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With the advancement of high-throughput technologies, nowadays high-dimensional genomic
and proteomic data are easy to obtain and have become ever increasingly important in unveiling
the complex etiology of many diseases. While relating a large number of factors to a survival
outcome through the Cox relative risk model, various techniques have been proposed in the
literature. We review some recently developed methods for such analysis. For high-dimensional
variable selection in the Cox model with parametric relative risk, we consider the univariate
shrinkage method (US) using the lasso penalty and the penalized partial likelihood method using
the folded penalties (PPL). The penalization methods are not restricted to the finite-dimensional
case. For the high-dimensional (p → ∞, p ≪ n) or ultrahigh-dimensional case (n → ∞, n ≪ p),
both the sure independence screening (SIS) method and the extended Bayesian information
criterion (EBIC) can be further incorporated into the penalization methods for variable selection.
We also consider the penalization method for the Cox model with semiparametric relative risk,
and the modified partial least squares method for the Cox model. The comparison of different
methods is discussed and numerical examples are provided for the illustration. Finally, areas of
further research are presented.

1. Introduction

The modern high-throughput technologies offer the possibility of a powerful, genome-wide
search for the genetic and environmental factors that have influential effects on diseases. The
identification of such factors and the discernment of such a relationship can lead to better
understanding of the causation of diseases and better predictive models. In the presence of
a large number of covariates, it is very challenging to build a model which fully utilize all
the information and excels in both parsimony and prediction accuracy. In classical settings
where the number of covariates p is fixed and the sample size n is large, subset selection
coupled with model selection criteria such as Akaike’s information criterion (AIC) and
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Bayesian information criterion (BIC) can be used to identify relevant variables or choose
the best model with the optimal prediction accuracy. However, subset selection is inherently
unstable because of its discreteness [1]. To overcome this drawback of subject selection,
Tibshirani [2] proposed the least absolute shrinkage and selection operator (LASSO) for
simultaneous coefficient estimation and variable selection. Fan and Li [3] further proposed
the penalization method with the smoothly-clipped absolute deviation (SCAD) penalty and
rigorously established its oracle properties. The optimal properties of the lasso or SCAD-
based penalization methods are not restricted to the finite-dimensional case. In the high-
dimensional case (p → ∞, p ≪ n), Fan and Peng [4] proved that the oracle properties are
well retained. In the ultra high-dimensional case (n → ∞, n ≪ p), Fan and Lv [5] proposed
the sure independence screening method (SIS) which first reduces dimensionality from high
to a moderate scale that is below the sample size and then apply a penalization method.
In a general asymptotic framework, the sure independence screening method is shown to
fare well for even exponentially growing dimensionality. In high-dimensional or ultra high-
dimensional situations, J. Chen and Z. Chen [6] proposed the extended Bayesian information
criterion (EBIC) and established its selection consistency under mild conditions. The EBIC is
further extended to the generalized linear model [7].

When the clinical outcome involves time to an event such as age at disease onset
or time to cancer recurrence, the regression analysis is often conducted by the Cox relative
risk model. The classical Cox model is only applicable to the situation where the number
of subjects is much larger than the number of covariates. Thus, to accommodate the large p
and small n scenario, some variable selection and dimension reduction techniques have to
be implemented in a regression analysis. Recently, for variable selection in the Cox model,
a number of approaches based on the efficient shrinkage method have been proposed and
gained increased popularity. See, for example, LASSO [8], SCAD [9], and adaptive lasso
[10, 11].

For high-dimensional variable selection in the Cox model with parametric relative
risk, we review the univariate shrinkage method (US) [12] and the penalized partial
likelihood approach [13]. The univariate shrinkage method [12] assumes the independence
of the covariates in each risk set and the partial likelihood factors into a product. This
leads to an attractive procedure which is univariate in its operation and most suitable
for a high-dimensional variable selection setting. The variables are entered into the model
based on the size of their Cox score statistics, and in nature the method is similar to
univariate thresholding in linear regression and nearest shrunken centroids in classification.
The univariate shrinakge method is applicable to the setting with an arbitrary number of
variables but is less informative in identifying joint effects from multiple variables. The
penalized partial likelihood approach [13] employs a class of folded-concave penalties to the
Cox parametric relative risk model and strong oracle properties of non-concave penalized
methods are established for nonpolynomial (NP) dimensional data. A coordinate-wise
algorithm is used for finding the grid of solution paths. The penalized partial likelihood
approach investigates joint effects from multiple variables and is applicable to both the
finite-dimensional and high-dimensional cases. For the ultra high-dimensional case, some
preliminary procedures such as the sure independence screening (SIS) method and the
extended Bayesian information criterion (EBIC) can be used to reduce the number of
variables to be moderately below the sample size before the penalized partial likelihood
approach is formally adopted.

The aforementioned two methods both adopt the Cox parametric relative risk model
for the covariance analysis. In practice, the parametric form of the relative risk model is quite
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restrictive and may not be tenable. In Section 3, we review a penalization method in the
Cox model with semiparametric relative risk approach [14]. The relative risk is assumed
to partially linear with one parametric component and one nonparametric component.
Two penalties are applied sequentially to simultaneously estimate the parameters and
select variables for both the parametric and the nonparametric parts. The semiparametric
relative risk model greatly relaxes the restrictive assumption of the classical Cox model and
facilitate its use in exploratory data analysis. Although the method is proposed for the finite-
dimensional setting, it is straightforward to be extended to the high dimensional and ultra
high-dimensional situations the same as the penalization method for the Cox model with
parametric relative risk.

In Section 4, we review a modified partial least squares method for dimension
reduction in the Cox regression approach [15] which provides another alternative approach
to dealing with the problem of high-dimensionality. By mimicking the partial least squares in
the linear model, it first constructs the components which are linear combinations of original
covariates. By sequentially determining the components and using the cross-validation to
select the number of components, a parsimonious model with good predictive accuracy can
be obtained.

In Section 5, we discuss the comparison of different methods and numerical examples
are provided for the illustration. Finally, several important problems for future research are
also presented in Section 6.

2. The Penalization Methods for the Cox Model with
Parametric Relative Risk

2.1. The Cox Model with Parametric Relative Risk

We consider the setting where the time to event is subject to right censoring and the
observations consist of {Yi = Ti ∧ Ci, δi = I(Ti ≤ Ci), Zi, i = 1, . . . , n}, where Ti is the survival
time, Ci the censoring time, and Zi is the p-dimensional vector of covariates. The Cox relative
risk model assumes that the conditional hazard function of T given the covariates Z = z takes
the following form:

λ(t | Z = z) = λ0(t) exp
(
βT0Z

)
, (2.1)

where λ0(t) is the unknown baseline hazard function and β0 is the unknown vector of
coefficients. The influential effects that the covariates might have on the time Ti are examined
by the relative risk. The unknown coefficient vector β0 is estimated by maximizing the partial
likelihood function

L
(
β
)
=

n∏

i=1

{
exp

(
βTZi

)
∑

j∈Ri
exp

(
βTZj

)
}δi

, (2.2)
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or equivalently, the log partial likelihood function

ℓ
(
β
)
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i=1

δi

⎧
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⎩βTZi − log
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⎦
⎫
⎬
⎭, (2.3)

where Ri = {j : Yj ≥ Yi}. As in the least squares estimation, the estimation of β from the
partial likelihood function requires the sample size n is much larger than the dimension of
the covariate vector p. In practice, a marginal approach is often adopted which includes one
covariate at a time and maximizes
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for k = 1, . . . , p.

2.2. The Univariate Shrinkage Method

To identify the variables which are associated with T , multiple testing procedures will be
used to make valid statistical inferences. However, Tibshirani [12] looks at the problem from
another perspective. Since the maximizer of the partial likelihood is not unique when n ≪ p,
he proposes the regularized partial likelihood approach by using the lasso penalty as follows:

J
(
β
)
= ℓ

(
β
)
− λ

p∑

k=1

∣∣βk
∣∣. (2.6)

By assuming that both conditionally on each risk set, and marginally, the covariates are
independent of one another, and using Bayes’s theorem, Tibshirani [12] shows that the log
partial likelihood function

ℓ
(
β
)
= constant +

p∑

k=1

ℓk
(
βk
)
. (2.7)

The regularized partial likelihood function is

J
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)
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p∑

k=1

ℓk
(
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)
− λ

p∑

k=1

∣∣βk
∣∣, (2.8)



Journal of Probability and Statistics 5

Table 1: Simulation results for variable selection in the Cox model with parametric relative risk.

p Method MSE FDR PSR MMS

250

US 1.62 0.06 0.58 3.97

PS 0.92 0.16 0.76 6.55

EBIC 0.96 0.10 0.69 4.70

500

US 1.71 0.07 0.55 3.95

PS 1.01 0.18 0.74 6.63

EBIC 1.06 0.11 0.66 4.73

1000

US 1.84 0.08 0.52 3.91

PS 1.12 0.20 0.70 6.69

EBIC 1.15 0.13 0.63 4.78

Table 2: Results for the microarray lung cancer dataset.

Method Number of selected genes Median P value (×10−4)

US 5 10.06

PS 13 0.064

EBIC 8 0.082

and results in the the Cox univariate shrinkage (CUS) estimator which maximizes the
penalized function. Since the maximization is a set of one-dimensional maximization
ℓk(βk) − λ|βk|, k = 1, . . . , p, for a range of λ, we can fairly easily get the penalized estimates

β̂k. Actually, the entire paths of the regularization estimates can be obtained. It can also be
shown that

β̂k /= 0 ⇐⇒
|Uk|√
Vk

> λ, (2.9)

where Uk and Vk are the gradient of the (unpenalized) log-partial likelihood and the
(negative) observed Fisher information. This is similar to soft/hard thresholding. Hence, the
Cox univariate shrinkage method ranks all the covariates based on the Cox score statistic.
As the Cox score is often used for determining the univariate significance of covariates, the
results have easy interpretation. The tuning parameter λ can be selected by cross-validation
as in Verweij and van Houwelingen [16] or directly determined as in Donoho and Johnstone
[17]. The Cox univariate shrinkage method presents a numerically convenient approach for
high-dimensional variable selection in the Coxmodel. In the literature, the modified shooting
algorithm [10] and the least squares approximation based algorithm [11] both yield the entire
solution paths, but only when n is much larger than p.

One drawback of the Cox univariate shrinkage procedure is that the variables enter
into the model based on their univariate Cox scores. Thus, when two predictors are both
strongly predictive and highly correlated with each other, both will appear in the model. In
that case, it may be more desirable to just include one of them for parsimony. This can be
done using preconditioning [18] as is demonstrated by Tibshirani [12].
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2.3. The Penalized Partial Likelihood Method

The penalized partial likelihood estimation with noncave penalties has been extensively
studied by Fan and Li [9] for the case where the sample size n is much larger than the
dimension of Z Bradic et al. [13] considered the folded penalties for the penalized partial
likelihood estimation when the dimension of Z is nonpolynomial (NP). The folded penalties
include the smoothly clipped absolute deviation (SCAD) and the minimax concave penalty
(MCP) as special cases. The penalized log partial likelihood becomes

ℓ
(
β
)
− λn

p∑

k=1

pλn
(∣∣βk

∣∣), (2.10)

where pλn(·) is a penalty function and λn is a nonnegative tuning parameter. For a class of
folded penalties, by clarifying the identification problem of the penalized partial likelihood
estimates and deriving a large deviation result for divergence of a martingale from its
compensator, Bradic et al. [13] establish the strong oracle properties for the penalized
estimates. Note that their results also hold for the lasso penalty. The strong oracle property
indicates that as both n and p goes to∞, with probability tending to 1, the penalized estimator
behaves as if the true relevant variables in the model were known. This is different from the
classical notion of oracle which just requires that the estimator behaves like the oracle rather
than an actual oracle itself. The strong oracle property implies the classical oracle property
of Fan and Li [9] and sign consistency of Bickel et al. [19]. This tighter notion of an oracle
property was first mentioned in Kim et al. [20] for the SCAD estimator of the linear model
with polynomial dimensionality and then extended by Bradic et al. [21] to the penalized M-
estimators under the ultrahigh dimensionality setting. Bradic et al. [13] further extended it to
the Coxmodel by employing sophisticated techniques dealingwithmartingale and censoring
structures.

Analogous to the Cox univariate shrinkage method, the penalized Cox relative risk
method [13] proposes a coordinate wise algorithm which is especially attractive for the
situation of p ≫ n and have been previously studied for linear and generalized linear models
[5, 22, 23]. Since the coordinate-wise maximization algorithm in each iteration provides limits
that are stationary points of the overall optimization, each output of the iterative coordinate
ascent algorithm (ICA), Bradic et al. [13] propose gives a stationary point.

For each iteration, sequentially for k = 1, . . . , p, by the partial quadratic approximation
of ℓ(β) at the current estimate along the k-th coordinate while fixing the other coordinates, the
k-th coordinate of the estimate is updated bymaximizing the univariate penalized likelihood.
Due to the univariate nature, the problem can be solved analytically, avoiding the challenges
of nonconcave optimization. It updates each coordinate if the maximizer of the penalized
univariate optimization increases the penalized objective function as well. The algorithm
stops when two values of the penalized objective function are not different by more than
a small threshold value.

Although both the iterative coordinate ascent algorithm (ICA) and the univariate
shrinkage method exploit the convenient of univariate optimization, the univariate shrinkage
method separates the coefficient estimates while in the iterative coordinate ascent algorithm,
the coefficient estimates, are still related to one another in the iterative updating. These
two methods also require different conditions. The univariate shrinkage method assumes
that both conditionally on each risk set, and marginally, the covariates are independent of
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one another while the penalized Cox relative risk method assumes the conditions on the
folded-concave penalties, the sparsity level, the dimensionality of the covariate vector, and
the magnitude of the tuning parameter λn.

2.4. The Penalized Partial Likelihood Approach for
the Ultra High-Dimensional Case

While the univariate shrinkage method is applicable to an arbitrary dimensionality, the
penalized partial likelihood requires that the sample size is larger than the number of
variables. Thus, to apply the penalized partial likelihood approach to the ultra high-
dimensional case, a preliminary screening procedure is needed. Fan and Lv [5] proposed
the sure independence screening procedure which first shrinks the full model 1, . . . , p
straightforwardly and accurately down to a submodel with size d = o(n). Thus, the
original problem of estimating the sparse p-vector β reduces to estimating a sparse d-
vector that is based on the now much smaller submodel. The penalized partial likelihood
method in Section 2.3 can then be applied to the submodel. Fan and Lv [5] proved the sure
independence screening method has optimal theoretical properties for even exponentially
growing dimensionality.

For small n large P problems, the traditional model selection criteria such as AIC, BIC,
and cross-validation choose too many features. To overcome the difficulties, J. Chen and Z.
Chen [6] developed a family of extended Bayes’ information criteria (EBIC). The EBIC is
shown to be consistent with nice finite sample properties in both the linear model [6] and the
generalized linear model [7]. For any subset model s ⊂ {1, 2, . . . , p}, denote its size by ν(s).

Let β̂(s) be the maximum partial likelihood estimate corresponding to the subset model s.
The extended Bayesian information criterion is defined as

−2ℓ
(
β̂(s)

)
+ ν(s) logn + 2ν(s)γ log p, (2.11)

where γ is a prespecified constant and can be chosen to be 0.5 as suggested by J. Chen and
Z. Chen [7]. Optimal theoretical properties such as selection consistency of the EBIC have
been rigorously obtained by J. Chen and Z. Chen [6] for the linear model and by J. Chen and
Z. Chen [7] for the generalized linear model. The EBIC can be appealingly applied to the Cox
model and it is worthwhile to further investigate its theoretical properties in the Cox model
which has not yet been addressed in the literature.

3. The Penalization Method for the Cox Model with
Semiparametric Relative Risk

The Cox relative risk model is sometimes too restrictive in examining the covariate effects. It
seems implausible that the linearity assumption holds in the presence of a large number of
predictors. Intuitively, at least for some of them, the linearity assumption might be violated
and the modeling of covariate effects via the parametric relative risk model might lead
to erroneous results. On the other hand, there are two objectives in the high-dimensional
regression analysis of genetic studies with censored survival outcomes, we not only want
to identify the predictor variables which are associated with the time but also to discern
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such a relationship if there does exist an association. Therefore, it is worth looking at other
alternative survival models in examining the covariate effects.

Du et al. [14] proposed the penalized method for the Cox model with semiparametric
relative risk model. Let ZT = (UT ,WT), where U and W are the subvectors of Z with
dimensions d = p − q and q, respectively. Instead of (2.1), they assume that

λ(t | Z = z) = λ0(t) exp
[
βT0U + η(W)

]
, (3.1)

where η(w) = η(w1, . . . , wq) is an unknown multivariate smooth function. The model
assumes the additivity of the effects of U and W and only the effect of U is postulated
to be linear. The effect of W can be of any form. This greatly enhances the flexibility and
facilitates more robust investigation of the covariate effects across a large number of genetic
and environment factors. Similarly, the log partial likelihood is

ℓ
(
β, η

)
=

n∑

i=1

δi

⎧
⎨
⎩βTUi + η(Wi) − log

⎡
⎣
∑

j∈Ri

exp
(
βTUj + η

(
Wj

))
⎤
⎦
⎫
⎬
⎭. (3.2)

Du et al. [14] proposed two penalties for themodel (3.1), one penalty for the roughness
of the function η and the other penalty for simultaneous coefficient estimation and variable
selection. The estimation iterates between the estimation of η given an initial estimator of β

and the estimation of β given an initial estimator of η. Given an estimate β̂ of β, η is estimated
by maximizing

ℓ
(
β̂, η

)
− λJ

(
η
)
, (3.3)

where J is a roughness penalty specifying the smoothness of η, and λ > 0 is a smoothing
parameter controlling the tradeoff. A popular choice for J is the L2-penalty which yields
tensor product cubic splines for multivariateW . Given an estimate η̂ of η, β can be estimated
by

ℓ
(
β, η̂

)
−

d∑

k=1

pθn
(∣∣βk

∣∣), (3.4)

where pθn(·) is the SCAD penalty function and θn is the tuning parameter. In its numerical
implementation, the SCAD penalty is approximated by a one-step approximation which
transforms the SCAD penalty problem to a LASSO-type optimization, where the celebrated
LARS algorithm [24] can be readily used to yield the entire solution path.

The algorithm converges quickly within a few iterations. In this approach, the SCAD
penalty facilitates the simultaneous coefficient estimation and variable selection in the
parametric component of relative risk model. As the multivariate smooth function W also
involves multiple predictor variables, it is therefore necessary to identify the correct structure
of η and relevant variables in W too. Taking care of variable selection for the parametric
components, we still need an approach to assess the structure of the nonparametric
components. By transforming the profile partial likelihood to a density estimation problem
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with biased sampling, Du et al. [14] further derive a model selection tool based on the
Kullback-Leibler geometry for the nonparametric component η. Specifically, a quantity based
on the ratio of two Kullback-Leibler distances can be used to diagnose the feasibility of a
reduced model η, the smaller the ratio is, the more feasible the reduced model is. Thus, the
penalized Cox semiparametric relative risk approach provides a flexible tool for identifying
relevant variables in both the parametric and nonparametric components.

4. The Modified Partial Least Squares Method for
Dimension Reduction in the Cox Model

Partial least squares (PLS) [25] is a classical dimension reduction method of dealing with
a large number of covariates. By constructing new variables which are linear combination
of the original variables, it fully utilizes the information and a proper regression analysis
can be conducted using the new variables. Different from the principal components (PCs)
analysis, partial least squares utilizes the information contained in both the response variable
and the predictor variables to construct new variables. This complicates its direct application
to censored survival data since the response variable is subject to right censoring. Nguyen
and Rocke [26] applied the standard PLS methods of Wold [25] directly to survival data and
used the resulted PLS components in the Cox model for predicting survival time. Since the
approach did not take into account that some of the survival time are censored and not exactly
the underlying time to event, the resulting components are questionable and may induce
bias. Alternatively, by reformulating the Cox model into a generalized linear model, Park et
al. [27] applied the formulation of PLS of Marx [28] to derive the PLS components. Despite
its validity, the introduction of many additional nuisance parameters in the reformulation
makes the algorithm fail to converge when the number of covariates is large.

Li and Jiang [15] proposed a modified partial least squares method for the Cox
model by constructing the components based on repeated least square fitting of residuals
and Cox regression fitting. Let wij ∝ var(Vij) be the weights and

∑n
i=1 wij = 1. First, let

Xj = (Z1j , . . . , Znj)
T and define

V1j = Xj − z·j1, (4.1)

where z·j = (1/n)
∑n

i=1 Zij , and 1 is an n-dimensional vector of all elements 1. After fitting
the Cox model with one covariate at one time, we obtain the maximize partial likelihood

estimate β̂1j for the predictor variable V1j , j = 1, . . . , p. Combining these estimates, we get the
first component

T1 =
p∑

j=1

w1j β̂1jV1j . (4.2)

The information in X that is not in T1 can be written as the residuals of regressing V1,j on T1

V2,j = V1,j −
TT
1 V1j

TT
1 T1

T1. (4.3)
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By performing the Cox regression analysis with T1 and V1j (one j at a time), we obtain the

maximized partial likelihood estimates β̂2j and consequently get the second component

T2 =
p∑

j=1

w2j β̂2jV2j . (4.4)

This procedure extends iteratively in a natural way to give component T2, . . . , TK, where
the maximum value of K is the sample size n. Specifically, suppose that Ti has just been
constructed, and to construct Ti+1, we first regress Vij against Ti and denote the residual as
V(i+1),j , which can be written as

V(i+1),j = Vi,j −
TT
i Vij

TT
i Ti

Ti. (4.5)

Then we fit the Cox relative risk model

λ(t | Z) = λ0(t) exp
(
β1T1 + · · · + βiTi + β(i+1),jV(i+1),j

)
, (4.6)

and obtain the maximum partial likelihood estimates β̂(i+1),j and

Ti+1 =
p∑

j=1

w(i+1)j β̂(i+1)jV(i+1)j . (4.7)

With the components T1, . . . , TK, a standard Cox regression model can be fitted and the risk
score can be obtained as

β̂1T1 + · · · + β̂KTK, (4.8)

where β̂j , j = 1, . . . , K is the maximum partial likelihood estimate of βj when we fit the Cox
relative risk model

λ(t | Z) = λ0(t) exp
(
β1T1 + · · · + βKTK

)
. (4.9)

This can then be used for estimating the hazard function for future samples on the basis
of their X values. By examining the coefficients of X values in the final model with K
components, one can rank the covariate effects by the risk score. The number of K can be
chosen by applying the cross-validation.

5. Comparison of Different Methods and Numerical Examples

5.1. Comparison Using Survival Prediction

In the previous sections, four different approaches have been used to identify the relevant
factors which have influential effects on the survival time. In practice, it would be important
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and interesting to compare different methods which can be done by using certain measure
of survival prediction. To assess the performance of the methods, the data set is first divided
into the training sample and the test sample randomly. For example, a ν-fold cross-validation
divide the sample into ν parts randomly. One part is retained as test set while the rest ν − 1
folds are used as the training set. The training sample gives the estimated risk score for a
given model (method) and then used in test sample for prediction. There are many measures
for survival prediction. One of them mimics the random clinical trial in assigning the test
sample into two groups—one “good” group and one “bad” group. Whether a subject in the
test sample falls into a good group or a bad group depends on whether his/her risk score is
smaller than a threshold value for the risk score. The log-rank test can then be used to test the
hypothesis that there is no difference between the two groups. The smaller the P value the
resulting log-rank test has, the better predictive power the estimated risk score has, which
translates into the better performance of the method/model. The dataset is randomly split
into training and test sample and hence for a large number of replications, the comparison
of different methods can be made by looking at the summary of the P -values of the log-rank
test, say, the median.

The disadvantage of the log-rank test is that the subjects are only assigned to
two groups and the risk score is only utilized in comparing with a threshold value. The
information contained in the risk score which is continuous is not fully utilized for survival
prediction. Alternatively, we can fit a Cox regression for the test sample using the risk
score estimated from the training sample as a single covariate. The predictive power of the
estimated risk score can be indicated by the significance of the risk score covariate in the
fitted Cox regression model for the test sample. Again, the obtained P values using different
methods in a large number of replications can help us assess their performance in terms of
survival prediction.

5.2. Simulation Studies

We conduct simulation studies to compare different methods. As a simple illustration, we
focus on the univariate shrinkage method (US) and the penalized shrinkage method (PS)
reviewed in Section 2. We set the sample size n = 500 and the number of covariates
p = 250, 500, and 1000, respectively. The covariates are jointly normally distributed with
equal correlation coefficient ρ = 0.5. The first six covariates are the only relevant variables
with β1 = β3 = β5 = 1 and β2 = β4 = β6 = −1. The baseline hazard function in (2.1) is
set to be constant 1 and the censoring time is generated from the niform(0, τ), where τ
is chosen to yield the censoring proportion 30%. For the univariate shrinkage method, the
top ranked variables with significance at 0.05 after Bonferroni’s correction will be selected.
For the penalized shrinkage method, the sure independence screening procedure preselects
n/(4 logn) = 20 and the penalized partial likelihood method is then applied to obtain the
final model. As a third method, we directly use the EBIC to select a subset model. We report
the median squared estimation error (MSE) and the squared estimation error is defined as

p∑

j=1

∣∣∣β̂j − βj
∣∣∣
2
. (5.1)
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We also report the average number of selected variables (MMS), the average positive
selection, and false discovery rates (PSR and FDR), where

PSR =

∑N
j=1 ν

(
s∗j

⋂
s0
)

Nν(s0)
,

FDR =

∑N
j=1 ν

(
s∗j/s0

)

∑N
j=1 ν

(
s∗j

) ,

(5.2)

N = 200 is the number of replications, s0 denotes the true model, and s∗j denotes the selected

model in the jth replication. The simulation results are summarized in Table 1. From Table 1,
we can see that both the PS and the EBIC perform better than the US. Compared with the
EBIC, the PS selects slightly more variables and has relatively larger FDRs and PSRs.

5.3. A Real Example

We analyzed microarray data by the lung cancer dataset from Beer et al. [29]. The dataset
consists of gene expressions of 4966 genes for 83 patients. The patients were classified
according to the progression of the disease. Sixty four patients were classified as stage I.
Nineteen patients were classified as stage III. For each of the 83 patients, the survival time
as well as the censoring status is available. Other covariate variables in addition to the
gene expressions are age, gender, and smoking status. Our aim is to study the association
of survival time with the gene expressions adjusting for the effects of the other covariates
via the Cox model with parametric relative risk. The US, PS, and EBIC are used to select
variables. We divide the 83 patients into two groups by randomly assigning 32 of the 64
stage I and 9 of 19 stage III patients to the training group and the remaining patients to
the test group. By adjusting for the covariate (gender, age, smoking) effects, we fit the Cox
model with the selected genes and construct a risk index. The 50th percentile of the risk
index from the training group is employed as the threshold. We then apply the threshold to
test dataset to define the low-risk and high-risk groups. To assess the predictability of the
so-defined discriminant criterion, we perform a log-rank test of the difference of survivals
of the two groups defined by the risk index. If the survival times of the two groups can be
well separated (measured by the P -value of the log-rank test), then the method has a better
predictability. We therefore use the resulting median P -value (among 1000 random splitting
data into training and test sets) as the measure of prediction accuracy of different methods.
The results are summarized in Table 2. It is shown that the PS and EBIC have comparable
predictability which is much better than the US.

6. Further Work

We review in this paper some recently developed methods for high-dimensional regression
analysis in genetic studies with censored survival outcomes. The identification of relevant
variable that have the influential effects on the survival time leads to a better understanding
of disease and gene/environment association for many complex diseases. Although the
Cox model is widely used to examine the covariate effects through the relative risk, the
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proportional hazard assumption may be violated in practice, for example, when there are
long-term survivors. In some situations, other alternative models such as the additive risks
model, the proportional odds model, or more generally the semiparametric transformation
models may fare better. Furthermore, as we discussed before, the linearity assumption may
not be tenable either. It would be interesting to develop parallel methodologies in these
alternative models.

Although the Cox semiparametric relative risk relaxes the assumption to some extent,
the classification of the covariates into the parametric component (with linearity assumption)
and the nonparametric component (without linearity assumption) is challenging and
unsolved. The problem would be more difficult when both the proportional hazards
assumption and the linearity assumption are violated. In the presence of a large number of
genetic and environment factors, undoubtedly we have to make necessary assumptions on
the underlying structure to proceed. It is worth investigating that how the nonproportionality
and the linearity assumptions alone or jointlywith each other impact on the high-dimensional
regression analysis. In particular, how sensitive the identification of relevant variables is to the
misspecification of the model and whether there are other good structures to be postulated
which have appealing properties and are most suitable for the high-dimensional regression
analysis.

It is also worthy to note that for model selection, there are two different purposes.
One is selection consistency such as the oracle properties. The other is the prediction
accuracy.While the prediction accuracy can be well assessed by cross-validation, the selection
consistency should be assessed by using the FDRs and PSRs.
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