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Abstract

Given i.i.d. observations of a random vectorX ∈ R
p, we study the problem of estimating both its covariance

matrix Σ∗, and its inverse covariance or concentration matrixΘ∗ = (Σ∗)−1. We estimateΘ∗ by minimizing an
ℓ1-penalized log-determinant Bregman divergence; in the multivariate Gaussian case, this approach corresponds to
ℓ1-penalized maximum likelihood, and the structure ofΘ∗ is specified by the graph of an associated Gaussian Markov
random field. We analyze the performance of this estimator under high-dimensional scaling, in which the number of
nodes in the graphp, the number of edgess and the maximum node degreed, are allowed to grow as a function of the
sample sizen. In addition to the parameters(p, s, d), our analysis identifies other key quantities that control rates:
(a) theℓ∞-operator norm of the true covariance matrixΣ∗; and (b) theℓ∞ operator norm of the sub-matrixΓ∗

SS ,
whereS indexes the graph edges, andΓ∗ = (Θ∗)−1 ⊗ (Θ∗)−1; and (c) a mutual incoherence or irrepresentability
measure on the matrixΓ∗ and (d) the rate of decay1/f(n, δ) on the probabilities{|bΣn

ij − Σ∗

ij | > δ}, wherebΣn

is the sample covariance based onn samples. Our first result establishes consistency of our estimate bΘ in the ele-
mentwise maximum-norm. This in turn allows us to derive convergence rates in Frobenius and spectral norms, with
improvements upon existing results for graphs with maximumnode degreesd = o(

√
s). In our second result, we

show that with probability converging to one, the estimatebΘ correctly specifies the zero pattern of the concentration
matrixΘ∗. We illustrate our theoretical results via simulations forvarious graphs and problem parameters, showing
good correspondences between the theoretical predictionsand behavior in simulations.

1 Introduction

The area of high-dimensional statistics deals with estimation in the “largep, smalln” setting, wherep andn corre-
spond, respectively, to the dimensionality of the data and the sample size. Such high-dimensional problems arise in a
variety of applications, among them remote sensing, computational biology and natural language processing, where
the model dimension may be comparable or substantially larger than the sample size. It is well-known that such high-
dimensional scaling can lead to dramatic breakdowns in manyclassical procedures. In the absence of additional model
assumptions, it is frequently impossible to obtain consistent procedures whenp ≫ n. Accordingly, an active line of
statistical research is based on imposing various restrictions on the model—-for instance, sparsity, manifold structure,
or graphical model structure—-and then studying the scaling behavior of different estimators as a function of sample
sizen, ambient dimensionp and additional parameters related to these structural assumptions.

In this paper, we study the following problem: givenn i.i.d. observations{X(k)}n
k=1 of a zero mean random vector

X ∈ Rp, estimate both its covariance matrixΣ∗, and its inverse covariance or concentration matrixΘ∗ :=
(
Σ∗
)−1

.
Perhaps the most natural candidate for estimatingΣ∗ is the empirical sample covariance matrix, but this is knownto
behave poorly in high-dimensional settings. For instance,whenp/n → c > 0, and the samples are drawn i.i.d. from
a multivariate Gaussian distribution, neither the eigenvalues nor the eigenvectors of the sample covariance matrix
are consistent estimators of the population versions [14, 15]. Accordingly, many regularized estimators have been
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proposed to estimate the covariance or concentration matrix under various model assumptions. One natural model
assumption is that reflected in shrinkage estimators, such as in the work of Ledoit and Wolf [16], who proposed
to shrink the sample covariance to the identity matrix. An alternative model assumption, relevant in particular for
time series data, is that the covariance or concentration matrix is banded, meaning that the entries decay based on
their distance from the diagonal. Furrer and Bengtsson [11] proposed to shrink the covariance entries based on this
distance from the diagonal. Wu and Pourahmadi [24] and Huang et al. [13] estimate these banded concentration
matrices by using thresholding andℓ1-penalties respectively, as applied to a Cholesky factor ofthe inverse covariance

matrix. Bickel and Levina [2] prove the consistency of these banded estimators so long as(log p)2

n → 0 and the model
covariance matrix is banded as well, but as they note, these estimators depend on the presented order of the variables.

A related class of models are based on positing some kind of sparsity, either in the covariance matrix, or in the
inverse covariance. Bickel and Levina [1] study thresholding estimators of covariance matrices, assuming that each
row satisfies anℓq-ball sparsity assumption. In independent work, El Karoui [9] also studied thresholding estimators
of the covariance, but based on an alternative notion of sparsity, one which captures the number of closed paths of any
length in the associated graph. Other work has studied models in which the inverse covariance or concentration matrix
has a sparse structure. As will be clarified in the next section, when the random vector is multivariate Gaussian, the
set of non-zero entries in the concentration matrix correspond to the set of edges in an associated Gaussian Markov
random field (GMRF). In this setting, imposing sparsity on the concentration matrix can be interpreted as requiring
that the graph underlying the GMRF have relatively few edges. A line of recent papers [8, 10, 25] have proposed an
estimator that minimizes the Gaussian negative log-likelihood regularized by theℓ1 norm of the entries (or the off-
diagonal entries) of the concentration matrix. The resulting optimization problem is a log-determinant program, which
can be solved in polynomial time with interior point methods[3], or by faster co-ordinate descent algorithms [8, 10]. In
recent work, Rothman et al. [21] have analyzed some aspects of high-dimensional behavior of this estimator; assuming
that the minimum and maximum eigenvalues ofΣ∗ are bounded, they show that consistent estimates can be achieved

in Frobenius and operator norm, in particular at the rateO(
√

(s+p) log p
n ).

The focus of this paper is the problem of estimating the concentration matrixΘ∗ under sparsity conditions. We
do not impose specific distributional assumptions onX itself, but rather analyze the estimator in terms of the tail
behavior of the maximum deviationmaxi,j |Σ̂n

ij −Σ∗
ij | of the sample and population covariance matrices. To estimate

Θ∗, we consider minimization of anℓ1-penalized log-determinant Bregman divergence, which is equivalent to the
usualℓ1-penalized maximum likelihood whenX is multivariate Gaussian. We analyze the behavior of this estimator
under high-dimensional scaling, in which the number of nodesp in the graph, and the maximum node degreed are all
allowed to grow as a function of the sample sizen.

In addition to the triple(n, p, d), we also explicitly keep track of certain other measures of model complexity,
that could potentially scale as well. The first of these measures is theℓ∞-operator norm of the covariance matrixΣ∗,
which we denote byKΣ∗ := |||Σ∗|||∞. The next quantity involves the Hessian of the log-determinant objective function,
Γ∗ := (Θ∗)−1 ⊗ (Θ∗)−1. When the distribution ofX is multivariate Gaussian, this Hessian has the more explicit
representationΓ∗

(j,k),(ℓ,m) = cov{XjXk, XℓXm}, showing that it measures the covariances of the random variables
associated with each edge of the graph. For this reason, the matrix Γ∗ can be viewed as an edge-based counterpart to
the usual node-based covariance matrixΣ∗. UsingS to index the variable pairs(i, j) associated with non-zero entries
in the inverse covariance. our analysis involves the quantity KΓ∗ = |||(Γ∗

SS)−1|||∞. Finally, we also impose a mutual
incoherence or irrepresentability condition on the Hessian Γ∗; this condition is similar to assumptions imposed onΣ∗

in previous work [22, 26, 19, 23] on the Lasso. We provide some examples where the Lasso irrepresentability condition
holds, but our corresponding condition onΓ∗ fails; however, we do not know currently whether one condition strictly
dominates the other.

Our first result establishes consistency of our estimatorΘ̂ in the elementwise maximum-norm, providing a rate
that depends on the tail behavior of the entries in the randommatrix Σ̂n − Σ∗. For the special case of sub-Gaussian
random vectors with concentration matrices having at mostd non-zeros per row, a corollary of our analysis is consis-
tency in spectral norm at rate|||Θ̂ − Θ∗|||2 = O(

√
(d2 log p)/n), with high probability, thereby strengthening previous

results [21]. Under the milder restriction of each element ofX having bounded4m-th moment, the rate in spectral
norm is substantially slower—namely,|||Θ̂ − Θ∗|||2 = O(d p1/2m/

√
n)—highlighting that the familiar logarithmic de-

pendence on the model sizep is linked to particular tail behavior of the distribution ofX . Finally, we show that under
the same scalings as above, with probability converging to one, the estimatêΘ correctly specifies the zero pattern of
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the concentration matrixΘ∗.
The remainder of this paper is organized as follows. In Section2, we set up the problem and give some background.

Section3 is devoted to statements of our main results, as well as discussion of their consequences. Section4 provides
an outline of the proofs, with the more technical details deferred to appendices. In Section5, we report the results of
some simulation studies that illustrate our theoretical predictions.

Notation For the convenience of the reader, we summarize here notation to be used throughout the paper. Given a
vectoru ∈ Rd and parametera ∈ [1,∞], we use‖u‖a to denote the usualℓa norm. Given a matrixU ∈ Rp×p and
parametersa, b ∈ [1,∞], we use|||U |||a,b to denote the induced matrix-operator normmax‖y‖a=1 ‖Uy‖b; see Horn
and Johnson [12] for background. Three cases of particular importance in this paper are thespectral norm|||U |||2,
corresponding to the maximal singular value ofU ; theℓ∞/ℓ∞-operator norm, given by

|||U |||∞ := max
j=1,...,p

p∑

k=1

|Ujk|, (1)

and theℓ1/ℓ1-operator norm, given by|||U |||1 = |||UT |||∞. Finally, we use‖U‖∞ to denote the element-wise maximum
maxi,j |Uij |; note that this is not a matrix norm, but rather a norm on the vectorized form of the matrix. For any
matrix U ∈ Rp×p, we usevec(U) or equivalentlyU ∈ Rp2

to denote itsvectorized form, obtained by stacking
up the rows ofU . We use〈〈U, V 〉〉 :=

∑
i,j UijVij to denote thetrace inner producton the space of symmetric

matrices. Note that this inner product induces theFrobenius norm|||U |||F :=
√∑

i,j U2
ij . Finally, for asymptotics,

we use the following standard notation: we writef(n) = O(g(n)) if f(n) ≤ cg(n) for some constantc < ∞, and
f(n) = Ω(g(n)) if f(n) ≥ c′g(n) for some constantc′ > 0. The notationf(n) ≍ g(n) means thatf(n) = O(g(n))
andf(n) = Ω(g(n)).

2 Background and problem set-up

Let X = (X1, . . . , Xp) be a zero meanp-dimensional random vector. The focus of this paper is the problem of
estimating the covariance matrixΣ∗ := E[XXT ] and concentration matrixΘ∗ := Σ∗−1 of the random vectorX
givenn i.i.d. observations{X(k)}n

k=1. In this section, we provide background, and set up this problem more pre-
cisely. We begin with background on Gaussian graphical models, which provide one motivation for the estimation of
concentration matrices. We then describe an estimator based based on minimizing anℓ1 regularized log-determinant
divergence; when the data are drawn from a Gaussian graphical model, this estimator corresponds toℓ1-regularized
maximum likelihood. We then discuss the distributional assumptions that we make in this paper.

2.1 Gaussian graphical models

One motivation for this paper is the problem of Gaussian graphical model selection. A graphical model or a Markov
random field is a family of probability distributions for which the conditional independence and factorization properties
are captured by a graph. LetX = (X1, X2, . . . , Xp) denote a zero-mean Gaussian random vector; its density can be
parameterized by the inverse covariance orconcentration matrixΘ∗ = (Σ∗)−1 ∈ Sp

+, and can be written as

f(x1, . . . , xp; Θ
∗) =

1√
(2π)p det((Θ∗)−1)

exp
{
− 1

2
xT Θ∗x

}
. (2)

We can relate this Gaussian distribution of the random vector X to a graphical model as follows. Suppose we are
given an undirected graphG = (V, E) with vertex setV = {1, 2, . . . , p} and edge1 setE, so that each variableXi is
associated with a corresponding vertexi ∈ V . The Gaussian Markov random field (GMRF) associated with thegraph

1As a remark on notation, we would like to contrast the notation for the edge-setE from the notation for an expectation of a random variable,
E(·).
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Figure 1. (a) Simple undirected graph. A Gauss Markov random field has aGaussian variableXi associated with each
vertexi ∈ V . This graph hasp = 5 vertices, maximum degreed = 3 ands = 6 edges. (b) Zero pattern of the inverse
covarianceΘ∗ associated with the GMRF in (a). The setE(Θ∗) corresponds to the off-diagonal non-zeros (white blocks);
the diagonal is also non-zero (grey squares), but these entries do not correspond to edges. The black squares correspondto
non-edges, or zeros inΘ∗.

G over the random vectorX is then the family of Gaussian distributions with concentration matricesΘ∗ that respect
the edge structure of the graph, in the sense thatΘ∗

ij = 0 if (i, j) /∈ E. Figure1 illustrates this correspondence between
the graph structure (panel (a)), and the sparsity pattern ofthe concentration matrixΘ∗ (panel (b)). The problem of
estimating the entries of the concentration matrixΘ∗ corresponds to estimating the Gaussian graphical model instance,
while the problem of estimating the off-diagonal zero-pattern of the concentration matrix—-that is, the set

E(Θ∗) := {i, j ∈ V | i 6= j, Θ∗
ij 6= 0} (3)

corresponds to the problem of Gaussian graphicalmodel selection.
With a slight abuse of notation, we define thesparsity indexs := |E(Θ∗)| as the total number of non-zero elements

in off-diagonal positions ofΘ∗; equivalently, this corresponds to twice the number of edges in the case of a Gaussian
graphical model. We also define themaximum degree or row cardinality

d := max
i=1,...,p

∣∣∣∣
{
j ∈ V | Θ∗

ij 6= 0
}∣∣∣∣, (4)

corresponding to the maximum number of non-zeros in any row of Θ∗; this corresponds to the maximum degree in the
graph of the underlying Gaussian graphical model. Note thatwe have included the diagonal entryΘ∗

ii in the degree
count, corresponding to a self-loop at each vertex.

It is convenient throughout the paper to use graphical terminology, such as degrees and edges, even though the
distributional assumptions that we impose, as described inSection2.3, are milder and hence apply even to distributions
that are not Gaussian MRFs.

2.2 ℓ1-penalized log-determinant divergence

An important set in this paper is the cone

Sp
+ :=

{
A ∈ R

p×p | A = AT , A � 0
}
, (5)

formed by all symmetric positive semi-definite matrices inp dimensions. We assume that the covariance matrixΣ∗

and concentration matrixΘ∗ of the random vectorX are strictly positive definite, and so lie in the interior of this cone
Sp

+.
The focus of this paper is a particular type ofM -estimator for the concentration matrixΘ∗, based on minimizing

a Bregman divergence between symmetric matrices. A function is of Bregman type if it is strictly convex, continu-
ously differentiable and has bounded level sets [4, 7]. Any such function induces aBregman divergenceof the form
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Dg(A‖B) = g(A)− g(B)−〈∇g(B), A − B〉. From the strict convexity ofg, it follows thatDg(A‖B) ≥ 0 for all A
andB, with equality if and only ifA = B.

As a candidate Bregman function, consider the log-determinant barrier function, defined for any matrixA ∈ Sp
+

by

g(A) :=

{
− log det(A) if A ≻ 0

+∞ otherwise.
(6)

As is standard in convex analysis, we view this function as taking values in the extended realsR∗ = R ∪ {+∞}.
With this definition, the functiong is strictly convex, and its domain is the set of strictly positive definite matrices.
Moreover, it is continuously differentiable over its domain, with∇g(A) = −A−1; see Boyd and Vandenberghe [3] for
further discussion. The Bregman divergence correspondingto this log-determinant Bregman functiong is given by

Dg(A‖B) := − log detA + log detB + 〈〈B−1, A − B〉〉, (7)

valid for anyA, B ∈ Sp
+ that are strictly positive definite. This divergence suggests a natural way to estimate concen-

tration matrices—namely, by minimizing the divergenceDg(Θ
∗‖Θ)—or equivalently, by minimizing the function

min
Θ≻0

{
〈〈Θ, Σ∗〉〉 − log detΘ

}
, (8)

where we have discarded terms independent ofΘ, and used the fact that the inverse of the concentration matrix is
the covariance matrix (i.e.,(Θ∗)−1 = Σ∗ = E[XXT ]). Of course, the convex program (8) cannot be solved without
knowledge of the true covariance matrixΣ∗, but one can take the standard approach of replacingΣ∗ with an empirical
version, with the possible addition of a regularization term.

In this paper, we analyze a particular instantiation of thisstrategy. Givenn samples, we define thesample covari-
ance matrix

Σ̂n :=
1

n

n∑

k=1

X(k)(X(k))T . (9)

To lighten notation, we occasionally drop the superscriptn, and simply writeΣ̂ for the sample covariance. We also
define theoff-diagonalℓ1 regularizer

‖Θ‖1,off :=
∑

i6=j

|Θij |, (10)

where the sum ranges over alli, j = 1, . . . , p with i 6= j. Given some regularization constantλn > 0, we consider
estimatingΘ∗ by solving the followingℓ1-regularized log-determinant program:

Θ̂ := arg min
Θ≻0

{
〈〈Θ, Σ̂n〉〉 − log det(Θ) + λn‖Θ‖1,off

}
. (11)

As shown in AppendixA, for anyλn > 0 and sample covariance matrix̂Σn with strictly positive diagonal, this convex
optimization problem has a unique optimum, so there is no ambiguity in equation (11). When the data is actually drawn
from a multivariate Gaussian distribution, then the problem (11) is simplyℓ1-regularized maximum likelihood.

2.3 Tail conditions

In this section, we describe the tail conditions that underlie our analysis. Since the estimator (11) is based on using
the sample covariancêΣn as a surrogate for the (unknown) covarianceΣ∗, any type of consistency requires bounds on
the differencêΣn − Σ∗. In particular, we define the following tail condition:

Definition 1 (Tail conditions). The random vectorX satisfies tail conditionT (f, v∗) if there exists a constantv∗ ∈
(0,∞] and a functionf : N × (0,∞) → (0,∞) such that for any(i, j) ∈ V × V :

P[|Σ̂n
ij − Σ∗

ij | ≥ δ] ≤ 1/f(n, δ) for all δ ∈ (0, 1/v∗]. (12)

We adopt the convention1/0 := +∞, so that the valuev∗ = 0 indicates the inequality holds for anyδ ∈ (0,∞).
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Two important examples of the tail functionf are the following:

(a) anexponential-type tail function, meaning thatf(n, δ) = exp(c n δa), for some scalarc > 0, and exponent
a > 0; and

(b) apolynomial-type tail function, meaning thatf(n, δ) = c nm δ2m, for some positive integerm ∈ N and scalar
c > 0.

As might be expected, ifX is multivariate Gaussian, then the deviations of sample covariance matrix have an
exponential-type tail function witha = 2. A bit more generally, in the following subsections, we provide broader
classes of distributions whose sample covariance entries satisfy exponential and a polynomial tail bounds (see Lem-
mata1 and2 respectively).

Given a larger number of samplesn, we expect the tail probability bound1/f(n, δ) to be smaller, or equivalently,
for the tail functionf(n, δ) to larger. Accordingly, we require thatf is monotonically increasing inn, so that for each
fixed δ > 0, we can define the inverse function

nf (r; δ) := arg max
{
n | f(n, δ) ≤ r

}
. (13)

Similarly, we expect thatf is monotonically increasing inδ, so that for each fixedn, we can define the inverse in the
second argument

δf (r; n) := argmax
{
δ | f(n, δ) ≤ r

}
. (14)

For future reference, we note a simple consequence of the monotonicity of the tail functionf—namely

n > nf (δ, r) for someδ > 0 =⇒ δf (n, r) ≤ δ. (15)

The inverse functionsnf and δf play an important role in describing the behavior of our estimator. We provide
concrete examples in the following two subsections.

2.3.1 Sub-Gaussian distributions

In this subsection, we study the case of i.i.d. observationsof sub-Gaussian random variables.

Definition 2. A zero-mean random variableZ is sub-Gaussianif there exists a constantσ ∈ (0,∞) such that

E[exp(tZ)] ≤ exp(σ2 t2/2) for all t ∈ R. (16)

By the Chernoff bound, this upper bound (16) on the moment-generating function implies a two-sided tail bound
of the form

P[|Z| > z] ≤ 2 exp
(
− z2

2σ2

)
. (17)

Naturally, any zero-mean Gaussian variable with varianceσ2 satisfies the bounds (16) and (17). In addition to the
Gaussian case, the class of sub-Gaussian variates includesany bounded random variable (e.g., Bernoulli, multino-
mial, uniform), any random variable with strictly log-concave density [6, 17], and any finite mixture of sub-Gaussian
variables.

The following lemma, proved in AppendixD, shows that the entries of the sample covariance based on i.i.d.
samples of sub-Gaussian random vector satisfy an exponential-type tail bound with exponenta = 2. The argument
is along the lines of a result due to Bickel and Levina [1], but with more explicit control of the constants in the error
exponent:

Lemma 1. Consider a zero-mean random vector(X1, . . . , Xp) with covarianceΣ∗ such that eachXi/
√

Σ∗
ii is sub-

Gaussian with parameterσ. Givenn i.i.d. samples, the associated sample covarianceΣ̂n satisfies the tail bound

P
[
|Σ̂n

ij − Σ∗
ij | > δ

]
≤ 4 exp

{
− nδ2

128(1 + 4σ2)2 maxi(Σ∗
ii)

2

}
,

for all δ ∈
(
0, maxi(Σ

∗
ii) 8(1 + 4σ2)

)
.
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Thus, the sample covariance entries the tail conditionT (f, v∗) with v∗ =
[
maxi(Σ

∗
ii) 8(1 + 4σ2)

]−1
, and an

exponential-type tail function witha = 2—namely

f(n, δ) =
1

4
exp(c∗nδ2), with c∗ =

[
128(1 + 4σ2)2 max

i
(Σ∗

ii)
2
]−1

(18)

A little calculation shows that the associated inverse functions take the form

δf (r; n) =

√
log(4 r)

c∗ n
, and nf (r; δ) =

log(4 r)

c∗δ2
. (19)

2.3.2 Tail bounds with moment bounds

In the following lemma, proved in AppendixE, we show that given i.i.d. observations from random variables with
bounded moments, the sample covariance entries satisfy a polynomial-type tail bound. See the papers [26, 9] for
related results on tail bounds for variables with bounded moments.

Lemma 2. Suppose there exists a positive integerm and scalarKm ∈ R such that fori = 1, . . . , p,

E

[( Xi√
Σ∗

ii

)4m
]

≤ Km. (20)

For i.i.d. samples{X(k)
i }n

k=1, the sample covariance matrix̂Σn satisfies the bound

P
[∣∣∣Σ̂n

ij − Σ∗
ij

)∣∣∣ > δ
]

≤
{
m2m+122m(maxi Σ∗

ii)
2m (Km + 1)

}

nm δ2m
. (21)

Thus, in this case, the sample covariance satisfies the tail conditionT (f, v∗) with v∗ = 0, so that the bound holds
for all δ ∈ (0,∞), and with the polynomial-type tail function

f(n, δ) = c∗n
mδ2m wherec∗ = 1/

{
m2m+122m(maxi Σ∗

ii)
2m (Km + 1)

}
. (22)

Finally, a little calculation shows that in this case, the inverse tail functions take the form

δf (n, r) =
(r/c∗)

1/2m

√
n

, and nf (δ, r) =
(r/c∗)

1/m

δ2
. (23)

3 Main results and some consequences

In this section, we state our main results, and discuss some of their consequences. We begin in Section3.1 by
stating some conditions on the true concentration matrixΘ∗ required in our analysis, including a particular type of
incoherence or irrepresentability condition. In Section3.2, we state our first main result—namely, Theorem1 on
consistency of the estimator̂Θ, and the rate of decay of its error in elementwiseℓ∞ norm. Section3.3 is devoted
to Theorem2 on the model selection consistency of the estimator. Section 3.4 is devoted the relation between the
log-determinant estimator and the ordinary Lasso (neighborhood-based approach) as methods for graphical model
selection; in addition, we illustrate our irrepresentability assumption for some simple graphs. Finally, in Section3.5,
we state and prove some corollaries of Theorem1, regarding rates in Frobenius and operator norms.

3.1 Conditions on covariance and Hessian

Our results involve some quantities involving the Hessian of the log-determinant barrier (6), evaluated at the true
concentration matrixΘ∗. Using standard results on matrix derivatives [3], it can be shown that this Hessian takes the
form

Γ∗ := ∇2
Θg(Θ)

∣∣∣
Θ=Θ∗

= Θ∗−1 ⊗ Θ∗−1, (24)

7



where⊗ denotes the Kronecker matrix product. By definition,Γ∗ is a p2 × p2 matrix indexed by vertex pairs, so
that entryΓ∗

(j,k),(ℓ,m) corresponds to the second partial derivative∂2g
∂Θjk∂Θℓm

, evaluated atΘ = Θ∗. WhenX has
multivariate Gaussian distribution, thenΓ∗ is the Fisher information of the model, and by standard results on cumulant
functions in exponential families [5], we have the more specific expressionΓ∗

(j,k),(ℓ,m) = cov{XjXk, XℓXm}. For
this reason,Γ∗ can be viewed as an edge-based counterpart to the usual covariance matrixΣ∗.

We define the set of non-zero off-diagonal entries in the model concentration matrixΘ∗:

E(Θ∗) := {(i, j) ∈ V × V | i 6= j, Θ∗
ij 6= 0}, (25)

and letS(Θ∗) = {E(Θ∗) ∪ {(1, 1), . . . , (p, p)} be the augmented set including the diagonal. We letSc(Θ∗) denote
the complement ofS(Θ∗) in the set{1, . . . , p} × {1, . . . , p}, corresponding to all pairs(ℓ, m) for which Θ∗

ℓm = 0.
When it is clear from context, we shorten our notation for these sets toS andSc, respectively. Finally, for any two
subsetsT andT ′ of V × V , we useΓ∗

TT ′ to denote the|T | × |T ′| matrix with rows and columns ofΓ∗ indexed byT
andT ′ respectively.

Our main results involve theℓ∞/ℓ∞ norm applied to the covariance matrixΣ∗, and to the inverse of a sub-block
of the HessianΓ∗. In particular, we define

KΣ∗ := |||Σ∗|||∞ =
(

max
i=1,...,p

p∑

j=1

|Σ∗
ij |
)
, (26)

corresponding to theℓ∞-operator norm of the true covariance matrixΣ∗, and

KΓ∗ := |||(Γ∗
SS)−1|||∞ = |||([Θ∗−1 ⊗ Θ∗−1]SS)−1|||∞. (27)

Our analysis keeps explicit track of these quantities, so that they can scale in a non-trivial manner with the problem
dimensionp.

We assume the Hessian satisfies the following type ofmutual incoherence or irrepresentable condition:

Assumption 1. There exists someα ∈ (0, 1] such that

|||Γ∗
ScS(Γ∗

SS)−1|||∞ ≤ (1 − α). (28)

The underlying intuition is that this assumption imposes control on the influence that the non-edge terms, indexed
by Sc, can have on the edge-based terms, indexed byS. It is worth noting that a similar condition for the Lasso, with
the covariance matrixΣ∗ taking the place of the matrixΓ∗ above, is necessary and sufficient for support recovery using
the ordinary Lasso [19, 22, 23, 26]. See Section3.4 for illustration of the form taken by Assumption1 for specific
graphical models.

A remark on notation: although our analysis allows the quantities KΣ∗ , KΓ∗ as well as the model sizep and
maximum node-degreed to grow with the sample sizen, we suppress this dependence onn in their notation.

3.2 Rates in elementwiseℓ
∞

-norm

We begin with a result that provides sufficient conditions onthe sample sizen for bounds in the elementwiseℓ∞-
norm. This result is stated in terms of the tail functionf , and its inversesnf andδf (equations (13) and (14)), and so
covers a general range of possible tail behaviors. So as to make it more concrete, we follow the general statement with
corollaries for the special cases of exponential-type and polynomial-type tail functions, corresponding to sub-Gaussian
and moment-bounded variables respectively.

In the theorem statement, the choice of regularization constantλn is specified in terms of a user-defined parameter
τ > 2. Larger choices ofτ yield faster rates of convergence in the probability with which the claims hold, but also
lead to more stringent requirements on the sample size.
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Theorem 1. Consider a distribution satisfying the incoherence assumption (28) with parameterα ∈ (0, 1], and the
tail condition(12) with parametersT (f, v∗). LetΘ̂ be the unique optimum of the log-determinant program(11) with
regularization parameterλn = (8/α) δf (n, pτ ) for someτ > 2. Then, if the sample size is lower bounded as

n > nf

(
1
/

max
{
v∗, 6

(
1 + 8α−1

)
d max{KΣ∗KΓ∗ , K3

Σ∗K2
Γ∗}
}
, pτ

)
, (29)

then with probability greater than1 − 1/pτ−2 → 1, we have:

(a) The estimatêΘ satisfies the elementwiseℓ∞-bound:

‖Θ̂ − Θ∗‖∞ ≤
{
2
(
1 + 8α−1

)
KΓ∗

}
δf (n, pτ ). (30)

(b) It specifies an edge setE(Θ̂) that is a subset of the true edge setE(Θ∗), and includes all edges(i, j) with
|Θ∗

ij | >
{
2
(
1 + 8α−1

)
KΓ∗

}
δf (n, pτ ).

If we assume that the various quantitiesKΓ∗ , KΣ∗ , α remain constant as a function of(n, p, d), we have the
elementwiseℓ∞ bound‖Θ̂ − Θ∗‖∞ = O(δf (n, pτ )), so that the inverse tail functionδf (n, pτ ) (see equation (14))
specifies rate of convergence in the element-wiseℓ∞-norm. In the following section, we derive the consequencesof
this ℓ∞-bound for two specific tail functions, namely those of exponential-type witha = 2, and polynomial-type tails
(see Section2.3). Turning to the other factors involved in the theorem statement, the quantitiesKΣ∗ andKΓ∗ measure
the sizes of the entries in the covariance matrixΣ∗ and inverse Hessian(Γ∗)−1 respectively. Finally, the factor(1+ 8

α )
depends on the irrepresentability assumption1, growing in particular as the incoherence parameterα approaches0.

3.2.1 Exponential-type tails

We now discuss the consequences of Theorem1for distributions in which the sample covariance satisfies an exponential-
type tail bound with exponenta = 2. In particular, recall from Lemma1 that such a tail bound holds when the variables
are sub-Gaussian.

Corollary 1. Under the same conditions as Theorem1, suppose moreover that the variablesXi/
√

Σ∗
ii are sub-

Gaussian with parameterσ, and the samples are drawn independently. Then if the samplesizen satisfies the bound

n > C1 d2 (1 +
8

α
)2
(
τ log p + log 4

)
(31)

whereC1 :=
{
48

√
2 (1 + 4σ2) maxi(Σ

∗
ii) max{KΣ∗KΓ∗ , K3

Σ∗K2
Γ∗}
}2

, then with probability greater than1 −
1/pτ−2, the estimatêΘ satisfies the bound,

‖Θ̂ − Θ∗‖∞ ≤
{
16

√
2 (1 + 4σ2) max

i
(Σ∗

ii) (1 + 8α−1)KΓ∗

}
√

τ log p + log 4

n
.

Proof. From Lemma1, when the rescaled variablesXi/
√

Σ∗
ii are sub-Gaussian with parameterσ, the sample covari-

ance entries satisfies a tail boundT (f, v∗) with with v∗ =
[
maxi(Σ

∗
ii) 8(1+4σ2)

]−1
andf(n, δ) = (1/4) exp(c∗nδ2),

wherec∗ =
[
128(1 + 4σ2)2 maxi(Σ

∗
ii)

2
]−1

. As a consequence, for this particular model, the inverse functionsδf (n, pτ )
andnf (δ, pτ) take the form

δf (n, pτ ) =

√
log(4 pτ )

c∗ n
=
√

128(1 + 4σ2)2 max
i

(Σ∗
ii)

2

√
τ log p + log 4

n
, (32a)

nf (δ, pτ ) =
log(4 pτ)

c∗δ2
= 128(1 + 4σ2)2 max

i
(Σ∗

ii)
2

(
τ log p + log 4

δ2

)
. (32b)

Substituting these forms into the claim of Theorem1 and doing some simple algebra yields the stated corollary.
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When KΓ∗ , KΣ∗ , α remain constant as a function of(n, p, d), the corollary can be summarized succinctly as

a sample size ofn = Ω(d2 log p) samples ensures that an elementwiseℓ∞ bound‖Θ̂ − Θ∗‖∞ = O
(√

log p
n

)
holds

with high probability. In practice, one frequently considers graphs with maximum node degreesd that either remain
bounded, or that grow sub-linearly with the graph size (i.e., d = o(p)). In such cases, the sample size allowed by the
corollary can be substantially smaller than the graph size,so that for sub-Gaussian random variables, the method can
succeed in thep ≫ n regime.

3.2.2 Polynomial-type tails

We now state a corollary for the case of a polynomial-type tail function, such as those ensured by the case of random
variables with appropriately bounded moments.

Corollary 2. Under the assumptions of Theorem1, suppose the rescaled variablesXi/
√

Σ∗
ii have4mth moments

upper bounded byKm, and the sampling is i.i.d. Then if the sample sizen satisfies the bound

n > C2 d2
(
1 +

8

α

)2
pτ/m, (33)

whereC2 :=
{
12m [m(Km + 1)]

1
2m maxi(Σ

∗
ii)max{K2

Σ∗KΓ∗ , K4
Σ∗K2

Γ∗}
}2

, then with probability greater than

1 − 1/pτ−2, the estimatêΘ satisfies the bound,

‖Θ̂ − Θ∗‖∞ ≤ {4m[m(Km + 1)]
1

2m

(
1 +

8

α

)
KΓ∗}

√
pτ/m

n
.

Proof. Recall from Lemma2 that when the rescaled variablesXi/
√

Σ∗
ii have bounded4mth moments, then the

sample covariancêΣ satisfies the tail conditionT (f, v∗) with v∗ = 0, and withf(n, δ) = c∗n
mδ2m with c∗ defined

asc∗ = 1/
{
m2m+122m(maxi Σ∗

ii)
2m (Km + 1)

}
. As a consequence, for this particular model, the inverse functions

take the form

δf (n, pτ ) =
(pτ/c∗)

1/2m

√
n

= {2m[m(Km + 1)]
1

2m max
i

Σ∗
ii}
√

pτ/m

n
, (34a)

nf (δ, pτ ) =
(pτ/c∗)

1/m

δ2
= {2m[m(Km + 1)]

1
2m max

i
Σ∗

ii}2
(pτ/m

δ2

)
. (34b)

The claim then follows by substituting these expressions into Theorem1 and performing some algebra.

When the quantities(KΓ∗ , KΣ∗ , α) remain constant as a function of(n, p, d), Corollary2 can be summarized
succinctly asn = Ω(d2 pτ/m) samples are sufficient to achieve a convergence rate in elementwiseℓ∞-norm of the

order‖Θ̂ − Θ∗‖∞ = O
(√

pτ/m

n

)
, with high probability. Consequently, both the required sample size and the rate of

convergence of the estimator are polynomial in the number ofvariablesp. It is worth contrasting these rates with the
case of sub-Gaussian random variables, where the rates haveonly logarithmic dependence on the problem sizep.

3.3 Model selection consistency

Part (b) of Theorem1 asserts that the edge setE(Θ̂) returned by the estimator is contained within the true edge set
E(Θ∗)—meaning that it correctlyexcludesall non-edges—and that it includes all edges that are “large”, relative to
theδf (n, pτ ) decay of the error. The following result, essentially a minor refinement of Theorem1, provides sufficient
conditions linking the sample sizen and the minimum value

θmin := min
(i,j)∈E(Θ∗)

|Θ∗
ij | (35)

for model selection consistency. More precisely, define theevent

M(Θ̂; Θ∗) :=
{

sign(Θ̂ij) = sign(Θ∗
ij) ∀(i, j) ∈ E(Θ∗)

}
(36)
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that the estimator̂Θ has the same edge set asΘ∗, and moreover recovers the correct signs on these edges. With this
notation, we have:

Theorem 2. Under the same conditions as Theorem1, suppose that the sample size satisfies the lower bound

n > nf

(
1
/

max
{
2KΓ∗(1 + 8α−1) θ−1

min, v∗, 6
(
1 + 8α−1

)
d max{KΣ∗KΓ∗ , K3

Σ∗K2
Γ∗}
}
, pτ

)
. (37)

Then the estimator is model selection consistent with high probability asp → ∞,

P
[
M(Θ̂; Θ∗)

]
≥ 1 − 1/pτ−2 → 1. (38)

In comparison to Theorem1, the sample size requirement (37) differs only in the additional term2KΓ∗ (1+ 8
α )

θmin

involving the minimum value. This term can be viewed as constraining how quickly the minimum can decay as a
function of(n, p), as we illustrate with some concrete tail functions.

3.3.1 Exponential-type tails

Recall the setting of Section2.3.1, where the random variables{X(k)
i /

√
Σ∗

ii} are sub-Gaussian with parameterσ.
Let us suppose that the parameters(KΓ∗ , KΣ∗ , α) are viewed as constants (not scaling with(p, d). Then, using the
expression (32) for the inverse functionnf in this setting, a corollary of Theorem2 is that a sample size

n = Ω
(
(d2 + θ−2

min) τ log p
)

(39)

is sufficient for model selection consistency with probability greater than1 − 1/pτ−2. Alternatively, we can state that

n = Ω(τd2 log p) samples are sufficient, as along as the minimum value scales asθmin = Ω(
√

log p
n ).

3.3.2 Polynomial-type tails

Recall the setting of Section2.3.2, where the rescaled random variablesXi/
√

Σ∗
ii have bounded4mth moments.

Using the expression (34) for the inverse functionnf in this setting, a corollary of Theorem2 is that a sample size

n = Ω
(
(d2 + θ−2

min) pτ/m
)

(40)

is sufficient for model selection consistency with probability greater than1− 1/pτ−2. Alternatively, we can state than
n = Ω(d2pτ/m) samples are sufficient, as long as the minimum value scales asθmin = Ω(pτ/(2m)/

√
n).

3.4 Comparison to neighbor-based graphical model selection

Suppose thatX follows a multivariate Gaussian distribution, so that the structure of the concentration matrixΘ∗ spec-
ifies the structure of a Gaussian graphical model. In this case, it is interesting to compare our sufficient conditions for
graphical model consistency of the log-determinant approach, as specified in Theorem2, to those of the neighborhood-
based method, first proposed by Meinshausen and Bühlmann [19]. The latter method estimates the full graph structure
by performing anℓ1-regularized linear regression (Lasso)—of the formXi =

∑
j 6=i θijXj + W— of each node on

its neighbors and using the support of the estimated regression vectorθ to predict the neighborhood set. These neigh-
borhoods are then combined, by either an OR rule or an AND rule, to estimate the full graph. Various aspects of the
high-dimensional model selection consistency of the Lassoare now understood [19, 23, 26]; for instance, it is known
that mutual incoherence or irrepresentability conditionsare necessary and sufficient for its success [22, 26]. In terms
of scaling, Wainwright [23] shows that the Lasso succeeds with high probability if and only if the sample size scales
asn ≍ c({d + θ−2

min} log p), wherec is a constant determined by the covariance matrixΣ∗. By a union bound over
thep nodes in the graph, it then follows that the neighbor-based graph selection method in turn succeeds with high
probability if n = Ω({d + θ−2

min} log p).
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For comparison, consider the application of Theorem2 to the case where the variables are sub-Gaussian (which
includes the Gaussian case). For this setting, we have seen that the scaling required by Theorem2 is n = Ω({d2 +
θ−2
min} log p), so that the dependence of the log-determinant approach inθmin is identical, but it depends quadratically

on the maximum degreed. We suspect that that the quadratic dependenced2 might be an artifact of our analysis, but
have not yet been able to reduce it tod. Otherwise, the primary difference between the two methodsis in the nature
of the irrepresentability assumptions that are imposed: our method requires Assumption1 on the HessianΓ∗, whereas
the neighborhood-based method imposes this same type of condition on a set ofp covariance matrices, each of size
(p−1)×(p−1), one for each node of the graph. Below we show two cases where the Lasso irrepresentability condition
holds, while the log-determinant requirement fails. However, in general, we do not know whether the log-determinant
irrepresentability strictly dominates its analog for the Lasso.

3.4.1 Illustration of irrepresentability: Diamond graph

Consider the following Gaussian graphical model example from Meinshausen [18]. Figure2(a) shows a diamond-
shaped graphG = (V, E), with vertex setV = {1, 2, 3, 4} and edge-set as the fully connected graph overV with
the edge(1, 4) removed. The covariance matrixΣ∗ is parameterized by the correlation parameterρ ∈ [0, 1/

√
2]:

1

2

3

4
1

2 3

4

(a) (b)

Figure 2: (a) Graph of the example discussed by Meinshausen [18]. (b) A simple4-node star graph.

the diagonal entries are set toΣ∗
i = 1, for all i ∈ V ; the entries corresponding to edges are set toΣ∗

ij = ρ for
(i, j) ∈ E\{(2, 3)}, Σ∗

23 = 0; and finally the entry corresponding to the non-edge is set asΣ∗
14 = 2ρ2. Meinshausen

[18] showed that theℓ1-penalized log-determinant estimatorΘ̂ fails to recover the graph structure, for any sample size,
if ρ > −1 + (3/2)1/2 ≈ 0.23. It is instructive to compare this necessary condition to the sufficient condition provided
in our analysis, namely the incoherence Assumption1 as applied to the HessianΓ∗. For this particular example, a
little calculation shows that Assumption1 is equivalent to the constraint

4|ρ|(|ρ| + 1) < 1,

an inequality which holds for allρ ∈ (−0.2017, 0.2017). Note that the upper value0.2017 is just below the necessary
threshold discussed by Meinshausen [18]. On the other hand, the irrepresentability condition for the Lasso requires
only that2|ρ| < 1, i.e.,ρ ∈ (−0.5, 0.5). Thus, in the regime|ρ| ∈ [0.2017, 0.5), the Lasso irrepresentability condition
holds while the log-determinant counterpart fails.

3.4.2 Illustration of irrepresentability: Star graphs

A second interesting example is the star-shaped graphical model, illustrated in Figure2(b), which consists of a single
hub node connected to the rest of the spoke nodes. We considera four node graph, with vertex setV = {1, 2, 3, 4}
and edge-setE = {(1, s) | s ∈ {2, 3, 4}}. The covariance matrixΣ∗ is parameterized the correlation parameter
ρ ∈ [−1, 1]: the diagonal entries are set toΣ∗

ii = 1, for all i ∈ V ; the entries corresponding to edges are set to
Σ∗

ij = ρ for (i, j) ∈ E; while the non-edge entries are set asΣ∗
ij = ρ2 for (i, j) /∈ E. Consequently, for this particular

12



example, Assumption1 reduces to the constraint|ρ|(|ρ| + 2) < 1, which holds for allρ ∈ (−0.414, 0.414). The
irrepresentability condition for the Lasso on the other hand allows the full rangeρ ∈ (−1, 1). Thus there is again
a regime,|ρ| ∈ [0.414, 1), where the Lasso irrepresentability condition holds whilethe log-determinant counterpart
fails.

3.5 Rates in Frobenius and spectral norm

We now derive some corollaries of Theorem1 concerning estimation ofΘ∗ in Frobenius norm, as well as the spectral
norm. Recall thats = |E(Θ∗)| denotes the total number of off-diagonal non-zeros inΘ∗.

Corollary 3. Under the same assumptions as Theorem1, with probability at least1−1/pτ−2, the estimator̂Θ satisfies

|||Θ̂ − Θ∗|||F ≤
{
2KΓ∗

(
1 +

8

α

)}√
s + p δf (n, pτ ), and (41a)

|||Θ̂ − Θ∗|||2 ≤
{
2KΓ∗

(
1 +

8

α

)}
min{√s + p, d} δf (n, pτ ). (41b)

Proof. With the shorthand notationν := 2KΓ∗(1 + 8/α) δf (n, pτ ), Theorem1 guarantees that, with probability at
least1 − 1/pτ−2, ‖Θ̂ − Θ∗‖∞ ≤ ν. Since the edge set of̂Θ is a subset of that ofΘ∗, andΘ∗ has at mostp + s
non-zeros (including the diagonal), we conclude that

|||Θ̂ − Θ∗|||F =
[ p∑

i=1

(Θ̂ii − Θ∗
ii)

2 +
∑

(i,j)∈E

(Θ̂ij − Θ∗
ij)

2
]1/2

≤ ν
√

s + p,

from which the bound (41a) follows. On the other hand, for a symmetric matrix, we have

|||Θ̂ − Θ∗|||2 ≤ |||Θ̂ − Θ∗|||∞ ≤ dν, (42)

using the definition of theν∞-operator norm, and the fact thatΘ̂ andΘ∗ have at mostd non-zeros per row. Since the
Frobenius norm upper bounds the spectral norm, the bound (41b) follows.

3.5.1 Exponential-type tails

For the exponential tail function case where the rescaled random variablesXi/
√

Σ∗
ii are sub-Gaussian with parameter

σ, we can use the expression (32) for the inverse functionδf to derive rates in Frobenius and spectral norms. When the
quantitiesKΓ∗ , KΣ∗ , α remain constant, these bounds can be summarized succinctlyas a sample sizen = Ω(d2 log p)
is sufficient to guarantee the bounds

|||Θ̂ − Θ∗|||F = O
(√

(s + p) log p

n

)
, and (43a)

|||Θ̂ − Θ∗|||2 = O
(√

min{s + p, d2} log p

n

)
, (43b)

with probability at least1 − 1/pτ−2.

3.5.2 Polynomial-type tails

Similarly, let us again consider the polynomial tail case, in which the rescaled variatesXi/
√

Σ∗
ii have bounded4mth

moments and the samples are drawn i.i.d. Using the expression (34) for the inverse function we can derive rates in

13



the Frobenius and spectral norms. When the quantitiesKΓ∗ , KΣ∗ , α are viewed as constant, we are guaranteed that a
sample sizen = Ω(d2 pτ/m) is sufficient to guarantee the bounds

|||Θ̂ − Θ∗|||F = O
(√

(s + p) pτ/m

n

)
, and (44a)

|||Θ̂ − Θ∗|||2 = O
(√

min{s + p, d2} pτ/m

n

)
, (44b)

with probability at least1 − 1/pτ−2.

3.6 Rates for the covariance matrix estimate

Finally, we describe some bounds on the estimation of the covariance matrixΣ∗. By Lemma3, the estimated concen-
tration matrixΘ̂ is positive definite, and hence can be inverted to obtain an estimate of the covariance matrix, which

we denote aŝ̂Σ := (Θ̂)−1.

Corollary 4. Under the same assumptions as Theorem1, with probability at least1 − 1/pτ−2, the following bounds
hold.

(a) The element-wiseℓ∞ norm of the deviation(
̂̂
Σ − Σ∗) satisfies the bound

‖ ̂̂Σ − Σ∗‖∞ ≤ C3, [δf(n, pτ )] + C4d [δf (n, pτ )]2 (45)

whereC3 = 2K2
Σ∗KΓ∗

(
1 + 8

α

)
andC4 = 6K3

Σ∗K2
Γ∗

(
1 + 8

α

)2

.

(b) Theℓ2 operator-norm of the deviation(̂̂Σ − Σ∗) satisfies the bound

|||̂̂Σ − Σ∗|||2 ≤ C3 d [δf (n, pτ )] + C4d
2 [δf (n, pτ )]2. (46)

The proof involves certain lemmata and derivations that areparts of the proofs of Theorems1 and2, so that we
defer it to Section4.5.

4 Proofs of main result

In this section, we work through the proofs of Theorems1 and2. We break down the proofs into a sequence of lemmas,
with some of the more technical aspects deferred to appendices.

Our proofs are based on a technique that we call aprimal-dual witness method, used previously in analysis of the
Lasso [23]. It involves following a specific sequence of steps to construct a pair(Θ̃, Z̃) of symmetric matrices that
together satisfy the optimality conditions associated with the convex program (11) with high probability. Thus, when
the constructive procedure succeeds,Θ̃ is equal to the unique solution̂Θ of the convex program (11), andZ̃ is an
optimal solution to its dual. In this way, the estimatorΘ̂ inherits fromΘ̃ various optimality properties in terms of its
distance to the truthΘ∗, and its recovery of the signed sparsity pattern. To be clear, our procedure for constructing̃Θ
is not a practical algorithm for solving the log-determinant problem (11), but rather is used as a proof technique for
certifying the behavior of theM -estimator (11).

4.1 Primal-dual witness approach

As outlined above, at the core of the primal-dual witness method are the standard convex optimality conditions that
characterize the optimum̂Θ of the convex program (11). For future reference, we note that the sub-differential of the
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norm‖ · ‖1,off evaluated at someΘ consists the set of all symmetric matricesZ ∈ Rp×p such that

Zij =





0 if i = j

sign(Θij) if i 6= j andΘij 6= 0

∈ [−1, +1] if i 6= j andΘij = 0.

(47)

The following result is proved in AppendixA:

Lemma 3. For anyλn > 0 and sample covariancêΣ with strictly positive diagonal, theℓ1-regularized log-determinant
problem(11) has a unique solution̂Θ ≻ 0 characterized by

Σ̂ − Θ̂−1 + λnẐ = 0, (48)

whereẐ is an element of the subdifferential∂‖Θ̂‖1,off .

Based on this lemma, we construct the primal-dual witness solution (Θ̃, Z̃) as follows:

(a) We determine the matrix̃Θ by solving the restricted log-determinant problem

Θ̃ := arg min
Θ≻0, ΘSc=0

{
〈〈Θ, Σ̂〉〉 − log det(Θ) + λn‖Θ‖1,off

}
. (49)

Note that by construction, we havẽΘ ≻ 0, and moreover̃ΘSc = 0.

(b) We choosẽZS as a member of the sub-differential of the regularizer‖ · ‖1,off , evaluated at̃Θ.

(c) We setZ̃Sc as

Z̃Sc =
1

λn

{
− Σ̂Sc + [Θ̃−1]Sc

}
, (50)

which ensures that constructed matrices(Θ̃, Z̃) satisfy the optimality condition (48).

(d) We verify thestrict dual feasibilitycondition

|Z̃ij | < 1 for all (i, j) ∈ Sc.

To clarify the nature of the construction, steps (a) through(c) suffice to obtain a pair(Θ̃, Z̃) that satisfy the optimality
conditions (48), but donot guarantee that̃Z is an element of sub-differential∂‖Θ̃‖1,off . By construction, specifically
step (b) of the construction ensures that the entriesZ̃ in S satisfy the sub-differential conditions, sincẽZS is a member
of the sub-differential of∂‖Θ̃S‖1,off . The purpose of step (d), then, is to verify that the remaining elements ofZ̃
satisfy the necessary conditions to belong to the sub-differential.

If the primal-dual witness construction succeeds, then it acts as awitnessto the fact that the solutioñΘ to the
restricted problem (49) is equivalent to the solution̂Θ to the original (unrestricted) problem (11). We exploit this fact
in our proofs of Theorems1 and2 that build on this: we first show that the primal-dual witnesstechnique succeeds with
high-probability, from which we can conclude that the support of the optimal solution̂Θ is contained within the support
of the trueΘ∗. In addition, we exploit the characterization ofΘ̂ provided by the primal-dual witness construction to
establish the elementwiseℓ∞ bounds claimed in Theorem1. Theorem2 requires checking, in addition, that certain
sign consistency conditions hold, for which we require lower bounds on the value of the minimum valueθmin.

In the analysis to follow, some additional notation is useful. We letW denote the “effective noise” in the sample
covariance matrix̂Σ, namely

W := Σ̂ − (Θ∗)−1. (51)

Second, we use∆ = Θ̃−Θ∗ to measure the discrepancy between the primal witness matrix Θ̃ and the truthΘ∗. Finally,
recall the log-determinant barrierg from equation (6). We letR(∆) denote the difference of the gradient∇g(Θ̃) =

Θ̃−1 from its first-order Taylor expansion aroundΘ∗. Using known results on the first and second derivatives of the
log-determinant function (see p. 641 in Boyd and Vandenberghe [3]), this remainder takes the form

R(∆) = Θ̃−1 − Θ∗−1 + Θ∗−1∆Θ∗−1. (52)
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4.2 Auxiliary results

We begin with some auxiliary lemmata, required in the proofsof our main theorems. In Section4.2.1, we provide
sufficient conditions on the quantitiesW andR for the strict dual feasibility condition to hold. In Section 4.2.2, we
control the remainder termR(∆) in terms of∆, while in Section4.2.3, we control∆ itself, providing elementwise
ℓ∞ bounds on∆. In Section4.2.4, we show that under appropriate conditions on the minimum valueθmin, the bounds
in the earlier lemmas guarantee that the sign consistency condition holds. All of the analysis in these sections is
deterministicin nature. In Section4.2.5, we turn to the probabilistic component of the analysis, providing control
of the noiseW in the sample covariance matrix. Finally, the proofs of Theorems1 and 2 follows by using this
probabilistic control ofW and the stated conditions on the sample size to show that the deterministic conditions hold
with high probability.

4.2.1 Sufficient conditions for strict dual feasibility

We begin by stating and proving a lemma that provides sufficient (deterministic) conditions for strict dual feasibility
to hold, so that‖Z̃Sc‖∞ < 1.

Lemma 4 (Strict dual feasibility). Suppose that

max
{
‖W‖∞, ‖R(∆)‖∞

}
≤ α λn

8
. (53)

Then the matrix̃ZSc constructed in step (c) satisfies‖Z̃Sc‖∞ < 1, and thereforẽΘ = Θ̂.

Proof. Using the definitions (51) and (52), we can re-write the stationary condition (48) in an alternative but equivalent
form

Θ∗−1∆Θ∗−1 + W − R(∆) + λnZ̃ = 0. (54)

This is a linear-matrix equality, which can be re-written asan ordinary linear equation by “vectorizing” the matrices.
We use the notationvec(A), or equivalentlyA for thep2-vector version of the matrixA ∈ Rp×p, obtained by stacking
up the rows into a single column vector. In vectorized form, we have

vec
(
Θ∗−1∆Θ∗−1) =

(
Θ∗−1 ⊗ Θ∗−1)∆ = Γ∗∆.

In terms of the disjoint decompositionS andSc, equation (54) can be re-written as two blocks of linear equations as
follows:

Γ∗
SS∆S + WS − RS + λnZ̃S = 0 (55a)

Γ∗
ScS∆S + WSc − RSc + λnZ̃Sc = 0. (55b)

Here we have used the fact that∆Sc = 0 by construction.
SinceΓ∗

SS is invertible, we can solve for∆S from equation (55a) as follows:

∆S =
(
Γ∗

SS

)−1[− WS + RS − λnZ̃S

]
.

Substituting this expression into equation (55b), we can solve for̃ZSc as follows:

Z̃Sc = − 1

λn
Γ∗

ScS∆S +
1

λn
RSc − 1

λn
WSc

= − 1

λn
Γ∗

ScS

(
Γ∗

SS

)−1
(WS − RS) + Γ∗

ScS

(
Γ∗

SS

)−1
Z̃S − 1

λn
(WSc − RSc). (56)
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Taking theℓ∞ norm of both sides yields

‖Z̃Sc‖∞ ≤ 1

λn
|||Γ∗

ScS

(
Γ∗

SS

)−1|||∞(‖WS‖∞ + ‖RS‖∞)

+ |||Γ∗
ScS

(
Γ∗

SS

)−1|||∞‖Z̃S‖∞ +
1

λn
(‖WS‖∞ + ‖RS‖∞).

Recalling Assumption1—namely, that|||Γ∗
ScS

(
Γ∗

SS

)−1|||∞ ≤ (1 − α)—we have

‖Z̃Sc‖∞ ≤ 2 − α

λn
(‖WS‖∞ + ‖RS‖∞) + (1 − α),

where we have used the fact that‖Z̃S‖∞ ≤ 1, sinceZ̃ belongs to the sub-differential of the norm‖ · ‖1,off by
construction. Finally, applying assumption (53) from the lemma statement, we have

‖Z̃Sc‖∞ ≤ (2 − α)

λn

(αλn

4
) + (1 − α)

≤ α

2
+ (1 − α) < 1,

as claimed.

4.2.2 Control of remainder term

Our next step is to relate the behavior of the remainder term (52) to the deviation∆ = Θ̃ − Θ∗.

Lemma 5 (Control of remainder). Suppose that the elementwiseℓ∞ bound‖∆‖∞ ≤ 1
3 KΣ∗d holds. Then:

R(∆) = Θ∗−1∆Θ∗−1∆JΘ∗−1, (57)

whereJ :=
∑∞

k=0(−1)k
(
Θ∗−1∆

)k
has norm|||JT |||∞ ≤ 3/2. Moreover, in terms of the elementwiseℓ∞-norm, we

have

‖R(∆)‖∞ ≤ 3

2
d‖∆‖2

∞ K3
Σ∗ . (58)

We provide the proof of this lemma in AppendixB. It is straightforward, based on standard matrix expansion
techniques.

4.2.3 Sufficient conditions forℓ∞ bounds

Our next lemma provides control on the deviation∆ = Θ̃ − Θ∗, measured in elementwiseℓ∞ norm.

Lemma 6 (Control of∆). Suppose that

r := 2KΓ∗

(
‖W‖∞ + λn

)
≤ min

{ 1

3KΣ∗d
,

1

3K3
Σ∗ KΓ∗d

}
. (59)

Then we have the elementwiseℓ∞ bound

‖∆‖∞ = ‖Θ̃ − Θ∗‖∞ ≤ r. (60)

We prove the lemma in AppendixC; at a high level, the main steps involved are the following. We begin by noting
that Θ̃Sc = Θ∗

Sc = 0, so that‖∆‖∞ = ‖∆S‖∞. Next, we characterizẽΘS in terms of the zero-gradient condition
associated with the restricted problem (49). We then define a continuous mapF : ∆S 7→ F (∆S) such that its fixed
points are equivalent to zeros of this gradient expression in terms of∆S = Θ̃S − Θ∗

S. We then show that the function
F maps theℓ∞-ball

B(r) := {ΘS | ‖ΘS‖∞ ≤ r}, with r := 2KΓ∗

(
‖W‖∞ + λn

)
, (61)

onto itself. Finally, with these results in place, we can apply Brouwer’s fixed point theorem (e.g., p. 161; Ortega and
Rheinboldt [20]) to conclude thatF does indeed have a fixed point insideB(r).
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4.2.4 Sufficient conditions for sign consistency

We now show how a lower bound on the minimum valueθmin, when combined with Lemma6, allows us to guarantee
sign consistencyof the primal witness matrix̃ΘS.

Lemma 7 (Sign Consistency). Suppose the minimum absolute valueθmin of non-zero entries in the true concentration
matrixΘ∗ is lower bounded as

θmin ≥ 4KΓ∗

(
‖W‖∞ + λn

)
, (62)

then sign(Θ̃S) = sign(Θ∗
S) holds.

This claim follows from the bound (62) combined with the bound (60) ,which together imply that for all(i, j) ∈ S,
the estimatẽΘij cannot differ enough fromΘ∗

ij to change sign.

4.2.5 Control of noise term

The final ingredient required for the proofs of Theorems1 and2 is control on the sampling noiseW = Σ̂ − Σ∗. This
control is specified in terms of the decay functionf from equation (12).

Lemma 8 (Control of Sampling Noise). For anyτ > 2 and sample sizen such thatδf (n, pτ ) ≤ 1/v∗, we have

P

[
‖W‖∞ ≥ δf (n, pτ )

]
≤ 1

pτ−2
→ 0. (63)

Proof. Using the definition (12) of the decay functionf , and applying the union bound over allp2 entries of the noise
matrix, we obtain that for allδ ≤ 1/v∗,

P
[
max

i,j
|Wij | ≥ δ

]
≤ p2/f(n, δ).

Settingδ = δf (n, pτ ) yields that

P
[
max

i,j
|Wij | ≥ δf (n, pτ )

]
≤ p2/

[
f(n, δf (n, pτ ))

]
= 1/pτ−2,

as claimed. Here the last equality follows sincef(n, δf (n, pτ )) = pτ , using the definition (14) of the inverse function
δf .

4.3 Proof of Theorem1

We now have the necessary ingredients to prove Theorem1. We first show that with high probability the witness
matrix Θ̃ is equal to the solution̂Θ to the original log-determinant problem (11), in particular by showing that the
primal-dual witness construction (described in in Section4.1) succeeds with high probability. LetA denote the event
that‖W‖∞ ≤ δf (n, pτ ). Using the monotonicity of the inverse tail function (15), the lower lower bound (29) on the
sample sizen implies thatδf(n, pτ ) ≤ 1/v∗. Consequently, Lemma8 implies thatP(A) ≥ 1 − 1

pτ−2 . Accordingly,
we condition on the eventA in the analysis to follow.

We proceed by verifying that assumption (53) of Lemma4 holds. Recalling the choice of regularization penalty
λn = (8/α) δf (n, pτ ), we have‖W‖∞ ≤ (α/8)λn. In order to establish condition (53) it remains to establish the
bound‖R(∆)‖∞ ≤ α λn

8 . We do so in two steps, by using Lemmas6 and5 consecutively. First, we show that the
precondition (59) required for Lemma6 to hold is satisfied under the specified conditions onn andλn. From Lemma8
and our choice of regularization constantλn = (8/α) δf (n, pτ ),

2KΓ∗

(
‖W‖∞ + λn

)
≤ 2KΓ∗

(
1 +

8

α

)
δf (n, pτ ),
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providedδf(n, pτ ) ≤ 1/v∗. From the lower bound (29) and the monotonicity (15) of the tail inverse functions, we
have

2KΓ∗

(
1 +

8

α

)
δf (n, pτ ) ≤ min

{ 1

3KΣ∗d
,

1

3K3
Σ∗ KΓ∗d

}
, (64)

showing that the assumptions of Lemma6 are satisfied. Applying this lemma, we conclude that

‖∆‖∞ ≤ 2KΓ∗

(
‖W‖∞ + λn

)
≤ 2KΓ∗

(
1 +

8

α

)
δf (n, pτ ). (65)

Turning next to Lemma5, we see that its assumption‖∆‖∞ ≤ 1
3 KΣ∗d holds, by applying equations (64) and (65).

Consequently, we have

‖R(∆)‖∞ ≤ 3

2
d ‖∆‖2

∞ K3
Σ∗

≤ 6K3
Σ∗K2

Γ∗ d
(
1 +

8

α

)2

[δf (n, pτ )]2

=

{
6K3

Σ∗K2
Γ∗ d

(
1 +

8

α

)2

δf (n, pτ )

}
αλn

8

≤ αλn

8
,

as required, where the final inequality follows from our condition (29) on the sample size, and the monotonicity
property (15).

Overall, we have shown that the assumption (53) of Lemma4 holds, allowing us to conclude that̃Θ = Θ̂. The
estimator̂Θ then satisfies theℓ∞-bound (65) of Θ̃, as claimed in Theorem1(a), and moreover, we havêΘSc = Θ̃Sc =
0, as claimed in Theorem1(b). Since the above was conditioned on the eventA, these statements hold with probability
P(A) ≥ 1 − 1

pτ−2 .

4.4 Proof of Theorem2

We now turn to the proof of Theorem2. A little calculation shows that the assumed lower bound (37) on the sample
sizen and the monotonicity property (15) together guarantee that

θmin > 4KΓ∗

(
1 +

8

α

)
δf (n, pτ )

Proceeding as in the proof of Theorem1, with probability at least1 − 1/pτ−2, we have the equalitỹΘ = Θ̂, and
also that‖Θ̃ − Θ∗‖∞ ≤ θmin/2. Consequently, Lemma7 can be applied, guaranteeing that sign(Θ∗

ij) = sign(Θ̃ij)

for all (i, j) ∈ E. Overall, we conclude that with probability at least1 − 1/pτ−2, the sign consistency condition
sign(Θ∗

ij) = sign(Θ̂ij) holds for all(i, j) ∈ E, as claimed.

4.5 Proof of Corollary 4

With the shorthand̂∆ = Θ̂ − Θ∗, we have

̂̂
Σ − Σ∗ = (Θ∗ + ∆̂)−1 −

(
Θ∗
)−1

.

From the definition (52) of the residualR(·), this difference can be written as

̂̂
Σ − Σ∗ = −Θ∗−1∆̂Θ∗−1 + R(∆̂). (66)
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Proceeding as in the proof of Theorem1 we condition on the eventA = {‖W‖∞ ≤ δf (n, pτ )}, and which
holds with probabilityP(A) ≥ 1 − 1

pτ−2 . As in the proof of that theorem, we are guaranteed that the assumptions of
Lemma5 are satisfied, allowing us to conclude

R(∆̂) = Θ∗−1∆̂Θ∗−1∆̂JΘ∗−1, (67)

whereJ :=
∑∞

k=0(−1)k
(
Θ∗−1∆̂

)k
has norm|||JT |||∞ ≤ 3/2.

We begin by proving the bound (45). From equation (66), we have‖ ̂̂Σ − Σ∗‖∞ ≤ ‖L(∆̂)‖∞ + ‖R(∆̂)‖∞. From
Lemma5, we have the elementwiseℓ∞-norm bound

‖R(∆̂)‖∞ ≤ 3

2
d‖∆̂‖2

∞ K3
Σ∗ .

The quantityL(∆̂) in turn can be bounded as follows,

‖L(∆̂)‖∞ = max
ij

∣∣eT
i Θ∗−1∆̂Θ∗−1ej

∣∣

≤ max
i

‖eT
i Θ∗−1‖1 max

j
‖∆̂Θ∗−1ej‖∞

≤ max
i

‖eT
i Θ∗−1‖1‖∆̂‖∞‖max

j
‖Θ∗−1ej‖1

where we used the inequality that‖∆̂u‖∞ ≤ ‖∆̂‖∞‖u‖1. Simplifying further, we obtain

‖L(∆̂)‖∞ ≤ |||Θ∗−1|||∞‖∆̂‖∞|||Θ∗−1|||1
≤ |||Θ∗−1|||2∞‖∆̂‖∞
≤ K2

Σ∗‖∆̂‖∞,

where we have used the fact that|||Θ∗−1|||1 = |||[Θ∗−1]T |||∞ = |||Θ∗−1|||∞, which follows from the symmetry ofΘ∗−1.
Combining the pieces, we obtain

‖ ̂̂Σ − Σ∗‖∞ ≤ ‖L(∆̂)‖∞ + ‖R(∆̂)‖∞ (68)

≤ K2
Σ∗‖∆̂‖∞ +

3

2
dK3

Σ∗‖∆̂‖2
∞.

The claim then follows from the elementwiseℓ∞-norm bound (30) from Theorem1.
Next, we establish the bound (46) in spectral norm. Taking theℓ∞ operator norm of both sides of equation (66)

yields the inequality|||̂̂Σ − Σ∗|||∞ ≤ |||L(∆̂)|||∞ + |||R(∆̂)|||∞. Using the expansion (67), and the sub-multiplicativity
of theℓ∞ operator norm, we obtain

|||R(∆̂)|||∞ ≤ |||Θ∗−1|||∞|||∆̂|||∞|||Θ∗−1|||∞|||∆̂|||∞|||J |||∞|||Θ∗−1|||∞
≤ |||Θ∗−1|||3∞|||J |||∞|||∆̂|||2∞
≤ 3

2
K3

Σ∗ |||∆̂|||2∞,

where the last inequality uses the bound|||J |||∞ ≤ 3/2. (Proceeding as in the proof of Lemma5, this bound holds
conditioned onA, and for the sample size specified in the theorem statement.)In turn, the termL(∆̂) can be bounded
as

|||L(∆)|||∞ ≤ |||Θ∗−1∆̂Θ∗−1|||∞
≤ |||Θ∗−1|||2∞|||∆̂|||∞
≤ K2

Σ∗ |||∆̂|||∞,
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(a) (b) (c)

Figure 3. Illustrations of different graph classes used in simulations. (a) Chain (d = 2). (b) Four-nearest neighbor grid
(d = 4) and (c) Star-shaped graph (d ∈ {1, . . . , p − 1}).

where the second inequality uses the sub-multiplicativityof theℓ∞-operator norm. Combining the pieces yields

|||̂̂Σ − Σ∗|||∞ ≤ |||L(∆̂)|||∞ + |||R(∆̂)|||∞ ≤ K2
Σ∗ |||∆̂|||∞ +

3

2
K3

Σ∗‖∆̂‖2
∞. (69)

Conditioned on the eventA, we have the bound (42) on theℓ∞-operator norm

|||∆̂|||∞ ≤ 2KΓ∗

(
1 +

8

α

)
d δf (n, pτ ).

Substituting this bound, as well as the elementwiseℓ∞-norm bound (30) from Theorem1, into the bound (69) yields
the stated claim.

5 Experiments

In this section, we illustrate our results with various experimental simulations, reporting results in terms of the proba-
bility of correct model selection (Theorem2) or theℓ∞-error (Theorem1). For these illustrations, we study the case
of Gaussian graphical models, and results for three different classes of graphs, namely chains, grids, and star-shaped
graphs. We also consider various scalings of the quantitieswhich affect the performance of the estimator: in addition
the triple(n, p, d), we also report some results concerning the role of the parametersKΣ∗ , KΓ∗ andθmin that we have
identified in the main theorems. For all results reported here, we solved the resultingℓ1-penalized log-determinant
program (11) using theglasso program of Friedman et al. [10], which builds on the block co-ordinate descent
algorithm of d’Asprémont et al. [8].

Figure3 illustrates the three types of graphs used in our simulations: chain graphs (panel (a)), four-nearest neighbor
lattices or grids (panel (b)), and star-shaped graphs (panel (c)). For the chain and grid graphs, the maximal node degree
d is fixed by definition, tod = 2 for chains, andd = 4 for the grids. Consequently, these graphs can capture the
dependence of the required sample sizen only as a function of the graph sizep, and the parameters(KΣ∗ , KΓ∗ , θmin).
The star graph allows us to vary bothd andp, since the degree of the central hub can be varied between1 andp − 1.
For each graph type, we varied the size of the graphp in different ranges, fromp = 64 upwards top = 375.

For the chain and star graphs, we define a covariance matrixΣ∗ with entriesΣ∗
ii = 1 for all i = 1, . . . , p, and

Σ∗
ij = ρ for all (i, j) ∈ E for specific values ofρ specified below. Note that these covariance matrices are sufficient to

specify the full model. For the four-nearest neighbor grid graph, we set the entries of the concentration matrixΘ∗
ij = ω

for (i, j) ∈ E, with the valueω specified below. In all cases, we set the regularization parameterλn proportional to√
log(p)/n, as suggested by Theorems1 and2, which is reasonable since the main purpose of these simulations

is to illustrate our theoretical results. However, for general data sets, the relevant theoretical parameters cannot be
computed (since the true model is unknown), so that a data-driven approach such as cross-validation might be required
for selecting the regularization parameterλn.
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Given a Gaussian graphical model instance, and the number ofsamplesn, we drewN = 100 batches ofn
independent samples from the associated multivariate Gaussian distribution. We estimated the probability of correct
model selection as the fraction of theN = 100 trials in which the estimator recovers the signed-edge set exactly.

Note that any multivariate Gaussian random vector is sub-Gaussian; in particular, the rescaled variatesXi/
√

Σ∗
ii

are sub-Gaussian with parameterσ = 1, so that the elementwiseℓ∞-bound from Corollary1 applies. Suppose we
collect relevant parameters such asθmin and the covariance and Hessian-related termsKΣ∗ , KΓ∗ andα into a single
“model-complexity” termK defined as

K :=

[
(1 + 8α−1)(max

i
Σ∗

ii)max{KΣ∗KΓ∗ , K3
Σ∗K2

Γ∗ ,
KΓ∗

d θmin
}
]

. (70)

Then, as a corollary of Theorem2, a sample size of order

n = Ω
(
K2 d2 τ log p

)
, (71)

is sufficient for model selection consistency with probability greater than1− 1/pτ−2. In the subsections to follow, we
investigate how the empirical sample sizen required for model selection consistency scales in terms ofgraph sizep,
maximum degreed, as well as the “model-complexity” termK defined above.
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Figure 4. Simulations for chain graphs with varying number of nodesp, edge covariancesΣ∗

ij = 0.10. Plots of probability
of correct signed edge-set recovery plotted versus the ordinary sample sizen in panel (a), and versus the rescaled sample
sizen/ log p in panel (b). Each point corresponds to the average over100 trials.

5.1 Dependence on graph size

Panel (a) of Figure4 plots the probability of correct signed edge-set recovery against the sample sizen for a chain-
structured graph of three different sizes. For these chain graphs, regardless of the number of nodesp, the maximum
node degree is constantd = 2, while the edge covariances are set asΣij = 0.2 for all (i, j) ∈ E, so that the quantities
(KΣ∗ , KΓ∗ , α) remain constant. Each of the curve in panel (a) corresponds to a different graph sizep. For each curve,
the probability of success starts at zero (for small sample sizesn), but then transitions to one as the sample size is
increased. As would be expected, it is more difficult to perform model selection for larger graph sizes, so that (for
instance) the curve forp = 375 is shifted to the right relative to the curve forp = 64. Panel (b) of Figure4 replots
the same data, with the horizontal axis rescaled by(1/ log p). This scaling was chosen because for sub-Gaussian tails,
our theory predicts that the sample size should scale logarithmically with p (see equation (71)). Consistent with this
prediction, when plotted against the rescaled sample sizen/ log p, the curves in panel (b) all stack up. Consequently,
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Figure 5. Simulations for a star graph with varying number of nodesp, fixed maximal degreed = 40, and edge covariances
Σ∗

ij = 1/16 for all edges. Plots of probability of correct signed edge-set recovery versus the sample sizen in panel (a),
and versus the rescaled sample sizen/ log p in panel (b). Each point corresponds to the average overN = 100 trials.

the ratio(n/ log p) acts as an effective sample size in controlling the success of model selection, consistent with the
predictions of Theorem2 for sub-Gaussian variables.

Figure5 shows the same types of plots for a star-shaped graph with fixed maximum node degreed = 40, and
Figure6 shows the analogous plots for a grid graph with fixed degreed = 4. As in the chain case, these plots show
the same type of stacking effect in terms of the scaled samplesizen/ log p, when the degreed and other parameters
((α, KΓ∗ , KΣ∗)) are held fixed.

5.2 Dependence on the maximum node degree

Panel (a) of Figure7 plots the probability of correct signed edge-set recovery against the sample sizen for star-
shaped graphs; each curve corresponds to a different choiceof maximum node degreed, allowing us to investigate the
dependence of the sample size on this parameter. So as to control these comparisons, the models are chosen such that
quantities other than the maximum node-degreed are fixed: in particular, we fix the number of nodesp = 200, and the
edge covariance entries are set asΣ∗

ij = 2.5/d for (i, j) ∈ E so that the quantities(KΣ∗ , KΓ∗ , α) remain constant.
The minimum valueθmin in turn scales as1/d. Observe how the plots in panel (a) shift to the right as the maximum
node degreed is increased, showing that star-shaped graphs with higher degrees are more difficult. In panel (b) of
Figure7, we plot the same data versus the rescaled sample sizen/d. Recall that if all the curves were to stack up
under this rescaling, then it means the required sample sizen scales linearly withd. These plots are closer to aligning
than the unrescaled plots, but the agreement is not perfect.In particular, observe that the curved (right-most in panel
(a)) remains a bit to the right in panel (b), which suggests that a somewhat more aggressive rescaling—perhapsn/dγ

for someγ ∈ (1, 2)—is appropriate.
Note that forθmin scaling as1/d, the sufficient condition from Theorem2, as summarized in equation (71), is

n = Ω(d2 log p), which appears to be overly conservative based on these data. Thus, it might be possible to tighten
our theory under certain regimes.

5.3 Dependence on covariance and Hessian terms

Next, we study the dependence of the sample size required formodel selection consistency on the model complexity
termK defined in (70), which is a collection of the quantitiesKΣ∗ , KΓ∗ andα defined by the covariance matrix and
Hessian, as well as the minimum valueθmin. Figure8 plots the probability of correct signed edge-set recovery versus
the sample sizen for chain graphs. Here each curve corresponds to a differentsetting of the model complexity factor
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Figure 6. Simulations for2-dimensional lattice with4-nearest-neighbor interaction, edge strength interactionsΘ∗

ij = 0.1,
and a varying number of nodesp. Plots of probability of correct signed edge-set recovery versus the sample sizen in panel
(a), and versus the rescaled sample sizen/ log p in panel (b). Each point corresponds to the average overN = 100 trials.
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Figure 7. Simulations for star graphs with fixed number of nodesp = 200, varying maximal (hub) degreed, edge
covariancesΣ∗

ij = 2.5/d. Plots of probability of correct signed edge-set recovery versus the sample sizen in panel (a),
and versus the rescaled sample sizen/d in panel (b).
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Figure 8. Simulations for chain graph with fixed number of nodesp = 120, and varying model complexityK. Plot of
probability of correct signed edge-set recovery versus thesample sizen.

K, but with a fixed number of nodesp = 120, and maximum node-degreed = 2. We varied the actorK by varying
the valueρ of the edge covariancesΣij = ρ, (i, j) ∈ E. Notice how the curves, each of which corresponds to a
different model complexity factor, shift rightwards asK is increased so that models with larger values ofK require
greater number of samplesn to achieve the same probability of correct model selection.These rightward-shifts are in
qualitative agreement with the prediction of Theorem1, but we suspect that our analysis is not sharp enough to make
accurate quantitative predictions regarding this scaling.

5.4 Convergence rates in elementwiseℓ
∞

-norm

Finally, we report some simulation results on the convergence rate in elementwiseℓ∞-norm. According to Corollary1,

in the case of sub-Gaussian tails, if the elementwiseℓ∞-norm should decay at rateO(
√

log p
n ), once the sample size

n is sufficiently large. Figure9 shows the behavior of the elementwiseℓ∞-norm for star-shaped graphs of varying
sizesp. The results reported here correspond to the maximum degreed = ⌈0.1p⌉; we also performed analogous
experiments ford = O(log p) andd = O(1), and observed qualitatively similar behavior. The edge correlations
were set asΣ∗

ij = 2.5/d for all (i, j) ∈ E so that the quantities(KΣ∗ , KΓ∗ , α) remain constant. With these settings,
each curve in Figure9 corresponds to a different problem size, and plots the elementwiseℓ∞-error versus the rescaled
sample sizen/ log p, so that we expect to see curves of the formf(t) = 1/

√
t. The curves show that when the rescaled

sample size(n/ log p) is larger than some threshold (roughly40 in the plots shown), the elementwiseℓ∞ norm decays

at the rate
√

log p
n , which is consistent with Corollary1.

6 Discussion

The focus of this paper is the analysis of the high-dimensional scaling of theℓ1-regularized log determinant prob-
lem (11) as an estimator of the concentration matrix of a random vector. Our main contributions were to derive
sufficient conditions for its model selection consistency as well as convergence rates in both elementwiseℓ∞-norm, as
well as Frobenius and spectral norms. Our results allow for arange of tail behavior, ranging from the exponential-type
decay provided by Gaussian random vectors (and sub-Gaussian more generally), to polynomial-type decay guaranteed
by moment conditions. In the Gaussian case, our results havenatural interpretations in terms of Gaussian Markov
random fields.

Our main results relate the i.i.d. sample sizen to various parameters of the problem required to achieve consistency.
In addition to the dependence on matrix sizep, number of edgess and graph degreed, our analysis also illustrates the
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Figure 9. Simulations for a star graph with varying number of nodesp, maximum node degreed = ⌈0.1p⌉, edge covari-
ancesΣ∗

ij = 2.5/d. Plot of the element-wiseℓ∞ norm of the concentration matrix estimate error‖bΘ − Θ∗‖∞ versus the
rescaled sample sizen/ log(p).

role of other quantities, related to the structure of the covariance matrixΣ∗ and the Hessian of the objective function,
that have an influence on consistency rates. Our main assumption is an irrepresentability or mutual incoherence
condition, similar to that required for model selection consistency of the Lasso, but involving the Hessian of the log-
determinant objective function (11), evaluated at the true model. When the distribution ofX is multivariate Gaussian,
this Hessian is the Fisher information matrix of the model, and thus can be viewed as an edge-based counterpart to
the usual node-based covariance matrix We report some examples where irrepresentability condition for the Lasso
hold and the log-determinant condition fails, but we do not know in general if one requirement dominates the other. In
addition to these theoretical results, we provided a numberof simulation studies showing how the sample size required
for consistency scales with problem size, node degrees, andthe other complexity parameters identified in our analysis.

There are various interesting questions and possible extensions to this paper. First, in the current paper, we have
only derived sufficient conditions for model selection consistency. As in past work on the Lasso [23], it would also
be interesting to derive aconverse result—namely, to prove that if the sample sizen is smaller than some function of
(p, d, s) and other complexity parameters, then regardless of the choice of regularization constant, the log-determinant
method fails to recover the correct graph structure. Second, while this paper studies the problem of estimating a fixed
graph or concentration matrix, a natural extension would allow the graph to vary over time, a problem setting which
includes the case where the observations are dependent. Forinstance, Zhou et al. [27] study the estimation of the
covariance matrix of a Gaussian distribution in a time-varying setting, and it would be interesting to extend results of
this paper to this more general setting.
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A Proof of Lemma 3

In this appendix, we show that the regularized log-determinant program (11) has a unique solution wheneverλn > 0,
and the diagonal of the sample covarianceΣ̂n is strictly positive. By the strict convexity of the log-determinant
barrier [3], if the minimum is attained, then it is unique, so that it remains to show that the minimum is achieved. If

26



λn > 0, then by Lagrangian duality, the problem can be written in anequivalent constrained form:

min
Θ≻0,‖Θ‖1,off≤C(λn)

{
〈〈Θ, Σ̂n〉〉 − log det(Θ)

}
(72)

for someC(λn) < +∞. Since the off-diagonal elements remain bounded within theℓ1-ball, the only possible issue
is the behavior of the objective function for sequences withpossibly unbounded diagonal entries. Since anyΘ in
the constraint set is positive-definite, its diagonal entries are positive, and hence bounded below by zero. Further, by
Hadamard’s inequality for positive definite matrices [12], we havelog detΘ ≤∑p

i=1 log Θii, so that

p∑

i=1

ΘiiΣ̂
n
ii − log det Θ ≥

p∑

i=1

{
ΘiiΣ̂

n
ii − log Θii}.

As long aŝΣn
ii > 0 for eachi = 1, . . . , p, this function is coercive, meaning that it diverges to infinity for any sequence

‖(Θt
11, . . . , Θ

t
pp)‖ → +∞. Consequently, the minimum is attained.

Returning to the penalized form (11), by standard optimality conditions for convex programs, amatrix Σ̂ ≻ 0 is
optimal if and only0 belongs to the sub-differential of the objective, or equivalently if and only if there exists a matrix
Ẑ in the sub-differential of the off-diagonal norm‖ · ‖1,off such that

Σ̂ − Θ̂−1 + λẐ = 0,

as claimed.

B Proof of Lemma 5

We write the remainder in the form

R(∆) = (Θ∗ + ∆)−1 − Θ∗−1 + Θ∗−1∆Θ∗−1.

By sub-multiplicativity of the||| · |||∞ matrix norm, for any twop×p matricesA, B, we have|||AB|||∞ ≤ |||A|||∞|||B|||∞,
so that

|||Θ∗−1∆|||∞ ≤ |||Θ∗−1|||∞|||∆|||∞
≤ KΣ∗ d‖∆‖∞ < 1/3, (73)

where we have used the definition ofKΣ∗ , the fact that∆ has at mostd non-zeros per row/column, and our assumption
‖∆‖∞ < 1/(3KΣ∗). Consequently, we have the convergent matrix expansion

(
Θ∗ + ∆

)−1
=

(
Θ∗
(
I + Θ∗−1∆

))−1

=
(
I + Θ∗−1∆

)−1(
Θ∗
)−1

=

∞∑

k=0

(−1)k
(
Θ∗−1∆

)k(
Θ∗
)−1

= Θ∗−1 − Θ∗−1∆Θ∗−1 +
∞∑

k=2

(−1)k
(
Θ∗−1∆

)k(
Θ∗
)−1

= Θ∗−1 − Θ∗−1∆Θ∗−1 + Θ∗−1∆Θ∗−1∆JΘ∗−1,

whereJ =
∑∞

k=0(−1)k
(
Θ∗−1∆

)k
.

We now prove the bound (58) on the remainder as follows. Letei denote the unit vector with1 in positioni and
zeroes elsewhere. From equation (57), we have

‖R(∆)‖∞ = max
i,j

|eT
i Θ∗−1∆ Θ∗−1∆JΘ∗−1ej|

≤ max
i

‖eT
i Θ∗−1∆‖∞ max

j
‖Θ∗−1∆JΘ∗−1ej‖1,
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which follows from the fact that for any vectorsa, b ∈ Rp, |aT b| ≤ ‖a‖∞‖b‖1. This in turn can be simplified as,

‖R(∆)‖∞ ≤ max
i

‖eT
i Θ∗−1‖1 ‖∆‖∞ max

j
‖Θ∗−1∆JΘ∗−1ej‖1

since for any vectoru ∈ R
p, ‖uT ∆‖∞ ≤ ‖u‖1‖∆‖∞, where‖∆‖∞ is the elementwiseℓ∞-norm. Continuing on, we

have

‖R(∆)‖∞ ≤ |||Θ∗−1|||∞ ‖∆‖∞‖ |||Θ∗−1∆JΘ∗−1|||1,

where|||A|||1 := max‖x‖1=1 ‖Ax‖1 is theℓ1-operator norm. Since|||A|||1 = |||AT |||∞, we have

‖R(∆)‖∞ ≤ ‖∆‖∞|||Θ∗−1|||∞ |||Θ∗−1JT ∆Θ∗−1|||∞ (74)

≤ ‖∆‖∞ KΣ∗ |||Θ∗−1|||2∞|||JT |||∞|||∆|||∞

Recall thatJ =
∑∞

k=0(−1)k
(
Θ∗−1∆

)k
. By sub-multiplicativity of||| · |||∞ matrix norm, we have

|||JT |||∞ ≤
∞∑

k=0

|||∆Θ∗−1|||k∞ ≤ 1

1 − |||Θ∗−1|||∞|||∆|||∞
≤ 3

2
,

since|||Θ∗−1|||∞|||∆|||∞ < 1/3 from equation (73). Substituting this in (74), we obtain

‖R(∆)‖∞ ≤ 3

2
‖∆‖∞ KΣ∗ |||Θ∗−1|||2∞|||∆|||∞

≤ 3

2
d‖∆‖2

∞ K3
Σ∗ ,

where the final line follows since|||∆|||∞ ≤ d‖∆‖∞, and since∆ has at mostd non-zeroes per row/column.

C Proof of Lemma 6

By following the same argument as in AppendixA, we conclude that the restricted problem (49) has a unique optimum
Θ̃. Let Z̃ be any member of the sub-differential of‖ · ‖1,off , evaluated at̃Θ. By Lagrangian theory, the witness̃Θ must
be an optimum of the associated Lagrangian problem

min
Θ≻0, ΘSc=0

{
〈〈Θ, Σ̂〉〉 − log det(Θ) + λn〈〈Θ, Z̃〉〉

}
.

In fact, since this Lagrangian is strictly convex,Θ̃ is the only optimum of this problem. Since the log-determinant
barrier diverges asΘ approaches the boundary of the positive semi-definite cone,we must havẽΘ ≻ 0. If we take
partial derivatives of the Lagrangian with respect to the unconstrained elementsΘS , these partial derivatives must
vanish at the optimum, meaning that we have the zero-gradient condition

G(ΘS) = −Θ−1
S + Σ̂S + λnZ̃S = 0. (75)

To be clear,Θ is thep×p matrix with entries inS equal toΘS and entries inSc equal to zero. Since this zero-gradient
condition is necessary and sufficient for an optimum of the Lagrangian problem, it has a unique solution (namely,Θ̃S).

Our goal is to bound the deviation of this solution fromΘ∗
S , or equivalently to bound the deviation∆ = Θ̃ − Θ∗.

Our strategy is to show the existence of a solution∆ to the zero-gradient condition (75) that is contained inside the
ball B(r) defined in equation (61). By uniqueness of the optimal solution, we can thus conclude thatΘ̃ − Θ∗ belongs
this ball. In terms of the vector∆S = ΘS − Θ∗

S , let us define a mapF : R|S| → R|S| via

F (∆S) := −
(
Γ∗

SS

)−1(
G(Θ∗

S + ∆S)
)

+ ∆S , (76)
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whereG denotes the vectorized form ofG. Note that by construction,F (∆S) = ∆S holds if and only ifG(Θ∗
S +

∆S) = G(ΘS) = 0.
We now claim thatF (B(r)) ⊆ B(r). SinceF is continuous andB(r) is convex and compact, this inclusion

implies, by Brouwer’s fixed point theorem [20], that there exists some fixed point∆S ∈ B(r). By uniqueness of the
zero gradient condition (and hence fixed points ofF ), we can thereby conclude that‖Θ̃S − Θ∗

S‖∞ ≤ r.
Let ∆ ∈ Rp×p denote the zero-padded matrix, equal to∆S onS and zero onSc. By definition, we have

G(Θ∗
S + ∆S) = −(Θ∗ + ∆)−1

S + Σ̂S + λnZ̃S

=
[
− (Θ∗ + ∆)−1

S + Θ∗
S

]
+
[
Σ̂S − (Θ∗)−1

S

]
+ λnZ̃S

=
[
− (Θ∗ + ∆)−1

S + Θ∗
S

]
+ WS + λnZ̃S, (77)

where we have used the definitionW = Σ̂ − Σ∗.
For any∆S ∈ B(r), we have

|||Θ∗−1∆|||∞ ≤ |||Θ∗−1|||∞|||∆|||∞
≤ KΣ∗ d‖∆‖∞, (78)

where‖∆‖∞ denotes the elementwiseℓ∞-norm (as opposed to theℓ∞-operator norm|||∆|||∞), and the inequality
follows since∆ has at mostd non-zero entries per row/column,

By the definition (61) of the radiusr, and the assumed upper bound (59), we have‖∆‖∞ ≤ r ≤ 1
3KΣ∗d , so

that the results of Lemma5 apply. By using the definition (52) of the remainder, taking the vectorized form of the
expansion (57), and restricting to entries inS, we obtain the expansion

vec
((

Θ∗ + ∆
)−1 − Θ∗−1)

S
+ Γ∗

SS∆S = vec
(
(Θ∗−1∆)2JΘ∗−1)

S
. (79)

Using this expansion (79) combined with the expression (77) for G, we have

F (∆S) = −
(
Γ∗

SS

)−1
G(Θ∗

S + ∆S) + ∆S

=
(
Γ∗

SS

)−1
vec
{[(

Θ∗ + ∆
)−1 − Θ∗−1]

S
− WS − λnZ̃S

}
+ ∆S

=
(
Γ∗

SS

)−1
vec
[
(Θ∗−1∆)2JΘ∗−1]

S︸ ︷︷ ︸
−
(
Γ∗

SS

)−1(
WS + λnZ̃S

)
︸ ︷︷ ︸

.

T1 T2

The second term is easy to deal with: using the definitionKΓ∗ = |||(Γ∗
SS)−1|||∞, we have‖T2‖∞ ≤ KΓ∗

(
‖W‖∞+

λn

)
= r/2. It now remains to show that‖T1‖∞ ≤ r/2. We have

‖T1‖∞ ≤ KΓ∗

∥∥ vec
[
(Θ∗−1∆)2JΘ∗−1]

S

∥∥
∞

≤ KΓ∗‖R(∆)‖∞,

where we used the expanded form (57) of the remainder, Applying the bound (58) from Lemma5, we obtain

‖T1‖∞ ≤ 3

2
dK3

Σ∗KΓ∗ ‖∆‖2
∞ ≤ 3

2
dK3

Σ∗KΓ∗ r2.

Sincer ≤ 1
3K3

Σ∗KΓ∗d
by assumption (59), we conclude that

‖T1‖∞ ≤ 3

2
dK3

Σ∗KΓ∗

1

3K3
Σ∗KΓ∗d

r = r/2,

thereby establishing the claim.
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D Proof of Lemma 1

For each pair(i, j) andν > 0, define the event

Aij(ν) :=
{
| 1
n

n∑

k=1

X
(k)
i X

(k)
j − Σ∗

ij | > ν
}
.

As the sub-Gaussian assumption is imposed on the variables{X(k)
i } directly, as in Lemma A.3 of Bickel and Levina

[2], our proof proceeds by first decoupling the productsX
(k)
i X

(k)
j . For each pair(i, j), we defineρ∗ij = Σ∗

ij/
√

Σ∗
iiΣ

∗
jj ,

and the rescaled random variablesX
(k)
i := X

(k)
ij /

√
Σ∗

ii. Noting that the strict positive definiteness ofΣ∗ implies that
|ρ∗ij | < 1, we can also define the auxiliary random variables

U
(k)
ij := X

(k)
i + X

(k)
j and V

(k)
ij := X

(k)
i − X

(k)
j . (80)

With this notation, we then claim:

Lemma 9. Suppose that eachX(k)
i is sub-Gaussian with parameterσ. Then for each node pair(i, j), the following

properties hold:

(a) For all k = 1, . . . , n, the random variablesU (k)
ij andV

(k)
ij are sub-Gaussian with parameters2σ.

(b) For all ν > 0, the probabilityP[Aij(ν)] is upper bounded by

P
[
|

n∑

k=1

(U
(k)
ij )2 − 2(1 − ρ∗ij)| >

2nν√
Σ∗

iiΣ
∗
jj

]
+ P

[
|

n∑

k=1

(V
(k)

ij )2 − 2(1 − ρ∗ij)| >
2nν√
Σ∗

iiΣ
∗
jj

]
.

Proof. (a) For anyr ∈ R, we have

E[exp(r U
(k)
ij )] = E

[
exp

(
r X

(k)
i

)
exp

(
rX

(k)
j

)]
≤ E

[
exp

(
2r X

(k)
i

)]1/2 [
exp

(
2rX

(k)
j

)]1/2

,

where we have used the Cauchy-Schwarz inequality. Since thevariablesX(k)
i andX

(k)
j are sub-Gaussian with param-

eterσ, we have

E

[
exp

(
2r X

(k)
i

)]1/2

E

[
exp

(
2rX

(k)
j

)]1/2

≤ exp(σ2 r2

2
) exp(σ2 r2

2
),

so thatU (k)
ij is sub-Gaussian with parameter2σ as claimed.

(b) By straightforward algebra, we have the decomposition

n∑

k=1

(X
(k)
i X

(k)
j − ρ∗ij) =

{1

4

n∑

i=1

{
(X

(k)
i + X

(k)
j )2 − 2(1 + ρ∗st)

}
−
{1

4

n∑

i=1

{
(X∗(k)

s − X
∗(k)
t )2 − 2(1 − ρ∗st)

}
.

By union bound, we obtain thatP[Aij(ν)] is upper bounded by

P

[∣∣
n∑

k=1

(U
(k)
ij )2 − 2 (1 + ρ∗ij)

∣∣ ≥ 4nν

2
√

Σ∗
iiΣ

∗
jj

]
+ P

[∣∣
n∑

k=1

(V
(k)
ij )2 − 2 (1 − ρ∗ij)

∣∣ ≥ 4nν

2
√

Σ∗
iiΣ

∗
jj

]
, (81)

which completes the proof of Lemma9(b).

It remains to control the terms
∑n

k=1(U
(k)
ij )2 and

∑n
k=1(V

(k)
ij )2. We do so by exploiting tail bounds [6] for sub-

exponential random variables. A zero-mean random variableZ is said to besub-exponentialif there exists a constant
γ ∈ (0,∞) andφ ∈ (0,∞] such that

E[exp(tZ)] ≤ exp(γ2 t2/2) for all t ∈ (−φ, φ). (82)
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Note that forφ < +∞, this requirement is a weakening of sub-Gaussianity, sincethe inequality is only required to
hold on the interval(−φ, +φ).

Now consider the variatesZk;ij := (U
(k)
ij )2 − 2 (1 + ρ∗ij). Note that they are zero-mean; we also claim they are

sub-exponential.

Lemma 10. For all k ∈ {1, . . . , n} and node-pairs(i, j) ∈ V × V , the variables

Zk;ij := (U
(k)
i )2 − 2 (1 + ρ∗ij)

are sub-exponential with parameterγU = 16(1 + 4σ2) in the interval(−φU , φU ), with φU = 1/(16(1 + 4σ2)).

We can exploit this lemma to apply tail bounds for sums of i.i.d. sub-exponential variates (Thm. 5.1, [6]). Doing

so yields that fort ≤ γ2
UφU , we haveP

[
|∑n

k=1(U
(k)
ij )2 − 2(1 + ρ∗ij)| > nt] ≤ 2 exp

{
− nt2/(2γ2

U )
}

. Setting

t = 2ν/ maxi Σ∗
ii, and noting that(2nν/

√
Σ∗

iiΣ
∗
jj) ≥ (2nν/ maxi Σ∗

ii), we obtain

P

[
|

n∑

k=1

(U
(k)
ij )2 − 2(1 + ρ∗ij)| >

2nν√
Σ∗

iiΣ
∗
jj

]
≤ 2 exp

{
− 2nν2

maxi(Σ∗
ii)

2 γ2
U

}

≤ 2 exp

{
− nν2

maxi(Σ∗
ii)

2 128 (1 + 4σ2)2

}
,

for all ν ≤ 8(maxi Σ∗
ii) (1 + 4σ2). A similar argument yields the same tail bound for the deviation involving V

(k)
ij .

Consequently, using Lemma9(b), we conclude that

P[Aij(ν)] ≤ 4 exp
{
− nν2

maxi(Σ∗
ii)

2 128 (1 + 4σ2)2
}
.,

valid for ν ≤ 8(maxi Σ∗
ii) (1 + 4σ2), as required. It only remains to prove Lemma10.

Proof of Lemma10. If we can obtain a boundB > 0 such that

sup
m≥2

[
E(|Zk;ij |m

m!

]1/m

≤ B,

it then follows (Thm. 3.2, [6]) thatZk;ij is sub-exponential with parameter2B in the interval(− 1
2B , + 1

2B ). We obtain
such a boundB as follows. Using the inequality(a + b)m ≤ 2m(am + bm), valid for any real numbersa, b, we have

E(|Zk;ij |m) ≤ 2m
(

E(|U (k)
ij |2m) + (2(1 + ρ∗ij))

m
)

. (83)

Recalling thatU (k)
ij is sub-Gaussian with parameter2σ, from Lemma 1.4 of Buldygin and Kozachenko [6] regarding

the moments of sub-Gaussian variates, we haveE[|U (k)
ij |2m] ≤ 2(2m/e)m(2σ)2m. Thus, noting the inequalitym! ≥

(m/e)m, it follows thatE[|U (k)
ij |2m]/m! ≤ 23m+1σ2m. It then follows from equation (83) that

[
E(|Zk;ij |m)

m!

]1/m

≤ 21/m

(
(24m+1σ2m)1/m +

4(1 + ρ∗ij)

(m!)1/m

)

≤ 21/m

(
21/m 16 σ2 +

4(1 + ρ∗ij)

(m!)1/m

)
,

where we have used the inequality(x + y)1/m ≤ 21/m(x1/m + y1/m), valid for any integerm ∈ N and real numbers
x, y > 0. Since the bound is a decreasing function ofm, it follows that

sup
m≥2

[
E(|Zk;ij |m

m!

]1/m

≤ 21/2

(
21/2 16 σ2 +

4(1 + ρ∗ij)

(2)1/2

)

≤ 32σ2 + 8 = 8(1 + 4σ2),

where we have used the fact that|ρ∗ij | ≤ 1. The claim of the lemma thus follows.
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E Proof of Lemma 2

Define the random variablesW (k)
ij = X

(k)
i X

(k)
j −Σ∗

ij , and note that they have mean zero. By applying the Chebyshev
inequality, we obtain

P
[∣∣∣

n∑

k=1

W
(k)
ij

∣∣∣ > n ν
]

= P
[(
|

n∑

k=1

W
(k)
ij

)2m
> (n ν)2m

]

≤
E
[(∑n

k=1 W
(k)
ij

)2m ]

n2m ν2m
. (84)

LettingA = {(a1, . . . , an) | ai ∈ {0, . . . , 2m},
∑n

i=1 ai = 2m}, by the multinomial theorem, we have

E
[( n∑

k=1

W
(k)
ij

)2m ]
= E

[∑

a∈A

(
2m

a1, . . . , an

) n∏

k=1

(W
(k)
ij )ak

]

=
∑

a∈A

(
2m

a1, . . . , an

) n∏

k=1

E
[
(W

(k)
ij )ak

]
,

where the final equality uses linearity of expectation, and the independence of the variables{W (k)
ij }n

k=1.

Since the variablesW (k)
ij are zero-mean, the product

∏n
k=1 E

[
(W

(k)
ij )ak

]
vanishes for any multi-indexa ∈ A such

thatak = 1 for at least onek. Accordingly, defining the subset

A−1 := {(a1, . . . , an) | ai ∈ {0, 2, . . . , 2m},
n∑

i=1

ai = 2m},

we have

E
[( n∑

k=1

W
(k)
ij

)2m ]
=

∑

a∈A−1

(
2m

a1, . . . , an

) n∏

k=1

E
[
(W

(k)
ij )ak

]

≤
( ∑

a∈A−1

(
2m

a1, . . . , an

))

︸ ︷︷ ︸

max
a∈A−1

n∏

k=1

E
[
(W

(k)
ij )ak

]

︸ ︷︷ ︸
. (85)

T1 T2

The quantityT1 is equal to the number of ways to put2m balls inn bins such that if a bin contains a ball, it should
have at least two balls. Note that this implies there can thenbe at mostm bins containing a ball. Consequently, the
termT1 is bounded above by the product of the number of ways in which we can choosem out of n bins, and the
number of ways in which we can put2m balls intom bins—viz.

T1 ≤
(

n

m

)
m2m ≤ nm m2m.

Turning now to the second termT2, note the following inequality: for any numbers(v1, . . . , vℓ) ∈ Rℓ
+ and non-

negative integers(a1, . . . , aℓ), we have

ℓ∏

k=1

vak

k ≤ ( max
k=1,...,ℓ

vk)a+ ≤
ℓ∑

k=1

v
a+

k , wherea+ :=
ℓ∑

k=1

ak.

32



Using this inequality, for anya ∈ A−1, we have

n∏

k=1

E
[
(W

(k)
ij )ak

]
≤

n∏

k=1

E
[
|W (k)

ij |ak
]

≤
∑

{k | ak 6=0}

E
[
(W

(k)
ij )2m

]

≤ m max
k∈{1,...,n}

E
[
(W

(k)
ij )2m

]
,

where the last inequality follows since any multi-indexa ∈ A−1 has at mostm non-zero entries. Thus, we have shown
thatT2 ≤ m maxk∈{1,...,n} E

[
(W

(k)
ij )2m

]
.

Substituting our bounds onT1 andT2 into equation (85), we obtain

E
[∣∣

n∑

k=1

(
W

(k)
ij

)2m ] ≤ nm m2m+1 max
k∈{1,...,n}

E
[
(W

(k)
ij )2m

]
. (86)

It thus remains to bound the moments ofW
(k)
ij . We have

E
[
(W

(k)
ij )2m

]
≤ E

[
(X

(k)
i X

(k)
j − Σ∗

ij)
2m
]
≤ 22m

{
E[
(
X

(k)
i X

(k)
j

)2m
] + [Σ∗

ij ]
2m
}
,

where we have used the inequality(a + b)2m ≤ 22m(a2m + b2m), valid for all real numbersa andb. An application
of the Cauchy-Schwarz inequality yields

E
[
(W

(k)
ij )2m

]
≤ 22m

{√
E[
(
X

(k)
i

)4m
] E[
(
X

(k)
j

)4m
] + [Σ∗

ij ]
2m
}

≤ 22m
(
Km[Σ∗

ijΣ
∗
ij ]

m + [Σ∗
oj]

2m
)
,

where we have used the assumed moment boundE[
(
X

(k)
i /

√
Σ∗

ii

)4m
] ≤ Km. Equation (86) thus reduces to

E
[∣∣

n∑

k=1

W
(k)
ij

∣∣2m ] ≤ nm m2m+1 22m
(
Km[Σ∗

iiΣ
∗
jj ]

m + [Σ∗
ij ]

2m
)
.

Substituting back into equation (84) yields

P
[∣∣∣

1

n

n∑

k=1

(
X

(k)
i X

(k)
j − Σ∗

ij

)∣∣∣ > ν
]

≤
m2m+1nm22m

(
Km[Σ∗

iiΣ
∗
jj ]

m + [Σ∗
ij ]

2m
)

n2m ν2m

=

{
m2m+122m (Km[Σ∗

iiΣ
∗
jj ]

m + [Σ∗
ij ]

2m)
}

nm ν2m
.

Noting thatΣ∗
ij , Σ∗

jj , andΣ∗
ij are all bounded above bymaxi Σ∗

ii, we obtain

P
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1

n

n∑

k=1

(
X

(k)
i X

(k)
j − Σ∗

ij

)∣∣∣ > ν
]

≤
{
m2m+122m(maxi Σ∗

ii)
2m (Km + 1)

}

nm ν2m
,

as claimed.
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