we have

shown the effectiveness of GeomCP at detecting change-

points when applied to applications.

We have discussed how to extend this methodology

to non-Gaussian data along with temporal and between-

series dependence. However, a thorough investigation of how

changes manifest in the distance and angle measure in the

presence of these structures is left as future work.

All of the methods proposed here are implemented in the

R package changepoint.geo available on CRAN https://cran.

r-project.org/package=changepoint.geo.
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