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ABSTRACT

Policy gradient methods are an appealing approach in reinforcement learning be-
cause they directly optimize the cumulative reward and can straightforwardly be
used with nonlinear function approximators such as neural networks. The two
main challenges are the large number of samples typically required, and the diffi-
culty of obtaining stable and steady improvement despite the nonstationarity of the
incoming data. We address the first challenge by using value functions to substan-
tially reduce the variance of policy gradient estimates at the cost of some bias, with
an exponentially-weighted estimator of the advantage function that is analogous
to TD(λ). We address the second challenge by using trust region optimization
procedure for both the policy and the value function, which are represented by
neural networks.

Our approach yields strong empirical results on highly challenging 3D locomo-
tion tasks, learning running gaits for bipedal and quadrupedal simulated robots,
and learning a policy for getting the biped to stand up from starting out lying on
the ground. In contrast to a body of prior work that uses hand-crafted policy repre-
sentations, our neural network policies map directly from raw kinematics to joint
torques. Our algorithm is fully model-free, and the amount of simulated experi-
ence required for the learning tasks on 3D bipeds corresponds to 1-2 weeks of real
time.

1 INTRODUCTION

The typical problem formulation in reinforcement learning is to maximize the expected total reward
of a policy. A key source of difficulty is the long time delay between actions and their positive or
negative effect on rewards; this issue is called the credit assignment problem in the reinforcement
learning literature (Minsky, 1961; Sutton & Barto, 1998), and the distal reward problem in the
behavioral literature (Hull, 1943). Value functions offer an elegant solution to the credit assignment
problem—they allow us to estimate the goodness of an action before the delayed reward arrives.
Reinforcement learning algorithms make use of value functions in a variety of different ways; this
paper considers algorithms that optimize a parameterized policy and use value functions to help
estimate how the policy should be improved.

When using a parameterized stochastic policy, it is possible to obtain an unbiased estimate of the
gradient of the expected total returns (Williams, 1992; Sutton et al., 1999; Baxter & Bartlett, 2000);
these noisy gradient estimates can be used in a stochastic gradient ascent algorithm. Unfortunately,
the variance of the gradient estimator scales unfavorably with the time horizon, since the effect of
an action is confounded with the effects of past and future actions. Another class of policy gradient
algorithms, called actor-critic methods, use a value function rather than the empirical returns, ob-
taining an estimator with lower variance at the cost of introducing bias (Konda & Tsitsiklis, 2003;
Hafner & Riedmiller, 2011). But while high variance necessitates using more samples, bias is more
pernicious—even with an unlimited number of samples, bias can cause the algorithm to fail to con-
verge, or to converge to a poor solution that is not even a local optimum.

We propose a family of policy gradient estimators that significantly reduce variance while main-
taining a tolerable level of bias. We call this estimation scheme, parameterized by γ ∈ [0, 1] and
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λ ∈ [0, 1], the generalized advantage estimator (GAE). Related methods have been proposed in the
context of online actor-critic methods (Kimura & Kobayashi, 1998; Wawrzyński, 2009). We provide
a more general analysis, which is applicable in both the online and batch settings, and discuss an in-
terpretation of our method as an instance of reward shaping (Ng et al., 1999), where the approximate
value function is used to shape the reward.

We present experimental results on a number of highly challenging 3D locomotion tasks, where
we show that our approach can learn complex gaits using high-dimensional, general purpose neural
network function approximators for both the policy and the value function, each with over 104

parameters. The policies perform torque-level control of simulated 3D robots with up to 33 state
dimensions and 10 actuators.

The contributions of this paper are summarized as follows:

1. We provide justification and intuition for an effective variance reduction scheme for policy gra-
dients, which we call generalized advantage estimation (GAE). While the formula has been pro-
posed in prior work (Kimura & Kobayashi, 1998; Wawrzyński, 2009), our analysis is novel and
enables GAE to be applied with a more general set of algorithms, including the batch trust-region
algorithm we use for our experiments.

2. We propose the use of a trust region optimization method for the value function, which we find is
a robust and efficient way to train neural network value functions with thousands of parameters.

3. By combining (1) and (2) above, we obtain an algorithm that empirically is effective at learning
neural network policies for challenging control tasks. The results extend the state of the art in
using reinforcement learning for high-dimensional continuous control. Videos are available at
https://sites.google.com/site/gaepapersupp.

2 PRELIMINARIES

We consider an undiscounted formulation of the policy optimization problem. The initial state
s0 is sampled from distribution ρ0. A trajectory (s0, a0, s1, a1, . . . ) is generated by sampling ac-
tions according to the policy at ∼ π(at | st) and sampling the states according to the dynamics
st+1 ∼ P (st+1 | st, at), until a terminal (absorbing) state is reached. A reward rt = r(st, at, st+1)
is received at each timestep. The goal is to maximize the expected total reward

∑∞
t=0 rt, which is

assumed to be finite for all policies. Note that we are not using a discount as part of the problem spec-
ification; it will appear below as an algorithm parameter that adjusts a bias-variance tradeoff. But
the discounted problem (maximizing

∑∞
t=0 γ

trt) can be handled as an instance of the undiscounted
problem in which we absorb the discount factor into the reward function, making it time-dependent.

Policy gradient methods maximize the expected total reward by repeatedly estimating the gradient
g := ∇θE [

∑∞
t=0 rt]. There are several different related expressions for the policy gradient, which

have the form

g = E

[

∞
∑

t=0

Ψt∇θ log πθ(at | st)

]

, (1)

where Ψt may be one of the following:

1.
∑∞

t=0 rt: total reward of the trajectory.

2.
∑∞

t′=t rt′ : reward following action at.

3.
∑∞

t′=t rt′ − b(st): baselined version of
previous formula.

4. Qπ(st, at): state-action value function.

5. Aπ(st, at): advantage function.

6. rt + V π(st+1)− V π(st): TD residual.

The latter formulas use the definitions

V π(st) := Est+1:∞,
at:∞

[

∞
∑

l=0

rt+l

]

Qπ(st, at) := Est+1:∞,
at+1:∞

[

∞
∑

l=0

rt+l

]

(2)

Aπ(st, at) := Qπ(st, at)− V π(st), (Advantage function). (3)

2
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Here, the subscript of E enumerates the variables being integrated over, where states and actions are
sampled sequentially from the dynamics model P (st+1 | st, at) and policy π(at | st), respectively.
The colon notation a : b refers to the inclusive range (a, a + 1, . . . , b). These formulas are well
known and straightforward to obtain; they follow directly from Proposition 1, which will be stated
shortly.

The choice Ψt = Aπ(st, at) yields almost the lowest possible variance, though in practice, the
advantage function is not known and must be estimated. This statement can be intuitively justified by
the following interpretation of the policy gradient: that a step in the policy gradient direction should
increase the probability of better-than-average actions and decrease the probability of worse-than-
average actions. The advantage function, by it’s definition Aπ(s, a) = Qπ(s, a)− V π(s), measures
whether or not the action is better or worse than the policy’s default behavior. Hence, we should
choose Ψt to be the advantage function Aπ(st, at), so that the gradient term Ψt∇θ log πθ(at | st)
points in the direction of increased πθ(at | st) if and only if Aπ(st, at) > 0. See Greensmith et al.
(2004) for a more rigorous analysis of the variance of policy gradient estimators and the effect of
using a baseline.

We will introduce a parameter γ that allows us to reduce variance by downweighting rewards cor-
responding to delayed effects, at the cost of introducing bias. This parameter corresponds to the
discount factor used in discounted formulations of MDPs, but we treat it as a variance reduction
parameter in an undiscounted problem; this technique was analyzed theoretically by Marbach &
Tsitsiklis (2003); Kakade (2001b); Thomas (2014). The discounted value functions are given by:

V π,γ(st) := Est+1:∞,
at:∞

[

∞
∑

l=0

γlrt+l

]

Qπ,γ(st, at) := Est+1:∞,
at+1:∞

[

∞
∑

l=0

γlrt+l

]

(4)

Aπ,γ(st, at) := Qπ,γ(st, at)− V π,γ(st). (5)

The discounted approximation to the policy gradient is defined as follows:

gγ := Es0:∞
a0:∞

[

∞
∑

t=0

Aπ,γ(st, at)∇θ log πθ(at | st)

]

. (6)

The following section discusses how to obtain biased (but not too biased) estimators for Aπ,γ , giving
us noisy estimates of the discounted policy gradient in Equation (6).

Before proceeding, we will introduce the notion of a γ-just estimator of the advantage function,
which is an estimator that does not introduce bias when we use it in place of Aπ,γ (which is not
known and must be estimated) in Equation (6) to estimate gγ .1 Consider an advantage estimator

Ât(s0:∞, a0:∞), which may in general be a function of the entire trajectory.

Definition 1. The estimator Ât is γ-just if

Es0:∞
a0:∞

[

Ât(s0:∞, a0:∞)∇θ log πθ(at | st)
]

= Es0:∞
a0:∞

[Aπ,γ(st, at)∇θ log πθ(at | st)] . (7)

It follows immediately that if Ât is γ-just for all t, then

Es0:∞
a0:∞

[

∞
∑

t=0

Ât(s0:∞, a0:∞)∇θ log πθ(at | st)

]

= gγ (8)

One sufficient condition for Ât to be γ-just is that Ât decomposes as the difference between two
functions Qt and bt, where Qt can depend on any trajectory variables but gives an unbiased estimator
of the γ-discounted Q-function, and bt is an arbitrary function of the states and actions sampled
before at.

Proposition 1. Suppose that Ât can be written in the form Ât(s0:∞, a0:∞) = Qt(st:∞, at:∞) −
bt(s0:t, a0:t−1) such that for all (st, at), Est+1:∞,at+1:∞ | st,at

[Qt(st:∞, at:∞)] = Qπ,γ(st, at).

Then Â is γ-just.

1Note, that we have already introduced bias by using Aπ,γ in place of Aπ; here we are concerned with
obtaining an unbiased estimate of gγ , which is a biased estimate of the policy gradient of the undiscounted
MDP.

3
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The proof is provided in Appendix B. It is easy to verify that the following expressions are γ-just

advantage estimators for Ât:

•
∑∞

l=0 γ
lrt+l

• Qπ,γ(st, at)

• Aπ,γ(st, at)

• rt + γV π,γ(st+1)− V π,γ(st).

3 ADVANTAGE FUNCTION ESTIMATION

This section will be concerned with producing an accurate estimate Ât of the discounted advan-
tage function Aπ,γ(st, at), which will then be used to construct a policy gradient estimator of the
following form:

ĝ =
1

N

N
∑

n=1

∞
∑

t=0

Ân
t ∇θ log πθ(a

n
t | snt ) (9)

where n indexes over a batch of episodes.

Let V be an approximate value function. Define δVt = rt + γV (st+1)− V (st), i.e., the TD residual
of V with discount γ (Sutton & Barto, 1998). Note that δVt can be considered as an estimate of the
advantage of the action at. In fact, if we have the correct value function V = V π,γ , then it is a γ-just
advantage estimator, and in fact, an unbiased estimator of Aπ,γ :

Est+1

[

δV
π,γ

t

]

= Est+1
[rt + γV π,γ(st+1)− V π,γ(st)]

= Est+1
[Qπ,γ(st, at)− V π,γ(st)] = Aπ,γ(st, at). (10)

However, this estimator is only γ-just for V = V π,γ , otherwise it will yield biased policy gradient
estimates.

Next, let us consider taking the sum of k of these δ terms, which we will denote by Â
(k)
t

Â
(1)
t := δVt = −V (st) + rt + γV (st+1) (11)

Â
(2)
t := δVt + γδVt+1 = −V (st) + rt + γrt+1 + γ2V (st+2) (12)

Â
(3)
t := δVt + γδVt+1 + γ2δVt+2 = −V (st) + rt + γrt+1 + γ2rt+2 + γ3V (st+3) (13)

Â
(k)
t :=

k−1
∑

l=0

γlδVt+l = −V (st) + rt + γrt+1 + · · ·+ γk−1rt+k−1 + γkV (st+k) (14)

These equations result from a telescoping sum, and we see that Â
(k)
t involves a k-step estimate of

the returns, minus a baseline term −V (st). Analogously to the case of δVt = Â
(1)
t , we can consider

Â
(k)
t to be an estimator of the advantage function, which is only γ-just when V = V π,γ . However,

note that the bias generally becomes smaller as k → ∞, since the term γkV (st+k) becomes more
heavily discounted, and the term −V (st) does not affect the bias. Taking k → ∞, we get

Â
(∞)
t =

∞
∑

l=0

γlδVt+l = −V (st) +
∞
∑

l=0

γlrt+l, (15)

which is simply the empirical returns minus the value function baseline.

4
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The generalized advantage estimator GAE(γ, λ) is defined as the exponentially-weighted average
of these k-step estimators:

Â
GAE(γ,λ)
t := (1− λ)

(

Â
(1)
t + λÂ

(2)
t + λ2Â

(3)
t + . . .

)

= (1− λ)
(

δVt + λ(δVt + γδVt+1) + λ2(δVt + γδVt+1 + γ2δVt+2) + . . .
)

= (1− λ)(δVt (1 + λ+ λ2 + . . . ) + γδVt+1(λ+ λ2 + λ3 + . . . )

+ γ2δVt+2(λ
2 + λ3 + λ4 + . . . ) + . . . )

= (1− λ)

(

δVt

(

1

1− λ

)

+ γδVt+1

(

λ

1− λ

)

+ γ2δVt+2

(

λ2

1− λ

)

+ . . .

)

=

∞
∑

l=0

(γλ)lδVt+l (16)

From Equation (16), we see that the advantage estimator has a remarkably simple formula involving
a discounted sum of Bellman residual terms. Section 4 discusses an interpretation of this formula as
the returns in an MDP with a modified reward function. The construction we used above is closely
analogous to the one used to define TD(λ) (Sutton & Barto, 1998), however TD(λ) is an estimator
of the value function, whereas here we are estimating the advantage function.

There are two notable special cases of this formula, obtained by setting λ = 0 and λ = 1.

GAE(γ, 0) : Ât := δt = rt + γV (st+1)− V (st) (17)

GAE(γ, 1) : Ât :=

∞
∑

l=0

γlδt+l =

∞
∑

l=0

γlrt+l − V (st) (18)

GAE(γ, 1) is γ-just regardless of the accuracy of V , but it has high variance due to the sum of
terms. GAE(γ, 0) is γ-just for V = V π,γ and otherwise induces bias, but it typically has much
lower variance. The generalized advantage estimator for 0 < λ < 1 makes a compromise between
bias and variance, controlled by parameter λ.

We’ve described an advantage estimator with two separate parameters γ and λ, both of which con-
tribute to the bias-variance tradeoff when using an approximate value function. However, they serve
different purposes and work best with different ranges of values. γ most importantly determines the
scale of the value function V π,γ , which does not depend on λ. Taking γ < 1 introduces bias into
the policy gradient estimate, regardless of the value function’s accuracy. On the other hand, λ < 1
introduces bias only when the value function is inaccurate. Empirically, we find that the best value
of λ is much lower than the best value of γ, likely because λ introduces far less bias than γ for a
reasonably accurate value function.

Using the generalized advantage estimator, we can construct a biased estimator of gγ , the discounted
policy gradient from Equation (6):

gγ ≈ E

[

∞
∑

t=0

∇θ log πθ(at | st)Â
GAE(γ,λ)
t

]

= E

[

∞
∑

t=0

∇θ log πθ(at | st)
∞
∑

l=0

(γλ)lδVt+l

]

, (19)

where equality holds when λ = 1.

4 INTERPRETATION AS REWARD SHAPING

In this section, we discuss how one can interpret λ as an extra discount factor applied after per-
forming a reward shaping transformation on the MDP. We also introduce the notion of a response
function to help understand the bias introduced by γ and λ.

Reward shaping (Ng et al., 1999) refers to the following transformation of the reward function of
an MDP: let Φ : S → R be an arbitrary scalar-valued function on state space, and define the
transformed reward function r̃ by

r̃(s, a, s′) = r(s, a, s′) + γΦ(s′)− Φ(s), (20)

5
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which in turn defines a transformed MDP. This transformation leaves the discounted advantage
function Aπ,γ unchanged for any policy π. To see this, consider the discounted sum of rewards of a
trajectory starting with state st:

∞
∑

l=0

γlr̃(st+l, at, st+l+1) =

∞
∑

l=0

γlr(st+l, at+l, st+l+1)− Φ(st). (21)

Letting Q̃π,γ , Ṽ π,γ , Ãπ,γ be the value and advantage functions of the transformed MDP, one obtains
from the definitions of these quantities that

Q̃π,γ(s, a) = Qπ,γ(s, a)− Φ(s) (22)

Ṽ π,γ(s, a) = V π,γ(s)− Φ(s) (23)

Ãπ,γ(s, a) = (Qπ,γ(s, a)− Φ(s))− (V π,γ(s)− Φ(s)) = Aπ,γ(s, a). (24)

Note that if Φ happens to be the state-value function V π,γ from the original MDP, then the trans-

formed MDP has the interesting property that Ṽ π,γ(s) is zero at every state.

Note that (Ng et al., 1999) showed that the reward shaping transformation leaves the policy gradient
and optimal policy unchanged when our objective is to maximize the discounted sum of rewards
∑∞

t=0 γ
tr(st, at, st+1). In contrast, this paper is concerned with maximizing the undiscounted sum

of rewards, where the discount γ is used as a variance-reduction parameter.

Having reviewed the idea of reward shaping, let us consider how we could use it to get a policy
gradient estimate. The most natural approach is to construct policy gradient estimators that use
discounted sums of shaped rewards r̃. However, Equation (21) shows that we obtain the discounted
sum of the original MDP’s rewards r minus a baseline term. Next, let’s consider using a “steeper”
discount γλ, where 0 ≤ λ ≤ 1. It’s easy to see that the shaped reward r̃ equals the Bellman residual
term δV , introduced in Section 3, where we set Φ = V . Letting Φ = V , we see that

∞
∑

l=0

(γλ)lr̃(st+l, at, st+l+1) =

∞
∑

l=0

(γλ)lδVt+l = Â
GAE(γ,λ)
t . (25)

Hence, by considering the γλ-discounted sum of shaped rewards, we exactly obtain the generalized
advantage estimators from Section 3. As shown previously, λ = 1 gives an unbiased estimate of gγ ,
whereas λ < 1 gives a biased estimate.

To further analyze the effect of this shaping transformation and parameters γ and λ, it will be useful
to introduce the notion of a response function χ, which we define as follows:

χ(l; st, at) = E [rt+l | st, at]− E [rt+l | st] . (26)

Note that Aπ,γ(s, a) =
∑∞

l=0 γ
lχ(l; s, a), hence the response function decomposes the advantage

function across timesteps. The response function lets us quantify the temporal credit assignment
problem: long range dependencies between actions and rewards correspond to nonzero values of the
response function for l ≫ 0.

Next, let us revisit the discount factor γ and the approximation we are making by using Aπ,γ rather
than Aπ,1. The discounted policy gradient estimator from Equation (6) has a sum of terms of the
form

∇θ log πθ(at | st)A
π,γ(st, at) = ∇θ log πθ(at | st)

∞
∑

l=0

γlχ(l; st, at). (27)

Using a discount γ < 1 corresponds to dropping the terms with l ≫ 1/(1 − γ). Thus, the error
introduced by this approximation will be small if χ rapidly decays as l increases, i.e., if the effect of
an action on rewards is “forgotten” after ≈ 1/(1− γ) timesteps.

If the reward function r̃ were obtained using Φ = V π,γ , we would have E [r̃t+l | st, at] =
E [r̃t+l | st] = 0 for l > 0, i.e., the response function would only be nonzero at l = 0. Therefore,
this shaping transformation would turn temporally extended response into an immediate response.
Given that V π,γ completely reduces the temporal spread of the response function, we can hope that
a good approximation V ≈ V π,γ partially reduces it. This observation suggests an interpretation of
Equation (16): reshape the rewards using V to shrink the temporal extent of the response function,
and then introduce a “steeper” discount γλ to cut off the noise arising from long delays, i.e., ignore
terms ∇θ log πθ(at | st)δ

V
t+l where l ≫ 1/(1− γλ).

6
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5 VALUE FUNCTION ESTIMATION

A variety of different methods can be used to estimate the value function (see, e.g., Bertsekas
(2012)). When using a nonlinear function approximator to represent the value function, the sim-
plest approach is to solve a nonlinear regression problem:

minimize
φ

N
∑

n=1

‖Vφ(sn)− V̂n‖
2, (28)

where V̂t =
∑∞

l=0 γ
lrt+l is the discounted sum of rewards, and n indexes over all timesteps in a

batch of trajectories. This is sometimes called the Monte Carlo or TD(1) approach for estimating
the value function (Sutton & Barto, 1998).2

For the experiments in this work, we used a trust region method to optimize the value function
in each iteration of a batch optimization procedure. The trust region helps us to avoid overfitting
to the most recent batch of data. To formulate the trust region problem, we first compute σ2 =
1
N

∑N
n=1‖Vφold

(sn)− V̂n‖
2, where φold is the parameter vector before optimization. Then we solve

the following constrained optimization problem:

minimize
φ

N
∑

n=1

‖Vφ(sn)− V̂n‖
2

subject to
1

N

N
∑

n=1

‖Vφ(sn)− Vφold
(sn)‖

2

2σ2
≤ ǫ. (29)

This constraint is equivalent to constraining the average KL divergence between the previous value
function and the new value function to be smaller than ǫ, where the value function is taken to pa-
rameterize a conditional Gaussian distribution with mean Vφ(s) and variance σ2.

We compute an approximate solution to the trust region problem using the conjugate gradient algo-
rithm (Wright & Nocedal, 1999). Specifically, we are solving the quadratic program

minimize
φ

gT (φ− φold)

subject to
1

N

N
∑

n=1

(φ− φold)
TH(φ− φold) ≤ ǫ. (30)

where g is the gradient of the objective, and H = 1
N

∑

n jnj
T
n , where jn = ∇φVφ(sn). Note that

H is the “Gauss-Newton” approximation of the Hessian of the objective, and it is (up to a σ2 factor)
the Fisher information matrix when interpreting the value function as a conditional probability dis-
tribution. Using matrix-vector products v → Hv to implement the conjugate gradient algorithm, we
compute a step direction s ≈ −H−1g. Then we rescale s → αs such that 1

2 (αs)
TH(αs) = ǫ and

take φ = φold + αs. This procedure is analogous to the procedure we use for updating the policy,
which is described further in Section 6 and based on Schulman et al. (2015).

6 EXPERIMENTS

We designed a set of experiments to investigate the following questions:

1. What is the empirical effect of varying λ ∈ [0, 1] and γ ∈ [0, 1] when optimizing episodic total
reward using generalized advantage estimation?

2. Can generalized advantage estimation, along with trust region algorithms for policy and value
function optimization, be used to optimize large neural network policies for challenging control
problems?

2Another natural choice is to compute target values with an estimator based on the TD(λ) backup (Bertsekas,

2012; Sutton & Barto, 1998), mirroring the expression we use for policy gradient estimation: V̂ λ
t = Vφold

(sn)+∑
∞

l=0
(γλ)lδt+l. While we experimented with this choice, we did not notice a difference in performance from

the λ = 1 estimator in Equation (28).

7
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6.1 POLICY OPTIMIZATION ALGORITHM

While generalized advantage estimation can be used along with a variety of different policy gra-
dient methods, for these experiments, we performed the policy updates using trust region policy
optimization (TRPO) (Schulman et al., 2015). TRPO updates the policy by approximately solving
the following constrained optimization problem each iteration:

minimize
θ

Lθold(θ)

subject to D
θold
KL (πθold , πθ) ≤ ǫ

where Lθold(θ) =
1

N

N
∑

n=1

πθ(an | sn)

πθold(an | sn)
Ân

D
θold
KL (πθold , πθ) =

1

N

N
∑

n=1

DKL(πθold(· | sn) ‖ πθ(· | sn)) (31)

As described in (Schulman et al., 2015), we approximately solve this problem by linearizing the
objective and quadraticizing the constraint, which yields a step in the direction θ − θold ∝ −F−1g,
where F is the average Fisher information matrix, and g is a policy gradient estimate. This policy
update yields the same step direction as the natural policy gradient (Kakade, 2001a) and natural
actor-critic (Peters & Schaal, 2008), however it uses a different stepsize determination scheme and
numerical procedure for computing the step.

Since prior work (Schulman et al., 2015) compared TRPO to a variety of different policy optimiza-
tion algorithms, we will not repeat these comparisons; rather, we will focus on varying the γ, λ
parameters of policy gradient estimator while keeping the underlying algorithm fixed.

For completeness, the whole algorithm for iteratively updating policy and value function is given
below:

Initialize policy parameter θ0 and value function parameter φ0.
for i = 0, 1, 2, . . . do

Simulate current policy πθi until N timesteps are obtained.
Compute δVt at all timesteps t ∈ {1, 2, . . . , N}, using V = Vφi

.

Compute Ât =
∑∞

l=0(γλ)
lδVt+l at all timesteps.

Compute θi+1 with TRPO update, Equation (31).
Compute φi+1 with Equation (30).

end for

Note that the policy update θi → θi+1 is performed using the value function Vφi
for advantage

estimation, not Vφi+1
. Additional bias would have been introduced if we updated the value function

first. To see this, consider the extreme case where we overfit the value function, and the Bellman
residual rt + γV (st+1)− V (st) becomes zero at all timesteps—the policy gradient estimate would
be zero.

6.2 EXPERIMENTAL SETUP

We evaluated our approach on the classic cart-pole balancing problem, as well as several challenging
3D locomotion tasks: (1) bipedal locomotion; (2) quadrupedal locomotion; (3) dynamically standing
up, for the biped, which starts off laying on its back. The models are shown in Figure 1.

6.2.1 ARCHITECTURE

We used the same neural network architecture for all of the 3D robot tasks, which was a feedforward
network with three hidden layers, with 100, 50 and 25 tanh units respectively. The same architecture
was used for the policy and value function. The final output layer had linear activation. The value
function estimator used the same architecture, but with only one scalar output. For the simpler cart-
pole task, we used a linear policy, and a neural network with one 20-unit hidden layer as the value
function.
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Figure 1: Top figures: robot models used for 3D locomotion. Bottom figures: a sequence of
frames from the learned gaits. Videos are available at https://sites.google.com/site/
gaepapersupp.

6.2.2 TASK DETAILS

For the cart-pole balancing task, we collected 20 trajectories per batch, with a maximum length of
1000 timesteps, using the physical parameters from Barto et al. (1983).

The simulated robot tasks were simulated using the MuJoCo physics engine (Todorov et al., 2012).
The humanoid model has 33 state dimensions and 10 actuated degrees of freedom, while the
quadruped model has 29 state dimensions and 8 actuated degrees of freedom. The initial state
for these tasks consisted of a uniform distribution centered on a reference configuration. We used
50000 timesteps per batch for bipedal locomotion, and 200000 timesteps per batch for quadrupedal
locomotion and bipedal standing. Each episode was terminated after 2000 timesteps if the robot had
not reached a terminal state beforehand. The timestep was 0.01 seconds.

The reward functions are provided in the table below.

Task Reward

3D biped locomotion vfwd − 10−5‖u‖2 − 10−5‖fimpact‖
2 + 0.2

Quadruped locomotion vfwd − 10−6‖u‖2 − 10−3‖fimpact‖
2 + 0.05

Biped getting up −(hhead − 1.5)2 − 10−5‖u‖2

Here, vfwd := forward velocity, u := vector of joint torques, fimpact := impact forces, hhead :=
height of the head.

In the locomotion tasks, the episode is terminated if the center of mass of the actor falls below a
predefined height: .8m for the biped, and .2m for the quadruped. The constant offset in the reward
function encourages longer episodes; otherwise the quadratic reward terms might lead lead to a
policy that ends the episodes as quickly as possible.

6.3 EXPERIMENTAL RESULTS

All results are presented in terms of the cost, which is defined as negative reward and is mini-
mized. Videos of the learned policies are available at https://sites.google.com/site/
gaepapersupp. In plots, “No VF” means that we used a time-dependent baseline that did not
depend on the state, rather than an estimate of the state value function. The time-dependent baseline
was computed by averaging the return at each timestep over the trajectories in the batch.

6.3.1 CART-POLE

The results are averaged across 21 experiments with different random seeds. Results are shown in
Figure 2, and indicate that the best results are obtained at intermediate values of the parameters:
γ ∈ [0.96, 0.99] and λ ∈ [0.92, 0.99].
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Figure 2: Left: learning curves for cart-pole task, using generalized advantage estimation with
varying values of λ at γ = 0.99. The fastest policy improvement is obtain by intermediate values of
λ in the range [0.92, 0.98]. Right: performance after 20 iterations of policy optimization, as γ and λ
are varied. White means higher reward. The best results are obtained at intermediate values of both.
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Figure 3: Left: Learning curves for 3D bipedal locomotion, averaged across nine runs of the algo-
rithm. Right: learning curves for 3D quadrupedal locomotion, averaged across five runs.

6.3.2 3D BIPEDAL LOCOMOTION

Each trial took about 2 hours to run on a 16-core machine, where the simulation rollouts were paral-
lelized, as were the function, gradient, and matrix-vector-product evaluations used when optimizing
the policy and value function. Here, the results are averaged across 9 trials with different random
seeds. The best performance is again obtained using intermediate values of γ ∈ [0.99, 0.995], λ ∈
[0.96, 0.99]. The result after 1000 iterations is a fast, smooth, and stable gait that is effectively
completely stable. We can compute how much “real time” was used for this learning process:
0.01 seconds/timestep×50000 timesteps/batch×1000 batches/3600·24 seconds/day = 5.8 days. Hence,
it is plausible that this algorithm could be run on a real robot, or multiple real robots learning in par-
allel, if there were a way to reset the state of the robot and ensure that it doesn’t damage itself.

6.3.3 OTHER 3D ROBOT TASKS

The other two motor behaviors considered are quadrupedal locomotion and getting up off the ground
for the 3D biped. Again, we performed 5 trials per experimental condition, with different random
seeds (and initializations). The experiments took about 4 hours per trial on a 32-core machine.
We performed a more limited comparison on these domains (due to the substantial computational
resources required to run these experiments), fixing γ = 0.995 but varying λ = {0, 0.96}, as well as
an experimental condition with no value function. For quadrupedal locomotion, the best results are
obtained using a value function with λ = 0.96 Section 6.3.2. For 3D standing, the value function
always helped, but the results are roughly the same for λ = 0.96 and λ = 1.
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Figure 4: (a) Learning curve from quadrupedal walking, (b) learning curve for 3D standing up, (c)
clips from 3D standing up.

7 DISCUSSION

Policy gradient methods provide a way to reduce reinforcement learning to stochastic gradient de-
scent, by providing unbiased gradient estimates. However, so far their success at solving difficult
control problems has been limited, largely due to their high sample complexity. We have argued that
the key to variance reduction is to obtain good estimates of the advantage function.

We have provided an intuitive but informal analysis of the problem of advantage function estimation,
and justified the generalized advantage estimator, which has two parameters γ, λ which adjust the
bias-variance tradeoff. We described how to combine this idea with trust region policy optimization
and a trust region algorithm that optimizes a value function, both represented by neural networks.
Combining these techniques, we are able to learn to solve difficult control tasks that have previously
been out of reach for generic reinforcement learning methods.

Our main experimental validation of generalized advantage estimation is in the domain of simulated
robotic locomotion. As shown in our experiments, choosing an appropriate intermediate value of λ
in the range [0.9, 0.99] usually results in the best performance. A possible topic for future work is
how to adjust the estimator parameters γ, λ in an adaptive or automatic way.

One question that merits future investigation is the relationship between value function estimation
error and policy gradient estimation error. If this relationship were known, we could choose an error
metric for value function fitting that is well-matched to the quantity of interest, which is typically the
accuracy of the policy gradient estimation. Some candidates for such an error metric might include
the Bellman error or projected Bellman error, as described in Bhatnagar et al. (2009).

Another enticing possibility is to use a shared function approximation architecture for the policy and
the value function, while optimizing the policy using generalized advantage estimation. While for-
mulating this problem in a way that is suitable for numerical optimization and provides convergence
guarantees remains an open question, such an approach could allow the value function and policy
representations to share useful features of the input, resulting in even faster learning.

In concurrent work, researchers have been developing policy gradient methods that involve differen-
tiation with respect to the continuous-valued action (Lillicrap et al., 2015; Heess et al., 2015). While
we found empirically that the one-step return (λ = 0) leads to excessive bias and poor performance,
these papers show that such methods can work when tuned appropriately. However, note that those
papers consider control problems with substantially lower-dimensional state and action spaces than
the ones considered here. A comparison between both classes of approach would be useful for future
work.
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A FREQUENTLY ASKED QUESTIONS

A.1 WHAT’S THE RELATIONSHIP WITH COMPATIBLE FEATURES?

Compatible features are often mentioned in relation to policy gradient algorithms that make use
of a value function, and the idea was proposed in the paper On Actor-Critic Methods by Konda
& Tsitsiklis (2003). These authors pointed out that due to the limited representation power of the
policy, the policy gradient only depends on a certain subspace of the space of advantage functions.
This subspace is spanned by the compatible features ∇θi log πθ(at |st), where i ∈ {1, 2, . . . , dim θ}.
This theory of compatible features provides no guidance on how to exploit the temporal structure of
the problem to obtain better estimates of the advantage function, making it mostly orthogonal to the
ideas in this paper.

The idea of compatible features motivates an elegant method for computing the natural policy gradi-
ent (Kakade, 2001a; Peters & Schaal, 2008). Given an empirical estimate of the advantage function

Ât at each timestep, we can project it onto the subspace of compatible features by solving the fol-
lowing least squares problem:

minimize
r

∑

t

‖r · ∇θ log πθ(at | st)− Ât‖
2. (32)

If Â is γ-just, the least squares solution is the natural policy gradient (Kakade, 2001a). Note that
any estimator of the advantage function can be substituted into this formula, including the ones we
derive in this paper. For our experiments, we also compute natural policy gradient steps, but we use
the more computationally efficient numerical procedure from Schulman et al. (2015), as discussed
in Section 6.

A.2 WHY DON’T YOU JUST USE A Q-FUNCTION?

Previous actor critic methods, e.g. in Konda & Tsitsiklis (2003), use a Q-function to obtain poten-
tially low-variance policy gradient estimates. Recent papers, including Heess et al. (2015); Lillicrap
et al. (2015), have shown that a neural network Q-function approximator can used effectively in a
policy gradient method. However, there are several advantages to using a state-value function in the
manner of this paper. First, the state-value function has a lower-dimensional input and is thus easier
to learn than a state-action value function. Second, the method of this paper allows us to smoothly
interpolate between the high-bias estimator (λ = 0) and the low-bias estimator (λ = 1). On the other
hand, using a parameterized Q-function only allows us to use a high-bias estimator. We have found
that the bias is prohibitively large when using a one-step estimate of the returns, i.e., the λ = 0 esti-

mator, Ât = δVt = rt + γV (st+1)− V (st). We expect that similar difficulty would be encountered

when using an advantage estimator involving a parameterized Q-function, Ât = Q(s, a) − V (s).
There is an interesting space of possible algorithms that would use a parameterized Q-function and
attempt to reduce bias, however, an exploration of these possibilities is beyond the scope of this
work.

B PROOFS

Proof of Proposition 1: First we can split the expectation into terms involving Q and b,

Es0:∞,a0:∞
[∇θ log πθ(at | st)(Qt(s0:∞, a0:∞)− bt(s0:t, a0:t−1))]

= Es0:∞,a0:∞
[∇θ log πθ(at | st)(Qt(s0:∞, a0:∞))]

− Es0:∞,a0:∞
[∇θ log πθ(at | st)(bt(s0:t, a0:t−1))] (33)
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We’ll consider the terms with Q and b in turn.

Es0:∞,a0:∞
[∇θ log πθ(at | st)Qt(s0:∞, a0:∞)]

= Es0:t,a0:t

[

Est+1:∞,at+1:∞
[∇θ log πθ(at | st)Qt(s0:∞, a0:∞)]

]

= Es0:t,a0:t

[

∇θ log πθ(at | st)Est+1:∞,at+1:∞
[Qt(s0:∞, a0:∞)]

]

= Es0:t,a0:t−1
[∇θ log πθ(at | st)A

π(st, at)]

Next,

Es0:∞,a0:∞
[∇θ log πθ(at | st)bt(s0:t, a0:t−1)]

= Es0:t,a0:t−1

[

Est+1:∞,at:∞
[∇θ log πθ(at | st)bt(s0:t, a0:t−1)]

]

= Es0:t,a0:t−1

[

Est+1:∞,at:∞
[∇θ log πθ(at | st)] bt(s0:t, a0:t−1)

]

= Es0:t,a0:t−1
[0 · bt(s0:t, a0:t−1)]

= 0.
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